
Received: 31 July 2020 Revised: 4 August 2021 Accepted: 9 August 2021

DOI: 10.1112/mtk.12115

MathematikaRESEARCH ARTICLE

Lower bounds for moments of zeta and
𝑳-functions revisited

Winston Heap1 K. Soundararajan2

1 Max Planck Institute for Mathematics,
Bonn, Germany
2 Department of Mathematics, Stanford
University, Stanford, California, USA

Correspondence
WinstonHeap,MaxPlanck Institute for
Mathematics,Vivatsgasse 7, 53111Bonn,
Germany.
Email:winstonheap@gmail.com

Funding information
NSF,Grant/AwardNumber:DMS1854398;
SimonsFoundation

Abstract
This paper describes amethod to compute lower bounds
for moments of 𝜁 and 𝐿-functions. The method is illus-
trated in the case of moments of |𝜁( 1

2
+ 𝑖𝑡)|, where the

results are new for small moments 0 < 𝑘 < 1.

MSC 2020
11M06 (primary)

1 INTRODUCTION

This paper reexamines the problem of obtaining lower bounds of the correct order of magnitude
for moments of the Riemann zeta function on the critical line, and related problems for central
values in families of 𝐿-functions. Our work is motivated by recent work on the complementary
problem of obtaining upper bounds for such moments. For example, [9] enunciates the principle
that an upper bound for a particular moment (with a little flexibility) may be used to establish
upper bounds of the correct order of magnitude for all smaller moments. Recent work of the
authors with Radziwiłł [4] provides such upper bounds for all moments of the Riemann zeta-
function below the fourthmoment. In those papers, one key idea is to approximate Euler products
that mimic suitable powers of the zeta-function using Dirichlet series of small length. The aim of
this paper is to demonstrate how that idea may also be used to establish lower bounds of the right
order of magnitude for all moments of the Riemann zeta-function.

Theorem 1. Let 𝑇 be large. Uniformly for (log 𝑇)−
1
2 ⩽ 𝑘 ⩽ (log 𝑇)

1
2
−𝛿 (for any fixed 𝛿 > 0), we have

∫
2𝑇

𝑇
|𝜁( 1
2
+ 𝑖𝑡)|2𝑘𝑑𝑡 ⩾ 𝐶𝑘𝑇(log 𝑇)𝑘2 ,
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2 HEAP and SOUNDARARAJAN

where we may take 𝐶𝑘 = 𝐶1𝑘 in the range 𝑘 ⩽ 1, and 𝐶𝑘 = (𝐶2𝑘2 log(𝑒𝑘))−𝑘
2 for some absolute pos-

itive constants 𝐶1 and 𝐶2.

There is a long history concerning such lower bounds for 𝜁 and 𝐿-functions. To place our result
briefly in context, we recall that in the range 𝑘 ⩾ 1 such a lower bound was established by [8],
although our quantification of 𝐶𝑘 is better and the proof arguably simpler. While we have stated
the result in a uniform range of 𝑘, the interest of the result is really in the case when 𝑘 is a bounded
real number. For example, in the range 𝑘 ⩾ log log 𝑇, by modifying the constant 𝐶2 and using
Hölder’s inequality, one can consider just integer values of 𝑘, where it is easy to obtain lower
bounds (see, for example, [2]).
Theorem 1 is new in the range 0 < 𝑘 ⩽ 1. Previous work of Heath–Brown [5] had established

such a bound for rational 𝑘 in this range, and for real 𝑘 such a bound was known to hold con-
ditional on the Riemann hypothesis (see [5, 11, 12]). In the range 𝑐(log log 𝑇)−

1
2 ⩽ 𝑘 = 𝑜(1), Laur-

inchikas [6] has shown that the 2𝑘th moment is ∼ 𝑇(log 𝑇)𝑘2 . The constant 𝐶𝑘 in our result tends
to zero as 𝑘 → 0; with more effort, our argument could be made to yield 𝐶𝑘 ≫ 1 for all 𝑘 ⩽ 1, but
we have not done so in the interest of keeping the exposition simple.
Combining the upper bound result of Heap, Radziwiłł, and Soundararajan [4] with the lower

bound of Theorem 1, we obtain the following corollary.

Corollary 1. For 𝑇 large, uniformly for (log 𝑇)−
1
2 ⩽ 𝑘 ⩽ 2 we have

𝑇(log 𝑇)𝑘
2
≫ ∫

2𝑇

𝑇
|𝜁( 1
2
+ 𝑖𝑡)|2𝑘𝑑𝑡 ≫ 𝑘𝑇(log 𝑇)𝑘2 .

The moments of 𝜁( 1
2
+ 𝑖𝑡) encode information on the distribution of large values of |𝜁( 1

2
+ 𝑖𝑡)|.

In [13] it was observed that the 2𝑘th moment of |𝜁( 1
2
+ 𝑖𝑡)| should be dominated by values of size

(log 𝑇)𝑘, which should occur on a set of measure about 𝑇∕(log 𝑇)𝑘2 . On RH, it was shown in [13]
that the measure of {𝑡 ∈ [𝑇, 2𝑇] ∶ |𝜁( 1

2
+ 𝑖𝑡)| ⩾ (log 𝑇)𝑘} is 𝑇(log 𝑇)−𝑘2+𝑜(1) for any fixed positive

𝑘. From Corollary 1, we may obtain a sharper form of such a result unconditionally in the limited
range 0 < 𝑘 < 2.

Corollary 2. Uniformly in the range√
log log 𝑇 log log log 𝑇 ⩽ 𝑉 ⩽ 2 log log 𝑇 − 2

√
log log 𝑇 log log log 𝑇,

we have

meas{𝑡 ∈ [𝑇, 2𝑇] ∶ |𝜁( 1
2
+ 𝑖𝑡)| ⩾ 𝑒𝑉} = 𝑇 exp(− 𝑉2

log log 𝑇
+ 𝑂

(
𝑉 log log log 𝑇√
log log 𝑇

))
.

Recall that Selberg’s central limit theorem (see [10] for a proof related to ideas of this paper)
states that for 𝑡 chosen uniformly from [𝑇, 2𝑇], log |𝜁( 1

2
+ 𝑖𝑡)| has an approximately normal dis-

tribution with mean 0 and variance ∼ 1
2
log log 𝑇. Radziwiłł [7] has established a uniform version
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of this result showing that for 𝑉 ⩽ (log log 𝑇)
3
5
−𝜖 one has

meas {𝑡 ∈ [𝑇, 2𝑇] ∶ log |𝜁( 1
2
+ 𝑖𝑡)| ⩾ 𝑉 = Δ√ 1

2
log log 𝑇} ∼

𝑇√
2𝜋 ∫

∞

Δ
𝑒−𝑥

2∕2𝑑𝑥.

Corollary 2 gives a crude version of such a result but in a wider range for 𝑉.

2 SETUP AND PLAN OF THE PROOF

Since Theorem 1 is really new only in the range 0 < 𝑘 ⩽ 1, we give a detailed proof in this range.
In Section 6, we briefly indicate the modifications to the argument needed to establish Theorem 1
for 𝑘 ⩾ 1, and also discuss lower bounds for moments of central values of 𝐿-functions in families.
Throughout, log𝑗 will denote the 𝑗-fold iterated logarithm. Let 𝑇 be large and assume that

1∕
√
log 𝑇 ⩽ 𝑘 ⩽ 1. Let 𝓁 denote the largest integer such that log𝓁 𝑇 ⩾ 104. Define a sequence 𝑇𝑗

by setting 𝑇1 = 𝑒2, and for 2 ⩽ 𝑗 ⩽ 𝓁 by

𝑇𝑗 ∶= exp

(
𝑘 log 𝑇

(log𝑗 𝑇)
2

)
.

Note that 𝑇2 is already large. Further, the sequence 𝑇𝑗 is in ascending order, and lastly 𝑘 log 𝑇 ≪
log 𝑇𝓁 ⩽ 10

−8𝑘 log 𝑇.
For each 2 ⩽ 𝑗 ⩽ 𝓁, set

𝑗(𝑠) ∶=
∑

𝑇𝑗−1⩽𝑝<𝑇𝑗

1

𝑝𝑠
, and 𝑃𝑗 = 𝑗(1) =

∑
𝑇𝑗−1⩽𝑝<𝑇𝑗

1

𝑝
.

Note that

𝑃𝑗 = log
log 𝑇𝑗

log 𝑇𝑗−1
+ 𝑂

(
1

log 𝑇𝑗−1

)
∼ 2 log

(
log𝑗−1 𝑇

log𝑗 𝑇

)
= 2 log𝑗 𝑇 − 2 log𝑗+1 𝑇,

so that 𝑃𝓁 ⩾ 104, 𝑃𝓁−1 ⩾ exp(104), and so on.
Let denote the set of integers 𝑛 = 𝑛2⋯𝑛𝓁 where each 𝑛𝑗 is divisible only by primes in the

interval 𝑇𝑗−1 to 𝑇𝑗 and such that Ω(𝑛𝑗) ⩽ 𝐾𝑗 ∶= 500𝑃𝑗 for all 2 ⩽ 𝑗 ⩽ 𝓁. If 𝑛 ∈ , then

𝑛 = 𝑛2⋯𝑛𝓁 ⩽ 𝑇
500𝑃2
2

𝑇
500𝑃3
3

⋯𝑇500𝑃𝓁𝓁 ⩽ 𝑇𝑘∕9. (1)

Let g(𝑛) denote the multiplicative function given on prime powers by g(𝑝𝑟) = 1∕𝑟!. Define, for
any real number 𝛼 and 2 ⩽ 𝑗 ⩽ 𝓁

𝑗(𝑠, 𝛼) =
𝐾𝑗∑
𝑟=0

1

𝑟!
(𝛼𝑗(𝑠, 𝛼))𝑟 =

∑
𝑝|𝑛⇒𝑇𝑗−1⩽𝑝⩽𝑇𝑗
Ω(𝑛)⩽𝐾𝑗

𝛼Ω(𝑛)g(𝑛)
𝑛𝑠

, (2)
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and put

 (𝑠, 𝛼) ∶= ∑
𝑛∈

𝛼Ω(𝑛)g(𝑛)
𝑛𝑠

=

𝓁∏
𝑗=2

𝑗(𝑠, 𝛼). (3)

In view of (1), (𝑠, 𝛼) is a short Dirichlet polynomial. The idea is that (𝑠, 𝛼) behaves in many
ways like 𝜁(𝑠)𝛼, but with the advantage that since (𝑠, 𝛼) is a short Dirichlet polynomial, one can
compute mean values involving it and 𝜁(𝑠). The proof of our theorem rests on the following three
propositions dealing with such mean values involving 𝜁(𝑠) and (𝑠, 𝛼) for suitable values of 𝛼.
Proposition 1. Let 𝑇 be large. Uniformly in the range 1 ⩾ 𝑘 ⩾ 1∕

√
log 𝑇 we have

∫
2𝑇

𝑇
𝜁( 1
2
+ 𝑖𝑡) ( 1

2
+ 𝑖𝑡, 𝑘 − 1) ( 1

2
− 𝑖𝑡, 𝑘)𝑑𝑡 ⩾ 𝐶1𝑇(log 𝑇)

𝑘2 ,

for some positive constant 𝐶1.

Proposition 2. Let 𝑇 be large. Uniformly in the range 1 ⩾ 𝑘 ⩾ 1∕
√
log 𝑇 we have

∫
2𝑇

𝑇
|𝜁( 1
2
+ 𝑖𝑡) ( 1

2
+ 𝑖𝑡, 𝑘 − 1)|2𝑑𝑡 ⩽ 𝐶2𝑘−1𝑇(log 𝑇)𝑘2 ,

for some positive constant 𝐶2.

Proposition 3. Let 𝑇 be large. Uniformly in the range 1 ⩾ 𝑘 ⩾ 1∕
√
log 𝑇 we have

∫
2𝑇

𝑇
| ( 1

2
+ 𝑖𝑡, 𝑘)| 2𝑘 | ( 1

2
+ 𝑖𝑡, 𝑘 − 1)|2𝑑𝑡 ⩽ 𝐶3𝑇(log 𝑇)𝑘2 ,

for some positive constant 𝐶3.

Two applications of Hölder’s inequality give

|||∫ 2𝑇

𝑇
𝜁( 1
2
+ 𝑖𝑡) ( 1

2
+ 𝑖𝑡, 𝑘 − 1) ( 1

2
− 𝑖𝑡, 𝑘)𝑑𝑡

|||
⩽

(
∫
2𝑇

𝑇
|𝜁( 1
2
+ 𝑖𝑡)|2𝑘𝑑𝑡) 1

2

×

(
∫
2𝑇

𝑇
|𝜁( 1
2
+ 𝑖𝑡) ( 1

2
+ 𝑖𝑡, 𝑘 − 1)|2𝑑𝑡) 1−𝑘

2

×

(
∫
2𝑇

𝑇
| ( 1

2
+ 𝑖𝑡, 𝑘)| 2𝑘 | ( 1

2
+ 𝑖𝑡, 𝑘 − 1)|2𝑑𝑡) 𝑘

2

,

so that the lower bound of the theorem follows at once from the three propositions.

Deducing Corollary 2 from Corollary 1. Let 𝑉 be in the range of the corollary, and put
𝑘 = 𝑉∕ log log 𝑇 and 𝛿 = log3 𝑇∕

√
log log 𝑇 so that 𝑘 + 2𝛿 ⩽ 2. The upper bound implicit in the
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corollary follows (in a stronger form) upon noting that

meas{𝑡 ∈ [𝑇, 2𝑇] ∶ |𝜁( 1
2
+ 𝑖𝑡)| ⩾ 𝑒𝑉} ⩽ 𝑒−2𝑘𝑉 ∫ 2𝑇

𝑇
|𝜁( 1
2
+ 𝑖𝑡)|2𝑘𝑑𝑡 ≪ 𝑇 exp(− 𝑉2

log log 𝑇

)
.

To prove the lower bound, consider

∫
2𝑇

𝑇
|𝜁( 1
2
+ 𝑖𝑡)|2(𝑘+𝛿)𝑑𝑡 ≫ (𝑘 + 𝛿)𝑇(log 𝑇)(𝑘+𝛿)2 ≫ 𝑇√

log log 𝑇
(log 𝑇)(𝑘+𝛿)

2
. (4)

The contribution to the integral from 𝑡 with |𝜁( 1
2
+ 𝑖𝑡)| ⩽ 𝑒𝑉 is

⩽ 𝑒2𝛿𝑉 ∫
2𝑇

𝑇
|𝜁( 1
2
+ 𝑖𝑡)|2𝑘𝑑𝑡 ≪ 𝑇(log 𝑇)𝑘2+2𝑘𝛿 = 𝑜( 𝑇√

log log 𝑇
(log 𝑇)(𝑘+𝛿)

2

)
.

Similarly, the contribution to the integral from 𝑡 with |𝜁( 1
2
+ 𝑖𝑡)| ⩾ 𝑒𝑉(log 𝑇)2𝛿 is

⩽ (log 𝑇)−2𝛿(𝑘+2𝛿) ∫
2𝑇

𝑇
|𝜁( 1
2
+ 𝑖𝑡)|2(𝑘+2𝛿)𝑑𝑡 ≪ 𝑇(log 𝑇)𝑘2+2𝛿𝑘 = 𝑜( 𝑇√

log log 𝑇
(log 𝑇)(𝑘+𝛿)

2

)
.

Thus, the left side of (4) is dominated by values of |𝜁( 1
2
+ 𝑖𝑡)| lying between 𝑒𝑉 = (log 𝑇)𝑘 and

(log 𝑇)𝑘+2𝛿 and it follows that the measure of the set of such 𝑡 is

≫ (log 𝑇)−2(𝑘+𝛿)(𝑘+2𝛿) ∫ 𝑡∈[𝑇,2𝑇]

(log 𝑇)𝑘+2𝛿⩾|𝜁( 1
2
+𝑖𝑡)|⩾(log 𝑇)𝑘 |𝜁( 12 + 𝑖𝑡)|2(𝑘+𝛿)𝑑𝑡

≫
𝑇√

log log 𝑇
(log 𝑇)−𝑘

2−4𝑘𝛿−3𝛿2 .

The corollary follows.

3 PROOF OF PROPOSITION 1

Expanding out, we have

∫
2𝑇

𝑇
𝜁( 1
2
+ 𝑖𝑡) ( 1

2
+ 𝑖𝑡, 𝑘 − 1) ( 1

2
− 𝑖𝑡, 𝑘)𝑑𝑡

=
∑
𝑛,𝑛∈

(𝑘 − 1)Ω(𝑛)𝑘Ω(𝑚)g(𝑛)g(𝑚)√
𝑚𝑛 ∫

2𝑇

𝑇
𝜁( 1
2
+ 𝑖𝑡)

(
𝑚

𝑛

)𝑖𝑡
𝑑𝑡. (5)

Using the simple approximation

𝜁(1∕2 + 𝑖𝑡) =
∑
𝑟⩽𝑇

1

𝑟1∕2+𝑖𝑡
+ 𝑂(𝑇−1∕2), 𝑡 ∈ [𝑇, 2𝑇],
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we find that

∫
2𝑇

𝑇
𝜁( 1
2
+ 𝑖𝑡)

(
𝑚

𝑛

)𝑖𝑡
𝑑𝑡 = 𝑇

𝛿(𝑟𝑛 = 𝑚)√
𝑟

+ 𝑂

⎛⎜⎜⎜⎝𝑇
1
2 +

∑
𝑟⩽𝑇
𝑟𝑛≠𝑚

1√
𝑟| log(𝑟𝑛∕𝑚)|

⎞⎟⎟⎟⎠.
Here 𝛿(𝑟𝑛 = 𝑚) equals 1 if 𝑛|𝑚 and 𝑟 = 𝑚∕𝑛, and there is no main term if 𝑛 ∤ 𝑚. If 𝑟𝑛 ≠ 𝑚, we
may estimate 1∕| log(𝑟𝑛∕𝑚)| trivially by≪ 𝑚, and so the remainder term above is𝑂(𝑚𝑇

1
2 ). From

these remarks, it follows that the right side of (5) equals

𝑇
∑
𝑚,𝑛∈
𝑛|𝑚

(𝑘 − 1)Ω(𝑛)𝑘Ω(𝑚)g(𝑛)g(𝑚)
𝑚

+ 𝑂

( ∑
𝑚,𝑛∈

1√
𝑚𝑛
𝑚𝑇

1
2

)
. (6)

Since the elements of are all bounded by 𝑇1∕9, the error term above is seen to be𝑂(𝑇7∕9), which
is negligible.
Now consider the main term in (6). Factor 𝑛 = 𝑛2⋯𝑛𝓁 and 𝑚 = 𝑚2⋯𝑚𝓁 where 𝑚𝑗 and 𝑛𝑗

are divisible only by the primes in the interval (𝑇𝑗−1, 𝑇𝑗) and Ω(𝑚𝑗) and Ω(𝑛𝑗) are bounded by
𝐾𝑗 . Then the main term in (6) factors naturally as

𝑇

𝓁∏
𝑗=2

⎛⎜⎜⎜⎜⎜⎜⎝
∑
𝑛𝑗,𝑚𝑗
𝑛𝑗|𝑚𝑗

Ω(𝑚𝑗)⩽500𝑃𝑗

(𝑘 − 1)Ω(𝑛𝑗)𝑘Ω(𝑚𝑗)g(𝑛𝑗)g(𝑚𝑗)

𝑚𝑗

⎞⎟⎟⎟⎟⎟⎟⎠
. (7)

If we drop the condition thatΩ(𝑚𝑗) ⩽ 𝐾𝑗 , then the sums over 𝑛𝑗 ,𝑚𝑗 above may be replaced with
(thinking of 𝑎 as the power of 𝑝 dividing𝑚𝑗 and 𝑏 the power dividing 𝑛𝑗)

∏
𝑇𝑗−1⩽𝑝⩽𝑇𝑗

⎛⎜⎜⎜⎝1 +
∑
𝑎⩾1
𝑎⩾𝑏⩾0

𝑘𝑎(𝑘 − 1)𝑏

𝑝𝑎
g(𝑝𝑎)g(𝑝𝑏)

⎞⎟⎟⎟⎠ ⩾
∏

𝑇𝑗−1⩽𝑝⩽𝑇𝑗

(
1 +
𝑘2

𝑝

)
.

The error incurred in dropping this condition is bounded in magnitude by

∑
𝑛𝑗,𝑚𝑗
𝑛𝑗|𝑚𝑗

Ω(𝑚𝑗)>𝐾𝑗

g(𝑛𝑗)g(𝑚𝑗)

𝑚𝑗
⩽ 𝑒−𝐾𝑗

∑
𝑛𝑗,𝑚𝑗
𝑛𝑗|𝑚𝑗

g(𝑛𝑗)g(𝑚𝑗)

𝑚𝑗
𝑒Ω(𝑚𝑗)

= 𝑒−500𝑃𝑗
∏

𝑇𝑗−1⩽𝑝⩽𝑇𝑗

(
1 +

∑
𝑎⩾1

𝑒𝑎

𝑎!𝑝𝑎

∑
𝑎⩾𝑏⩾0

1

𝑏!

)

⩽ 𝑒−500𝑃𝑗
∏

𝑇𝑗−1⩽𝑝⩽𝑇𝑗

(
1 +
20

𝑝

)
⩽ 𝑒−400𝑃𝑗 .
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It follows that the main term (7) is

⩾ 𝑇

𝓁∏
𝑗=2

∏
𝑇𝑗−1⩽𝑝⩽𝑇𝑗

(
1 +
𝑘2

𝑝

)(
1 − 𝑒−400𝑃𝑗

)
⩾ 𝐶𝑇(log 𝑇𝓁)

𝑘2 ,

for an absolute positive constant 𝐶. Since log 𝑇𝓁 ≫ 𝑘 log 𝑇, and 𝑘𝑘
2
≫ 1 for 0 < 𝑘 ⩽ 1, this proves

Proposition 1.

4 PROOF OF PROPOSITION 2

It is a simplematter to compute themean square of the zeta functionmultiplied by a short Dirich-
let polynomial. For example, from [1], we obtain

∫
2𝑇

𝑇
|𝜁( 1
2
+ 𝑖𝑡) ( 1

2
+ 𝑖𝑡, 𝑘 − 1)|2𝑑𝑡 = 𝑇 ∑

𝑚,𝑛∈
(𝑘 − 1)Ω(𝑚)+Ω(𝑛)g(𝑚)g(𝑛)

[𝑚, 𝑛]
log

(
𝐵𝑇(𝑚, 𝑛)2

𝑚𝑛

)
+ 𝑜(𝑇), (8)

for a constant 𝐵. We must now bound the main term above. While one can work out an asymp-
totic for this main term, we give a quick proof of an upper bound, which is all that is needed in
Proposition 2.
Write

log

(
𝐵𝑇(𝑚, 𝑛)2

𝑚𝑛

)
=
1

2𝜋𝑖 ∫|𝑧|=1∕ log 𝑇
(
𝐵𝑇(𝑚, 𝑛)2

𝑚𝑛

)𝑧
𝑑𝑧

𝑧2
,

so that the main term in (8) becomes

𝑇

2𝜋𝑖 ∫|𝑧|=1∕ log 𝑇
∑
𝑚,𝑛∈

(𝑘 − 1)Ω(𝑚)+Ω(𝑛)g(𝑚)g(𝑛)
[𝑚, 𝑛]

(
𝐵𝑇(𝑚, 𝑛)2

𝑚𝑛

)𝑧
𝑑𝑧

𝑧2
.

By the triangle inequality, we may estimate the above by

⩽ 3𝑇 log 𝑇 max|𝑧|=1∕ log 𝑇 ||| ∑
𝑚,𝑛∈

(𝑘 − 1)Ω(𝑚)+Ω(𝑛)g(𝑚)g(𝑛)
[𝑚, 𝑛]

(
(𝑚, 𝑛)2

𝑚𝑛

)𝑧|||. (9)

We can now analyze the sum over 𝑚 and 𝑛 in (9) by adapting the argument of the previous
section. Thus, decompose𝑚 = 𝑚2⋯𝑚𝓁 and 𝑛 = 𝑛2⋯𝑛𝓁 where𝑚𝑗 and 𝑛𝑗 are composed only of
the primes in (𝑇𝑗−1, 𝑇𝑗) and Ω(𝑚𝑗) and Ω(𝑛𝑗) are both ⩽ 𝐾𝑗 . By multiplicativity, the sum in (9)
factors as

𝓁∏
𝑗=2

⎛⎜⎜⎜⎜⎝
∑
𝑚𝑗,𝑛𝑗

Ω(𝑚𝑗),Ω(𝑛𝑗)⩽𝐾𝑗

(𝑘 − 1)Ω(𝑚𝑗)+Ω(𝑛𝑗)g(𝑚𝑗)g(𝑛𝑗)

[𝑚𝑗, 𝑛𝑗]

(
(𝑚, 𝑛)2

𝑚𝑛

)𝑧⎞⎟⎟⎟⎟⎠
. (10)
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As before, we handle these terms by first dropping the condition on Ω(𝑚𝑗) and Ω(𝑛𝑗), and then
bounding the error in doing so. If we drop the conditions on Ω(𝑚𝑗) and Ω(𝑛𝑗), the sums over𝑚𝑗
and 𝑛𝑗 become

∏
𝑇𝑗−1⩽𝑝⩽𝑇𝑗

(
∞∑
𝑎,𝑏=0

(𝑘 − 1)𝑎+𝑏

𝑎!𝑏!𝑝max(𝑎,𝑏)
𝑝−|𝑏−𝑎|𝑧

)
=

∏
𝑇𝑗−1⩽𝑝⩽𝑇𝑗

(
1 +
(𝑘 − 1)2 + 2(𝑘 − 1)𝑝−𝑧

𝑝
+ 𝑂

(
1

𝑝2

))

=
∏

𝑇𝑗−1⩽𝑝⩽𝑇𝑗

(
1 +
𝑘2 − 1

𝑝
+ 𝑂

(
log 𝑝

𝑝 log 𝑇
+
1

𝑝2

))
.

The error incurred in dropping the conditions on Ω(𝑚𝑗) and Ω(𝑛𝑗) is bounded in magnitude by

⩽ 𝑒−𝐾𝑗
∑
𝑚𝑗,𝑛𝑗

g(𝑚)g(𝑛)
[𝑚, 𝑛]

𝑒Ω(𝑚𝑗)+Ω(𝑛𝑗)
(
𝑚𝑛

(𝑚, 𝑛)2

)1∕ log 𝑇

⩽ 𝑒−𝐾𝑗
∏

𝑇𝑗−1⩽𝑝⩽𝑇𝑗

(
1 + 2

∞∑
𝑎=1

∑
0⩽𝑏⩽𝑎

𝑒𝑎+𝑏

𝑎!𝑏!𝑝𝑎
𝑝𝑎∕ log 𝑇

)

⩽ 𝑒−500𝑃𝑗
∏

𝑇𝑗−1⩽𝑝⩽𝑇𝑗

(
1 + 35

∞∑
𝑎=1

𝑒𝑎

𝑎!𝑝𝑎

)
⩽ 𝑒−500𝑃𝑗 exp

⎛⎜⎜⎝
∑

𝑇𝑗−1⩽𝑝⩽𝑇𝑗

35𝑒

𝑝

⎞⎟⎟⎠ ⩽ 𝑒−400𝑃𝑗 .
We conclude that the sum over𝑚𝑗 , 𝑛𝑗 in (10) is

∏
𝑇𝑗−1⩽𝑝⩽𝑇𝑗

(
1 +
𝑘2 − 1

𝑝
+ 𝑂

(
log 𝑝

𝑝 log 𝑇
+
1

𝑝2

))(
1 + 𝑂(𝑒−300𝑃𝑗 )

)
, (11)

so that the quantity in (9) is

≪ 𝑇 log𝑇
∏
𝑝⩽𝑇𝓁

(
1 +
𝑘2 − 1

𝑝
+ 𝑂

(
log 𝑝

𝑝 log 𝑇
+
1

𝑝2

))
≪ 𝑘−1𝑇(log 𝑇)𝑘

2
.

The proposition follows.

5 PROOF OF PROPOSITION 3

Recall from (2) and (3) the definitions of𝑗(𝑠, 𝛼) and (𝑠, 𝛼). The following simple lemma is the
key to establishing Proposition 3.

Lemma 1. For 2 ⩽ 𝑗 ⩽ 𝓁

|𝑗( 12 + 𝑖𝑡, 𝑘 − 1)𝑗( 12 + 𝑖𝑡, 𝑘) 1𝑘 |2 ⩽ |𝑗( 12 , +𝑖𝑡, 𝑘)|2(1 + 𝑂(𝑒−𝐾𝑗∕𝑘)) + 𝑂(22∕𝑘𝑗(𝑡)),
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where the implied constants are absolute, and

𝑗(𝑡) =
(
12|𝑗( 12 + 𝑖𝑡)|

𝐾𝑗

)2𝐾𝑗 𝐾𝑗∕𝑘∑
𝑟=0

(
2𝑒|𝑗( 12 + 𝑖𝑡)|
𝑟 + 1

)2𝑟
.

Proof. We begin by observing that if |𝑧| ⩽ 𝐾∕10, then
||| 𝐾∑
𝑟=0

𝑧𝑟

𝑟!
− 𝑒𝑧

||| ⩽ |𝑧|𝐾
𝐾!

⩽
(
𝑒

10

)𝐾
,

so that

𝐾∑
𝑟=0

𝑧𝑟

𝑟!
= 𝑒𝑧

(
1 + 𝑂(𝑒−𝐾)

)
. (12)

Consider first the case |𝑗( 12 + 𝑖𝑡)| ⩽ 𝐾𝑗∕10, where three applications of (12) show that

|𝑗( 12 + 𝑖𝑡, 𝑘 − 1)|2|𝑗( 12 + 𝑖𝑡, 𝑘)| 2𝑘 = exp(2𝑘Re𝑗( 12 + 𝑖𝑡))(1 + 𝑂(𝑒−𝐾𝑗∕𝑘))
= |𝑗( 12 + 𝑖𝑡, 𝑘)|2(1 + 𝑂(𝑒−𝐾𝑗∕𝑘)).

The lemma follows in this case.
Suppose now that |𝑗( 12 + 𝑖𝑡)| ⩾ 𝐾𝑗∕10. Here note that

|𝑗( 12 + 𝑖𝑡, 𝑘 − 1)| ⩽ 𝐾𝑗∑
𝑟=0

|𝑗( 12 + 𝑖𝑡)|𝑟
𝑟!

⩽ |𝑗( 12 + 𝑖𝑡)|𝐾𝑗 𝐾𝑗∑
𝑟=0

(
10

𝐾𝑗

)𝐾𝑗−𝑟 1
𝑟!

⩽

(
12|𝑗( 12 + 𝑖𝑡)|

𝐾𝑗

)𝐾𝑗
. (13)

Further, applying Hölder’s inequality we find

|𝑗( 12 + 𝑖𝑡, 𝑘)| 2𝑘 ⩽ ⎛⎜⎜⎝
𝐾𝑗∑
𝑟=0

(𝑘|𝑗( 12 + 𝑖𝑡)|)𝑟
𝑟!

⎞⎟⎟⎠
2
𝑘

⩽

⎛⎜⎜⎝
𝐾𝑗∑
𝑟=0

(2𝑘|𝑗( 12 + 𝑖𝑡)|) 2𝑟𝑘
𝑟!2∕𝑘

⎞⎟⎟⎠
⎛⎜⎜⎝
𝐾𝑗∑
𝑟=0

2−𝑟
⎞⎟⎟⎠
2
𝑘
−1

⩽ 2
2
𝑘

𝐾𝑗∑
𝑟=0

(2𝑘|𝑗( 12 + 𝑖𝑡)|) 2𝑟𝑘 ( 𝑒

𝑟 + 1

) 2𝑟
𝑘
⩽ 2

2
𝑘

𝐾𝑗∑
𝑟=0

(
2𝑒|𝑗( 12 + 𝑖𝑡)|
𝑟∕𝑘 + 1

) 2𝑟
𝑘

.

A little calculus allows us to bound the above by

≪ 2
2
𝑘

𝐾𝑗∕𝑘∑
𝑟=0

(
2𝑒|𝑗( 12 + 𝑖𝑡)|
𝑟 + 1

)2𝑟
,

which when combined with (13) yields the lemma. □
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We next show that 𝑗(𝑡) (which is always non-negative by definition) is small on average.
Lemma 2. With the above notation

∫
2𝑇

𝑇
𝑗(𝑡)𝑑𝑡 ≪ 𝑇𝑒−𝐾𝑗 .

Proof. We begin by recalling a simple mean-value theorem for Dirichlet polynomials:

∫
2𝑇

𝑇

||| ∑
𝑛⩽𝑁

𝑎(𝑛)𝑛−𝑖𝑡
|||2𝑑𝑡 = 𝑇∑

𝑛⩽𝑁

|𝑎(𝑛)|2 + 𝑂( ∑
𝑚≠𝑛⩽𝑁

|𝑎(𝑚)𝑎(𝑛)|| log(𝑚∕𝑛)|
)
,

and bounding |𝑎(𝑚)𝑎(𝑛)| by |𝑎(𝑚)|2 + |𝑎(𝑛)|2, it follows that
∫
2𝑇

𝑇

||| ∑
𝑛⩽𝑁

𝑎(𝑛)𝑛−𝑖𝑡
|||2𝑑𝑡 = (𝑇 + 𝑂(𝑁 log𝑁))∑

𝑛⩽𝑁

|𝑎(𝑛)|2. (14)

Now, for 0 ⩽ 𝑟 ⩽ 𝐾𝑗∕𝑘,

𝑗( 12 + 𝑖𝑡)𝐾𝑗+𝑟 =
∑

Ω(𝑛)=𝐾𝑗+𝑟

𝑝|𝑛⇒𝑇𝑗−1⩽𝑝⩽𝑇𝑗
(𝐾𝑗 + 𝑟)!g(𝑛)

𝑛
1
2
+𝑖𝑡

,

is a short Dirichlet polynomial (since 𝑇
𝐾𝑗(1+1∕𝑘)

𝑗
⩽ 𝑇1∕10), and so by (14)

∫
2𝑇

𝑇
|𝑗( 12 + 𝑖𝑡)|2(𝐾𝑗+𝑟)𝑑𝑡 = (𝑇 + 𝑂(𝑇1∕2)) ∑

Ω(𝑛)=𝐾𝑗+𝑟

𝑝|𝑛⇒𝑇𝑗−1⩽𝑝⩽𝑇𝑗
(𝐾𝑗 + 𝑟)!

2g(𝑛)2

𝑛

⩽ (𝐾𝑗 + 𝑟)!𝑃
𝐾𝑗+𝑟

𝑗
(𝑇 + 𝑂(𝑇1∕2)),

where the last bound follows upon noting that g(𝑛)2 ⩽ g(𝑛). Using this bound in the definition of
𝑗(𝑡), we find

∫
2𝑇

𝑇
𝑗(𝑡)𝑑𝑡 ≪ 𝑇

(
12

𝐾𝑗

)2𝐾𝑗 𝐾𝑗∕𝑘∑
𝑟=0

(
2𝑒

𝑟 + 1

)2𝑟
(𝐾𝑗 + 𝑟)!𝑃

𝐾𝑗+𝑟

𝑗
. (15)

Stirling’s formula and a little calculus show that the terms above attain a maximum for 𝑟 around
the solution to 𝑟2 = 4𝑃𝑗(𝐾𝑗 + 𝑟), and since 𝐾𝑗 = 500𝑃𝑗 , such 𝑟 satisfies 2

√
𝑃𝑗𝐾𝑗 ⩽ 𝑟 ⩽ 2.1

√
𝑃𝑗𝐾𝑗 .

It follows that the right side of (15) is

≪ 𝑇

(
12

𝐾𝑗

)2𝐾𝑗(𝐾𝑗
𝑘

)(
2𝑃𝑗𝐾𝑗

𝑒

)𝐾𝑗
𝑒2.1

√
𝑃𝑗𝐾𝑗 ≪ 𝑇𝑒−𝐾𝑗 .

□
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We need one more observation for the proof of the proposition. Suppose that we are given 𝑅
Dirichlet polynomials

𝐴𝑗(𝑠) =
∑
𝑛∈𝑗

𝑎𝑗(𝑛)𝑛
−𝑠,

where the sets 𝑗 satisfy the following two properties: (i) If 𝑗1 ≠ 𝑗2, then the elements of 𝑗1 are
all coprime to the elements of 𝑗2 , and (ii)

∏𝑅
𝑗=1 𝑛𝑗 ⩽ 𝑁 for all 𝑛𝑗 ∈ 𝑗 . The coprimality condition

implies that there is at most one way to write 𝑛 =
∏𝑅
𝑗=1 𝑛𝑗 with 𝑛𝑗 ∈ 𝑗 . Thus applications of (14)

give

1

𝑇 ∫
2𝑇

𝑇

𝑅∏
𝑗=1

|𝐴𝑗(𝑖𝑡)|2𝑑𝑡 = (1 + 𝑂(𝑁𝑇−1 log𝑁))∑
𝑛⩽𝑁

||| ∑
𝑛=𝑛1⋯𝑛𝑅
𝑛𝑗∈𝑗

𝑅∏
𝑗=1

𝑎𝑗(𝑛𝑗)
|||2

= (1 + 𝑂(𝑁𝑇−1 log𝑁))

𝑅∏
𝑗=1

⎛⎜⎜⎝
∑
𝑛𝑗∈𝑗

|𝑎𝑗(𝑛𝑗)|2⎞⎟⎟⎠
= (1 + 𝑂(𝑁𝑇−1 log𝑁))

𝑅∏
𝑗=1

(
1

𝑇 ∫
2𝑇

𝑇
|𝐴𝑗(𝑖𝑡)|2𝑑𝑡). (16)

We are now ready to combine the above observations to prove Proposition 3. Applying Lemma 1,
we find

∫
2𝑇

𝑇
| ( 1

2
+ 𝑖𝑡, 𝑘 − 1)|2| ( 1

2
+ 𝑖𝑡, 𝑘)| 2𝑘 𝑑𝑡

⩽ ∫
2𝑇

𝑇

𝓁∏
𝑗=2

(|𝑗( 12 + 𝑖𝑡, 𝑘)|2(1 + 𝑂(𝑒−𝐾𝑗∕𝑘)) + 𝑂(22∕𝑘𝑗(𝑡)))𝑑𝑡.
Appealing now to the observation (16), the above is

≪ 𝑇

𝓁∏
𝑗=2

(
1

𝑇 ∫
2𝑇

𝑇

(|𝑗( 12 + 𝑖𝑡, 𝑘)|2(1 + 𝑂(𝑒−𝐾𝑗∕𝑘)) + 𝑂(22∕𝑘𝑗(𝑡)))𝑑𝑡. (17)

Applying the mean-value theorem for Dirichlet polynomials (14), we see that

∫
2𝑇

𝑇
|𝑗( 12 + 𝑖𝑡, 𝑘)|2𝑑𝑡 = (𝑇 + 𝑂(𝑇1∕2)) ∑

𝑝|𝑛⇒𝑇𝑗−1⩽𝑝⩽𝑇𝑗
Ω(𝑛)⩽𝐾𝑗

𝑘2Ω(𝑛)g(𝑛)2

𝑛

⩽ (𝑇 + 𝑂(𝑇1∕2))
∏

𝑇𝑗−1⩽𝑝⩽𝑇𝑗

(
1 +
𝑘2

𝑝
+ 𝑂

(
1

𝑝2

))
.
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Combining this with Lemma 2, we conclude that the quantity in (17) is

≪ 𝑇
∏
𝑝⩽𝑇𝓁

(
1 +
𝑘2

𝑝
+ 𝑂

(
1

𝑝2

))
,

which completes the proof of the proposition.

6 EXTENSIONS OF THE RESULT

We first give the modifications needed to obtain Theorem 1 in the range 𝑘 ⩾ 1. Once again let 𝓁
be the largest integer with log𝓁 𝑇 ⩾ 104, and now define 𝑇𝑗 by 𝑇1 = 𝑘4𝑒2 and for 2 ⩽ 𝑗 ⩽ 𝓁 by

𝑇𝑗 = exp

(
log 𝑇

𝑘2(log𝑗 𝑇)
2

)
.

Define 𝑗(𝑠), 𝑃𝑗 exactly as before, and now put 𝐾𝑗 = 500𝑘2𝑃𝑗 with (𝑠, 𝛼) defined accordingly.
Analogously to Proposition 1, we may establish that

∫
2𝑇

𝑇
𝜁( 1
2
+ 𝑖𝑡) ( 1

2
+ 𝑖𝑡, 𝑘 − 1) ( 1

2
− 𝑖𝑡, 𝑘)𝑑𝑡 ≫ 𝑇

∏
𝑇1⩽𝑝⩽𝑇𝓁

(
1 +
𝑘2

𝑝

)
.

Now Hölder’s inequality gives that the left side above is

⩽

(
∫
2𝑇

𝑇
|𝜁( 1
2
+ 𝑖𝑡)|2𝑘𝑑𝑡) 1

2𝑘
(
∫
2𝑇

𝑇
| ( 1

2
+ 𝑖𝑡, 𝑘 − 1) ( 1

2
+ 𝑖𝑡, 𝑘)| 2𝑘2𝑘−1 𝑑𝑡) 2𝑘−1

2𝑘

.

By modifying the argument of Proposition 3 (indeed the details are even a little simpler), the
second term above may be bounded by

≪

(
𝑇

∏
𝑇1⩽𝑝⩽𝑇𝓁

(
1 +
𝑘2

𝑝
+ 𝑂

(
𝑘4

𝑝2

)) 2𝑘−1
2𝑘

≪

(
𝑇

∏
𝑇1⩽𝑝⩽𝑇𝓁

(
1 +
𝑘2

𝑝

)) 2𝑘−1
2𝑘

.

The lower bound claimed in the theorem follows.
Examining our proof, we may extract the following principle. Given a family of 𝐿-functions,

if one can compute the mean value of 𝐿(1
2
) multiplied by suitable short Dirichlet polynomials,

as well as the mean value of |𝐿(1
2
)|2 multiplied by suitable short Dirichlet polynomials, then one

obtains a lower bound of the right order for the moments |𝐿(1
2
)|𝑘 for all 𝑘 > 0. If 𝑘 ⩾ 1, then one

needs only an understanding of themean value of 𝐿(1
2
)multiplied by short Dirichlet polynomials,

andknowledge of the secondmoment of𝐿(1
2
) is not required. Thus, for example, onemay establish

that ∑
𝜒 (mod 𝑞)

|𝐿(1
2
, 𝜒)|2𝑘 ≫𝑘 𝑞(log 𝑞)𝑘2 , (18)
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where 𝑞 is a large prime, and 𝑘 > 0. Or, that for 𝑘 > 0 and large 𝑋

♭∑
|𝑑|⩽𝑋 |𝐿(12 , 𝜒𝑑)|𝑘 ≫𝑘 𝑋(log𝑋)

𝑘(𝑘+1)
2 , (19)

where the sum is over fundamental discriminants 𝑑. Previously, (18) and (19) were accessible for
all 𝑘 ⩾ 1 by [8], and (18) was known for rational 0 ⩽ 𝑘 ⩽ 1 by the work of Chandee and Li [3]. A
third example is the family of quadratic twists of a new form 𝑓, where the second moment of the
central 𝐿-values is not known. Here one can establish

♭∑
|𝑑|⩽𝑋 𝐿(

1

2
, 𝑓 × 𝜒𝑑)

𝑘 ≫𝑘 𝑋(log𝑋)
𝑘(𝑘−1)
2 , (20)

for all 𝑘 ⩾ 1. Such a result would be accessible also to themethod of [8], but the problem of obtain-
ing satisfactory lower bounds for the small moments 𝑘 < 1 (which is connected to the delicate
question of non-vanishing of 𝐿-values) remains open.
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