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Earlier emergence of a temperature response to
mitigation by filtering annual variability
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The rate of global surface warming is crucial for tracking progress towards global climate
targets, but is strongly influenced by interannual-to-decadal variability, which precludes rapid
detection of the temperature response to emission mitigation. Here we use a physics based
Green's function approach to filter out modulations to global mean surface temperature from
sea-surface temperature (SST) patterns, and show that it results in an earlier emergence of a
response to strong emissions mitigation. For observed temperatures, we find a filtered
2011-2020 surface warming rate of 0.24 °C per decade, consistent with long-term trends.
Unfiltered observations show 0.35 °C per decade, partly due to the El Nino of 2015-2016.
Pattern filtered warming rates can become a strong tool for the climate community to inform
policy makers and stakeholder communities about the ongoing and expected climate
responses to emission reductions, provided an effort is made to improve and validate
standardized Green's functions.
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ARTICLE

he global, annual mean surface air temperature anomaly

(GSTA) is arguably the most visible climate observable in

public and policy debates. Since the 1970s, GSTA has
increased at a rate of ~0.2 °C per decade, predominantly due to
anthropogenic climate forcing!:2. However, due to internal
variability in the climate system on annual-to-decadal timescales,
warming rates calculated over shorter periods can vary
strongly>~7. Over the last 50 years, decadal warming rates range
from 0.0 to 0.4 °C8. The so-called “global warming hiatus” period,
following the strong EI Nino of 1998, is an example of a decade
with low warming rate®, whereas the most recent decade
(2011-2020) has seen warming well above the multi-decadal
averageS. Consequently, climate scientists normally work with
quantities computed over 30 years or longer, in order to reduce
such influence of internal variability on their results.

The present situation is one of rapid global warming, combined
with an increasing focus on emission reductions aimed at
limiting surface temperature change to well below 2 °C above
preindustrial levels, as envisaged by the Paris Agreement. Hence,
it is critically important to establish with scientific certainty that
reductions are having an observable effect on the global climate
system34. Recent literature has shown that while strong mitiga-
tion relative to high emission scenarios, starting from 2020, is
likely to have a measurable influence on 20-year warming rates by
20401011 10-year rate changes are unlikely to be discernable for
several decades®>. Warming rate changes resulting from weaker
mitigation will also be progressively harder to observe.

The main reason for these difficulties is the strong influence on
GSTA of interannual-to-decadal variability. A number of
approaches exist that attempt to reduce this influence, either
through estimating the underlying anthropogenic warming based
on calculations of historical and current radiative forcing!213,
that utilize the connection between global surface temperature
and modes of variability such as the El Nino/Southern Oscillation
(ENSO)!4, Atlantic and Pacific (multi-)decadal variability!®, or
employ statistical techniques and pattern recognition methods to
separate the anthropogenic warming rate from other influences
(e.g., 10-24). These approaches all have strengths and weaknesses.
Some rely primarily on emission inventories and model estimates
of the links between emissions, radiative forcing, and surface
temperature responses, and on the assumption that we can
identify model-derived modes of variability also in real-world
observations. Others identify and subtract modes of variability
based on observations alone, but do not include direct treatment
of the physical connection between SST patterns and land tem-
perature responses.

In this work, we present an approach to filtering interannual
variability that is complementary to existing techniques, based
around recently developed Green’s Functions (GFs) that relate
global mean responses in radiative fluxes, clouds, and surface
temperature to local fluctuations in sea surface temperature2>-27,
Our aim is to quantify, as far as possible, the contribution to
GSTA for a given year that can be related directly to responses
from the realized SST pattern. The remaining surface temperature
anomaly will then be a combination of internal variability on
decadal and longer timescales (which is still present after our
removal of the 10-year trend), other feedbacks and modulations
(such as responses to warming patterns over land), and the
underlying influence of anthropogenic global warming (notable
patterns such as Arctic amplification).

Results

Green’s Functions relate SST patterns to the GSTA. Given a
pattern of sea surface temperature, GFs provide an estimate of the
influence of that pattern on the global land surface temperature

anomaly for the given month or year. Here, we use a GF based on
simulations with the CESMI global climate model20. The
underlying geophysical process is that a warmer sea surface will
feedback on atmospheric temperatures, directly and through
influencing evaporation, humidity, cloudiness, and circulation
and that the strength of this modulation depends on the pattern
of SST anomalies and the month in which it occurs. The ENSO is
the most well-known example of this, but modulations of GSTA
also arise from SST changes elsewhere. The GF method treats
these in a consistent way, that also captures more than simply the
influence of ENSO. As it provides the land surface air tempera-
ture response corresponding to an already known SST pattern, it
is reasonable to think that this approach should be able to capture
—and therefore filter out—a large component of internal varia-
bility. Also, although GFs are necessarily derived from a global
climate model, the filtering approach relies only on the observed
(and detrended) temperature pattern and is thus agnostic about
the underlying pattern and magnitude of climate forcing
mechanisms. This makes it complementary to the forcing-based
approach mentioned above, and also to statistical approaches that
do not retain information on physical processes linking modes of
variability to temperature responses.

Figure 1 shows how the GFs are used to calculate the SST-
induced influence on GSTA, for 3 example months. The observed
GSTA (from HadCRUTS58) has first been detrended, via a 10-year
moving boxcar average applied at each grid point (see Methods),
to isolate (as far as possible) the influence of annual variability
from decadal patterns and the effects of global warming since
1850. The resulting GSTA pattern is multiplied with the GF for
the corresponding month, where the GF is a relation between an
SST anomaly in a given grid point and the resulting influence on
global mean surface temperature. Adding together the results for
all ocean-dominated grid points yields the influence on GSTA
(hereafter termed an SST modulation) from all parts of the global
ocean, for that particular month. Note that we are here assuming
that the modulations occur within the same month as the SST
pattern; see below. Also, since the GF is (by construction)
calculated from simulations with fixed sea surface temperatures,
the SST modulation primarily includes land surface responses.

The application examples in Fig. 1 include a month at the
height of the 1998 El Nino, where we find an SST modulation of
GSTA of 0.3 °C; a month in 2010 where the SST variability
pattern yielded no net modulation; and the most recent month of
the dataset (December 2020) where weak La Nina conditions in
the Pacific resulted in negative modulation of —0.1 °C.

Filtering variability from recent GSTA observations. Figure 2
shows the effect of GF-based filtering, i.e., subtracting the cal-
culated SST modulations, on the global, annual mean tempera-
ture evolution in HadCRUTS5 observations. The overall effect is to
dampen strong deviations from the mean. The standard deviation
of a residual relative to a 10-year running means is more than
halved, from 0.092 °C to 0.041 °C. Note for instance the El Nino
years of 1998 and 2016. Panel b shows the modulation for each
year, and how it correlates with the Nino3.4 index. A perfect
correlation is not expected, as ENSO is not the sole driver of
GSTA variability, but we find a statistically significant co-
variation (Pearson’s R = 0.56 for 60 effective degrees of freedom,
estimated via lag-1 autocorrelation?8).

Panel ¢ shows 10-year trends since 1850, calculated for the 10-
year period ending in the given year. The observed trends (red)
fall within +0.4 °C/decade, with strong peaks around El Nino/La
Nina years. The trends based on the modulation filtered GSTA
(black) has a range of +0.2 °C/decade, and exhibit much lower
variability since 1970. We also show 30-year trends, ending in the
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Fig. 1 Calculation of modulations on global surface temperature anomaly (GSTA) from the pattern of sea surface temperatures (SST), for 3 example
months. a Raw temperature anomaly from HadCRUTS5, relative to 1850-1900 mean for that month. b Detrended temperature anomaly. ¢ Green's Function
(GF) for the corresponding month, derived from the CESM1 global climate model, shows the contribution of an SST anomaly in a given grid cell to the
GSTA anomaly. d GSTA modulation, found by multiplying the GF with the detrended anomaly map. e Net global surface temperature anomaly for that
month, and its split into a variability (SST modulation) and a residual component. The variability (green bar) is equal to the sum of the map in column (d).
The three months illustrate (top) strong El Nino conditions, (middle) neutral conditions, and (bottom) moderate La Nina conditions.

same year, and (as for panel a) show the residual standard
deviation (RSD) of the 10-year filtered and unfiltered warming
rates relative to this curve. While not as substantial as for
individual years, there is still a marked decrease in the RSDs for
the filtered 10-year trends, further strengthening the argument
that GF-based filtering helps separate underlying trends in surface
warming from the influence of internal variability.

For the most recent decade (2011-2020), unfiltered GSTA
from HadCRUT5 shows a warming rate of 0.35 °C per decade.
This is markedly higher than the 30-year (1991-2020) rate
of 0.21 °C derived from the same dataset, partially due to the
influence of weak La Nina conditions early in the period, followed
by the strong El Nino of 2015-2016. The filtered GSTA yields a
2011-2020 warming rate of 0.24 °C per decade, and a 30-year
trend that is indistinguishable from the unfiltered results
(0.21 °C). Similarly, for the decade 2001-2010, which is in the
center of the so-called global warming hiatus period, unfiltered
HadCRUT5 observations yield a warming rate of 0.08 °C per
decade, while the filtered results show 0.21 °C per decade, again
similar to the most recent 30-year trend (1991-2020).

These results indicate that GF-based filtering of observed
GSTA can give physically reasonable output and that it can be
used as a transparent method for filtering out one component of
interannual variability affecting decadal warming rates. Given
this, we extend the approach to two ensembles of simulations
using contemporary Earth System Models; a 10-member initial
condition ensemble (MPI-ESM1.22%) and 61 realizations of
historical and future GSTA from CMIP63031; and investigate
the effect such filtering can have on the detectability of rate
changes under different assumptions on future emissions. MPI-
ESM1.2 was chosen because its representation of internal
variability has been well studied in the previous work®, it has
an Equilibrium Climate Sensitivity consistent with recent
assessment results233, and provided 10 ensemble members
(using identical emissions and other external conditions but
representing different realizations of internal variability) for both
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the historical period and for a range of future emission scenarios
to CMIP6. A list of all CMIP6 models used is given in
the Supplementary Information.

Advancing the emergence time of mitigation. In Fig. 3, we show
the raw and GF filtered annual mean GSTA evolution from MPI-
ESM1.2 (see Methods), using historical emissions and natural
forcings (1850-2014) and four Shared Socioeconomic Pathways
with widely varying future emissions and other anthropogenic
activities (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5%-%),
Throughout the period 1850-2100, the GF calculations are able to
filter out a component of interannual variability, leaving a
smoother temporal evolution and reduced variability in decadal
trends. The inset shows plumes of mean and +1 standard
deviation across the 10 ensemble members, for unfiltered and
filtered calculations. Defining emergence as the year in which a
10-year running mean over the ensemble average response in the
mitigated situation moves outside the plume for the unmitigated
situation (see Methods), we find that for emissions following
SSP1-2.6 relative to SSP5-8.5, the signal emerges from the noise 5
years earlier for filtered GSTA values than for unfiltered, i.e., in
2030 instead 2035. This indicates that the filtering method does
indeed provide a way to more rapidly detect a change in the
global mean warming rate resulting from differences in emissions
pathways. For a 20-year running mean, the corresponding
advancement of emergence is 3 years, reflecting the lower influ-
ence of internal variability on such longer-term means. Table 1
shows the corresponding shift in the year of emergence found for
other combinations of assumed unmitigated and mitigated sce-
narios, for 10-year and 20-year means. In all cases, emergence
moves earlier, by up to as much as 9 years. Performing the
analysis using individual ensemble members as a signal, rather
than the ensemble mean, shows similar advancement in the year
of emergence after filtering, albeit with a spread of ~10 years in
the actual year of emergence.
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Fig. 2 The effect of Green's function-based filtering on global annual mean surface temperature anomalies from HadCRUTS5. a Raw (red) and filtered
(black) HadCRUTS5 global mean surface temperature anomaly (GSTA) values, relative to 1850-1900. Inset: standard deviation of the residual to a 10-year
boxcar average (dashed lines). b The annual mean modulation factors, and the Nino3.4 index for the corresponding year. € 10-year warming rates ending in
the year shown, for raw and filtered HadCRUT5 GSTA values. The dashed line shows 30-year rates, ending in the same year. Inset: standard deviation of
the residuals between the 10-year rates and the 30-year rates (as for the top panel).

The conclusion that filtering may allow for more rapid
detection of the effects of mitigation is further strengthened by
considering the effect it can have on the calculation of future
warming rates. In Fig. 4, we first show the 10-year global warming
rates for filtered and unfiltered GSTA evolution for the near-term
periods of 2021-2030, 2031-2040, and 2041-2050, from MPI-
ESM1-2. While there is still a marked spread between ensemble
members after filtering, it is lower than for the unfiltered
simulations. Even for 2021-2030, the warming rates from the
filtered time series increase monotonically with the greenhouse
gas emissions of the underlying scenario, which is not the case for
the unfiltered time series. For 2041-2050 the SSP5-8.5 and
SSP1-2.6 rates are fully separated, as are SSP3-7.0 and SSP1-2.6.
Neither of these is true for the unfiltered situation. Except for
SSP1-2.6 in 2041-2050, there are also no instances of negative
10-year warming rates in the filtered simulation results, whereas
the unfiltered time series has multiple such cases. Figure 4 also
shows 15-year and 20-year warming rates, for the period
beginning in 2021. As expected, the longer the period of
integration, the more similar the filtered and unfiltered rates
become. There is, however, an appreciable reduction in the spread
of rates in the filtered case, and improved separation between the
scenarios, even for 20-year periods. For integrating periods at or
above 20 years, warming rates calculated using filtered and
unfiltered GSTA values are similar. This is as expected, as such
calculations average out internal variability by construction. A
further question is whether our results on the rapid separation
between scenarios are sensitive to the model used, its

representation of variability, the underlying Equilibrium Climate
Sensitivity, and other differences in the representation of the
Earth System. To test this, we apply our filtering method to 61
realizations from the CMIP6 ensemble of simulations, where
simulations are available from the same models for historical,
SSP1-2.6, and SSP5-8.5 emissions. See Fig. 5, where we take as a
starting point the most recent 30-year trend from each simulation
(1991-2020), and check whether the trend is higher or lower for
the subsequent 5, 10, or 15-year periods. A 5-year trend can be
expected to be dominated by internal variability, with as many
positive changes as negative, whereas the 15-year trend should,
according to recent literature>1%11, reveal differences between the
high and low emissions scenarios.

Looking first at unfiltered GSTA trends (hashed histograms in
Fig. 5), these expectations are borne out. In 15-year trends
(2021-2035), SSP5-8.5 would result in a slight increase relative to
the past trend (0.05 °C per decade; see whisker plots), while
SSP1-2.6 would, on average, give a 0.1 °C per decade reduction.
5-year trends (2021-2025) show no significant scenario difference
and no clear preference towards positive or negative changes. 10-
year trends represent a midpoint between these results.

For the filtered results (open histograms in Fig. 5), we find a
narrowing of the distribution for all three periods. Even for the
5-year period, we now find more realizations with a reduced rate
in SSP1-2.6 relative to 1991-2020, indicating that the filtering
method improves separation between high and low emission
climate evolution already at this early stage. While the present
improvement is still insufficient to allow formal detection of
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Fig. 3 Raw and filtered global mean surface temperature anomaly (GSTA) values from one ensemble member of the MPI-ESM1.2 Earth System Model.
Emissions follow historical (black) and Shared Socioeconomic Pathway (SSP) scenario (colored) trajectories. Inset: Mean and 1 standard deviation ranges
for a 10-member initial condition ensemble from MPI-ESM1.2, for raw (light shading) and filtered (dark shading) GSTA values. Vertical lines show the year
of emergence in the filtered (solid) and unfiltered (dashed) case, based on 10-year running means.

ESM1.2, relative to unfiltered simulations.

Table 1 Earlier emergence of a change in 10-year (left) and 20-year (right) smoothed GSTA in filtered simulations from MPI-

10-year emergence Mitigation 20-year emergence Mitigation
SSP370 SSP245 SSP126 SSP370 SSP245 SSP126
Baseline SSP585 6 5 5 SSP585 8 6 3
SSP370 - 9 6 SSP370 - 7 5
SSP245 - - 7 SSP245 - - 5

Methods.

All values are in years and represent the change in the year of emergence derived from comparing a lower emission signal (“Mitigation”) to a higher emission situation (“Baseline”). See also Fig. 3 and

mitigation effects after 5-10 years, it is promising enough that we
encourage further investigations into GF approaches that can
encompass a broader range of modulations, feedbacks, and
processes than captured by the present methodology (e.g.,
responses to land surface warming patterns, differentiation of
the response of surface temperature conditioned on the state of
major atmospheric modes of variability, or the influence of other
factors such as volcanic eruptions or the amount and geographi-
cal distribution of anthropogenic atmospheric aerosols).

Testing the method using Bayesian calculus. A final, more
rigorous test of whether GF-based filtering really does lead to
improved separation between mitigated and unmitigated climate
evolutions, is to apply Bayesian calculus of event causation to the
question of whether a reduction in warming rate (the “event”, in
our case) can be said to be “due to” the reduction in emissions.
We follow the quantification method laid out in%, and defined in
Methods, on filtered and unfiltered GSTA time series, using both
the CMIP6 multi-model ensemble and an extended, emulated
100-member ensemble based on MPI-ESM1.2-LR (see Methods).
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The results are shown in Fig. 6. We calculate 5-, 10-, and 15-year
warming rates, starting in 2021, and compare them to the pre-
ceding 30-year trend (1991-2020). For the single-model emulated
ensemble, we find that the filtering induces a marked increase in
the probability of causation, whether requiring a necessary (N),
sufficient (S), or sufficient and necessary (SN) causation. For the
CMIP6 ensemble, we find improvements for 5-year and 15-year
rates, whereas the 10-year rates are virtually unaffected. The
CMIP6 ensemble displays overall lower probabilities of causation,
as could be expected due to the larger variability in ECS and other
factors affecting the GSTA response. Overall, this analysis further
strengthens the argument that GF-based filtering can lead to an
earlier detectability of a GSTA signal from strong emissions
mitigation.

Discussion

We have shown that (i) GFs can be used to estimate the com-
ponent of the monthly GSTA that is due to SST variability,
including ENSO, (ii) that the filtered GSTA evolution reveals a
clearer picture of the short-term warming rate, and (iii) that the
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Pathways (SSP1-2.6 and SSP5-8.5), for a range of CMIP6 models and realizations of internal variability. a 5-year rates. b 10-year rates. ¢ 15-year rates.
Hashed histograms show rate changes in the unfiltered simulation results, open histograms and lines show Green's function filtered results. Dots-and-
whiskers show the means and %1 standard deviation ranges of the histograms.

effects of emission mitigation can emerge at an earlier time, volcanic eruptions (except where manifested through SST
relative to a higher emission pathway, if such filtering is applied. ~anomaly patterns), anthropogenic aerosols, and mainly atmo-
A number of caveats should however be mentioned. As used here, spheric modes of variability such as the North Atlantic Oscilla-
the GFs only take into account the modulations to global surface tion. This is however an issue with the current application, and
temperature induced by the monthly SST pattern. They will also  not with the GF method in itself, which could readily be extended
neglect decadal-scale variability, as well as influences from to include also these kinds of influences on the GSTA evolution.
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Fig. 6 Probabilities of causation of a reduction in global mean surface
temperature anomaly (GSTA) trend, after a reduction in emissions. a A
100-member emulated ensemble based on MPI-ESM1.2-LR. b CMIP6.
Colored symbols show the necessary (Py), sufficient (Ps), and sufficient
and necessary (Psy) probabilities, for raw (open symbols) and filtered
(closed symbols) GSTA evolutions.

Modes of atmospheric variability have, e.g., been shown to be
sufficient to explain the Eurasian landmass contribution to the
1998-2012 hiatus period38, indicating that a filtering approach
that also takes into account atmospheric modulations unrelated
to the SST pattern could be especially powerful. A further ques-
tion is whether it is reasonable to assume, as we have done here,
that GSTA responses can be assumed to occur in the same month
as the SST modulation. The GF quantifies the equilibrium
response to an SST change, and therefore includes information on
the (generally rapid) evolution of the atmosphere after a pertur-
bation. A sensitivity test where the modulation was applied
1-12 months after the initiating SST pattern yielded a progres-
sively lower reduction in interannual variability (see Supplemen-
tary Materials.) This indicates that for the presently available GF,
the most efficient filtering comes when applying the modulations
to the same month as the SST pattern. Finally, the results of the
current paper are clearly dependent on the connection between
SST patterns and GSTA present in the CESM1 global climate
model. Filtering based on GFs derived from other models can be
expected to yield qualitatively similar results to the present study,
but with differing details for individual years depending on the
details of the cloud, moisture, energy transport, and other
responses in the host model. A community effort to compare and
validate results from filtering with GFs from different models
would be a useful next step here.

Achieving the aims of the Paris Agreement and limiting global
warming to well below 2 °C requires massive, rapid reductions in
anthropogenic emissions of greenhouse gases3”, which in turn is
likely to require unprecedented global efforts and public support.
Demonstrating that such efforts are having the desired effect will
therefore be a crucial task for the scientific community over the
coming years and decades. While the connection between
greenhouse gas emissions and their atmospheric concentrations
can likely be established within years of the implementation of
strong mitigation340, most climate impacts—and much of the
public discourse—track global surface temperature. Natural,
interannual variability, whether it stems from atmospheric pro-
cesses, insolation, volcanoes, or the SST pattern, will inevitably
delay the emergence of a GSTA response to even very strong
mitigation. We have shown, however, that even with relatively
simple and readily communicable methods, it is possible to

reduce the waiting time until such emergence. In practice, the
filtering method could be combined with other approaches to
provide an overall probability at the end of a calendar year that
the evolution up to and including that year is consistent with
known emissions. Regardless of the level of mitigation, this would
be a great benefit to the discourse at the science-policy interface,
and for communications to the broader public. We, therefore,
encourage the further development of filtering approaches such as
the GFs used here, and their inclusion—alongside complementary
approaches such as the Global Warming Index!3 and others—in
the toolkit used by climate scientists when discussing the near-
term evolution of anthropogenic climate change, and the emer-
gence of climate responses to stringent emission reductions.

Methods

Data sets. This study makes use of the HadCRUT5 gridded data set of global
historical surface temperature anomalies, version 5.0.1.08. Monthly data are
available for the period January 1850-December 2020.

ENSO strength is estimated using the ESRL/NOAA Nino3.4, based on
HadISST, available for 1870-2020. Data downloaded from https://psl.noaa.gov/
gcos_wgsp/Timeseries/Nino34/.

Simulations used are provided for the ScenarioMIP4! CMIP6 Endorsed MIP30,
and made available to the community through the Earth System Grid Federation
(ESGF). We make use of 250-year transient simulations using the CMIP6 historical
(1850-2014) and Shared Socioeconomic Pathway (SSP) (2015-2100) emission data
sets. Four SSPs are used (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5). See
Supplementary Table 1 for a list of models. Only monthly mean temperature data
(Global Surface Air Temperature) is used.

In addition, we use 10 ensemble members for each SSP from the MPI Earth
System Model (version MPI-ESM1.2-LR29). This model was chosen as it has an
Equilibrium Climate Sensitivity (ECS = 2.98 K#2), close to the central value of a
recent assessment®2, and because it had provided a comprehensive ensemble
simulation for the most recent generation of climate scenarios (the SSPs). The
simulations make up an initial condition ensemble, with each transient simulation
having the same input emissions but differing in their realized patterns of internal
variability.

Isolating the monthly pattern of natural variability. For both simulated and
observed temperature fields, the pattern of natural, monthly sea surface tempera-
ture variability is isolated from the long-term influence of anthropogenic warming
via a boxcar smoothing with a 10-year window. For each grid point in the input
data set, we construct a time series of monthly temperature anomalies relative to
1850-1900. We calculate a 10-year moving boxcar average, and subtract this mean
from the anomalies. By doing this per grid point and per month, we are able to
simultaneously take into account global mean temperature increase, the geo-
graphical pattern of global warming, and any seasonal differences. Near the end-
points, where there is insufficient data for the 10-year mean, we mirror the data
points, which in practice gives extra weight to the last years. Other endpoint
treatments were tested, like means with fewer years, but all gave consistently worse
results when compared against the multi-ensemble-mean forced response in MPI-
ESM-1.2-LR. We also tested the sensitivity to the number of years in the mean, and
found improvement in the filtering results up to the 10-year mean but not beyond.
The choice of smoothing algorithm (boxcar) was found to have negligible impacts
on the results. Note that our chosen method will not remove decadal-scale varia-
bility in regional temperature patterns.

Green's function. To calculate the modulation of global surface temperature
anomaly due to the pattern of sea surface temperatures for each month, we use a
pre-calculated GF made with the CESM1.2.1-CAMS5.3 Earth System Model. The
GF is documented in?°. Here, we use a monthly resolved, time extended (40 year)
version of the calculation?9, to take into account potential differences in GSTA
modulation through the year. In all, the GF relates an idealized increase in sea
surface temperature at a given location, to resulting influences on radiation, clouds,
water vapor, and, ultimately, global mean surface temperature. It provides a means
to calculate the modulation of global mean surface temperatures resulting from a
given pattern of SST variability. Our specific GF is based on simulations where the
SST was individually perturbed in 74 (partially overlapping) ocean patches of 80°
longitude and 40° latitude. We use a two-meter surface air temperature to quantify
the modulations. A separate GF calculation using skin temperature was also used,
as a sensitivity test, which made no quantifiable difference to the results
presented here.

Calculating modulations. GSTA modulations are calculated by multiplying the GF
for that month with the detrended SST pattern from HadCRUTS5 or a climate
model. See Fig. 1. The total modulation is the sum of the contributions from all
ocean-dominated grid points. Note that for this sum to be correctly defined,
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calculations must be done in the native resolution of the GF. Hence, both observed
and model temperature fields have been regridded to this resolution (2.5° latitude,
1.9° longitude).

Emergence. To quantify when a signal from emissions mitigation “emerges” from
an assumed non-mitigated background situation, we identify the first year when a
10-year or 20-year running mean of the signal simulations evolves beyond one
standard deviation (o) around the mean of the background. Specifically, we
quantify the means and o of the GSTA values of the MPI-ESM1.2 ensembles, and
calculate, e.g., when the 20-year running mean of SSP1-2.6 falls below the 1o
envelope around the 20-year running mean of SSP5-8.5. This definition is con-
sistent with what was recently used in the IPCC AR6%3.

Rate calculations. Rate calculations are performed as simple linear fits to 5-, 10-,
15-, or 20-year series of annual mean GSTA values.

Estimation of the probability that a trend reduction is due to emissions
mitigation. Following Marotzke#, we use Boolean algebra of event causation to
quantify the probability that a trend reduction after an emission change can be
ascribed to that change. By performing this calculation on raw and filtered GSTA
data, we can get a quantification of whether the GF-based filtering increases the
likelihood of a trend reduction.

If, for a given GSTA time series, we calculate a reduction in the multi-year trend
(5, 10, or 15 years in our case), the question is whether the underlying emission
change can be said to be a sufficient (S), necessary (N), or sufficient and necessary
(SN) condition for the reduction.

Let Pscen be the probability of a trend reduction in a given scenario, quantified
by calculating it for all members of a large initial condition ensemble. Then, using
the difference between SSP5-8.5 and SSP1-2.6 as an example, the three
probabilities of event causation can be calculated as follows (assuming
Psspi-26 > Pssps-s.5):

Pys = Psspi—2.6 — Pssps—s.s (1)

p = Pgp1_26 — Pssps—s.5 2
1 — Pggps g5

Py=1- Pgsps_s.5 3)
Pgsp1 26

For CMIP6 simulations, we perform the calculation on the full set of 61
realizations described above. For MPI-ESM1.2-LR, where we only have 10
ensemble members per scenario available, we perform a simple emulation to
increase the sample size. Following ref. °, we take the forced GSTA response to be
the ensemble mean. We detrend each member by the forced response, and then
add independent 50-year periods of internal variability to the forced response to
generate a larger number of members that all follow the same overall trend. Here,
we calculate 100 such emulated members, and use them for the probability
calculations in Fig. 6.

Data availability

HadCRUTS5 historical surface temperature anomalies are available at https:/
www.metoffice.gov.uk/hadobs/hadcrut5/. All climate model simulations used in this
manuscript are publicly available through the ESGF. The GF is documented and made
available at https:/github.com/mzelinka/greens-function (https://doi.org/10.5281/
zenodo.5514146). ENSO strength calculations are available at https://psl.noaa.gov/
gcos_wgsp/Timeseries/Nino34/.
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