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Abstract. We show that the infinite symmetric product of a connected graded-commutative algebra overQ is
naturally isomorphic to the free graded-commutative algebra on the positive degree subspace of the original
algebra. In particular, the infinite symmetric product of a connected commutative (in the usual sense) graded
algebra over Q is a polynomial algebra. Applied to topology, we obtain a quick proof of the Dold–Thom
theorem in rational homotopy theory for connected spaces of finite type. We also show that finite symmetric
products of certain simple free graded-commutative algebras are free; this allows us to determine minimal
Sullivan models for finite symmetric products of complex projective spaces.
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1. Introduction

The construction of symmetric products naturally appears in both algebra and topology. In
algebra, given a commutative ring R, its n–fold symmetric product is the invariant subring
(R⊗n)Σn of its n–fold tensor power under the natural action of the nth symmetric group Σn by
permuting the factors. The infinite symmetric product is defined as the inverse limit of these
objects, in an appropriate sense. The fundamental theorem of symmetric polynomials states that
the n–fold symmetric product (including the case of taking n to infinity) of the single-variable
polynomial ring Z[x] is a free polynomial ring generated by the elementary symmetric functions.
In contrast, the n–fold symmetric product of the polynomial ring Z[x1, . . . , xm] in more than one
variable is not smooth after tensoring with C, let alone free. Geometrically speaking, (R⊗n)Σn

is the ring of regular functions on the affine variety Spec(R)×n/Σn obtained by quotienting the
n–fold product of Spec(R) by the natural permutation action of Σn . Consequently the n–fold
symmetric product of an m-dimensional smooth complex algebraic variety is smooth if and only
if at least one of m,n is one. Nevertheless, should one tensor Z[x1, . . . , xm] with Q and let n pass
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to infinity, then surprisingly the singularities are resolved [3, 12]: the infinite symmetric product
ofQ[x1, . . . , xm] is a free polynomial algebra.

On the topological side, for any pointed connected topological space X , one can form its n–
fold symmetric product X ×n/Σn , as well as its infinite symmetric product which is the direct
limit of these spaces. Through the latter, Dold and Thom revealed a stunning relation between
homology and homotopy in the 1950’s [4]: the homotopy groups of the infinite symmetric
product of a connected topological space are naturally isomorphic to the reduced homology
groups of the original space.

In the two decades to follow, a bridge between algebra and topology was built by Quillen and
Sullivan giving us that the rational homotopy theoretic information of a space is encoded in a
corresponding differential graded (Lie) algebra over the rationals.

It is our motivation to further understand the relation between the algebraic and topologi-
cal sides of the (infinite) symmetric product construction through the lens of rational homotopy
theory; see [5] for work on the rational homotopy types of finite symmetric products, which led
the authors to the present note. We give a general structural theorem for the infinite symmet-
ric product of a connected graded-commutative algebra over the rationals (Section 2); in partic-
ular, we show this algebra is free. In contrast, finite symmetric products are generally not free.
However, we show that the finite symmetric products of a free graded-commutative algebra on
two generators, one in even degree and one in odd degree, are free. We then give a quick con-
ceptual proof of the Dold–Thom theorem in rational homotopy theory for spaces of finite type
(Section 3). Further, we compute minimal Sullivan models (in particular obtaining the rational
homotopy groups) for finite symmetric products of complex projective spaces.
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2. Symmetric products of rational algebras

Henceforth, unless otherwise noted, by an algebra we will always mean a graded-commutative
algebra over Q concentrated in non-negative degrees, denoted by A = ⊕

d≥0 Ad . If a,b are two
homogeneous elements, then ab = (−1)deg a·degbba. We will denote the subspace of positive
degree (resp. degree ≤ n) elements by A+ (resp. A≤n). We say A is connected if A0 is generated
by 1 ∈ A (i.e. A0

∼=Q). A connected algebra has a canonical augmentation ε : A →Q by projection
onto A0. We say A is of finite type if βd := dim Ad is finite for all d .

For V a graded vector space, by Λ(V ) we denote the free algebra on V . For notational con-
venience, we will sometimes replace V in the notation Λ(V ) by a homogeneous basis for V . For
instance, Λ(x) denotes the free algebra on a one-dimensional graded vector space, and it is a
polynomial algebra if deg x is even, and an exterior algebra if deg x is odd. If V ∼= U ⊕W , then
Λ(V ) ∼=Λ(U )⊗Λ(W ).

Definition 1. Let A be a connected algebra. We define its n–fold symmetric product SPn(A) to
be (A⊗n)Σn , i.e. the subalgebra of A⊗n consisting of elements invariant under the action of the
nth symmetric group Σn by permuting the factors with the usual Koszul signs (for example, the
permutation (12) takes a ⊗b to (−1)deg a·degbb ⊗a). The projection

A⊗n+1 → A⊗n , a1 ⊗·· ·⊗an ⊗an+1 7→ ε(an+1)a1 ⊗·· ·⊗an
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induces a morphism πn+1
n : SPn+1(A) → SPn(A). We define the infinite symmetric product SP(A) of

A to be the inverse limit of the system {πn+1
n }n∈N, that is SP(A) := lim←−−n

SPn(A). For each m > n, we
denote πm

n := πn+1
n ◦ · · · ◦πm

m−1 : SPm(A) → SPn(A) and πn := lim←−−m
πm

n : SP(A) → SPn(A). It is clear
that πn =πm

n ◦πm .

We emphasize that this inverse limit is taken in the category of graded-commutative algebras.
As such, it can be constructed as follows: first we take the degree-wise inverse limits lim←−−n

SPn(A)d ,
and then we form the direct sum

⊕
d lim←−−n

SPn(A)d with its inherited algebra structure.

Remark 2. Consider the truncated polynomial algebrasQ[x]/(xn), which form an inverse system
by quotienting. In the category of commutative algebras, the inverse limit of this system is the
formal power series algebra Q�x�. Likewise, if we set deg x = 0, the inverse limit of this system
in the category of graded-commutative algebras will be Q�x�. However, if we set deg x = 2, thus
placing our system in the category of connected graded-commutative algebras, the inverse limit
will be the polynomial algebraQ[x].

Now let A be a fixed connected algebra. We consider the algebra map

φn :Λ(A+) → SPn(A)

defined on elements of A+ by

a 7→ [a] = a ⊗1⊗·· ·⊗1+·· ·+1⊗·· ·⊗1⊗a.

It is clear from construction that φn =πn+1
n ◦φn+1. We set

φ := lim←−−
n
φn :Λ(A+) → SP(A).

Lemma 3. φn :Λ(A+) → SPn(A) is onto.

Proof. For simplicity of computation we will use the isomorphism of algebras Λn A ∼= SPn(A)
given by [5, §2]

a1 ∧·· ·∧an 7→ ∑
σ∈Σn

±aσ(1) ⊗·· ·⊗aσ(n),

where the multiplication on Λn A is determined by

(a1 ∧·· ·∧an)∗ (b1 ∧·· ·∧bn) = ∑
σ∈Σn

±(a1bσ(1))∧·· ·∧ (anbσ(n)).

For example, we have (a ∧1)∗ (b ∧1) = a ∧b + (ab)∧1. Under this identification, φn maps a to
1

(n−1)! a ∧1∧·· ·∧1. Inductively we see that

a1 ∧·· ·∧an−k ∧1∧·· ·∧1 = 1
k+1 (a1 ∧·· ·∧an−k−1 ∧1∧·· ·∧1)∗ (an−k ∧1∧·· ·∧1)

+ (elements of the form (a′
1 ∧·· ·∧a′

n−k−1 ∧1∧·· ·∧1)),

which gives us surjectivity. �

Lemma 4. φn maps Λ(A+)≤n isomorphically onto SPn(A)≤n .

Proof. Assume first that A is of finite type. Then by Lemma 3 it suffices to show SPn(A)≤n and
Λ(A+)≤n have the same dimension. To do so, we examine the Poincaré series of SPn(A) and
Λ(A+). Recall the Poincaré series of a graded algebra of finite type is a formal power series in
a formal variable z whose coefficient of zd is the dimension βd of its degree d subspace.

By [8] the Poincaré series for SPn(A) is the coefficient of t n in

H(z, t ) =
∞∏

i=0

(1+ z2i+1t )β2i+1

(1− z2i t )β2i
.

C. R. Mathématique — 2022, 360, 275-284
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Since A is connected, β0 = 1. Let

G(z, t ) = (1− t )H(z, t ) =
∞∏

i=1

(1+ z2i−1t )β2i−1

(1− z2i t )β2i
=

∞∑
i=0

Gi (z)t i .

Then the Poincaré series for SPn(A) is
n∑

i=0
Gi (z).

Notice that in each factor of G , t is always multiplied with a positive power of z, so Gi (z) is
divisible by zi .

On the other hand, we claim the Poincaré series of Λ(A+) is
∞∏

i=1

(1+ z2i−1)β2i−1

(1− z2i )β2i
=G(z,1).

Indeed, since the free algebra on a direct sum of vector spaces is the tensor product of the free
algebras on each direct summand, and the Poincaré series of a tensor product is the product of
the Poincaré series of each factor, we are reduced to considering the Poincaré series of the free
algebra on a one-dimensional graded vector space concentrated, say, in degree d . If d is even,
then this free algebra is a polynomial algebra whose Poincaré series is (1− zd )−1. If d is odd, then
it is an exterior algebra whose Poincaré series is 1+ zd .

Hence the dimensions of SPn(A)≤n and Λ(A+)≤n are the same, namely
∑n

i=0 Gi (z) reduced
modulo zn+1 and then evaluated at z = 1. This completes the proof for finite type algebras. The
general case follows from the lemma below and from the fact that taking direct limits is exact. �

Remark 5. We can define the n–fold symmetric product of the augmentation ideal A+ by
equipping the permutation invariants of the n–fold tensor power of the underlying graded
vector space of A+ with the induced multiplication. Since φn−1 factors over πn

n−1, it follows from
Lemma 3 that πn

n−1 : SPn(A) → SPn−1(A) is surjective. The kernel of this map is precisely SPn(A+),
whose Poincaré series is Gn(z). As graded vector spaces, we have SPn(A) ∼=⊕n

i=0 SPi (A+).

Lemma 6. Let A be a connected algebra and I = {B |B ⊆ A connected of finite type} be the direct
system formed by all connected finite type subalgebras of A and the corresponding inclusions. We
have the following induced isomorphisms:

(1) limI Λ(B+) ∼=Λ(A+),
(2) limI SPn(B) ∼= SPn(A).

Proof.

(1). The inclusion B+ ,→ A+ clearly induces an injection Λ(B+) ,→ Λ(A+). Since taking direct
limits is exact, we have limI Λ(B+) ,→ Λ(A+). To prove this map is also surjective, it suffices to
show that A+ is in the image. For each a ∈ A+, a is contained in some finite type subalgebra B (for
instance, the subalgebra generated by a), hence a is in the image ofΛ(B+) →Λ(A+) and therefore
in the image of limI Λ(B+) →Λ(A+).

(2). Similarly, the inclusion B ,→ A induces an injection B⊗n ,→ A⊗n . Then from the commutative
diagram

SPn(B) SPn(A)

B⊗n A⊗n

we see that the map SPn(B) → SPn(A) is injective. Therefore limI SPn(B) ,→ SPn(A). On the other
hand, each element in SPn(A) is a symmetrization of some elementα=∑k

j=1 c j ·a j
1⊗·· ·⊗a j

n ∈ A⊗n ,

where c j ∈ Q and a j
i ∈ A. All of these a j

i ’s are contained in some finite type subalgebra B (for
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instance, the subalgebra generated by these a j
i ’s) so the symmetrization of α is in fact contained

in SPn(B). This proves limI SPn(B) → SPn(A) is onto, and therefore an isomorphism. �

Theorem 7. Let A be a connected (graded-commutative) algebra over Q. Then φ :Λ(A+) → SP(A)
is an isomorphism.

Proof. It suffices to show that φ maps Λ(A+)≤n isomorphically onto SP(A)≤n for all n. For each
m > n, we have the commutative diagram:

Λ(A+)≤n

SP(A)≤n

SPm(A)≤n SPn(A)≤n

φφm φn

πm πn

πm
n

By Lemma 4, the mapsφm andφn are isomorphisms, and soπm
n is also an isomorphism. It follows

that πn = lim←−−m
πm

n is an isomorphism. Then since πn and φn are isomorphisms, we see that φ is
an isomorphism. �

Remark 8.

(1) As a consequence, we have that every (connected) free graded-commutative algebra
Λ(V ) is the infinite symmetric product of some algebra. Indeed, consider Q⊕V with Q
in degree zero, with product given by (c+v) ·(d +w) = cd +(cw +d v) for c,d ∈Q, v, w ∈V
(i.e. all products in V are trivial) and units given by c +0. Then SP(Q⊕V ) ∼=Λ(V ).

(2) Notice that Theorem 7 holds over any field of characteristic zero, e.g. it applies to the
`–adic cohomology of a smooth projective variety over a finite field of characteristic
different from `.

Every commutative graded algebra (i.e., a commutative algebra in the ordinary sense whose
multiplication respects the grading) can be viewed as a graded-commutative algebra by doubling
the grading. This way, the category of commutative graded algebras over Q embeds into the
category of graded-commutative algebras over Q as the full subcategory consisting of algebras
concentrated in even degrees. Therefore, Theorem 7 applies to connected commutative graded
algebras as well:

Corollary 9. For R a connected commutative graded algebra overQ, we have SP(R) ∼=Q[R+]. �

Example 10. Consider the commutative graded algebra R = Q[x]/(x2) with deg(x) > 0. Then
R+ is one-dimensional, spanned by the element x. By Corollary 9, SP(R) ∼= Q[x]. See also the
examples at the end of Section 3, in particular the end of Example 17.

We apply Corollary 9 to the theory of multisymmetric functions. Recall that the theory of
symmetric and multisymmetric functions concerns the symmetric products of the commutative
graded rings Z[x] and Z[x1, . . . , xm] (m > 1) where generators are put in degree one [3, 12]. As
mentioned before, the fundamental theorem of symmetric functions asserts that SPn(Z[x]) is a
(free) polynomial ring. Meanwhile SPn(Z[x1, . . . , xm]) is not free. However, Corollary 9 implies the
following generalization of the fundamental theorem of symmetric functions over the rationals:

Corollary 11 (cf. [12, Corollary 3.5], [3]). The algebra of multisymmetric functions over Q, i.e.
SP(Q[x1, . . . , xm]), is a polynomial algebra. �

We end this section with another generalization of the fundamental theorem of symmetric
functions in the category of graded-commutative algebras over the rationals.

C. R. Mathématique — 2022, 360, 275-284



280 Jiahao Hu and Aleksandar Milivojević

Proposition 12. Let A =Λ(x, y) where deg(x) = 2r is even and deg(y) = 2s−1 is odd. Then SPn(A)
is a free algebra generated by

[x], [x2], . . . , [xn]; [y], [x y], . . . , [xn−1 y].

Proof. First we show that SPn(A) is generated by {[xk ], [xk−1 y]}1≤k≤n . From Lemma 3 we know
that {[xk ], [xk−1 y]}k≥1 generate SPn(A). It remains to show that the elements {[xk ], [xk−1 y]}k>n are
contained in the subalgebra generated by {[xk ], [xk−1 y]}1≤k≤n .

Let xi denote 1⊗ ·· · ⊗ x ⊗ ·· ·1, where x is in the i th factor, and define yi in a similar fashion.
Then recall by construction

[xk ] = xk ⊗1⊗·· ·⊗1+·· ·+1⊗·· ·⊗1⊗xk

= (x ⊗1⊗·· ·⊗1)k +·· ·+ (1⊗·· ·⊗1⊗x)k = xk
1 +·· ·+xk

n .

Similarly [xk−1 y] = xk−1
1 y1 +·· ·+xk−1

n yn . Let

e j (x) = ∑
i1<i2<···<i j

xi1 xi2 . . . xi j (1 ≤ j ≤ n)

be the elementary symmetric polynomials in x1, . . . , xn . It is well-known (from Newton’s identi-
ties) that e j (x) is contained in the subalgebra generated by [x], [x2], . . . , [xn]. Notice that

n∏
i=1

(λ−xi ) =λn +
n∑

j=1
(−1) j e j (x)λn− j .

Therefore for 1 ≤ i ≤ n we have

xn
i +

n∑
j=1

(−1) j e j (x)xn− j
i = 0.

Then for k > n, multiplying the above equation by xk−n
i (resp. xk−n−1

i yi ) and summing over
i = 1, . . . ,n yields

[xk ]+
n∑

j=1
(−1) j e j (x)[xk− j ] = 0,

[xk−1 y]+
n∑

j=1
(−1) j e j (x)[xk−1− j y] = 0.

Hence inductively we see that {[xk ], [xk−1 y]}k>n are contained in the subalgebra generated by
{[xk ], [xk−1 y]}1≤k≤n .

Now, to prove that SPn(A) is freely generated by {[xk ], [xk−1 y]}1≤k≤n , it suffices to show the
Poincaré series of SPn(A) is that of the free algebra

Λ([x], . . . , [xn], [y], . . . , [xn−1 y]).

Since the Poincaré series of A is

1+ z2s−1

1− z2r =
∞∑

i=0
z2i r +

∞∑
i=0

z2i r+2s−1,

by [8] the Poincaré series of SPn(A) is the coefficient of t n in

∞∏
i=0

1+ z2i r+2s−1t

1− z2i r t
.

From [9, p. 19 Example 5] for variables u, v, q we have

∞∏
i=0

1− vq i t

1−uq i t
= 1+

∞∑
n=1

(
n∏

i=1

u − vq i−1

1−q i

)
t n .
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So, by taking u = 1, v =−z2s−1, q = z2r , we see that the Poincaré series of SPn(A) is
n∏

i=1

1+ z2i r−2r+2s−1

1− z2i r

as desired. �

3. Symmetric products of spaces and the rational Dold–Thom theorem

Given a (pointed) connected cell complex X , one can form the n–fold symmetric product SPn(X )
by quotienting the n–fold product X ×n by the natural action of the symmetric group Σn on n
elements. The space SPn(X ) naturally includes into SPn+1(X ), and in the limit of this directed
system over n one obtains the infinite symmetric product SP(X ).

To study the rational homotopy type of a space X , one can associate to it its commutative
differential graded algebra (cdga) of piecewise-linear forms APL(X ). By a model for a space X we
mean any cdga which is quasi-isomorphic to APL(X ). The rational cohomology of X is that of
any of its models, and if X is furthermore a nilpotent space of finite type, i.e. Hn(X ;Q) is finite
dimensional for all n, then its rational (co)homotopy groups are obtained from any free model
(i.e. one whose underlying graded-commutative algebra is free) by considering the cohomology
of the differential restricted to the subspace of indecomposable elements. We refer the reader
to [1, 11].

We remark that SP(X ) has a natural H-space structure, and as such its fundamental group
is abelian and acts trivially on the higher homotopy groups; in particular, SP(X ) is a nilpotent
space. If X is of finite type, then so is SP(X ), as will be evident from the proof of the following
theorem combined with the observation that each SPn(X ) is of finite type as well (e.g. we can
apply Macdonald’s formula for the Poincaré polynomials of finite symmetric products [8]).

Theorem 13. Let (A,d) be a connected model of a connected pointed space X . Then a model for
SP(X ) is given by (Λ(A+),D), where D is obtained by extending d on A+ to Λ(A+) as a derivation.

This result, under the additional assumptions that X is simply connected and that A is a free
algebra, has already been obtained in [10, Proposition 3]. We remark that the proof therein makes
use of the Dold–Thom theorem.

Proof. A model for the symmetric product SPn(X ) is given by SPn(A) = (A⊗n)Σn equipped with

the induced differential [5, §2]. Note that the map Λ(A+)
φn−−→ SPn(A) considered in Section 2

commutes with the differentials. Namely, for a ∈ A+ we have Da = d a ∈ A+ and hence φn(Da) =
d a ⊗1⊗ ·· · ⊗1+ ·· · +1⊗ ·· · ⊗1⊗d a = dφ(a); since D on Λ(A+) is obtained by extending d as a
derivation, the claim follows.

Further, note that the composition of φn and the map SPn(A) → SPn−1(A) induced by the
natural inclusion SPn−1(X ) ,→ SPn(X ) is the map φn−1 (see e.g. [5, Remark 2.7]). We thus have
the commutative diagram

(Λ(A+),D)

· · · (SPn+1(A),d) (SPn(A),d) (SPn−1(A),d) · · ·

φn+1
φn

φn−1

As a consequence, we have an induced map (Λ(A+),D)
φ−→ lim←−−n

(SPn(A),d) to the inverse limit
of the bottom row (in the category of cdga’s). By Lemma 4, the map (SPn(A),d) → (SPn−1(A),d)
is an isomorphism in degrees ≤ n − 1. (In particular, the inclusion SPn−1(X ) ,→ SPn(X ) is an
isomorphism on rational cohomology in degrees ≤ n − 2.) Hence from our description of (the
algebra underlying) the inverse limit in Section 2, we conclude thatφ is an isomorphism of cdga’s.

C. R. Mathématique — 2022, 360, 275-284
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Now let us confirm that the inverse limit lim←−−n
(SPn(A),d) is in fact a model for SP(X ). First

of all, recall that the functor of piecewise-linear forms Top
APL−−→ CDGAQ is given by APL(X ) =

HomsSet(Sing∗(X ),A∗• ), where A∗• denotes the simplicial cdga of polynomial forms (see e.g. [6]).
Using [7, Theorem 14.3] and [1, p. 82] (upon approximating X by a cell complex if necessary), we
have

APL(SP(X )) = APL

(
lim−−→n

SPn(X )
)
= HomsSet

(
Sing∗

(
lim−−→n

SPn(X )
)

,A∗
•
)

' HomsSet

(
lim−−→n

Sing∗ SPn(X ),A∗
•
)
' lim←−−n

HomsSet(Sing∗ SPn(X ),A∗
• )

= lim←−−n
APL(SPn(X )).

Now from the commutative diagram of models

· · · (SPn(A),d) (SPn−1(A),d) · · ·

· · · APL(SPn(X )) APL(SPn−1(X )) · · ·

induced by the inclusions of symmetric products, where the vertical arrows are quasi-
isomorphisms, we obtain a map of inverse limits lim←−−n

(SPn(A),d) → APL(SP(X )). Since the
inclusion SPn−1(X ) ,→ SPn(X ) is an isomorphism on rational cohomology in degrees ≤ n − 2
as we saw, it follows that this map of inverse limits is a quasi-isomorphism. We conclude that
lim←−−n

(SPn(A),d) maps quasi-isomorphically to APL(SP(X )). �

Corollary 14 (Rational Dold–Thom). For a connected space X of finite type, we have π∗(SP(X ))⊗
Q∼= H̃∗(X ;Q).

Proof. The rational (co)homotopy groups of SP(X ) are given by the linearized cohomology of a
free model for SP(X ). Concretely, by Theorem 13 we take our model (Λ(A+),D) for SP(X ), where
(A,d) is a model for X , and consider the cohomology of the linear part of the differential D . By
construction this is the same as the cohomology of (A+,d), i.e. the reduced cohomology of X . �

One can also see with this line of reasoning that SP(X ) has the rational homotopy type of∏
i K (H̃ i (X ;Q), i ). Indeed, consider the quotient map of complexes

Λ(A+) →Λ(A+)/Λ(A+)+ ·Λ(A+)+ ∼= A+

to the indecomposables. This is the dual of the rational Hurewicz map, and is evidently surjective.
It is well known that a space has the homotopy type of a product of Eilenberg–MacLane spaces
if and only if the Hurewicz map is a split injection; the claim now follows by rationalizing and
dualizing.

Remark 15. One can also use the rational Dold–Thom theorem to prove the algebraic Theorem 7
in the finite type case; see also [10, Proposition 3]. Indeed, take a finite type connected algebra
A. Equipping it with the trivial differential, we can realize this cdga as the cohomology of a
(formal) rational space X . From Dold–Thom, we know that SP(X ) ' ∏

i K (H̃ i (X ;Q), i ), so the
(rational) cohomology of SP(X ) is a free algebra on the reduced cohomology of X , which is A+.
We have SP(A) = SP(H∗(X )) = lim←−−n

SPn(H∗(X )), and using the finite type assumption and that
the cohomology of SPn(X ) stablizes, this is isomorphic to lim←−−n

H∗(SPn(X )) ∼= H∗(
lim−−→n

SPn(X )
)=

H∗(SP(X )). We conclude that SP(A) ∼=Λ(A+).
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Example 16. Take the model
(
Λ(x, y),d

)
for the two–sphere S2, where deg x = 2,deg y = 3, and

d x = 0,d y = x2. By Theorem 13, a model for SP(S2) is given by Λ({[xk ], [xk y]},D), where k ≥ 0,
and the differential D is given by

D[xk ] = 0,

D[xk y] = [xk+2].

From here we see that the cohomology of the linear part of D , restricted to the indecomposables
[xk ], [xk y], is spanned by [x]. That is, π2

(
SP(S2)

)⊗Q∼=Q and all other rational homotopy groups
are trivial. This is as expected, since SP(S2) is homeomorphic to CP∞.

Alternatively, since S2 is formal, we can take
(
Q[x]/(x2),d = 0

)
with deg x = 2 as a model for S2,

and immediately reach the above conclusion; see Example 10.

Example 17. Take the model (A,d) = (
Λ(x, y),d x = 0,d y = xm+1

)
for CPm , where deg x = 2 and

deg y = 2m +1. By Proposition 12

SPn(A) =Λ
(
[x], [x2], . . . , [xn]; [y], [x y], . . . , [xn−1 y]

)
with the induced differential d [xk ] = 0,d [xk−1 y] = [xm+k ] for k ≥ 1 is a free model for SPn(CPm).
Then by quotienting out contractible pairs of generators, we obtain a minimal Sullivan model for
SPn(CPm), that is

Λ
(
[x], . . . , [xn]; [y], . . . , [xn−1 y]

)
if n ≤ m,

Λ
(
[x], . . . , [xm]; [xn−m y], . . . , [xn−1 y]

)
if n > m,

with the induced differential. In either case, the differential d takes generators of the form [xk ]
to zero and generators of the form [xk y] to elements in the subalgebra generated by the [xk ]’s,
which must be sums of decomposables for degree reasons. So the linearized differential vanishes
on indecomposables, and we obtain

π∗
(
SPn(CPm)

)⊗Q∼=


Q if ∗= 2, . . . ,2min{m,n};

Q if ∗= 2max{m,n}+1, . . . ,2n +2m −1;

0 otherwise.

We sketch how to obtain the rational cohomology of SPn(CPm) from our model. Let

A j =Λ
(
[x], [x2], . . . , [xn]; [y], [x y], . . . , [x j−1 y]

)
(0 ≤ j ≤ n)

with the restricted differential be an increasing sequence of sub-cdga’s of SPn(A). Here A0 =(
Λ

(
[x], [x2], . . . , [xn]

)
,d = 0

)
and An = SPn(A). Using the short exact sequence of cochain com-

plexes
0 → A j → A j+1 → A j+1/A j

∼= [x j y]A j → 0

and that [xm+1], . . . , [xm+n] is a regular sequence in the algebraΛ ([x], . . . , [xn]) [2, Proposition 2.9],
one can inductively show that the cohomology of A j is isomorphic to

Λ
(
[x], . . . , [xn]

)
/
(
[xm+1], . . . , [xm+ j ]

)
.

In particular, if m = 1 then the cohomology of SPn(CP1) is isomorphic to

Λ
(
[x], . . . , [xn]

)
/
(
[x2], . . . , [xn+1]

)
.

From Newton’s identities, one sees that [xn+1] =± 1
n! [x]n+1 (modulo [x2], . . . , [xn]), so

Λ
(
[x], . . . , [xn]

)
/
(
[x2], . . . , [xn+1]

)∼=Λ ([x])/
(
[x]n+1) .

This is as expected, since SPn(CP1) is homeomorphic to CPn . Algebraically, this corresponds to
SPn

(
Q[x]/(x2)

)∼=Q[x]/(xn+1).
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Example 18 (See also [5, p. 5]). Take the model
(
Λ(x, y),d y = x2

)
for S2m where deg x = 2m and

deg y = 4m −1. Then similarly to before, a minimal model for SPn(S2m) is

Λ
(
[x], [xn−1 y]

)
with d [x] = 0 and d [xn−1 y] =± 1

n!
[x]n+1,

which is isomorphic to (Λ(x, z),d) with d x = 0 and d z = xn+1.
Taking the model

(
Λ(y),d y = 0

)
for S2m−1 where deg y = 2m −1, we see that a minimal model

for SPn(S2m−1) is
(
Λ([y]

)
,d [y] = 0). This means that SPn(S2m−1) has the rational homotopy type

of S2m−1.
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