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Dipole-coupled subwavelength quantum emitter arrays respond cooperatively to external light fields as they
may host collective delocalized excitations (a form of excitons) with super- or subradiant character. Deeply
subwavelength separations typically occur in molecular ensembles, where in addition to photon-electron in-
teractions, electron-vibron couplings and vibrational relaxation processes play an important role. We provide
analytical and numerical results on the modification of super- and subradiance in molecular rings of dipoles
including excitations of the vibrational degrees of freedom. While vibrations are typically considered detrimental
to coherent dynamics, we show that molecular dimers or rings can be operated as platforms for the preparation
of long-lived dark superposition states aided by vibrational relaxation. In closed ring configurations, we extend
previous predictions for the generation of coherent light from ideal quantum emitters to molecular emitters,
quantifying the role of vibronic coupling onto the output intensity and coherence.
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I. INTRODUCTION

Structured subwavelength arrays of quantum emitters al-
low for the coherent hopping of excitations via the near-field
coupling of neighboring dipoles [1–4]. In addition, they ex-
hibit correlated spontaneous emission and support super- and
subradiant collective modes, which can be exploited to con-
trol the interaction with impinging light. Possible applications
range from the design of highly reflective quantum metasur-
faces [5–7] to the engineering of platforms showing robust
transport of excitation in topological quantum optics [8,9]
and of high-fidelity photon storage devices for quantum infor-
mation processing [10–12]. Moreover, quantum emitter rings
have been proposed to act as superabsorbers [13] or coherent
light sources on the nanoscale [14].

While subwavelength separations are not easily achieved
in standard quantum optics setups, molecular aggregates (i.e.,
arrays of identical molecules such as J and H aggregates) can
feature deeply subwavelength separations on the nanometer
scale, while retaining the electronic structure of the individual
dipole transitions [15]. They can be artificially synthesized in
a wide variety of forms such as one dimensional chains or two
dimensional films and can also be found in nature, in particu-
lar in the photosynthetic light-harvesting complexes of plants
and bacteria [3,16,17]. For example, long-lived electronic
quantum coherence in a light-harvesting protein (the Fenna-
Matthews-Olson complex) has been experimentally observed
[18] and theoretically tackled [17]. The downside of such sys-
tems is the much more complex structure, which introduces
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coupling of electronic degrees of freedom with intra- and
intermolecular vibrations. While it is well established that the
strong coherent near-field interactions give rise to delocalized
exciton states (of the so-called Frenkel excitons) in molecular
aggregates [19–21], the characterization of the accompanying
collective dissipation is usually not fully taken into account in
such systems as vibronic couplings and induced dephasing are
considered to dominate the dynamics, especially at high tem-
peratures. It is therefore interesting and timely to characterize
cooperative dissipative effects in the presence of vibrations,
a task, which involves an extension of previously developed
methods to describe electron-photon-phonon interactions on
an individual dipole basis [22,23]. Moreover, the addition
of localized gain renders molecular emitter arrays as possi-
ble candidates for the realization of nanoscale coherent light
sources as recently introduced for pure quantum emitters [14].
As an alternative (or addition) to strong near-field coupling, a
modified material response of a molecular ensemble can also
be obtained by collective strong coupling of the ensemble to
a cavity, which creates similar delocalized excitation states
among the molecules, which are then hybridized with the
cavity mode. The field of molecular polaritonics has recently
emerged as a platform for observing strong modifications of
material properties such as charge and energy transport or
chemical reactivity [24–27].

In this paper, we perform analytical and numerical studies
of cooperative radiative properties of molecular arrays with
particular emphasis on ring configurations, where we treat the
vibronic coupling and electron-photon interactions on equal
footing. Our treatment combines two approaches, a master
equation approach, where the thermal environment of the
vibrational degrees of freedom is traced out and a quantum
Langevin equations approach, where the time evolution of
both electronic and vibrational operators are fully consid-
ered. As a first important step, we elucidate the influence of
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vibronic couplings on the scaling of collective emission rates:
Modifications for the case of molecular systems originate
from the Franck-Condon factors, which lead to a decay of
the electronic coherence via coupling to several states of the
vibrational degrees of freedom and the vibrational thermal
environment.

Analytical results can be derived and understood more
easily by a transformation to a collective electronic basis,
which involves a single bright (symmetric) state and many
more dark (antisymmetric) states of typically superradiant and
subradiant character respectively. This basis allows a simpli-
fied understanding of how standard scenarios, such as Dicke
superradiance and the band structure of dipole-dipole induced
transport of excitations, are modified by the electron-vibron
interactions.

While vibronic couplings are generally seen as detrimental
in the efforts of controlling electronic coherence with light
modes, here we present a generic vibronic dimer model, where
bipartite long-lived entanglement is even engineered owing
to vibrational relaxation. The system involves a nanometer
spaced molecular dimer, where two chromophores exchange
energy but not charge. Under favorable conditions, unidirec-
tional flow of population for a driven symmetric collective
state is directed into a robust, entangled antisymmetric state,
via a process similar to the Förster resonance energy transfer
occurring in acceptor/donor configurations.

The same transformation to a collective basis proves useful
in the understanding of molecular nanorings illuminated by
incoherent light sources, as recently proposed for the design
of nanoscale coherent light sources [14]. In such systems,
symmetric collective states are almost fully responsible for
the generation of emitted light, which greatly aids our ana-
lytical and numerical analysis, allowing for a great reduction
of the relevant Hilbert space dimension and therefore for nu-
merical results with a reasonably sized molecular nanorings,
where each electronic transition is coupled to at least one own
phonon mode.

The paper is organized as follows: Section II introduces
the open system dynamics formalism for molecules including
electron-photon and electron-vibron interactions. In Sec. III,
we describe super- and subradiance both in the Dicke limit
of closely spaced ensembles, for population inverted sys-
tems, and also in the weak excitation for arbitrarily spaced
chains and rings. We then introduce in Sec. IV a particular
case of nanoscale sized molecular dimers, where vibrationally
induced couplings between collective symmetric and antisym-
metric electronic states allow for the addressing of long-lived
dark entangled states. The symmetric/antisymmetric collec-
tive basis is then generalized to the ring geometry with
particular relevance to molecular nanoring lasers. In Sec. V,
we provide analytical and numerical results for the scaling of
intensity and second-order correlation functions of coherent
light emitted by an incoherently pumped nanoscale molecular
ring.

II. MODEL

We consider N identical molecular quantum emitters, each
involving electronic transitions between two potential land-
scapes, with minima slightly shifted from each other along

FIG. 1. (a) The equilibrium mismatch Rge between the ground-
and excited-state electronic potential landscapes along a given nu-
clear coordinate leads to the standard Franck-Condon physics with
a branching of transitions into different vibrational levels. The
electron-vibron coupling is schematically represented by the link, at
coupling strength λ, between an electronic transition operator σ and
a bosonic vibrational mode operator b. (b) Schematics of a molecular
ring where mutual interactions are mediated by the electromagnetic
vacuum at coherent/incoherent rates �ij and �ij. The inset shows
branching of electronic transitions between the manifolds of vibra-
tional levels. (c) Preparation of an entangled molecular dimer with
subwavelength separation d � λ0 via an impinging short laser pulse.
(d) Schematics of a molecular nanoscale light source where the cen-
tral gain molecule is incoherently pumped and coherently coupled to
the symmetric eigenmode of the ring molecules. The ring provides an
effective resonator enhancement leading to the emission of coherent
laser light.

a nuclear coordinate. This mismatch of the electronic poten-
tial energy landscapes in the ground and excited states gives
rise to the electron-vibron coupling, as depicted in Fig. 1(a).
External drive of electronic transitions is accompanied, in
consequence, by the excitation of the motion of the nuclei, de-
picted as eigenstates of a harmonic potential in Fig. 1(a). The
electronic transition for molecule j (index running between 1
and N ) is at frequency splitting ω0 (h̄ = 1) and is described
by the collapse operator σ j = |g〉 j〈e| j and its Hermitian conju-
gate. The vibrational degree of freedom is at frequency ν and
is described by a bosonic operator bj satisfying the commuta-
tion relations [b j, b†

j] = 1. The vibronic coupling is illustrated
in Fig. 1(a) as a link between the electronic and vibration
operator with magnitude characterized by the Huang-Rhys
factor λ2. The electronic and vibrational degrees of freedom
are subject to loss quantified by the spontaneous emission rate
�0 and by the vibrational relaxation rate �ν , respectively. A
standard Jablonski diagram of radiative and nonradiative pro-
cesses involving two electronic states with their corresponding
vibrational manifold is illustrated in the inset of Fig. 1(b).
This complex competition of transitions shows that molecules
are typically inefficient quantum emitters as they do not pos-
sess closed transitions. Furthermore, we will consider rings
of N molecules, as illustrated in Fig. 1(b), with ring radius
r and interparticle separation d = 2r sin 2π/N . Their close
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separation brings into play cooperative effects such as near-
field dipole-dipole interactions and collective spontaneous
emission, quantified by the distance dependent rates �i j and
�i j , which are mediated by the quantum electromagnetic vac-
uum.

The free Hamiltonian for the ensemble of N molecules
H0 = ∑

j h( j)
0 is obtained as a sum over each particle’s free

Hamiltonian

h( j)
0 = (ω0 + λ2ν)σ †

j σ j + νb†
jb j, (1)

which sees a vibronic shift λ2ν added to the electronic bare
transition frequency (which will later cancel out after a po-
laron transformation—see Appendix A). The index j runs
from 1 to N for the ring configuration, which will be used
in the next section to derive cooperative radiative emission
properties of molecular ensembles. In Sec. V we will incorpo-
rate an additional index p to describe the situation depicted in
Fig. 1(d), which sees the realization of a molecular nanoscale
light source with a gain molecule implanted in the center of
the ring.

The linear vibronic coupling Hamiltonian [28] is now
added as a sum HHol = ∑

j h( j)
Hol over all particles, where

h( j)
Hol = −λνσ

†
j σ j (b

†
j + b j ). (2)

The Holstein Hamiltonian listed above assumes identical
molecules and is obtained as a harmonic approximation of
an anharmonic Morse potential in the Born-Oppenheimer
approximation by expanding the potential energy surfaces
around the minima [22] (see Appendix A). This is generally a
good approximation for large organic molecules in condensed
matter environments, where the vibrational modes possess
high effective masses and quick vibrational relaxation ensures
that states with more than one vibrational quantum are not
reached.

For closely spaced quantum emitters, near-field dipole-
dipole interactions at rates � j j′ are added, which are strongly
dependent on their interseparation (with a standard |�r j −
�r j′ |−3 dependence in the near-field region) and relative ori-
entation of transition dipoles [29] (see Appendix B for exact
expressions). This can be listed as

Hd-d = ∑
j �= j′ � j j′σ

†
j σ j′ (3)

and describes an excitation transfer via a virtual photon ex-
change. Notice that by definition the diagonal terms � j j

vanish. The combination of dipole-dipole interaction and
vibronic coupling is also referred to as Frenkel-Holstein
Hamiltonian and is a standard model, which is widely em-
ployed for the description of molecular aggregates [21,30].

To the coherent dynamics one can then add the effects of
infinite reservoirs in an open system dynamics described by
a master equation (for the system’s density operator ρ) in the
form

∂tρ = i[ρ,H] + L[ρ], (4)

where the total Hamiltonian is H = H0 + HHol + Hd-d. The
dissipative, incoherent dynamics stemming from the coupling
of the electronic and vibrational degrees of freedom to their
baths in thermal equilibrium, is included in the Lindblad part
as a superoperator (an operator acting on density operators).

A standard, diagonal superoperator in Lindblad form [31–36]
is defined as

Lγ [ρ] = γO
2

[2Oρ(t )O† − O†Oρ(t ) − ρ(t )O†O], (5)

and describes decay at generic rate γO through a single
channel with a generic collapse operator O. The radiative dy-
namics stemming from the coupling of electronic transitions
to the electromagnetic vacuum is, however, not in diagonal
Lindblad form [37] but achieves the following expression:

Le[ρ] =
∑
j, j′

� j j′

2
[2σ jρσ

†
j′ − σ

†
j σ j′ρ − ρσ

†
j σ j′ ]. (6)

A simple diagonalization of the matrix of decay rates suffices
to bring the expression above into standard Lindblad form and
to see the emergence of N collective dissipation channels. The
second contribution to L[ρ] stems from the nonradiative loss
of vibrational excitation and is in standard Lindblad form with
rate �ν for all molecules and collapse operators b j . This is an
approximated model, as some care has to be taken regarding
the correct collapse operator since the vibronic coupling can
be strong (λ ∼ 1) and the vibrational relaxation is typically
much faster than the spontaneous emission. Notice also that
for molecules in solid-state environments or in solvents, due
to the very quick vibrational relaxation, at low temperatures
all processes can be treated by considering that most of the
vibrational population resides in the ground state.

III. RADIATIVE PROPERTIES OF VIBRONICALLY
COUPLED EMITTERS

The nonstandard form of the radiative dissipation leads to
cooperative effects, which show the imprint of superradiance
and subradiance. For ideal quantum emitters, such effects
are well understood [37] and analytically tackled, e.g., in
Ref. [29]. However, the vibronic coupling appearing in the
Hamiltonian in Eq. (2) changes these effects considerably. We
will focus on two distinct situations: (i) inverted ensembles,
where the dynamics is followed on the whole Bloch sphere
and (ii) the single excitation manifold, relevant under weak
excitation conditions. We will make use of both an individual
site basis (described by operators σ j), as well as a collective
basis, where symmetric and antisymmetric combinations of
the σ j operators will be defined. We first show that vibrations
lead to a degradation of the superradiant pulse emission in the
Dicke limit. Then we analyze the symmetric/antisymmetric
dynamics to show that both dissipative dynamics and vibronic
effects lead to couplings among collective states of different
symmetries. In the single excitation subspace, states of differ-
ent symmetry do not couple via dissipative effects, allowing
the derivation of a band structure describing the dispersion
of excitations tunneling between molecules via the near-field
dipole-dipole interactions; this behavior is only changed ow-
ing to vibronic effects.

A. Dissipation under vibronic coupling

Let us first review a few details on the vibronic cou-
pling following the description in Ref. [22]. For a single
molecule indexed by j, the Holstein Hamiltonian can be
diagonalized via a level-dependent polaron transformation
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U†
j = |g〉 j〈g| j + D†

j |e〉 j〈e| j with the standard displacement
operator defined as

D j = e−i
√

2λp j = eλ(b†
j−b j ). (7)

In the polaron-displaced basis, the Holstein Hamiltonian
h( j)

0 + h( j)
Hol becomes diagonal

h̃( j) = U†
j

(
h( j)

0 + h( j)
Hol

)
U j = ω0σ

†
j σ j + νb†

jb j (8)

and has simple eigenvectors |g; n〉 j and |e; n〉 j . The eigen-
vectors in the bare, original basis can be found by inverting
the polaron transformation |g; n〉 j and D|e; n〉 j . The important
property we have used is the transformation of the Pauli matri-
ces under the vibrational displacement U†

j σ jU j = σ jD j . The
dressed operators describe polarons, i.e., hybrid electronic-
vibrational operators. Furthermore, we assume a thermal
state with the average occupancy n̄ = [exp(h̄ν/(kBT )) − 1]−1

(where kB is the Boltzmann constant). The partial trace over
the vibronic displacement operators at temperature T is there-
fore given by

〈D jD†
j′ 〉T = e−λ2(1+2n̄)(1−δ j j′ ). (9)

Note that at T = 0 the above trace reduces simply to
〈D jD†

j′ 〉T =0 = exp[−λ2(1 − δ j j′ )] giving unity on a given

molecule but a reduction by the Franck-Condon factor e−λ2

for a two molecule term.
We can now apply the polaron transformation with an

operator U† = ∏
j U

†
j such as to diagonalize the whole vi-

bronic Hamiltonian. We are however left with the polaron
transformed dipole-dipole interaction as well as a polaron
transformed Lindblad term, which describes dissipation via
polaron collapse operators

L̃e[ρ] =
∑
j, j′

� j j′

2
[2σ jD jρD†

j′σ
†
j′ − {D†

j σ
†
j σ j′D j′ , ρ}], (10)

where the last term denotes an anticommutator. We will then
make the assumption that the vibrations are in a thermal state
and that the electronic and vibrational states factorize. This
leads to a renormalization of the dipole-dipole interaction
�λ

j j′ = � j j′e−λ2(1+2n̄) as well as renormalized off-diagonal (or
mutual) decay rates as evident from the polaron transformed
Lindblad term

L̃e[ρ] =
∑

j j′
e−λ2(1+2n̄)(1−δ j j′ ) � j j′

2
[2σ jρσ

†
j′ − {σ †

j σ j′ , ρ}].

(11)

Notice that for large λ or large thermal occupancies, the off-
diagonal elements of the Lindblad term above (corresponding
to cooperative emission) vanish, leading to the disappearance
of any subradiant or superradiant behavior and the recovery of
the independent decay behavior.

B. Dynamics on the Bloch sphere

We will first analyze the standard Dicke superradiance
phenomenon extended to the case of molecules, i.e., for a
vibronic coupling characterized by a nonzero Huang-Rhys
factor λ �= 0. To this end, we will make use of a Bloch
sphere representation for the collective spin of the system

FIG. 2. (a) Illustration of the collective Bloch sphere for N emit-
ters. The symmetric subspace is spanned by N + 1 Dicke states,
while the inside of the sphere is spanned by antisymmetric states.
(b) Superradiant decay for an initially fully inverted ring of N = 8
molecules with their vibrational degree of freedom in thermal equi-
librium at various temperatures. (c) Scaling of the superradiant pulse
intensity for a fully inverted system of molecules in the ring con-
figuration, as a function of increasing positional disorder ε and with
vibronic coupling λ = 0.15. (d) Time dependence of the intensity of
emission for a ring of N = 8 molecules driven by a laser pulse with
the frequency matched to the symmetric state resonance ω� = ωS .
The intermolecular separation in all plots is d = 0.04λ0 and the
dipoles are linearly polarized perpendicular to the plane of the ring.
Parameters are fixed to η = 260�0, t0 = 0.1/�0, and τ = 0.1/�0.

as illustrated in Fig. 2(a). We make use of a nonstandard
angular momentum representation for the sum of N spin 1/2
subsystems where a collective collapse operator is introduced
as a symmetric combination S = ∑

j σ j/
√
N . The Carte-

sian components are Sz = ∑
j σ

(z)
j , Sx = S + S† and Sy =

−i(S − S†). Common eigenstates of the total spin vector �S
and Sz are then denoted by |s, m〉 where the quantum number
s runs 0 or 1/2 to N /2 and m from −s to s. In the sym-
metric subspace the so-called Dicke states arise denoted by
|N /2, m〉 and obtained by fixing s to its maximal value N /2.
The action of the lowering/raising operators on the Dicke
states is S|N /2, m〉 = α(−)

m |N /2, m − 1〉 and S†|N /2, m〉 =
α(+)

m |N /2, m + 1〉 where the coefficients are

α(±)
m = 1√

N
√

(N /2 ∓ m)(N /2 ± m + 1). (12)

In the Dicke limit (d = 0) and in the absence of vibrations
(λ = 0), the Lindblad term in Eq. (11) can be immediately
diagonalized in terms of a single loss channel with collapse
operator S at superradiant rate N�0. This is no longer when
λ �= 0 or d > 0 or both, as population spills outside the sym-
metric subspace towards the interior of the Bloch sphere. This
behavior can be easily understood in a collective basis, where
additional N − 1 antisymmetric operators are introduced

Ak = 1√
N

N∑
j=1

σ je
2π i jk/N , for k ∈ {1, ...,N − 1}, (13)
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under the requirement that they are orthogonal to the S op-
erator (this can be done more generally, for example, via
a Gram-Schmidt algorithm). The Hamiltonian can be easily
diagonalized in terms of collective operators giving

H = ωλ
SS†S +

N−1∑
k=1

ωλ
kA†

kAk . (14)

This is based on the orthonormality condition∑N
k=1 e2π ik( j− j′ )/N = N δ j j′ and on the cyclic symmetry of

the ring allowing to write any sums
∑

j′ �= j e2π ik( j′− j)/N� j j′ =∑N
j′=2 e2π ik( j′−1)/N�1 j′ . The modified eigenenergies are given

by ωλ
S = ω0 + ∑N

j=2 �λ
1 j , for the symmetric states and

ωλ
k = ω0 +

N∑
j=2

�λ
1 je

2π i( j−1)k/N , (15)

for the set of antisymmetric combinations.
The thermally averaged Lindblad term from Eq. (11) can

now be split into N decay channels: a symmetric one with
loss rate �λ

S (d ) and N − 1 antisymmetric channels with rates
�λ

k (d ). These can be expressed as

�λ
S,k (d ) = �0[1 − e−λ2(1+2n̄)] + �λ=0

S,k (d )e−λ2(1+2n̄), (16)

in terms of the bare rates for zero vibronic
coupling �λ=0

S (d ) = ∑N
j=1 �1 j (d ) and �λ=0

k (d ) =∑N
j=1 �1 j (d )ei2π ( j−1)k/N . Notice that for zero distance and no

vibronic couplings, we recover the Dicke superradiance effect
with rate N�0. For larger distances this is effect is reduced;
additional reduction appears for nonzero vibronic coupling
and temperature. Finally, for large λ or n̄, a complete washout
of superradiance occurs and the first term in the expression
above indicates the independent rate �0 for both symmetric
and antisymmetric states.

For a better understanding of the coupling between states
of different symmetries, we now perform an analysis in the
full Hilbert space, i.e., without tracing over the thermal bath.
Instead, intuitive understanding is offered by an additional
transformation to a collective basis for the vibrational degrees
of freedom as well, introduced via

Qk = 1√
N

N∑
j=1

e2π i jk/N (b j + b†
j ), (17)

where k ∈ {1, ...,N } (with k = N corresponding to the sym-
metric vibrational mode) and with the momentum quadratures
satisfying [Qk, Pk′ ] = 2iδkk′ . An interaction term emerges,
coupling the symmetric state to the antisymmetric manifold

HSA
int = − λν√

N

N−1∑
k=1

(QkS†Ak + H.c.), (18)

via the position quadratures of the collective vibrations. This
coupling is responsible for the spilling of population into
the interior of the Bloch sphere even when fully symmetric
driving for the system takes place. The effect will be useful
in order to understand the dynamics of the coherent nanoscale
source analyzed in Sec. V. In addition, couplings within the

antisymmetric states manifold emerge via

HAA
int = − λν√

N

N−1∑
k �=k′

(Qk−k′A†
kAk′ + H.c.). (19)

This Hamiltonian shows a redistribution of energy within the
whole manifold of antisymmetric states. In the mesoscopic
limit, a very large number of such states exist, leading to a
quick energy loss from the symmetric subspace to all other
subspaces orthogonal to it. This observation could constitute
the basis for an effective theory as developed in Ref. [38],
which allows for the derivation of an effective unidirectional
Markovian loss dynamics for the symmetric operator.

Let us now numerically illustrate the Dicke superradiant
behavior for a tightly packed system of emitters and check
the analytically obtained results. We depart now from the
ideal case of zero separation, and consider a ring of N = 8
molecules with a separation of d = 0.04λ0. The inclusion of
the inherent coherent dipole-dipole interactions leads to a shift
of the collective symmetric state, which we effectively tar-
get in the numerical simulations. These results are illustrated
in Fig. 2(b) as a function of the environmental temperature
for λ = 0.15. One can clearly observe the washing out of
the standard Dicke superradiant pulsed decay, plotted as the
intensity of the emitted pulse as a function of time. In the
large temperature limit, the independent decay behavior is
recovered, signaling that temperature effects hinder the build
up of two-particle correlations necessary for the emergence of
superradiant behavior. In Fig. 2(c), some robustness to posi-
tional disorder is observed where each molecule is randomly
displaced around its equilibrium position by a normal distribu-
tion of standard deviation ε. The trajectories are plotted after
performing an average over 100 disorder realizations with
λ = 0.15.

Finally, we numerically illustrate time dynamics under res-
onant laser drive (ω� = ωS ), modeled by a pulsed excitation
with electric field amplitude

Ein(t ) = ��(t )
N∑
j=1

(e−i�k�·�r j eiω�tσ j + ei�k�·�r j e−iω�tσ
†
j ). (20)

The laser pulse is considered to be impinging from the xy
plane with a linear polarization êz coinciding with the dipole
orientation of the molecules. The time dependence is a Gaus-
sian envelope of the form ��(t ) = η exp[−(t − t0)2/τ 2], with
maximum amplitude η and duration τ and the wave vector of
the laser is assumed to be �k� = k0êx. The situation is depicted
in Fig. 2(d) and shows that superradiant emission is reached
even at large temperatures, via the properly tailored pulsed,
resonant addressing. In fact, vibronic coupling not only leads
to an increase of possible states reachable by the laser, which
in the Dicke regime (d � λ0) would otherwise be prohibited,
but additionally decreases the dephasing stemming from the
coherent dipole-dipole interaction and thereby leads to an
increased photon emission after the pulse is switched off. Let
us now use our approach to compare our results to analytical
predictions [39,40], which show that superradiant decay of a
fully inverted ensemble of two-level emitters can be predicted
purely by the geometry of the system by observing that a posi-
tive slope of the total emitted intensity

∑
i j �i j〈σ †

i σ j〉(t ) at t =
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FIG. 3. (a) Single-excitation dispersion relation in the first Brillouin zone for a ring of N = 100 transversely polarized molecules at zero
temperature with nearest-neighbor separation d = 0.05λ0. Bright states enclosed by the shaded region are characterized by a mode number
|k| � �Nd/λ0
 whereas the region beyond is occupied by dark states. (b) Bright states feature a finite decay rate with the symmetric state
located at k = 0. For d � λ0 the dark state decay rates are approximately given by �λ

k ∼ (1 − e−λ2
)�0 whereas the bright state decay rate

approaches �λ
S ∼ �0 + e−λ2

(N − 1)�0. (c) Dispersion curves in the full vibrational Hilbert space (for λ = 0.15). States with n vibrational
energy quanta are shifted by nν with respect to the zero-vibrational states. Vibrations lead to coherent population transfer from bright states
with lower vibrational quantum state excitation to dark states with higher vibrational quantum state excitation, at a coupling strength λν/

√
N .

The process is followed by nonradiative vibrational relaxation into the dark state with zero vibrations at a rate �ν � �0.

0 is a good criterion for superradiant emission. The condition
derived in these references reads

∑N
k=1 �2

k > 2N�2
0 , where

�k are the collective decay rates corresponding in our case
to a fixed distance d and zero vibronic coupling. This can be
immediately translated to the case of N identical molecules,
where the factor exp[−λ2(1 + 2n̄)] is crucial, leading to the
following condition for the emergence of superradiant decay

N∑
k=1

(
�λ=0

k

)2
>

1 + e−2λ2(1+2n̄)

e−2λ2(1+2n̄)
N�2

0 . (21)

This shows that with increasing temperature and/or vibronic
coupling the condition for superradiance to occur is more
difficult to meet and in the Dicke limit only one collective
decay rate is nonzero and the inequality reduces to

N >
1 + e−2λ2(1+2n̄)

e−2λ2(1+2n̄)
, (22)

which sets an upper bound of λ2(1 + 2n̄) < log(N − 1)/2 for
the Huang-Rhys factor λ2. It then follows that for molecular
systems at zero temperature and in the Dicke limit (d/λ0 = 0),
the criteria for the Huang-Rhys factor for which superradiant
effects can still be observed is λ2 < log(N − 1)/2. Beyond
this limit, no maximum of emission exists, although a small
subradiant tail remains. Further increasing λ eventually leads
to a washing out of collective emission and the recovery of
independent decay behavior.

C. Dynamics in the single excitation subspace

The single excitation subspace is especially relevant for the
case of mesoscopic systems of quantum emitters driven with a
very weak excitation pulse. Dipole-dipole interactions induce
tunneling behavior between neighboring emitters, allowing
the understanding of the system’s properties in terms of the
band structure or dispersion relations for the propagation of
collective excitations. Non-Hermitian, dissipative effects such
as superradiance and subradiance of such linear systems can
also be understood in terms of the localization of collective
states within or outside a light cone.

Restricting the Hilbert space to a single excitation, one
can recast the Hamiltonian in Eq. (3) into the following non-
Hermitian form (by disregarding the recycling term in the
Lindbladian):

H = ω0

N∑
j

σ
†
j σ j +

N∑
j j′

[
�λ

j j′ (d ) − i
�λ

j j′ (d )

2

]
σ

†
j σ j′ . (23)

As mentioned in the previous subsection, the collective ba-
sis offers a diagonalization of the dynamics. As opposed to
the full Bloch sphere case, in the single excitation one can
proceed with diagonalization of both coherent and incoherent
parts by writing H = ∑N

k=1 ω̄λ
kA

†
kAk where by definition the

symmetric state operator corresponds to the case S = Ak=N .
The eigenenergies and the decay rates are given by the real
and imaginary part of the complex eigenvalues

ω̄λ
k = ω0 + �λ

k (d ) − i
�λ

k (d )

2
. (24)

The excitations can be understood in terms of the quasimo-
mentum q = 2πk/(Nd ), where due to the periodicity we can
define the first Brillouin zone by the index k = 0,±1, ... ±
�(N − 1)/2
 where �x
 denotes the ceiling function. Note that
the center of the Brillouin zone k = 0 corresponds to the sym-
metric mode and the edges at k± = ±�(N − 1)/2
 to the most
subradiant modes with degenerate eigenvalues ωk± . This can
be understood from the wave equation q2 + q2

⊥ = (2π/λ0)2,
which requires that for modes with |q| � 2π/λ0, the radial
electric field components are evanescent, i.e., exponentially
decaying, and the excitation is guided along the ring. Modes
inside the region |q| � 2π/λ0 on the other hand have elec-
tric field components transverse to the ring and are therefore
radiating energy away into the vacuum.

In Fig. 3(a) the dispersion relation for a ring of N = 100
molecules is shown for the cases with and without vibronic
coupling λ. The region defined by the integer number |k| �
�Nd/λ0
 is occupied by dark states as shown in Fig. 3(b)
whose decay rates (for a fixed k) are decreasing exponentially
with the number of emitters for λ = 0 [11]. For molecules
with a nonzero vibronic coupling λ the exponential scaling
gets strongly modified and the decay rates for eigenstates
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with mode number k are approximately given by �λ
k /�0 ∼

(1 − e−λ2
).

While Figs. 3(a) and 3(b) show the real and imaginary
parts of the dispersion relation using the reduced Hamiltonian,
one can also discuss the dispersion relation in the collective
basis including vibrations. The term in Eq. (18) illuminates
the fact that the presence of vibrations causes a coherent
transfer of population between the symmetric mode S and the
dark modes Ak . The coupling strength between the symmetric
mode in the vibrational ground state and a dark mode with
one vibrational excitation is given by λν/

√
N , which is illus-

trated in Fig. 3(c). Since the vibrational relaxation rate �ν is
fast compared to the timescale 1/�0 of the electronic decay
rate, the population relaxes quickly to the dark state with
no vibrational quanta. In general the coupling strength be-
tween S with n vibrations and mode Ak with n + 1 vibrations
is given by 〈S, n|H|Ak, n + 1〉 = √

(n + 1)/Nλν where the
Hamiltonian includes the vibrational degrees of freedom and
in particular the terms in Eqs. (18) and (19), which mediate
the coherent transfer. The rate of transfer for a ring geome-
try is derived in Sec. IV and generally the large vibrational
linewidth �ν � �0 will create resonances between multiple
modes thereby enhancing the population transfer to the dark
state manifold.

IV. SUBRADIANT STATE PREPARATION IN MOLECULAR
DIMERS AND RINGS

Molecular dimers are ideal for the study of dipole-dipole
induced energy shifts at very small separations and for the
study of the interplay between electronic and vibrational
quantum superpositions [41]. In such compounds, two chro-
mophores are linked by insulating bridges, which do not
allow for charge migration and do not shift the bare elec-
tronic transitions. In Ref. [42], an experimental study of
PDI (perylene-diimide) dimers shows the possibility to con-
trol the interchromophoric distance from 1.3 nm to 2.6 nm
while keeping the orientation of each chromophore dipole
fixed. Previous theoretical studies have focused mainly on the
purely coherent interactions and have neglected the effects
of vibrational relaxation and collective spontaneous emission
[43–45].

Here, we show that the coupling between symmetric
(bright) and antisymmetric (dark) collective states in a vi-
bronic dimer, combined with the vibrational relaxation can
lead to an efficient preparation of long-lived quantum en-
tangled states of the two chromophores (see Fig. 4). The
mechanism is reminiscent of the process of FRET (Förster
resonance energy transfer) between donor and acceptor
molecules, where coherent energy exchanges followed by
quick vibrational relaxation can lead to a unidirectional flow
of energy.

The model is described by the free Hamiltonians h(1)
0 + h(2)

0

to which we add h(2)
Hol + h(2)

Hol and the two-particle term Hd-d =
�(σ †

1 σ2 + σ
†
2 σ1) describing excitation exchange between the

two chromophores via the near-field dipole-dipole coupling.
We make use of the collective basis representation with
S = (σ1 + σ2)/

√
2 as the symmetric operator and a single

antisymmetric, orthogonal operator A = (σ1 − σ2)/
√

2. We

FIG. 4. (a) Energy diagram showing population transfer between
symmetric (superradiant) and antisymmetric (subradiant) collective
states via their mutual coupling to the vibrational bath. (b) Illus-
tration of a molecular dimer where two identical chromophores are
separated by an insulating bridge. Energy transfer between the two
chromophores can take place via near-field coupling on length on
the order of nanometers. The situation depicted here shows in-plane
dipoles (resulting in � < 0). (c) Energy transfer rates between the
symmetric and antisymmetric dimer state as a function of the vibra-
tional frequency. (d) Time evolution of a fully inverted molecular
dimer. The fully excited state decays exponentially via the symmetric
state, which transfers energy to the antisymmetric state. The analyti-
cal results in dashed-dotted lines show a good agreement. Parameters
are ν = 2�, d = λ0/40, �ν = 30�0, λ = 0.1, �(d ) ≈ 191.1�0 and
polarization perpendicular to dimer axis.

define collective vibrational quadratures Q± = (q1 ± q2)/
√

2
and P± = (p1 ± p2)/

√
2 as well. The free Hamiltonian of

electronic and vibrational degrees of freedom then can be
expressed as

Hdim
0 = ωSS†S + ωAA†A + ν

4

∑
k=±

(
Q2

k + P2
k

)
, (25)

where the collective states frequencies ωS = ω̃0 + � −
λνQ+/

√
2 and ωA = ω̃0 − � − λνQ+/

√
2 become now op-

erators, which include the symmetric vibrational coordinate.
The energy scheme of the dimer is presented in Fig. 4(a)
showing vibrationally-dressed collective electronic states.
While in the absence of motion the symmetric and antisym-
metric states are orthogonal to each other, this is no longer
the case when vibrations are included allowing for transitions
between them. The vibrational degrees of freedom then couple
the two states via the relative motion coordinate Q−

Hdim
int = − λν√

2
Q−(S†A + A†S ), (26)

such that the total dimer Hamiltonian expresses as Hdim
0 +

Hdim
int . The interaction term in Eq. (26) can mediate transfer

of excitation between the bright and dark state through the an-
nihilation or creation of a vibrational quantum of the relative
motion coordinate. Under the assumption that the vibrational
relaxation is fast as compared to the coherent coupling �ν �
λν as well as all other decay rates, a perturbative set of rate
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FIG. 5. (a) Absorption spectrum in steady state for a ring with
N = 7 molecules with the linewidth of the symmetric state broad-
ened by the sum of the energy transfer rates to the dark state
manifold. The dashed-dotted line is a Lorentzian with linewidth
given by �S + ∑

k κS→Ak and maximum at ω� = ω0 + �λ=0
S .

(b) Laser pulse with a Gaussian time profile as in Eq. (20) with
η = 2.5 �0, t0 = 2/�0, τ = 1/�0. The laser frequency ω� is tuned
to the superradiant mode k = 0. The single excitation manifold
is populated almost with unity and decays with a subradiant rate
∼�0(1 − e−λ2

) afterwards. Further parameters for both plots are
d = λ0/30, �ν = 100�0, λ = 0.15, ν = 120�0.

equations for the populations pS = 〈S†S〉 and pA = 〈A†A〉
can be obtained (for derivation see Appendix C)

ṗS = −(�S + κS→A)pS + κA→S pA, (27a)

ṗA = −(�A + κA→S )pA + κS→ApS , (27b)

with transfer rate from the symmetric to antisymmetric state

κS→A = λ2ν2�ν/2

(�ν/2)2 + (2� − ν)2
. (28)

The transfer from the antisymmetric to symmetric state κA→S
has a similar expression, however with a term (2� + ν)
present in the denominator. For � > 0 the resonance condi-
tion is given by 2� = ν leading to unidirectional transfer from
the symmetric to the antisymmetric state while the back trans-
fer is off-resonant and therefore suppressed [see Fig. 4(c)].
In Fig. 4(d) we plot the time dynamics of a dimer initialized
in the fully excited state |E〉 under this resonance condition.
Initial decay to the symmetric state is followed immedi-
ately by a rapid transfer to the antisymmetric state, causing
only a small temporary population in the symmetric state
and a large accumulation of population in the antisymmetric
state. Remarkably, this can lead to a near-unity population in
the antisymmetric state even for moderate vibronic coupling
strengths λ. Since vibrational frequencies are on the order of
ν/2π ∼ 10 THz and the spontaneous emission rate is on the
order of �0/2π ∼ 10 MHz, this resonance condition requires
dipole-dipole shifts on the order of ∼106 �0, which can be
achieved by dimers with nm separations. This energy shift
is however still much smaller than electronic transition en-
ergy splittings: therefore the dipole-dipole interaction does not
need the inclusion of counter-rotating wave terms.

Let us finally remark that the dark state preparation scheme
described here for the dimer can be extended to configurations
of many molecules in the ring configuration. To this end
we have performed numerical simulations showing the drive
of collective states, which are not accessible via direct illu-
mination but are populated via the incoherent, vibrationally
mediated transfer. In Fig. 5(a), the enhanced absorption profile

for a ring of N = 7 molecules signals the transfer of popula-
tion from the symmetric, laser accessible collective state to a
number of initially dark states. The increase in the linewidth
is simply given by the sum of all transfer rates to the dark state
manifold, which are obtained as a generalization of the dimer
result

∑
k

κS→Ak =
∑

k

λ2ν2�ν/2

(�ν/2)2 + (�S − �Ak − ν)2
. (29)

In Fig. 5(b) the total population is shown following a pulsed
excitation with the laser frequency tuned to the superradiant
mode. The numerical fit shows that most population is trapped
into dark states with an effective overall decay constant equal
to �0(1 − e−λ2

), as predicted in Sec. III C.

V. MOLECULAR COHERENT LIGHT SOURCES

The formalism developed in Sec. III allows us to tackle
platforms such as molecular nano-rings illuminated by in-
coherent light, as recently advanced in Ref. [14]. It has
been suggested that these might act as natural filters with
coherent light as output. The situation is illustrated in
Fig. 1(d): an incoherently pumped (at rate ηp) central emit-
ter couples to the waveguide-like light modes supported by
the ring of surrounding N emitters. While the treatment
in Ref. [14] has been restricted to ideal, identical two-
level systems and strongly relied on numerical evidence,
we aim here at providing a deeper analytical understand-
ing and the natural extension to more complex, molecular
quantum emitters. Our analysis is based on simplifications
brought on by the transition from the bare basis to the col-
lective basis.

We will make use of results in Sec. III and notice that
the central pump molecule is solely coupled to the symmetric
combination of the ring molecules with the Hamiltonian

Hp = ωpσ
†
p σp +

√
N�λ

p(d )[σ †
pS + S†σp]. (30)

As the symmetric operator creates delocalized excitations
over the whole ring, the coupling above benefits from the col-
lective enhancement with

√
N multiplying the dipole-dipole

exchange rate �λ
p(d ), which is dependent on the ring radius

r = d/[2 sin (2π/N )]. The Hamiltonian above resembles the
Tavis-Cummings model, where the symmetric mode plays the
role of a cavity mode. However, the exchanges are described
by spin-spin interactions without any counterrotating terms
as the coupling strengths, even at nm distances are much
smaller than the optical, bare resonances of the molecular
electronic transitions. Notice that the effect of vibrations has
already been taken into account by the renormalization of
any dipole-dipole coherent and incoherent exchanges with
the Huang-Rhys factor (denoted by the index λ). The effect
is mainly detrimental as the coherent coupling between the
pump emitter and the waveguide emitters is scaled down both
with λ and with temperature.

The dissipative part of the master equation governing the
whole system’s evolution includes the usual terms character-
izing the decay of the ring molecules, adding to the diagonal
decay of the pump molecule and the mutual incoherent
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FIG. 6. (a) State dependent decay rates via symmetric and an-
tisymmetric loss channels for the ring configuration of N = 14
emitters placed in in the xy plane with separation d = 0.1λ0 and
dipole polarization in the z direction. A comparison with the full
Dicke limit is provided. (b) The ratio between the state dependent
symmetric decay rate and the sum of the dark decay rates as a
function of the inversion quantum number m. It can be seen that loss
of excitations takes place mainly via the symmetric decay channel
even at distances of the order d = 0.2λ0.

coupling between pump and ring molecules of the form

Lp[ρ] =
√
N�λ

p(d )

2
[2Sρσ †

p + 2σpρS† − {S†σp + σ †
pS, ρ}],

(31)

where �λ
p(d ) the incoherent coupling between the pump

molecule and each of the ring molecules. In addition, inco-
herent pump is modeled as an inverted spontaneous emission
process: This is in Lindblad form but with a collapse operator
σ †

p and rate ηp

Lηp[ρ] = ηp

2
[2σ †

pρσp − {σpσ
†
p , ρ}]. (32)

To characterize the emission properties of the system, one
makes use of both the emitted light intensity Iout as well as
of the g(2) function at zero time delay. We proceed by using
the definitions from Ref. [14] in the uncoupled basis before
performing our analysis in the alternative collective basis. The
intensity in the bare, uncoupled basis is a sum over the fol-
lowing terms Iout = ∑N+1

j j′ �λ
j j′ 〈σ †

j σ j′ 〉, where now the sum
extends to the additional site, which is the pump molecule. In
the collective basis this can be expressed as

Iout = �λ
S (d )〈S†S〉 +

N−1∑
k=1

�λ
k (d )〈A†

kAk〉

+ 2
√
N�λ

p(d )Re〈S†σp〉 + �0〈σ †
p σp〉. (33)

For small interemitter separation d � λ0 the ring contribution
can be expressed purely in terms of the symmetric mode as
decay into antisymmetric states is negligible �λ

k (d )/�0 � 1.
This can be easily justified by computing the branching of loss
rates from a given symmetric state |N /2, m〉 into the symmet-
ric manifold and outside of it, into any dark decay channel k
by via the Lindbladian in Eq. (5). One obtains the state depen-
dent decay rates �λ=0

k,m (d ) = α(−)2
m �λ=0

k (d )/(N − 1) and the
state dependent decay into the symmetric channel �λ=0

S,m (d ) =
α(−)2

m �λ=0
S (d ). In Fig. 6 we plot these rates as a function of

the quantum number m as well as the ratio �λ=0
S,m/

∑
k �λ=0

k,m
to show that the restriction of the dynamics to the symmetric

FIG. 7. (a) Molecular ring acting as a waveguide coupled to a
central, incoherently pumped molecule, at electronic transition fre-
quency ωp optimally adjusted to fit a waveguide resonance ω0 +
�λ=0

S + �λ=0
p . (b) The g(2)(0) function in the case of N = 5 ring

emitter in the absence of vibronic coupling for various tunings ωp

and coupling strengths �p for ηp = 3�0. (c) A cut along the opti-
mal resonance frequency ωp showing the steady-state emission rate
alongside the g(2)(0) function for ηp = 3�0, r = 0.05λ0. (d) Steady-
state photon emission for ηp = �0 taking only the symmetric ring
contribution in Eq. (33) into account. A clear threshold for the ring
emission emerges at a coupling strength �λ=0

p /�0 ≈ 1. The dashed-
dotted lines represent λ = 0.15 and the continuous lines λ = 0 in all
plots.

subspace is a good approximation for small but still finite
distances.

Moreover, this approximation is also well justified under
weak excitation conditions and with small vibronic couplings.
The reason is transparent from Eq. (30), which shows that
the incoherent pump of the central molecules feeds only the
symmetric mode, which, in the single excitation regime can
only decay back to the ground state, thus not allowing to trap
population into robust, antisymmetric states. This is no longer
true at higher excitations and in the presence of strong vi-
bronic coupling, where antisymmetric collapse operators can
bring population out of the symmetric manifold. In Fig. 7(d)
we illustrate the intensity of emitted light taking only the
symmetric ring mode into account, namely �λ

S (d )〈S†S〉 as a
function of the coupling strength with a threshold at �λ

p(d ) ≈
�0 after which the emission intensity is sharply increasing.
While analytical calculations are possible for a wide range of
parameters, the results are cumbersome; we therefore restrict
here to the simplified case with �λ

p = 0 (for full set of equa-
tions see Appendix D):

〈S†S〉 = N �̄ηp�
λ
p

2

�λ
S (�0 + ηp)

[
(�̄/2)2 + �λ

S
2] + �̄2N�λ

p
2
, (34)

where �̄ = �0 + ηp + �λ
S . The situation is relevant for the

ideal geometry chosen in Ref. [14], which insured a maximal
coherent coupling between the pumped, central emitter while
allowing for the mutual dissipative coupling to vanish.
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In order to characterize statistics of the emitted light,
the second-order correlation function with zero time delay
is used, which is defined via the electric field radiated by
an ensemble of dipole emitters [34]. Due to the symmet-

rical ring geometry, the g(2) function in steady state at a
detection distance |r| � λ0 in the plane of the ring can be
expressed purely in terms of the electronic transition operators
as [14]

g(2)(0) =
∑N+1

i jkl 〈σ †
i σ

†
j σkσl〉( ∑N+1

i j 〈σ †
i σ j〉

)2 = 4N 〈S†Sσ †
p σp〉 + 4N 3

2 Re〈S†S†Sσp〉 + N 2〈S†S†SS〉
(N 〈S†S〉 + 2

√
NRe〈S†σp〉 + 〈σ †

p σp〉)2
. (35)

A second-order correlation function equal to unity is used
as a figure of merit for coherent light emission and in
Fig. 7(b) it is shown that an optimal resonance frequency
ωp = ω0 + �λ=0

S + �λ=0
p for the central molecule leads to

coherent light emission in particular in the strong coupling
regime �λ=0

p � �0. Setting the optimal resonance frequency
for the pumped molecule, Fig. 7(c) shows the total steady state
intensity alongside the g(2)(0) as a function of the coupling
strength where the sudden increase of intensity stems from the
ring contribution as shown in Fig. 7(d). This sudden increase
originates from a coupling strength, which attains the same
magnitude as the incoherent loss rate into the vacuum modes
�0 of the pumped molecule. Consequently, in the strong cou-
pling regime the majority of the excitation in the center is
coherently transferred to the ring.

VI. CONCLUSIONS

We have provided a largely analytical approach to the
description of light-matter cooperativity in molecular arrays,
where subwavelength emitter-emitter separations lead to the
occurrence of a strong coherent and incoherent collective
response. The effect of molecular vibrations has been incor-
porated via the Holstein Hamiltonian, that describes vibronic
coupling between electronic and nuclear degrees of freedom.
In a first step, we have identified analytical scaling laws,
which characterize phenomena such as super- and subradiance
in molecular rings. The ring configuration, as characterized by
periodic boundary conditions, allow for the natural extension
to mesoscopic systems. For the situation of Dicke superra-
diance, we find that a collective basis description provides
insight into how the superradiant pulse intensity is lost into
antisymmetric, dark channels coupled via vibrations. In the
low excitation regime, we have analyzed the open system band
diagram and found the imprint of the vibrational coupling
on both energy and loss rate bands. For molecular dimers,
in which case near-field couplings are considerably large, we
have shown that long-lived bipartite entanglement at the level
of electronic degrees of freedom can be produced via dissi-
pative effects such as vibrational relaxation. For incoherently
pumped, nanoscale coherent light sources, we have provided
analytical results supplementing the results in Ref. [14] and
an extension to molecular emitters.
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APPENDIX A: VIBRONIC COUPLING

Let us justify the form of the Holstein Hamiltonian in
Eq. (2) by following a first-principle derivation for a single
nuclear coordinate R of effective mass μ. We assume that,
along the nuclear coordinate, the equilibria for ground (co-
ordinate Rg, state vector |g〉) and excited (coordinate Re and
state vector |e〉) electronic orbitals are different. Assuming
equilibrium positions Rg and Re for the potential surfaces of
electronic ground and excited states, one can write the total
molecular Hamiltonian describing both electronic and vibra-
tional dynamics as

Hmol =
[
ω0 + P̂2

2μ
+ 1

2
μν2(R̂ − Re)2

]
σ †σ

+
[

P̂2

2μ
+ 1

2
μν2(R̂ − Rg)2

]
σσ †, (A1)

where μ is the reduced mass of the vibrational mode. The
kinetic and potential energies are written in terms of the
position Q̂ and momentum operator P̂ describing the nuclear
coordinate under consideration, with commutation [Q̂, P̂] = i.
Introducing oscillations around the equilibria Q̂ = R̂ − Rg and
subsequently R̂ − Re = Q̂ + Rg − Re =: Q̂ − Rge we obtain

Hmol = P̂2

2μ
+ 1

2
μν2Q̂2 + ω0σ

†σ

−μν2Q̂Rgeσ
†σ + 1

2
μν2R2

geσ
†σ. (A2)

We can now rewrite the momentum and position opera-
tors in terms of bosonic operators Q̂ = qzpm(b† + b), P̂ =
ipzpm(b† − b). The bosonic operators satisfy the usual com-
mutation relation [b, b†] = 1 and the zero-point motion
displacement and momentum are defined as qzpm = 1/

√
2μν

and pzpm = √
μν/2. Reexpressing the terms above yields the

Holstein Hamiltonian [28]

Hmol = (ω0 + λ2ν)σ †σ + νb†b − λν(b† + b)σ †σ. (A3)
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The dimensionless vibronic coupling strength λ is given by
λ = μνRgeqzpm (λ2 is called the Huang-Rhys factor and is
typically on the order of ∼0.01 − 1).

1. The polaron transformation

The Holstein Hamiltonian can be diagonalized via a level-
dependent polaron transformation U† = |g〉〈g| + D†|e〉〈e|
with the standard displacement operator D = e−i

√
2λp =

eλ(b†−b). In the polaron-displaced basis, the Holstein Hamil-
tonian becomes H̃mol = U†HmolU = ω0σ

†σ + νb†b and has
simple eigenvectors |g; n〉 and |e; n〉. The eigenvectors in
the bare, original basis can be found by inverting the
polaron transformation |g; n〉 and D|e; n〉. The polaron-
transformed probe Hamiltonian is then expressed as H̃� =
iη(σ †D†e−iω�t − σDeiω�t ). One can now look for selection
rules applying to processes such as stimulated emission and
absorption induced by the external optical drive. To this end,
we focus on absorption (as emission is similar) by assuming
an initial state |g; 0〉 in the displaced basis and asking for the
probability of exciting the system to state |e; n〉. This is easily
computed to lead to

Pabs(n) = |〈e; n|σ †D†|g; 0〉|2 = e−λ2 λ2n

n!
, (A4)

which is the expected Poissonian distribution leading to
the Franck-Condon principle for molecular transitions. For
dissipative radiative processes, we notice that the Lindblad
collapse operator is also transformed to the polaron one σD
such that spontaneous emission follows the same Poissonian
distribution in taking the electronic state from |e; 0〉 to |g; n〉.

2. Thermal averaging of vibrational effects

Assuming a thermal state for the vibrational modes we are
going to calculate the trace of a single vibrational displace-
ment operator D† = e−λ2/2e−λb†

eλb:

〈D†〉T = Tr[D†ρth] = e−λ2/2Tr[e−λb†
eλbρth]

= e−λ2/2
∞∑

n=0

e−βνn(1 − e−βν )〈n|
∑
m,l

(−λm)λl

m!l!

× (b†)mbl |n〉

= e−λ2/2
∞∑

n=0

e−βνn(1 − e−βν )
n∑

m=0

(−λ2)m

m!

(
n

m

)

= e−λ2/2(1 − e−βν )
∞∑

m=0

(−λ2)m

m!

∞∑
n=m

e−βνn

(
n

m

)
, (A5)

where we made use of the sum identity
∑n

i=k

∑i
j=k ai, j =∑n

j=k

∑n
i= j ai, j in the last step. Additionally, making use of

the binomial identity
∑∞

n=k

(n
k

)
yn = yk

(1−y)k+1 one readily ob-
tains

〈D†〉T = e−λ2/2
∞∑

m=0

(−λ2)m

m!

e−βνm

(1 − e−βν )m
= e−λ2/2(1+2n̄)

= e− λ2

2 coth( h̄ν
2kBT )

. (A6)

APPENDIX B: VACUUM-MEDIATED COHERENT AND
INCOHERENT COUPLING RATES

The vacuum-mediated dipole-dipole interactions for an
electronic transition at wavelength λ0 (corresponding wave
vector k = 2π/λ0) between an identical pair of emitters sepa-
rated by ri j is

�i j = 3

4
�0

[
(1 − 3 cos2 θ )

(
sin(kri j )

(kri j )2
+ cos(kri j )

(kri j )3

)

− sin2 θ
cos(kri j )

(kri j )

]
. (B1)

The quantity θ is the angle between the dipole moment d and
the vector ri j . The associated collective decay is quantified by
the following mutual decay rates:

�i j = 3

2
�0

[
(1 − 3 cos2 θ )

(
cos(kri j )

(kri j )2
− sin(kri j )

(kri j )3

)

+ sin2 θ
sin(kri j )

(kri j )

]
. (B2)

APPENDIX C: VIBRATIONALLY MEDIATED ENERGY
TRANSFER RATES IN THE COLLECTIVE BASIS

For the molecular dimer, the Hamiltonian rewritten in a
collective basis both for the electronic as well as the vibra-
tional degrees of freedom has the following form:

Hdim = ωS (Q+)S†S + ωA(Q+)A†A

− λν√
2

Q−(S†A + A†S ) + ν
∑
k=±

b†
kbk, (C1)

where the energies of the collective state frequencies de-
pend on the symmetric vibrational coordinate ωS (Q+) =
ω0 + λ2ν + � − λνQ+/

√
2 and ωA(Q+) = ω0 + λ2ν − � −

λνQ+/
√

2. We note that the Q+-dependent shifts can be re-
moved by the collective polaron transforms US = eiλP+S†S/

√
2

and UA = eiλP+A†A/
√

2, which transform the symmetric nu-
clear coordinates as

USQ+U†
S = Q+ +

√
2λS†S, (C2a)

UAQ+U†
A = Q+ +

√
2λA†A, (C2b)

and lead to a renormalization of the state energies ω̃S = ω0 +
λ2ν/2 + � and ω̃A = ω0 + λ2ν/2 − �. The equations of mo-
tion for the operators are given by

Ṡ = −
[

iω̃S + �S
2

]
S + iλν√

2
Q−A +

√
�SSin, (C3a)

Ȧ = −
[

iω̃A + �A
2

]
A + iλν√

2
Q−S +

√
�AAin, (C3b)

where Sin = (σ1,in + σ2,in )/
√

2 and Ain = (σ1,in − σ2,in )/
√

2
are the collective noise terms, which we will neglect from now
on as they do not contribute to the transfer process.
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To calculate the transfer rate from the symmetric state to
the antisymmetric state we assume some initial population in
the symmetric state and no population in the antisymmetric
state, additionally we assume that the symmetric state decays
independently and formally integrate

S (t ) = S(0)e−(iω̃S+�S/2)t , (C4a)

A(t ) = A(0)e−i(ω̃A+�A/2)t

+ iλν√
2

∫ t

0
dt ′e−i(ω̃A+�A/2)(t−t ′ )Q−(t ′)S (t ′), (C4b)

and for the expectation value of the populations we get

˙〈S†S〉 = −�S〈S†S〉 −
√

2λν Im〈S†AQ−〉, (C5a)

˙〈A†A〉 = −�A〈A†A〉 −
√

2λν Im〈A†SQ−〉. (C5b)

Therefore, the term −√
2λν Im〈A†SQ−〉 will be respon-

sible for population transfer from the symmetric to the
antisymmetric state at a rate κS→A and we can calculate

−
√

2λν〈A†SQ−〉

= −iλ2ν2
∫ t

0
dt ′e−εA(t−t ′ )

×〈Q−(t ′)Q−(t )〉〈S†(0)S (0)〉e−εS t ′
e−ε∗

S t

= −iλ2ν2〈S†(0)S (0)〉

× e−�S t − e−((�ν+�S−�A )/2+i(ωS−ωA−ν))t

(�ν + �A − �S )/2 + i(ωS − ωA − ν)
, (C6)

where we used the fact, that the expectation values for S and
Q− factorize and defined εA = −(�A/2 − iω̃A) and εS =
−(�S/2 − iω̃S ). The correlations for Q− are evaluated as-
suming free evolution of the vibrations (to lowest order) and
zero temperature for the vibrational modes:

〈Q−(t ′)Q−(t )〉 = 1
2 (〈b1(t ′)b†

1(t )〉 + 〈b2(t ′)b†
2(t )〉)

= e−(�ν/2−iν)(t−t ′ ). (C7)

In the case of a fast vibrational relaxation rate �ν � �S , �A
the transfer rate can be written as

κS→A = λ2ν2

2

�ν + �A − �S
(�ν+�A−�S )2

4 + (ωS − ωA − ν)2
. (C8)

The transfer rate from the antisymmetric to the symmetric
state can be calculated similarly, assuming initial population
in the antisymmetric state:

κA→S = λ2ν2

2

�ν + �S − �A
(�ν+�S−�A )2

4 + (ωA − ωS − ν)2
. (C9)

Generalization to N molecules

The generalization to an arbitrary number of molecules is
straightforward by first writing the full Hamiltonian in a col-
lective basis for both the electronic as well as the vibrational

FIG. 8. (a) Transfer rate from the symmetric to the antisymmetric
state for a molecular dimer as a function of the vibrational fre-
quency. The maximum transfer occurs at the resonance ν = �λ

S −
�λ

A. (b) Transfer rates for a molecular ring of N = 20 molecules
from the symmetric state with mode number k = 0 to the N − 1
dark states. Resonances occur at ν = �λ

S − �λ
k for k = 1, ..., �(N −

1)/2
 and the range of vibrational frequencies at which transfer
to the dark state manifold occur is increasing with N as well as
the linewidth of the vibrational resonance �ν . Parameters are d =
0.025λ0, �ν = 100�0, λ = 0.15 and the dipole polarization is cho-
sen perpendicular to the ring plane.

modes.

Hcoll = ωS (QN )S†S +
N−1∑
k=1

ωk (QN )A†
kAk

− λν√
N

N−1∑
k=1

(QkS†Ak + H.c.)

− λν√
N

N−1∑
k �=k′

(Qk−k′A†
kAk′ + H.c.) + ν

N∑
k=1

b†
kbk,

(C10)

where the energies of the collective states are shifted by the
contribution of the symmetric vibrational mode ωk (QN ) =
ω0 + λ2ν + �k − λνQN /

√
N for k = 1, . . . ,N . Similarly to

the dimer case, the QN -dependent energy shifts can be re-
moved by the collective polaron transformation

∏N
k=1 UAk =∏N

k=1 eiλPNA†
kAk/

√
N , which leads to a renormalization of the

collective state energies as ω̃k = ω0 + λ2ν/2 + �k . The cru-
cial term is however the coupling between the symmetric
states and the dark state manifold. Similar to the molecular
dimer case we assume initial population in the symmetric state
and solve the Heisenberg equations of motion neglecting the
noise terms

Ṡ = −iω̃SS − �S
2
S + iλν√

N

N−1∑
k=1

QkAk, (C11a)

Ȧk = −iω̃kAk − �k

2
Ak + iλν√

N
Q†

kS

+ iλν√
N

N−1∑
k′ �=k

Qk−k′Ak′ . (C11b)

After solving for the population 〈S†S〉(t ) and tracing out the
vibrational modes one finds transfer rates κS→Ak between the
symmetric state and the dark state manifold:

κS→Ak = λ2ν2

2

�ν + �k − �S
(�ν+�k−�S )2

4 + (�S − �k − ν)2
. (C12)
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The transfer rates are shown in Fig. 8 for the molecular dimer
and ring of N = 20 molecules with both cases transversely
polarized.

APPENDIX D: EQUATIONS OF MOTION FOR COHERENT
LIGHT SOURCE IN SYMMETRIC SUBSPACE

In the low-excitation limit for the ring 〈Sz〉 ≈ −N /2, a
closed set of equations can be obtained describing the inter-
actions between the central pump molecule and the ring (in
the symmetric subspace):

d

dt
〈σ †

p σp〉 = −(�0 + ηp)〈σ †
p σp〉 + ηp − 2

√
N�λ

p Im〈S†σp〉

−�λ
p Re〈S†σp〉, (D1a)

d

dt
〈S†S〉 = −�λ

S〈S†S〉 + 2
√
N�λ

p Im〈S†σp〉

−�λ
p Re〈S†σp〉, (D1b)

d

dt
〈S†σp〉 = −

(
�0 + ηp + �λ

S
2

)
〈S†σp〉 − i�λ

S〈S†σp〉

+ i
√
N�λ

p(〈σ †
pσp〉 − 〈S†S〉)

− �λ
p

2
(〈S†S〉 + 〈σ †

p σp〉). (D1c)

The solutions presented in the main text are then obtained
by assuming steady state, which corresponds to setting the
time derivatives to zero.
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