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Abstract. We completely classify the possible extensions between semistable vector bundles
on the Fargues-Fontaine curve (over an algebraically closed perfectoid field), in terms of a
simple condition on Harder-Narasimhan polygons. Our arguments rely on a careful study of
various moduli spaces of bundle maps, which we define and analyze using Scholze’s language
of diamonds. This analysis reduces our main results to a somewhat involved combinatorial
problem, which we then solve via a reinterpretation in terms of the Euclidean geometry of
Harder-Narasimhan polygons.
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1. Introduction

Let E be a p-adic local field with residue field Fq, and let F/Fq be an algebraically closed
complete nonarchimedean field of characteristic p. Given any such pair, Fargues and Fontaine
[FF] defined a remarkable scheme X = XE,F , the so-called Fargues-Fontaine curve. Many
constructions in classical p-adic Hodge theory can be reinterpreted “geometrically” in terms
of vector bundles on X.

One of the main results of [FF] is a complete classification of vector bundles on X. In
particular, Fargues and Fontaine proved that any bundle is determined up to isomorphism by
its Harder-Narasimhan (HN) polygon, that the Harder-Narasimhan filtration of any bundle
splits, and that there is a unique isomorphism class of stable bundles of any specified slope
λ ∈ Q.

In this paper we study the question of which bundles can occur as extensions between two
given vector bundles on X. This question turns out to have a rather combinatorial flavor, since
vector bundles on the curve are determined by their Harder-Narasimhan polygons. Moreover,
abstract slope theory imposes certain conditions on the HN polygon of any bundle E appearing
as an extension of two specified bundles F1,F2. Our main result is that when both bundles
Fi are semistable, these necessary conditions are also sufficient; for a precise statement, see
Theorem 1.1.2. We also prove a natural generalization characterizing bundles admitting
multi-step filtrations with specified semistable graded pieces, cf. Theorem 1.1.4.

The results in this paper have applications towards understanding the geometry of the stack
BunG of G-bundles on the Fargues-Fontaine curve, for G a connected reductive group over E.
More precisely, this stack has a natural stratification into locally closed strata BunbG indexed
by the Kottwitz set B(G), and our results have implications for the problem of computing the
closures of the individual strata. In the case G = GLn, the aforementioned strata are simply
indexed by Harder-Narasimhan polygons, and the exact statement is given in Theorem 1.1.3
below. These applications are the subject of a companion paper by one of us [Han17].

1.1. Statement of results. Before stating our results, we briefly recall the classification of
vector bundles on X. A more extensive discussion of this and related background will be
given in §2.

Theorem 1.1.1 (Fargues-Fontaine, Kedlaya). [FF][Ked08] Vector bundles on X enjoy the
following properties:

1) Every vector bundle E admits a canonical Harder-Narasimhan filtration.

2) For every rational number λ, there is a unique stable bundle of slope λ on X, which is
denoted O(λ). Writing λ = p/q in lowest terms, the bundle O(λ) has rank q and degree p.

3) Any semistable bundle of slope λ is a finite direct sum O(λ)d, and tensor products of
semistable bundles are semistable.

4) For any λ ∈ Q, we have

H0(O(λ)) = 0 if and only if λ < 0

and

H1(O(λ)) = 0 if and only if λ ≥ 0.

In particular, any vector bundle E admits a splitting

E '
⊕
i

O(λi)

of its Harder-Narasimhan filtration.
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This project began at the 2017 Arizona Winter School, as an investigation of the following
question:

Given two vector bundles F1 and F2 on X, which polygons can occur as HN(E)
for an extension

0→ F1 → E → F2 → 0?

Given such a short exact sequence, the total rank and degree of E are clearly determined
by F1 and F2, and they determine the endpoints of HN(E). By concavity, HN(E) must lie
above the straight line between its endpoints, which corresponds to the HN polygon of the
unique semistable bundle of the correct degree and rank. Slope theory also imposes a less
trivial constraint on HN(E). To explain this, let us define a partial order on the set of HN
polygons by writing P ≤ P ′ if P lies (nonstrictly) below P ′ and has the same right endpoint.
It is then not difficult to show that HN(E) ≤ HN(F1 ⊕F2), cf. Corollary 2.2.13.

F1

F2

E

Figure 1. An illustration of the scenario HN(E) ≤ HN(F1⊕F2) for semistable
Fi’s. Here HN(E) (resp. HN(F1 ⊕F2)) is depicted as the dashed (resp. solid)
polygonal segment.

Our first main result is that when F1 and F2 are semistable, every bundle E satisfying these
conditions is actually realized. Given a bundle E , let µ(E) be the slope of E .

Theorem 1.1.2. Let F1 and F2 be semistable vector bundles on X such that µ(F1) < µ(F2).
Then any vector bundle E such that HN(E) ≤ HN(F1 ⊕F2) is realized as an extension

0→ F1 → E → F2 → 0.

For a more quantitative version of this result, see Theorem 5.4.2.

In §1.2 below, we will give a detailed summary of the proof. For now let us simply remark
that even though Theorem 1.1.2 is purely a statement about vector bundles on a Noetherian
scheme, our proof uses diamonds in a crucial way. Furthermore, we believe that any natural
proof of this result will make heavy use of diamonds; in our arguments, they arise as the
correct framework for constructing moduli spaces of bundle maps with specified properties.
We challenge the skeptical reader to produce a short exact sequence

0→ O
(
−1

2

)2 → O (13)⊕O (65)→ O (94)→ 0

by an argument which does not involve diamonds.

This theorem has a natural generalization to multi-step filtrations, which appears as Theo-
rem 1.1.4 below. Before giving the precise statement, we explain the motivation. As discussed
above, the stack Bunn of rank n vector bundles on the curve admits a stratification

Bunn =
⊔
P

BunPn
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where the stratum BunPn parametrizes vector bundles with fixed Harder-Narasimhan polygon
P . Immediately before the winter school, DH realized that Theorem 1.1.4, if true, could be
used to determine the precise closure relations among these strata:

Theorem 1.1.3 (Hansen). Let P be any HN polygon of width n. Then we have

BunPn = Bun≥Pn

as substacks of Bunn, where Bun≥Pn denotes the substack parametrizing vector bundles whose
Harder-Narasimhan polygon is ≥ P .

This is in some sense a converse to the well-known fact that HN polygons jump up (in our
convention) on closed subsets (cf. [KL15, Theorem 7.4.5]).

We now state our second main result, which is a generalization of Theorem 1.1.2:

Theorem 1.1.4. Let k ≥ 2 be arbitrary, and let F1, . . . ,Fk be semistable vector bundles on
X such that µ(Fi) < µ(Fi+1) for all 1 ≤ i ≤ k − 1. Let E be any vector bundle on X such
that HN(E) ≤ HN(F1 ⊕ ...⊕Fk). Then E admits a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Ek = E
such that Ei/Ei−1 ' Fi for all 1 ≤ i ≤ k.

Corollary 2.2.13 again implies that the condition HN(E) ≤ HN(F1 ⊕ ...⊕ Fk) is necessary
for E to admit a filtration with successive gradeds F1, . . . ,Fk, so this theorem is optimal.

Although Theorem 1.1.4 generalizes Theorem 1.1.2, in fact the former follows quickly from
the latter by induction on k, which we explain in §6. The rough idea is to triangulate the
desired HN polygon from Theorem 1.1.4 into pieces which are then handled by Theorem 1.1.2.

The bulk of the paper is thus concerned with establishing Theorem 1.1.2. We now outline
the strategy of our proof.

1.2. The basic strategy. Theorem 1.1.2 asserts that under certain conditions, there exists
an extension E of F2 by F1 with a specified HN polygon. To prove this, we proceed in two
steps (both under the hypotheses of Theorem 1.1.2):

Step (1): We show that E admits some surjection E � F2.
Step (2): We show that if E admits a surjection E � F2, then it admits such a surjection

with kernel isomorphic to F1.

Let us sketch the arguments for these steps.1

Step (1). To carry out Step (1), we construct a moduli space Hom(E ,F2) parametrizing
bundle maps E → F2, as well as an open subspace Surj(E ,F2) parametrizing surjective maps.
These objects are easily defined as functors on the category of perfectoid spaces over F , but
they typically are not representable by adic spaces. We prove that they are diamonds in the
sense of Scholze [Sch, SW]; in fact, we show that they are “locally spatial, equidimensional
diamonds”. We emphasize that our use of diamonds here is genuinely necessary for the
arguments. In particular, we crucially use the fact that a locally spatial diamond X has a
naturally associated locally spectral topological space |X|, and that the Krull dimension of
this space gives rise to a reasonable dimension theory for such X’s, cf. §3.1-3.2.

In any case, once we have proved that Surj(E ,F2) is a reasonable diamond, our task is to
show that it is non-empty, which we deduce from the following claim.

1Strictly speaking, the following arguments work only after an easy reduction of Theorem 1.1.2 to the case
where µ(F2) is strictly larger than the maximal slope of E ; see §3.4 for details.
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Claim 1.2.1. The dimension of the space of maps E → F2 which factor through a proper
sub-bundle of F2 is strictly smaller than the dimension of Hom(E ,F2).

Roughly speaking, we prove this by stratifying Hom(E ,F2) according to the isomorphy
type of the image of the map E → F2 and then computing the dimensions of these individual
strata. The computation of these dimensions is non-trivial, and relies on the theory developed
in §3.2-3.3; the final formula is stated in Lemma 3.3.10. Once we have this formula, Claim
1.2.1 is reduced to a certain finite collection of inequalities, whose verification is a mechanical
computation in any given example, but which presents a difficult combinatorial problem in
general. We eventually realized that it was natural to interpret the terms appearing in the in-
equality as sums of areas of certain polygons (related to the slopes in the Harder-Narasimhan
polygons), and that the inequality could then be seen by a complicated transformation of the
polygons after which one area would clearly dominate the other. The precise statement and
its proof is given in §4.

Step (2). The argument here is similar to that for Step (1). For any given bundle K, we
define a moduli space Surj(E ,F2)

K parametrizing surjections E → F2 with kernel isomor-
phic to K. Again, this is a locally spatial diamond. For K = F1, this object is open in
Surj(E ,F2) for essentially formal reasons (the openness of semistable loci). Again the task
is to show Surj(E ,F2)

F1 is non-empty, which we achieve by showing that Surj(E ,F2)
K has

strictly smaller dimension for any other isomorphism class of K’s. This again amounts to a
certain collection of inequalities, which we can again interpret via comparison of areas, and
which after some manipulation become geometrically evident. The precise arguments are
given in §5.
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Winter School, under the umbrella of Kiran Kedlaya’s project group. We would like to heartily
thank Kiran for giving us this opportunity. We would also like to thank the organizers of the
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in §3.2, and Peter Scholze for providing early access to the manuscript [Sch] and for some
helpful conversations about the results therein. The project group students (CB, TF, SH,
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acknowledges the support of an NSF Graduate Fellowship. LY gratefully acknowledges the
support of the National Defense Science and Engineering Graduate Fellowship. We would
also like to thank David Linus Hamann and the referee for their valuable feedback on the first
version of this paper.

2. Background on the Fargues-Fontaine curve

2.1. The Fargues-Fontaine curve, and vector bundles. We begin by recalling the def-
inition of the Fargues-Fontaine curve X := XE,F . This is already a slightly subtle issue,
as there are several different incarnations of the curve: as a scheme (which was the original
definition of Fargues and Fontaine), as an adic space, and as a diamond. In this paper we will
only need to use the classification of vector bundles on X as black box, so we won’t actually
need any technical details of the construction of X itself. Therefore, we content ourselves
with giving just a cursory introduction to the construction.
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Definition 2.1.1. Let E be a finite extension of Qp, with uniformizer π, ring of integers E◦,
and residue field Fq where q = pf , and let F/Fq be an algebraically closed perfectoid field,
with ring of integers F ◦ and pseudouniformizer $.

Let WE◦(F
◦) = W (F ◦) ⊗W (Fq) E

◦ be the ramified Witt vectors of F ◦ with coefficients in
E◦. Define

YE,F = Spa(WE◦(F
◦)) \ {|p[$]| = 0},

and let φ : YE,F → YE,F be the Frobenius automorphism of YE,F induced by the natural q-

Frobenius ϕq = ϕf ⊗ 1 on WE◦(F
◦). The (mixed-characteristic) adic Fargues-Fontaine curve

XE,F is

XE,F = YE,F /φZ.
Proposition 2.1.2 (Kedlaya). For any pair (E,F ) as above, XE,F is a Noetherian adic space
over SpaE.

Proof. This is one of the main results of [Ked16]. �

Remark 2.1.3. There is also an equal-characteristic Fargues-Fontaine curve associated with
a pair (E,F ) as above, but where E is now taken to be a finite extension of Fp((t)). In this
paper, we will largely focus on the mixed-characteristic curve: our main results hold verbatim
in the equicharacteristic setting, but the proofs are strictly easier.

By descent, a vector bundle on XE,F is the same as a φ-equivariant vector bundle on YE,F ,

that is, a vector bundle Ẽ on YE,F together with an isomorphism φ∗Ẽ ∼→ Ẽ .

Definition 2.1.4. If λ = r/s is a rational number written in lowest terms with s positive,
we define a vector bundle O(λ) on XE,F as the descent of the trivial rank s vector bundle
on YE,F equipped with the following φ-equivariant structure. Let v1, . . . , vs be a trivializing

basis of Ẽ := O⊕sYE,F
, and by abuse of notation view it as a trivializing basis for φ∗Ẽ as well.

Define φ∗Ẽ ∼−→ Ẽ by

v1 7→ v2

v2 7→ v3

· · ·
vs−1 7→ vs

vs 7→ π−rv1.

As previously discussed, there is also a scheme-theoretic Fargues-Fontaine curve XE,F .

Definition 2.1.5. Let E and F be as in Definition 2.1.1. We define the scheme-theoretic
Fargues-Fontaine curve XE,F to be

XE,F := Proj

⊕
n≥0

H0(XE,F ,O(n))

 .

Remark 2.1.6. The original definition ([FF], [FF14]) of the scheme-theoretic Fargues-Fontaine
curve was given in terms of certain period rings of p-adic Hodge theory:

XE,F = “ Proj

⊕
n≥0

Bϕq=πn

 ”



EXTENSIONS OF VECTOR BUNDLES ON THE FARGUES-FONTAINE CURVE 7

([FF14], p.22); however, the vector spaces Bϕq=πn
coincide with H0(XE,F ,O(n)), and so the

definitions agree.

Proposition 2.1.7. The scheme XE,F is Noetherian, connected, and regular of (absolute)
dimension one.

It is known (“GAGA for the Fargues-Fontaine curve”, [KL15], Theorem 6.3.12) that there
is a natural map

XE,F → XE,F

which induces by pullback an equivalence of categories of vector bundles. Therefore, we can
and do speak interchangeably about vector bundles on XE,F and XE,F . For ease of notation,
we henceforth set X = XE,F .

2.2. Harder-Narasimhan filtrations and polygons. The following fundamental result of
Fargues and Fontaine is the key to developing a slope theory for bundles on X.

Proposition 2.2.1 ([FF]). The curve X is complete in the sense that if f ∈ k(X) is any
nonzero rational function on X, then the divisor of f has degree zero.

This implies, in particular, that if L is a line bundle on X and s is any nonzero meromorphic

section of L, then degL def
= deg div(s) is well-defined independently of the choice of s.

Definition 2.2.2. If E is a vector bundle on X, we define the degree of E by deg E :=
deg∧rank EE , and the slope of E by µ(E) := deg E

rank E .

Example 2.2.3. As a vector bundle on X, O(r/s) has rank s and degree r, hence slope r/s.
One may check by hand from Definition 2.1.4 that

O
(r
s

)
⊗O

(
r′

s′

)
' O

(
r

s
+
r′

s′

)⊕ gcd(ss′,rs′+r′s)

.

In particular, O(r/s)⊗O(r′/s′) has rank ss′, degree rs′ + r′s, and slope r/s+ r′/s′.

We recall the usual notions of (semi)stability.

Definition 2.2.4. We say that a vector bundle E on X is stable if it has no proper, non-zero
subbundles F ⊂ E with µ(F) ≥ µ(E). We say that E is semistable if it has no proper, non-zero
subbundles F ⊂ E with µ(F) > µ(E).

Stable and semistable vector bundles on X turn out to admit a complete classification:

Proposition 2.2.5 ([FF, Ked]). For any λ ∈ Q, the vector bundle O(λ) is stable, and any
finite direct sum O(λ)⊕n is semistable. Moreover, every semistable vector bundle of slope λ
is isomorphic to some finite direct sum O(λ)⊕n.

Combining this classification with Example 2.2.3, one immediately deduces that tensor
products of semistable bundles are semistable.

Definition 2.2.6. A Harder-Narasimhan (HN) filtration of a vector bundle E is a filtration
of E by subbundles

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E
such that each successive quotient Ei/Ei−1 is a semistable vector bundle which is of slope µi,
and such that

µ1 > µ2 > · · · > µm.

Keeping this notation, the Harder-Narasimhan (HN) polygon of E is the upper convex hull of
the points (rank Ei,deg Ei).
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Remark 2.2.7. Our convention for HN polygons is opposed to the usual convention for
Newton polygons, which are usually lower convex hulls.

Theorem 2.2.8 (Fargues-Fontaine). Every vector bundle on X admits a canonical and func-
torial Harder-Narasimhan filtration.

Proof. This follows from [FF, Théorème 6.5.2] together with the discussion in [FF, §5.5]. �

Example 2.2.9. In Figure 2 we depict an example of the HN polygon associated to a vector
bundle whose Harder-Narasimhan filtration has the form

0 ⊂ E1 ⊂ E2 ⊂ E3 ⊂ E4 = E
with µi := µ(Ei/Ei−1).

µ1

(r
an
k
E 1
,d
eg
E 1
)

µ2

(r
an
k E 2
, d
eg
E 2)

µ3

(ra
nk
E3, d

eg
E3)

µ4

(0, 0)

(rank E4,deg E4)

Figure 2. The HN polygon of a vector bundle with a 4-step HN filtration.

Combining the classification of semistable bundles with an explicit calculation of the coho-
mology groups H i(X,O(λ)), one deduces that the HN filtration of any vector bundle on X is
split. The precise statement is as follows.

Theorem 2.2.10 (Kedlaya, Fargues-Fontaine). [FF],[Ked08]

1) For any given rational number λ, we have

H0(O(λ)) = 0 if and only if λ < 0

and
H1(O(λ)) = 0 if and only if λ ≥ 0.

2) Any vector bundle E on X admits a direct sum decomposition

E '
⊕
i

O(λi)
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where the λis run over the Harder-Narasimhan slopes of E counted with the appropriate mul-
tiplicities.

Corollary 2.2.11. A vector bundle E on X is determined up to isomorphism by its HN
polygon HN(E).

Figure 3. This depicts the order relation between HN polygons. If HN1 is
the polygon shaded in blue and HN2 is the polygon shaded in green, then
HN1 ≤ HN2.

Definition 2.2.12. We define a partial order on HN polygons as follows: if HN1 and HN2

are two polygons, then we say that HN1 ≤ HN2 if HN1 lies on or below HN2 and the polygons
have the same endpoints.

Under this partial ordering, the Harder-Narasimhan filtration of a bundle E satisfies the
following extremality property among all filtrations with semistable graded pieces:

Corollary 2.2.13. Let E be a vector bundle on X, and let

0 = E0 ⊂ E1 ⊂ . . . ⊂ Em = E
be any filtration of E such that each graded piece Ei/Ei−1 is a semistable vector bundle. Then

HN(E) ≤ HN(E1/E0 ⊕ . . .⊕ Em/Em−1).

Proof. This is [Ked, Corollary 3.4.18]. �

Definition 2.2.14. Let E be a vector bundle on X with Harder-Narasimhan filtration

0 = E0 ⊂ E1 ⊂ . . . ⊂ Em = E .
Then for any λ ∈ Q, we define E≥λ (resp. E>λ) to be the subbundle of E given by Ei for the
largest value of i such that µ(Ei/Ei−1) ≥ λ (resp. such that µ(Ei/Ei−1) > λ). We also define
E<λ = E/E≥λ and E≤λ = E/E>λ.

2.3. Geometric interpretation of degrees. In a number of our later arguments, we will
need to understand quantities of the form deg (E1 ⊗ E∨2 )≥0 for some fairly arbitrary bundles
E1 and E2. Here we develop some preliminary language for doing this. The results in this
section will not be necessary until §4.

Definition 2.3.1. For two vectors v, w ∈ R2 with nonzero x-coordinates, we write v ≺ w
(resp. v � w) if the slope of v is less than (resp. not greater than) the slope of w.
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We can determine this relation between v, w using their (two-dimensional) cross product
as follows:

Lemma 2.3.2. We have the following characterization of the order ≺:

• if the x-coordinates of v and w have the same sign, v ≺ w (resp. v � w) if and only
if v × w > 0 (resp. v × w ≥ 0);
• if the x-coordinates of v and w have different signs, v ≺ w (resp. v � w) if and only

if v × w < 0 (resp. v × w ≤ 0).

Proof. This is straightforward. �

Let V be a vector bundle on X. By Theorem 2.2.10, V decomposes into a direct sum

V =
s⊕
i=1

O(di/hi)
mi

where d1/h1 > d2/h2 > · · · > ds/hs and di, hi are relatively prime for each i = 1, 2, · · · , s.
Then the Harder-Narasimhan polygon of V is built out of the sequence of vectors

v1 � v2 � · · · � vs
where vi = (mihi,midi) is the i-th edge in HN(V).

Definition 2.3.3. Keeping the notation of the preceding paragraph, the HN vectors of V
will be denoted by

−→
HN(V) := (vi)1≤i≤s. Note that the isomorphism class of V is uniquely

determined by
−→
HN(V).

Lemma 2.3.4. Let V and W be any vector bundles on X with
−→
HN(V) = (vi) and

−→
HN(W) =

(wj). Then we have

deg(V∨ ⊗W) =
∑
i,j

vi × wj (2.1)

and

deg(V∨ ⊗W)≥0 =
∑
vi�wj

vi × wj . (2.2)

Proof. Let us first consider the case when V and W are both semistable. In this case, both−→
HN(V) and

−→
HN(W) consist of a single element, namely (rank(V),deg(V)) and (rank(W), deg(W)),

respectively. Then (2.1) follows directly from Example 2.2.3, and (2.2) follows from (2.1) by
Part 1 of Lemma 2.3.2.

The general case now follows by observing that both sides of (2.1) and (2.2) are linear in
both V and W, and using Theorem 1.1.1 to see that every vector bundle decomposes as a
direct sum of semistable bundles. �

Proposition 2.3.5. Let V be a vector bundle on X. Then deg(V∨ ⊗ V)≥0 is equal to twice
the area of the region enclosed between HN(V) and the line segment joining the two endpoints
of HN(V). In particular, deg(V∨ ⊗ V)≥0 = 0 if and only if V is semistable.

Proof. Write
−→
HN(V) = (vi)1≤i≤s, and let O = P0, P1, P2, . . . , Ps be the breakpoints of HN(V),

listed in order of increasing x-coordinates (see Figure 4). Note that vi =
−−−−→
Pi−1Pi.
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v1

v2

v3

v4

P0 = O

P2

P3

P4

P1

Figure 4. Visual depiction of Proposition 2.3.5.

By definition, we have v1 � v2 � · · · � vs. Hence Lemma 2.3.4 yields

deg(V∨ ⊗ V)≥0 =
∑
i≥j

vi × vj =

s∑
j=1

(vj + vj+1 + · · ·+ vs)× vj

=
s∑
j=1

(−−−−→
Pj−1Ps ×

−−−−→
Pj−1Pj

)
=

s∑
j=1

2 ·Area(4Pj−1PjPs),

which is clearly equal to twice the area of the region enclosed between HN(V) and the line
segment joining O and Ps. �

Corollary 2.3.6. Let V and W be any vector bundles on X such that HN(V) ≤ HN(W).
Then deg(V∨ ⊗ V)≥0 ≤ deg(W∨ ⊗W)≥0.

Proof. This is an immediate consequence of Proposition 2.3.5. �

3. Diamonds, vector bundles, and dimensions

3.1. Recollections on diamonds. In this section we (very) briefly introduce the language
of diamonds. Everything here can be found in [Sch, §7-8, §10-11, §18, §21].

Definition 3.1.1. (1) A map Y → X of affinoid perfectoid spaces is affinoid pro-étale if
Y is isomorphic to the limit of some cofiltered system of affinoid perfectoid spaces Yi
étale over X.

(2) A map f : Y → X of perfectoid spaces is pro-étale if X and Y can be covered by open
affinoid perfectoid subsets Ui ⊂ X,Vij ⊂ Y such that f |Vij : Vij → X factors through
the inclusion of Ui and such that the induced map Vij → Ui is affinoid pro-étale.

(3) A map f : Y → X of perfectoid spaces is a pro-étale cover if f is pro-étale and for
any qc open subset U ⊂ X, there is some qc open subset V ⊂ Y with f(V ) = U .
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(4) The big pro-étale site Perf is the site of perfectoid spaces in characteristic p, with
covers given by pro-étale covers.

Proposition 3.1.2. The site Perf is subcanonical.

We slightly abuse notation and write X = hX for any X ∈ Perf, i.e. we freely identify a
characteristic p perfectoid space X with its Yoneda embedding into sheaves on Perf. By the
previous proposition, there is little harm in this.

Definition 3.1.3. A diamond is a sheaf Y on Perf such that

Y ' Coeq (R⇒ X) ,

where R⇒ X is a pro-étale equivalence relation in characteristic p perfectoid spaces.

If Y is a diamond with a presentation Y ' Coeq (R⇒ X), then |R| ⇒ |X| defines an
equivalence relation on |X|, and we define |Y | = |X|/|R| as the associated quotient, topol-
ogized via the quotient topology. The topological space |Y | is well-defined independently of
the chosen presentation, and is functorial in Y .

Definition 3.1.4. A subfunctor Y ′ ⊂ Y of a diamond Y is an open subdiamond if for any
perfectoid space T with a map T → Y , Y ′×Y T is representable and Y ′×Y T → T is an open
immersion.

One then checks that if Y is any diamond, the association Y ′  |Y ′| defines an inclusion-
preserving bijection between open subdiamonds of Y and open subsets of |Y |.

We also recall the relation of diamonds with adic spaces:

Proposition 3.1.5. There is a natural functor X 7→ X♦ from analytic adic spaces over
Spa(Zp,Zp) to diamonds, extending the functor X 7→ hX[ on perfectoid spaces and inducing

a functorial homeomorphism |X♦| ∼= |X|.

If Spa(A,A+) is an affinoid adic space, we’ll often write Spd(A,A+) := Spa(A,A+)♦ and
SpdA := Spd(A,A◦).

Next we recall a flexible variant of pro-étale morphisms in the setting of diamonds.

Definition 3.1.6. (1) A perfectoid space X is strictly totally disconnected if it is qcqs
and every connected component of X is of the form Spa(K,K+) for some algebraically
closed perfectoid field K.

(2) A map of diamonds Y → X is quasi-pro-étale if for any strictly totally disconnected
perfectoid space T with a map T → X, the sheaf Y ×X T is representable and the
induced map of perfectoid spaces Y ×X T → T is pro-étale.

We now recall some useful classes of diamonds and morphisms of diamonds.

Definition 3.1.7. (1) A diamond Y is quasicompact (qc) if it admits a presentation
Y ' Coeq (R⇒ X) with X quasicompact. A morphism of diamonds Y → X is
quasicompact if Y ×X U is quasicompact for all quasicompact diamonds U with a map
U → X.

(2) A diamond Y is quasiseparated (qs) if for any qc diamonds U → Y, V → Y , the fiber
product U ×Y V is qc. A morphism of diamonds Y → X is quasiseparated if the
relative diagonal Y → Y ×X Y is quasicompact.
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(3) A diamond Y is separated (resp. partially proper) if it is quasiseparated and for all
choices of a characteristic p perfectoid Tate ring R with a ring of integral elements
R+, the restriction map

Y (R,R+)→ Y (R,R◦)

is injective (resp. bijective). A morphism Y → X of diamonds is separated (resp.
partially proper) if it is quasiseparated and for all choices of a characteristic p perfectoid
Tate ring R with a ring of integral elements R+, the natural map

Y (R,R+)→ Y (R,R◦)×X(R,R◦) X(R,R+)

is injective (resp. bijective).
(4) A diamond Y is spatial if it is quasicompact and quasiseparated, and if the subsets
|U | ⊂ |Y |, for U ⊂ Y running over arbitrary qc open subdiamonds of Y , give a
neighborhood basis of |Y |.

(5) A diamond is locally spatial if it admits a covering by spatial open subdiamonds.

We will mostly restrict our attention to locally spatial diamonds, which have several favor-
able properties:

Proposition 3.1.8. (1) If Y is (locally) spatial, then |Y | is a (locally) spectral topological
space.

(2) A locally spatial diamond Y is qc (resp. qs) if and only if |Y | is qc (resp. qs).
(3) If U → X ← V is a diagram of (locally) spatial diamonds, then U ×X V is (locally)

spatial.
(4) If Y → X is any map of locally spatial diamonds, the associated map of locally spectral

spaces |Y | → |X| is spectral and generalizing.2 Moreover, |Y | → |X| is a quotient map
if Y → X is surjective.

(5) If X is an analytic adic space, then X♦ is locally spatial, and X♦ is spatial exactly
when X is qcqs.

Finally, in some of the proofs in §3.2 we will make use of Scholze’s results on “canonical
compactifications” of diamonds. Let us briefly explain what we need from this theory; the
reader may wish to skip this discussion.

Fix a diamond S. In [Sch, §18], Scholze defines a compactification functor Y 7→ Y
/S

from
separated S-diamonds to separated S-diamonds satisfying a number of useful compatibilities:

1) The map Y
/S → S is partially proper, and the diamond Y

/S
comes with a functorial

injection Y ↪→ Y
/S

which is an isomorphism if Y is partially proper.

2) The functor Y 7→ Y
/S

commutes with all limits.

3) If Y → Z is injective (resp. surjective, resp. quasi-pro-étale), then Y
/S → Z

/S
is

injective (resp. surjective, resp. quasi-pro-étale).

4) If S = Spd(A,A+) and Y = Spd(B,B+) are affinoid perfectoid, then Y
/S

= Spd(B,B′)
where B′ denotes the completed integral closure of A+ +B◦◦ in B.

5) If W is a profinite set, then Y ×W /S ∼= Y
/S ×W .

We also need the following compatibility of compactifications with torsors.

2Recall that a morphism of topological spaces f : Y → X is generalizing if for any point y ∈ Y and any
generalization x′ of f(y), there is some generalization y′ of y such that f(y′) = x′, cf. [Hub96, Def. 1.3.3].
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Proposition 3.1.9. Let G be a profinite group, and let X → Y be a G-torsor in separated

S-diamonds. Then X
/S → Y

/S
is a G-torsor.

Proof. By property 3) above, the map X
/S → Y

/S
is surjective and quasi-pro-étale. Functori-

ality of the compactification implies that the G-action on X extends canonically to a G-action

on X
/S

. It now suffices to check that

G×X/S → X
/S ×

Y
/S X

/S

is an isomorphism. By property 2), the target of this map is canonically isomorphic to

X ×Y X/S ∼= G×X/S
,

which in turn is canonically isomorphic to G×X/S
by property 5). This implies the desired

result. �

3.2. Dimension theory. In this section we work out some basic dimension theory for di-
amonds. Fix a complete nonarchimedean field K of residue characteristic p; until further
notice, all diamonds are assumed to live over Spd(K,K◦).

Definition 3.2.1. For X a locally spatial diamond, we say x ∈ |X| is a rank one point if any
one of the following equivalent conditions are satisfied:

(1) x has no proper generalizations inside |X|;
(2) there exists a perfectoid field L and a quasi-pro-étale map Spd(L,L◦) → X with

topological image x;
(3) we have

x =
⋂

x∈U⊂|X|
U qc open

U

as subsets of |X|.
(The equivalence of these conditions follows easily from Proposition 3.1.8.) Note that any
rank one point x has the structure of a diamond in its own right: more precisely, there is a
quasicompact injection from a spatial diamond x♦ → X with |x♦| = x, which is unique up to
unique isomorphism. We will sometimes confuse x and x♦ in what follows. We also note that
for any map Y → X of locally spatial diamonds, the induced map |Y | → |X| carries rank one
points onto rank one points.

Lemma 3.2.2. Let X be a partially proper and locally spatial diamond over S = Spd(K,K◦).
Choose a rank one point x ∈ |X|, and choose a perfectoid field L together with a quasi-pro-

étale map Spd(L,L◦) → X with topological image x. Then dim {x} = tr.deg(l/k), where l
and k denote the residue fields of L◦ and K◦, respectively.

Proof. Replacing L with L̂ doesn’t change the transcendence degree of l over k, so without of
loss of generality we may assume that L is algebraically closed. By the proof of [Sch, Prop.
21.9], this gives rise to a presentation

x♦ ' Spd(L,L◦)/G,

where G is a profinite group acting continuously and faithfully on L by K-linear automor-
phisms. Let Lmin be the completed integral closure of K◦+L◦◦ in L. Note that Spd(L,Lmin)
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is simply the canonical compactification Spd(L,L◦)
/S

. Note also that |Spd(L,Lmin)| is home-
omorphic to the Zariski-Riemann space of l/k′, where k′ denotes the algebraic closure of k in
l; in particular, |Spd(L,Lmin)| is spectral of dimension tr.deg(l/k′) = tr.deg(l/k).

Since x♦ → X is an injection of separated S-diamonds, with X partially proper and x♦

quasicompact, this extends to an injection x♦
/S → X, and the injective map |x♦/S | → |X| is a

homeomorphism onto its (closed) image. We now claim that {x} and |x♦/S | are homeomorphic
as subsets of |X|: this follows from observing that both subsets are closed and generalizing
subsets of |X| each containing x as their unique rank one point. Since Spd(L,L◦) → x♦ is

a G-torsor, the map Spd(L,Lmin) → x♦
/S

is a G-torsor by Proposition 3.1.9. Therefore we
have natural homeomorphisms

{x} ∼= |x♦/S | ∼= |Spd(L,Lmin)|/G.
To complete the proof, it suffices to show the equality

dim |Spd(L,Lmin)| = dim |Spd(L,Lmin)|/G.
This is a special case of the next lemma. �

Lemma 3.2.3. Let X be a spectral space, and let G be a profinite group acting continuously
on X. Then X/G is spectral, the map q : X → X/G is spectral and generalizing, and
dimX = dimX/G.

Proof. Without loss of generality, G acts faithfully on X. One easily checks that the image

R of the natural map G × X (xg,x)→ X × X is pro-constructible and defines an equivalence
relation on X, such that the maps s, t : R → X are quasicompact, generalizing and open.
Spectrality of X/R = X/G then follows from [Sch, Lemmas 2.9-2.10]; moreover, these same
lemmas imply that X → X/G is spectral and generalizing.

For the equality of dimensions, note that since q is generalizing, we may lift any finite chain
in X/G to a chain of the same length in X, and thus dimX ≥ dimX/G. It remains to prove
the opposite inequality. Since q sends chains in X to chains in X/G, it’s enough to show that
the for any finite chain C ⊂ X, the length of C coincides with the length of q(C). Suppose
otherwise; then we can find two distinct points x ≺ y in X with q(x) = q(y), or equivalently
with xG = yG. Let3 λ : |X| → N∪{∞} be the function sending a point z ∈ X to the maximal
length of any chain of generalizations of z. Clearly λ(x) ≥ λ(y) + 1. On the other hand, the
G-action on X preserves the relation of one point generalizing another, so λ is constant on
G-orbits. This is a contradiction. �

Lemma 3.2.4. Let f : X → Y be a map of partially proper and locally spatial diamonds over
Spd(K,K◦). Choose any rank one point x ∈ |X| with image y = f(x), and let Xy = X ×Y y♦
denote the fiber of X over y (so in particular x ∈ |Xy|). Then

dim {x}X = dim {y}Y + dim {x}Xy
,

where {s}S denotes the closure of {s} in the topological space of S.

When X and Y are analytic adic spaces, this is exactly Proposition 4.2.21 of [CS]. The
proof given below is essentially an adaptation of the argument in loc. cit., although we need
to incorporate a rather elaborate pro-étale unscrewing.

3Thanks to Christian Johansson for suggesting the following argument.
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Proof. Choose surjective quasi-pro-étale maps Spd(L,L◦) → X, Spd(M,M◦) → Y with
topological images x and y, respectively; without loss of generality we may assume that
L and M are algebraically closed, with residue fields l and m, respectively. Applying Lemma

3.2.2 twice, we get equalities dim {x}X = tr.deg(l/k) and dim {y}Y = tr.deg(m/k). By
the additivity of transcendence degrees, it suffices to prove that there is some continuous
K-algebra map M → L such that the induced extension m → l of residue fields satisfies

tr.deg(l/m) = dim {x}Xy
.

Let G and H be the profinite groups such that Spd(L,L◦)→ x♦ (resp. Spd(M,M◦)→ y♦)
is a G-torsor (resp. an H-torsor) as before. Arguing as in the proof of Lemma 3.2.2, we have
a canonical homeomorphism

{x}Xy ∼= |x♦/y
♦

|.

Base change along the map Spd(M,M◦)→ y♦ identifies x♦ ×y♦ Spd(M,M◦)
/Spd(M,M◦)

with

x♦
/y♦ ×y♦ Spd(M,M◦); in particular,

x♦ ×y♦ Spd(M,M◦)
/Spd(M,M◦)

is naturally an H-torsor over x♦
/y♦

, so

dim {x}Xy
= dim |x♦/y

♦

|
= dim |x♦ ×y♦ Spd(M,M◦)

/Spd(M,M◦)|,
where the second equality follows from Lemma 3.2.3. Furthermore, the G-torsor Spd(L,L◦)→
x♦ induces a G-torsor structure on the map

Spd(L,L◦)×y♦ Spd(M,M◦)
/Spd(M,M◦) → x♦ ×y♦ Spd(M,M◦)

/Spd(M,M◦)
,

so we are reduced to calculating the topological dimension of the source of this map. Since
Spd(L,L◦)×y♦ Spd(M,M◦)→ Spd(L,L◦) is an H-torsor (and in particular a pro-finite étale
map) with target a geometric point, there is an isomorphism

Spd(L,L◦)×y♦ Spd(M,M◦) ' Spd(L,L◦)×W
for some profinite set W . In particular, any connected component V of

Spd(L,L◦)×y♦ Spd(M,M◦)

is isomorphic to Spd(L,L◦); choosing such a component induces a continuous map M →
L, and dim |V /Spd(M,M◦)| = tr.deg(l/m) by our previous discussions. We now conclude
by observing that the compactification functor identifies any given connected component

of |Spd(L,L◦)×y♦ Spd(M,M◦)
/Spd(M,M◦)| homeomorphically with |V /Spd(M,M◦)| for some

uniquely determined connected component V ⊂ Spd(L,L◦) ×y♦ Spd(M,M◦), so the result
now follows by varying V . �

The next result conceptualizes the proof of Proposition 4.2.23 of [CS].

Lemma 3.2.5. Let f : X → Y be a map of partially proper and locally spatial diamonds
over Spd(K,K◦). Suppose there is some integer d ≥ 0 such that for every rank one point
y ∈ im(|X| → |Y |), the fiber Xy = X ×Y y♦ is of dimension d. Then

dim im(|X| → |Y |) = dim |X| − d.
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Remark 3.2.6. Let f : X → Y be as in the lemma. If f is quasicompact, then the subspace
and quotient topologies on im(|X| → |Y |) coincide, and im(|X| → |Y |) is locally spectral and
pro-constructible inside |Y |. For a general f , all of these outcomes can fail. It is true, however,
that im(|X| → |Y |) is always closed under generalization and specialization inside |Y |. In any
case, we define dim im(|X| → |Y |) as the maximal length of any chain of specializations of
any rank one point of |Y | contained in the image of |X|.

Proof. Choose a rank one point y ∈ im(|X| → |Y |), and choose some rank one point x ∈ Xy

lifting y such that dim {x}Xy
= d. Then

dim {y}Y = dim {x}X − dim {x}Xy
= dim {x}X − d ≤ dimX − d

by Lemma 3.2.4. Taking the supremum over all y, we deduce the inequality

dim im(|X| → |Y |) ≤ dim |X| − d.

For the opposite inequality, it clearly suffices to prove that

dimX ≤ dim im(|X| → |Y |) + d.

Let |X|rk 1 denote the set of rank one points in |X|. Then

dimX = sup
x∈|X|rk 1

dim {x}X

= sup
x∈|X|rk 1

(dim {f(x)}Y + dim {x}Xf(x)
)

≤ sup
x∈|X|rk 1

dim {f(x)}Y + sup
x∈|X|rk 1

dim {x}Xf(x)

= dim im(|X| → |Y |) + d.

Here the first line is simply the definition of dimX, the second line follows from Lemma 3.2.4,
and the final line follows from the relevant definitions together with our assumption on the
fibers of f . �

3.3. Diamonds and moduli of bundle maps. In this section, we define and study dia-
monds parametrizing maps between vector bundles on X with various specified properties.
We note in passing that every diamond considered here is a diamond in the sense of the orig-
inal definition proposed by Scholze in 2014, i.e. they each admit a surjective representable
pro-étale morphism from a perfectoid space.

Throughout this section, we fix a finite extension E/Qp with residue field Fq and an
algebraically closed perfectoid field F/Fq, and we let X = XE,F denote the adic Fargues-
Fontaine curve over SpaF . For any perfectoid space S/SpaF we get a relative curve XS =
XE,S together with a natural map XS → X (cf. [KL15, Ch. 7-8] for a thorough discussion
of relative Fargues-Fontaine curves). If E is any vector bundle on X , we denote the vector
bundle obtained via pullback along XS → X by ES .

Definition 3.3.1. Fix vector bundles E ,F on X . Consider the following sheaves of sets on
Perf/SpaF .

(1) Let H0(E) : Perf/SpaF → Sets be the functor sending f : S → SpaF to the set

H0(XS , ES).
(2) Let Hom(E ,F) be the functor sending f : S → SpaF to the set of OXS

-module maps
m : ES → FS . Note that Hom(E ,F) ∼= H0(E∨ ⊗F).
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(3) Let Surj(E ,F) ⊂ Hom(E ,F) be the subfunctor of Hom(E ,F) whose S-points param-
etrize surjective OXS

-module maps.
(4) Let Inj(E ,F) ⊂ Hom(E ,F) be the subfunctor of Hom(E ,F) whose S-points parame-

trize “fiberwise-injective” OXS
-module maps. Precisely, this is the functor parametriz-

ing OXS
-module maps m : ES → FS such that for every geometric point x =

Spa(C,C+) → S, the pullback of m : ES → FS along the induced map Xx → XS
gives an injective OXx-module map. 4

(5) Let H0(E)× := Inj(O, E) ⊂ H0(E) be the functor parametrizing sections of E which
are not identically zero on any fiber of XS 99K S.

(6) Let Aut(E) be the functor sending f : S → SpaF to the group of OXS
-module

automorphisms of ES .

Our first order of business is to show that these functors are all locally spatial and partially
proper diamonds. We remark that the functors H0 and Hom are Banach-Colmez spaces
[Col02, LB], and in particular can be given some meaningful geometric structure without
appealing to the theory of diamonds. However, the other four functors defined above are not
Banach-Colmez spaces (indeed, they are not even valued in Qp-vector spaces), and the theory
of diamonds seems essential to our analysis of them.

Let

D̃n = Spa(F ◦[[T 1/p∞
1 , . . . , T 1/p∞

n ]], F ◦[[T 1/p∞
1 , . . . , T 1/p∞

n ]])×Spa(F ◦,F ◦) Spa(F, F ◦)

denote the n-dimensional open perfectoid unit disk over F .

Proposition 3.3.2. 1) The functor H0(E) is a diamond: if E has only positive slopes, then
we can find an isomorphism

H0(E) ' D̃d/A

where d = deg E and where A ' Qm
p is an abelian locally profinite group acting freely on D̃d;

in general, there is a natural isomorphism H0(E) ' Qn
p ×H0(E>0) for some n ≥ 0.

2) The diamond H0(E) is partially proper and locally spatial, and equidimensional of di-
mension deg E≥0. Furthermore, any nonempty open subfunctor of H0(E) has an F -point.

We point out that the dimension of H0(E) computed above coincides with the “principal
dimension” of this object in the language of Banach-Colmez spaces [Col02].

Remark 3.3.3. The partial properness of H0(E) is a formal consequence of the fact that
the category of vector bundles on a relative curve XSpa(R,R+) is canonically independent of

the choice of R+, cf. [KL15, Theorem 8.7.7]. In fact, every functor defined above is partially
proper, for the same reason.

Proof. Writing E ' E>0⊕On⊕E ′ where E ′ has only negative slopes, the isomorphism H0(E1⊕
E2) ∼= H0(E1) ×SpdF H0(E2) together with the identification H0(O) ' E reduce us from the
general case to the case of positive slopes. Writing E ' ⊕iO(λi) and observing that

D̃d1/A1 ×SpdF D̃d2/A2
∼= D̃d1+d2/A1 ×A2,

4The condition defining Inj is much stronger than the condition that m : ES → FS be injective; note that
the association sending S to the set of injective ms isn’t even a presheaf. Note also that there is a natural
transformation Surj(F∨, E∨)→ Inj(E ,F); this turns out to be an open immersion, although it typically isn’t
an isomorphism.



EXTENSIONS OF VECTOR BUNDLES ON THE FARGUES-FONTAINE CURVE 19

we reduce further to the case where E = O(λ) for some λ = d/h ∈ Q>0. Let E′/E be the
unramified extension of degree h, so we have a natural finite étale map r : XE′,S → XS such
that r∗O(d) ' O(λ) functorially in S. Choose a short exact sequence

0→ Od−1 → O(1)d → O(d)→ 0

of vector bundles on XE′,F . Pushing forward along r∗ and applying H0(−) gives rise to a
short exact sequence of abelian group sheaves on Perf/SpaF , giving an identification

H0(O(d/h)) ' H0(O(1/h)d)/H0(Oh(d−1)).
It’s easy to see that H0(Oh(d−1)) ' Eh(d−1) as abelian group sheaves on Perf/SpaF . Moreover,

there is an isomorphism H0(O(1/h)) ' D̃1: quite generally, for any given integers 0 < d ≤ h,
one can exhibit an isomorphism

H0(O(d/h)) ' D̃d

by identifying H0(O(d/h)) with the universal cover of an isoclinic π-divisible OE-module of
height h and dimension d (cf. [FF, SW13]). Putting things together, 1) follows.

For 2), assume for the moment that H0(E) is locally spatial. Fix a presentation as in 1).
After choosing an open profinite subgroup A0 ⊂ A, the map

D̃d → D̃d/A

factors as
D̃d → D̃d/A0 → D̃d/A.

By [Wei, Prop. 4.3.2] the first arrow here is pro-finite étale surjective, and the second arrow

is separated, étale and surjective by [Sch, Lemma 10.13]. The space D̃d is equidimensional

of dimension d, so D̃d/A0 is equidimensional of dimension d by Lemma 3.2.3. We are now
reduced to checking that if f : X → Y is a surjective étale map of locally spatial diamonds,
then dimX = dimY . Since f is generalizing, the inequality dimX ≥ dimY is clear. For the
opposite inequality, one easily reduces to the case where X → Y is a surjective finite étale
map with Y connected, by [Sch, Lemma 11.31], which we then leave as an exercise for the
interested reader.5

We still need to check that H0(E) is locally spatial. Fix a presentation as in 1), and choose

a quasicompact open subgroup U0 ⊂ D̃d. Set A0 = U0 ∩ A, so this is a profinite group sheaf

acting freely on U0. Then V = U0/A0 is an open subdiamond of H0(E), and it is spatial

by the subsequent lemma. Since the p−n-dilates of V cover all of H0(E), the latter is locally
spatial, as desired.

Finally, the statement on F -points follows from the explicit presentation in 1) together

with the (easy) analogous statement for D̃n. �

In the previous proof, we made use of the following lemma.

Lemma 3.3.4. Let X be a spatial diamond with a free G-action for some profinite group G.
Then X/G is a spatial diamond.

Proof. Immediate upon combining Lemma 10.13 and Proposition 11.24 from [Sch]. �

Proposition 3.3.5. The functor Hom(E ,F) is a locally spatial (and partially proper) dia-
mond over SpdF , equidimensional of dimension deg(E∨ ⊗F)≥0.

5Sketch: By a standard argument, one can dominate X by a surjective finite étale map X ′ → X such that
X ′ → Y is finite étale and Galois for some finite group G; but then dimX ≤ dimX ′ = dimY , where the latter
equality follows from Proposition 3.2.3.
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Proof. Immediate from the identification Hom(E ,F) ∼= H0(E∨ ⊗F). �

Proposition 3.3.6. The functors Surj(E ,F) and Inj(E ,F) are both open subfunctors of
Hom(E ,F). In particular, Surj(E ,F) and Inj(E ,F) are locally spatial (and partially proper)
diamonds over SpdF , each of which is either empty or equidimensional of dimension deg(E∨⊗
F)≥0.

Proof. (Proof for Surj.) Choose some T ∈ Perf together with a surjective quasi-pro-étale
morphism T → Hom(E ,F). Over XT , we get a “universal” OXT

-module map muniv : ET →
FT ; let QT be the cokernel of muniv. By a standard argument, the support of QT is Zariski-
closed in XT , and we write Z ⊂ |XT | for the associated closed subset.

Next, we observe that the map |XT | → |T | is closed. Indeed, this is a specializing qua-
sicompact spectral map of locally spectral spaces, so the image of any closed subset is pro-
constructible (by quasicompactness and spectrality) and stable under specialization, hence
closed by [Stacks, Tag 0903]. In particular, the subset V = im(|XT | → |T |)(Z) ⊂ |T | is
closed. We also observe that a geometric point x : Spd(C,C+)→ Hom(E ,F) defines a point
of Surj (resp. Hom r Surj) if and only if the preimage of |x| in |T | is disjoint from V (resp.
contained in V ). In particular, the open subset U = |T |rV ⊂ |T | is the preimage of a subset
W ⊂ |Hom(E ,F)|; since |T |� |Hom(E ,F)| is a quotient map, W is open. But now Surj can
be identified with the open subdiamond of Hom(E ,F) corresponding to the open subset W ,
so we win.

(Proof for Inj.) Set r = rank(E); by the formula

Inj(E ,F) ∼= Hom(E ,F)×Hom(∧rE,∧rF) Inj(∧rE ,∧rF),

we reduce to the case where E is a line bundle. After twisting, we reduce further to the case
E = O; in other words, we need to prove that H0(F)× is an open subfunctor of H0(F). Fix an
identification F = ⊕1≤i≤nO(λi), and (for brevity) setHi = H0(O(λi)) andH×i = H0(O(λi))

×.
Under the identification

H0(F) = H1 ×SpdF · · · ×SpdF Hn,
it is easy to see that the subfunctor H0(F)× on the left-hand side is covered by the union of
the subfunctors

Ui = H1 × · · · × Hi−1 ×H×i ×Hi+1 × · · · × Hn, 1 ≤ i ≤ n
on the right-hand side (here we have omitted the subscripted SpdF ’s for brevity). This,
finally, reduces us to showing that H0(O(λ))× is an open subfunctor of H0(O(λ)), for any
fixed λ ≥ 0. The case λ = 0 is easy and left to the reader. For λ = d/h > 0, writing
O(λ) as the pushforward of O(d)/XE′,F as in the proof of Proposition 3.3.2 reduces us to the
case h = 1. In this case, the functors H(O(d)) and H(O(d))× agree (by definition) with the

functors denoted by Bϕ=πd

SpaF and (Bϕ=πd r {0})SpaF in [Far17, §2.2], and our claim is exactly

the content of [Far17, Lemme 2.10]. �

Proposition 3.3.7. The functor Aut(E) is an open and partially proper subdiamond of
Hom(E , E), equidimensional of dimension deg(E∨ ⊗ E)≥0.

Proof. Immediate from the previous proposition together with the identification Aut(E) ∼=
Surj(E , E), which holds by consideration of rank and degree. �

We now explain how to reduce Step One of the strategy outlined in the introduction to a
combinatorial problem. The key result here is Theorem 3.3.11 below.
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Definition 3.3.8. For any vector bundles E ,F ,Q, composition of bundle maps induces a
natural map of diamonds

Surj(E ,Q)×SpdF Inj(Q,F)→ Hom(E ,F),

and we define
|Hom(E ,F)Q| ⊂ |Hom(E ,F)|

as the image of the induced map on topological spaces.

As the notation suggests, |Hom(E ,F)Q| is the underlying topological space of a subdiamond
Hom(E ,F)Q ofHom(E ,F), which (more or less) parametrizes bundle maps E → F with image
isomorphic to Q at all geometric points. However, the diamond Hom(E ,F)Q is a little obscure
(in particular, it’s not entirely clear to us that it’s locally spatial), so we avoid making any
explicit use of this object. Fortunately, this doesn’t cause any real complication.

Proposition 3.3.9. For any E ,F ,Q, |Hom(E ,F)Q| is stable under generalization and spe-
cialization inside |Hom(E ,F)|.

Proof. The subset in question is defined as the image of |Y | → |X|, for some map of partially
proper and locally spatial diamonds Y → X. Quite generally, if Y → X is any map of
locally spatial diamonds, the image of |Y | → |X| is stable under generalization by Proposition
3.1.8.iii. Orthogonally, one immediately checks from the valuative criterion that the image of
|Y | → |X| is stable under specialization for Y → X any partially proper map of diamonds.
Since any map between diamonds partially proper over a fixed base is automatically partially
proper, the claim follows. �

We now have the following crucial lemma.

Lemma 3.3.10. For any E ,F ,Q as above, the subset |Hom(E ,F)Q| ⊂ |Hom(E ,F)| is either
empty, or of dimension

deg(E∨ ⊗Q)≥0 + deg(Q∨ ⊗F)≥0 − deg(Q∨ ⊗Q)≥0.

Proof. Recall that |Hom(E ,F)Q| is defined as the image of the map on topological spaces
associated with the map of locally spatial diamonds

f : Surj(E ,Q)×SpdF Inj(Q,F)
(s,i)7→i◦s−→ Hom(E ,F).

If either of the functors on the left is empty, there is nothing to prove. If both functors on
the left are nonempty, then

dimSurj(E ,Q)×SpdF Inj(Q,F) = dimSurj(E ,Q) + dim Inj(Q,F)

= deg(E∨ ⊗Q)≥0 + deg(Q∨ ⊗F)≥0

by Propositions 3.3.2 and 3.3.6. Moreover, the fiber of f over any rank one point y is an
Aut(Q) ×SpdF y-torsor, and hence can be identified with Aut(Q) ×SpdF y after taking a
pro-finite étale covering of y by some geometric point y = SpdC. Since

dimAut(Q) = deg(Q∨ ⊗Q)≥0,

the result now follows from Lemma 3.2.5. �

Theorem 3.3.11. Suppose E and F are vector bundles admitting a nonzero map E → F ,
such that for any Q ( F which also occurs as a quotient of E we have a strict inequality

deg(E∨ ⊗Q)≥0 + deg(Q∨ ⊗F)≥0 < deg(E∨ ⊗F)≥0 + deg(Q∨ ⊗Q)≥0.

Then there exists a surjective bundle map E → F .
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Proof. We need to show that Surj(E ,F)(F ) is nonempty. By Proposition 3.3.6 above, Surj(E ,F)
is an open subfunctor of Hom(E ,F), and hence admits F -points if it is nonempty (by Propo-
sition 3.3.2). Since Surj(E ,F) is nonempty if and only if |Surj(E ,F)| is nonempty, we can
argue on topological spaces.

By the definitions above, we obtain a decomposition

X
def
= |Hom(E ,F)|r |Surj(E ,F)| =

∐
Q∈S
|Hom(E ,F)Q|,

where S denotes the set of isomorphism classes of subbundles Q ( F which also occur as
quotients of E . By Proposition 3.3.9, any chain in X is entirely contained in |Hom(E ,F)Q|
for some fixed Q, so then

dimX = sup
Q∈S

dim |Hom(E ,F)Q| ≤ sup
Q∈S

(
deg(E∨ ⊗Q)≥0 + deg(Q∨ ⊗F)≥0 − deg(Q∨ ⊗Q)≥0

)
by the previous lemma. By the assumptions of the theorem, we then deduce a strict inequality
dimX < deg(E∨ ⊗ F)≥0. If |Surj(E ,F)| were empty, however, X = |Hom(E ,F)| would have
dimension deg(E∨⊗F)≥0 by Proposition 3.3.5, and this is a contradiction. Thus |Surj(E ,F)|
is nonempty as desired. �

We now turn to Step Two of the strategy outlined in the introduction, which we will also
reduce to a combinatorial problem. Here, the relevant diamonds are defined as follows.

Definition 3.3.12. For some fixed vector bundles E ,F ,K such that rankK+rankF = rank E
and degK+degF = deg E , define Surj(E ,F)K as the subfunctor of Surj(E ,F) whose S-points
(for a given S → SpdF ) parametrize surjective bundle maps q : ES → FS with the property
that ker q is isomorphic to K after pullback along any geometric point x→ S.

Equivalently, the map S → Surj(E ,F) corresponding to a surjection q : ES → FS defines a
point of Surj(E ,F)K exactly when the HN polygon of ker q, regarded as a function on |S|, is
constant and coincides with the HN polygon of K.

Proposition 3.3.13. The functor Surj(E ,F)K is a locally spatial (and partially proper) dia-
mond over SpdF .

Proof. Choose a perfectoid space T together with a surjective and quasi-pro-étale map f :
T → Surj(E ,F). Let V be the bundle on XT defined by the kernel of the “universal” quotient
map quniv : ET → FT . Set n = rank(E)− rank(F); for a given HN polygon P of width n, let
|T |≥P (resp. |T |≤P ) be the set of points x where HN(Vx) ≥ P (resp. where HN(Vx) ≤ P ). By
[KL, Theorem 7.4.5], the locus |T |≥P (resp. |T |≤P ) is closed (resp. open) in |T |; moreover,
these subsets are stable under generalization. Since |f | : |T | → |Surj(E ,F)| is a quotient
map, one checks directly that |T |≥P (resp. |T |≤P ) is the preimage of a generalizing and closed
(resp. open) subset |Surj(E ,F)|≥P (resp. |Surj(E ,F)|≤P ) of |Surj(E ,F)|. In particular,

|Surj(E ,F)|≥P ∩ |Surj(E ,F)|≤P

is a locally closed generalizing subset of |Surj(E ,F)|, and hence corresponds to a locally spatial
subdiamond

Surj(E ,F)P ⊂ Surj(E ,F)

by the proof of [Sch, Prop. 11.20]. Taking P = HN(K), the functor Surj(E ,F)P identifies
with Surj(E ,F)K, and we conclude. �

Again, we have a clean dimension formula in certain cases.
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Lemma 3.3.14. Let E ,F , and K be as above, and suppose moreover that F is semistable.
Then Surj(E ,F)K is either empty, or equidimensional of dimension

deg(E ⊗ K∨)≥0 − deg(K ⊗K∨)≥0.

Proof. Recall that Surj(E ,F)K parametrizes surjective bundle maps q : E → F with kernel
isomorphic to K at all geometric points. Let

Surj(E ,F)K,♥ → Surj(E ,F)K

be the Aut(K)-torsor parametrizing isomorphisms ker q ' K. Arguing as in the proof of
Lemma 3.3.10, one easily checks that

dimSurj(E ,F)K,♥ = dimSurj(E ,F)K + dimAut(K)

= dimSurj(E ,F)K + deg(K∨ ⊗K)≥0

Next, we observe that

Surj(E ,F)K,♥

can also be described as the functor whose T -points parametrize isomorphism classes of short
exact sequences

0→ KT → ET → FT → 0

on XT . Dualizing the set of such short exact sequences induces a canonical isomorphism

Surj(E ,F)K,♥ ∼= Surj(E∨,K∨)F
∨,♥.

Returning to the matter at hand, we now assume that F is semistable. Then the proof of
Proposition 3.3.13 shows that Surj(E∨,K∨)F

∨
= Surj(E∨,K∨)≤HN(F∨) is an open subfunctor

of Surj(E∨,K∨). Moreover, the dimension formula above degenerates to the equality

dimSurj(E∨,K∨)F
∨,♥ = dimSurj(E∨,K∨)F

∨
.

Putting this together with Proposition 3.3.6, we deduce that

dimSurj(E∨,K∨)F
∨,♥ = deg(E ⊗ K∨)≥0

for semistable F . But then

dimSurj(E ,F)K = dimSurj(E ,F)K,♥ − deg(K∨ ⊗K)≥0

= dimSurj(E∨,K∨)F
∨,♥ − deg(K∨ ⊗K)≥0

= deg(E ⊗ K∨)≥0 − deg(K∨ ⊗K)≥0,

as desired. �

3.4. Summary of the strategy. The goal of §4-§5 is to establish Theorem 1.1.2, which we
reproduce below for the reader’s convenience:

Theorem. Let F1 and F2 be semistable vector bundles on X with µ(F1) < µ(F2). Then any
vector bundle E such that

HN(E) ≤ HN(F1 ⊕F2)

can be realized as an extension

0→ F1 → E → F2 → 0.
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Again, the strategy of our proof is as follows. We note that it suffices to show the theorem
when the slope of F2 is strictly greater than the maximal slope of E . Otherwise we would
have F2 = O(s)m and E = E ′⊕O(s)n for some E ′ with maximal slope less than s and n ≤ m.
Solving the extension problem for

0→ F1 → E ′ → O(s)m−n → 0

and then direct summing with 0→ 0→ O(s)n → O(s)n → 0 gives the full theorem.

It then clearly suffices to show that the assumptions of Theorem 1.1.2 plus the additional
assumption of strict inequality of slopes imply the following two assertions.

(1) There exists a surjection E → F2 → 0.
(2) If E admits a surjection E → F2 → 0, then it admits such a surjection with kernel

isomorphic to F1.

The bulk of §4 is devoted to showing that the inequality

deg(E∨ ⊗Q)≥0 + deg(Q∨ ⊗F2)
≥0 < deg(E∨ ⊗F2)

≥0 + deg(Q∨ ⊗Q)≥0.

holds for any proper sub-bundle Q ( F2 which also occurs as a quotient of E . This collection
of inequalities implies (1) by Theorem 3.3.11.

Assuming E satisfies (1), Lemma 3.3.14 and Proposition 3.3.6 reduce (2) to the verification
of the inequality

deg(E ⊗ K∨)≥0 − deg(K ⊗K∨)≥0 < deg(E∨ ⊗F2)
≥0

for a certain finite collection of K’s (this implication will be fleshed out in §5.4). The proof
of these inequalities forms the subject of §5; the precise statement is given in Theorem 5.1.1.

4. Step one: surjections of vector bundles

4.1. The goal. This section is devoted to establishing Step (1), as outlined in §3.4, wherein
we show that the obvious necessary numerical conditions required for a bundle E to surject
onto a given semistable bundle F are also sufficient. The precise statement is as follows.

Theorem 4.1.1. Let F be a semistable vector bundle on X. Let E be a vector bundle on X
such that

• rank E > rankF , and
• the maximal slope of E is less than or equal to µ(F).

Then E admits a surjection onto F .

Note that, by an argument similar to the one in 3.4, it suffices to treat the case where the
maximal slope of E is strictly less than µ(F).

By this reduction and Theorem 3.3.11, we are now reduced to proving the inequality

deg(E∨ ⊗Q)≥0 + deg(Q∨ ⊗F)≥0 < deg(E∨ ⊗F)≥0 + deg(Q∨ ⊗Q)≥0 (4.1)

for any Q which is both a quotient of E and a proper subbundle of F , under the assumption
that the maximal slope of E is strictly less than µ(F). (The strict inequality is false without
this latter strictness assumption, which is why we made the initial reduction to this case.)
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4.2. Some lemmas. We begin by translating the assumption that Q is a quotient of E into
numerical constraints on the slopes of their HN polygons.

Lemma 4.2.1. Suppose Q is a quotient of E. Then for every slope µ, the bundle Q≤µ is a
quotient of E≤µ. (Dually, if K is a subbundle of E, for every slope µ, the bundle K≥µ is a
subbundle of E≥µ.)

Proof. The composite quotient map E � Q � Q≤µ necessarily factors through E≤µ, since
E>µ is a direct sum of stable bundles with slopes greater than µ. �

Since we will prove (4.1) by interpreting the terms on both sides as areas of polygons, it is
convenient to have a “geometric” reformulation of the preceding lemma.

Corollary 4.2.2. Let Q be a quotient of E. Translate the HN polygons for Q and E in the
plane so that both their right endpoints lie at the origin. Then for every integer i from 1 to
rankQ, the slope of the part of the HN polygon for Q lying in the strip [−i,−i + 1] × R is
greater than or equal to the slope of the part of the HN polygon for E lying in this strip. (See
Figure 5.)

In particular, the HN polygon for Q always lies below the HN polygon for E (when aligning
right endpoints).

−i −i+ 1

HN(E)

HN(Q)

Figure 5. Illustration of Corollary 4.2.2.

Proof. Suppose for the sake of contradiction that on some interval [−i,−i + 1], the slope of
HN(Q) is less than that of HN(E). Let µ be the slope of the HN polygon for Q on this strip.
Then we would have rank E≤µ < i ≤ rankQ≤µ, contradicting Lemma 4.2.1. �

Remark 4.2.3. In this section, we will usually find it more convenient to align HN polygons
with their right endpoint at the origin. (In future sections, it will usually be more convenient
to align HN polygons with their left endpoint at the origin.)

4.3. Proof of Theorem 4.1.1. We are now ready to begin the proof of Theorem 4.1.1, the
main result of this section. The idea is to interpret each term of the inequality as the area of
a certain polygon, and to transform the polygons by area-preserving operations (specifically
translations and shears) until they can be easily compared.
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Proof of Theorem 4.1.1. Recall that we are trying to show

deg(E∨ ⊗Q)≥0 − deg(Q∨ ⊗Q)≥0 < deg(E∨ ⊗F)≥0 − deg(Q∨ ⊗F)≥0 (4.2)

for any Q which can occur as a quotient of E and a proper subbundle of F . As discussed
before, we assume here that the maximum slope of E is strictly less than the slope of F , which
is permissible by the initial reduction discussed in §4.1.

Write
−→
HN(E) = (~λj)1≤j≤s and

−→
HN(Q) = (~µi)1≤i≤s′ (under the notation introduced in

Definition 2.3.3). We will write λj for the slope of the vector ~λj , and so on. By Lemma 2.3.4,
we see that

deg(E∨ ⊗Q)≥0 − deg(Q∨ ⊗Q)≥0 =
∑
~λj�~µi

~λj × ~µi −
∑
~µk�~µi

~µk × ~µi

=
∑
i

 ∑
~λj�~µi

~λj −
∑
~µk�~µi

~µk

× ~µi
=
∑
i

~ai × ~µi

where
~ai =

∑
~λj�~µi

~λj −
∑
~µk�~µi

~µk.

Then the left side of (4.2) is equal to two times the shaded area in Figure 6 below.

~a3~a2~a1

~λ1 ~λ2

~λ3 = ~a4~µ1

~µ2
~µ3

~µ4

HN(E)

HN(Q)

Figure 6. Area interpretation of the left side of (4.2) in the case s = 3, s′ = 4,

with slope vectors ~µ1 � ~λ1 � ~µ2 � ~µ3 � ~λ2 � ~µ4 � ~λ3.

Note that for a fixed i, the left endpoint of
∑

~λj≤~µi
~λj (whose x-coordinate is − rank E≤~µj )

lies to the left of the left end point of
∑

~µk≤~µi ~µk by Lemma 4.2.1.

Now we analyze the right side of (4.2). Let HN(F) = (~γ). Note that the slope γ of
the semistable bundle F must be at least µi for all i, and strictly greater than λj for all j.
Therefore, by similar manipulations to those above, we have

RHS of (4.2) =

∑
j

~λj −
∑
i

~µi

× ~γ. (4.3)
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We note that the vector
∑

j
~λj −

∑
i ~µi has positive x-coordinate because rank E > rankQ,

and has slope ≤ λ1 ≤ γ because HN(Q) lies below HN(E) by Corollary 4.2.2.

If we align the left endpoints of the HN polygons for F and E , we then see that the right
side of (4.2) is twice the area of the shaded triangle in Figure 7 below.

~λ1

~λ2

~λ3
~µ1

~µ2
~µ3

~µ4

~γ

HN(E)

HN(Q)

HN(F)

Figure 7. Area interpretation of the right side of (4.2) in the case s = 3, s′ = 4

with slope vectors ~µ1 � ~λ1 � ~µ2 � ~µ3 � ~λ2 � ~µ4 � ~λ3.

Therefore, we need to show that the shaded area in Figure 6 (corresponding to the left
hand side of (4.2)) is smaller than or equal to the shaded area in Figure 7 (corresponding to
the right hand side of (4.2)), with equality if and only if Q = F . The general idea of the
proof is to apply shears to each of the triangles in turn so that their bases become horizontal,
making it easier to compare the areas.

First, we apply a shear transformation

T =

[
1 0
−γ 1

]
to the whole figure, so that the vector ~γ becomes horizontal. See Figure 8.

Remark 4.3.1. This shear is nearly equivalent to tensoring by O(−µ(F )). They are not quite
the same because O(−µ(F )) doesn’t have rank one. But for the purposes of the inequality
(4.2), tensoring by O(−µ(F )) would work just as well, as it multiplies both sides by the same
factor.

Remark 4.3.2. We make some simple observations about the effect of such a shear:

(1) The x-coordinates do not change, so the shear does not change the fact that the
horizontal length of the polygon for Q is at most the horizontal length of the polygon



28 C. BIRKBECK, T. FENG, D. HANSEN, S. HONG, Q. LI, A. WANG, AND L. YE

for F , which is strictly less than the horizontal length of the polygon for E . (This fact
is simply a reformulation of the inequalities rank E > rankF ≥ rankQ.)

(2) The slopes of all line segments decrease by γ, so the difference between slopes does
not change. In particular, Corollary 4.2.2 still holds, and we may now assume that
λj < 0 and µi ≤ 0 for all i and j.

(3) The determinant of T is 1, so applying T preserves all areas. Thus, to prove the
original inequality, we only need to prove the inequality for the transformed picture.

~λ1

~λ2

~λ3
~µ1

~µ2
~µ3

~µ4

γ

T

T (~λ1)

T (~λ2)

T (~λ3)

T (~µ1)

T (~µ2)

T (~µ3)

T (~µ4)

T (γ)

Figure 8. Effect of the shear T .

We now want to compute the area of each of the individual small triangles corresponding
to terms in the sum for the left hand side. Consider Figure 9 below.

Ai

Ai−1

Bi

Ci

Di

hi

Ei

xi

T (~µi)

Ti

A′i A′i−1

B′i

C ′i

hi

xi

Ti(T (~µi))

Figure 9
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Here Ai and Ai−1 are the two endpoints of T (~µi), and the vertex Bi is the last vertex of the
triangle whose area we are considering. By Corollary 4.2.2, Bi lies to the left of Ai. Extend
the line AiAi−1 out leftward so that it meets the vertical line though Bi and call the point of
intersection Ci.

We claim that Ci must lie below Bi. Indeed, the point Ai lies below the point (call it Di)
of HN(E) on the vertical line through Ai. Moreover, by Corollary 4.2.2 the slope of the line
from Bi to Di has slope less than or equal to the slope of the line from Ci to Ai. These
observations imply that Ci lies below Bi and the distance from Ci to Bi is at least as large
as the distance from Ai to Di.

Let hi denote the distance from Bi to Ci, and xi denote the x-coordinate of ~µi (and T (~µi)).

Claim 4.3.3. We have

Area(∆Ai−1AiBi) =
1

2
hixi.

Proof of Claim 4.3.3. To see this, we apply a shear transformation

Ti =

[
1 0

γ − µi 1

]
.

Recall the observations (1), (2) and (3) in Remark 4.3.2 that we made about the effect of such
a shear.

Let A′i−1, A
′
i, B

′
i, C
′
i be respectively the image of Ai−1, Ai, Bi, Ci under Ti (see Figure 9).

By observations (1) and (2) we have the following facts:

• the line segment A′i−1A
′
i is horizontal of length xi,

• the line segment B′iC
′
i is vertical of length hi.

In particular, Area(∆A′i−1A
′
iB
′
i) =

1

2
hixi. Now the claim follows since Area(∆Ai−1AiBi) =

Area(∆A′i−1A
′
iB
′
i) by observation (3). �

We now let h denote the y-coordinate of the vector
∑

j T (~λj)−
∑

i T (~µi). Note that h > 0

since HN(Q) ≤ HN(E), rank(Q) < rank(E), and the slopes of T (~λi) are negative.

Claim 4.3.4. We have hi ≤ h for all i, with equality achieved for all i only if Q has only one
slope µ1 and µ1 = γ.

First let’s see that Claim 4.3.4 finishes off the proof of (4.2). Since xi is the x-coordinate
of the vector ~µi, the sum

∑
i xi is equal to rank(Q). On the other hand, the vector T (~γ) is a

horizontal vector of length rank(F). Thus by Claim 4.3.3, we find that

LHS of (4.2) = 2
∑
i

Area(∆Ai−1AiBi) =
∑
i

xihi

≤ h
∑
i

xi = h · rank(Q)

≤ h · rank(F) = h · ‖T (~γ)‖ = RHS of (4.2).

Moreover, equality can only hold if rank(Q) = rank(F) and Q is semistable of slope µ1 = γ,
which implies that Q = F .

Thus, we have reduced to proving Claim 4.3.4.
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Proof of Claim 4.3.4. To aid with proving this, we add in a helper horizontal line starting from
the left endpoint of T (HN(Q)) extending out to negative infinity to obtain an augmented
polygon T (HN(Q))′ (see the dashed line in Figure 8). The resulting figure is convex and
retains the property described in Corollary 4.2.2.

Let Ei denote the point directly under Bi lying on this polygon (see Figure 9). By convexity,
the length hi is at most the length of the line from Bi to Ei, with equality if and only if the
line segment AiCi lies on the augmented polygon T (HN(Q))′.

By the analogue of the property described in Corollary 4.2.2 for the augmented polygon
T (HN(Q))′, as we move left, the vertical distance from T (HN(E)) to this augmented polygon
is strictly increasing. But the distance at the far left when we reach the end of T (HN(E))
is precisely h. This shows that |BiEi| ≤ h. Equality occurs precisely when Bi is the left
endpoint of T (HN(E)) and Ci = Ei is the point directly below the left endpoint of T (HN(E)),
which happens if and only if the line segment AiCi is horizontal. But this occurs precisely
when µj = γ for all j ≤ i. Thus, if the equality is achieved for all i, Q must have only one
slope µ1 = γ. �

We have finished proving Theorem 4.1.1. �

5. Step two: extensions of semistable bundles

5.1. The key inequality. The bulk of this section is devoted to proving the following result.

Theorem 5.1.1. Let D and F be semistable vector bundles on X such that
−→
HN(D) = (~β),−→

HN(F) = (~γ), and ~β � ~γ. Suppose E is a vector bundle on X such that
−→
HN(E) ≤ −→HN(D⊕F)

with the same endpoints. Suppose also that the maximal slope of E is strictly less than the
slope of F .

Let K be a vector bundle on X with the same rank and degree as D satisfying the following
two conditions:

(i) the maximal slope of K is at most the maximal slope of E;
(ii) K is not semistable.

Then we have a strict inequality

deg(K∨ ⊗ E)≥0 < deg(K∨ ⊗K)≥0 + deg(E∨ ⊗F)≥0. (5.1)

Setup and notation. Write

• −→HN(E) = (~λj)1≤j≤s,

• −→HN(K) = (~µi)1≤i≤s′ .

By assumption HN(E) ≤ HN(D ⊕F), so

~λ1 ≺ ~γ and ~λs � ~β.

In addition we have ~µ1 � ~λ1 by assumption (i) of Theorem 5.1.1. On the other hand,

assumption (ii) of Theorem 5.1.1 says ~µs′ ≺ ~β, which implies ~µs′ ≺ ~λs as ~β � ~λs.
We will first sketch the proof of Theorem 5.1.1 in geometric terms, because we feel that

this conveys a better intuition for the formal argument, whose geometric meaning might be
obscured by the algebraic manipulations. Then we will carefully present a thorough algebraic
proof.
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5.2. Proof sketch of Theorem 5.1.1. Let O, P1,. . . ,Ps′+1 be the vertices of
−→
HN(F ⊕ K),

and O, Q1, . . . , Qs+1 = Ps′+1 be the vertices of
−→
HN(E). (See Figure 10.)

~γ

~µ1

~µ2

. . .

~λ1

~λ2

. . .

O

P2

P3

P = Ps′+1 = Qs+1

P1

Q1

Q2

Figure 10. Comparison of the HN vectors for HN(K⊕F) (the top solid lines)
and HN(E) (the bottom solid lines).

First, we claim that the right hand side of the inequality (5.1) is twice the area of the
convex polygon OP1 . . . Ps′+1. Indeed, by Proposition 2.3.5 we see that deg(K∨ ⊗ K)≥0 is
twice the area of the polygon P1P2 . . . Ps′+1, while

deg(E∨ ⊗F)≥0 =
s∑
i=1

~λj × ~γ =
−−−−→
OPs′+1 ×

−−→
OP1

is twice the area of the triangle ∆OP1Ps′+1. Summing then gives us the area of polygon
OP1 . . . Ps′+1. (See Figure 11.)
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~γ

~µ1

~µ2

~µ3

1
2
deg(
K∨ ⊗K

)≥
0

O

P2

P3

P4

P1

~λ1
+
~λ2

+
~λ31

2
de
g(
E∨
⊗F

)
≥0

Figure 11. Geometric interpretation of the left hand side of (5.1).

Now consider the left side of the inequality (5.1). By Lemma 2.3.4, we have

deg(K∨ ⊗ E)≥0 =
∑
~µi�~λj

~µi × ~λj

=

s′∑
i=1

~µi ×

 ∑
~λj�~µi

~λj


=

s′∑
i=1

−−−−→
PiPi+1 ×

−−−→
OQji ,

where Qji is some vertex of HN(E). Now we claim that
−−−−→
PiPi+1 ×

−−−→
OQji is at most twice the

area of the triangle OPiPi+1, with equality if and only if Qji lies on the line segment PiPi+1.

Indeed, twice the area of OPiPi+1 is just
−−−−→
PiPi+1 ×

−−→
OPi, so

−−−−→
PiPi+1 ×

−−→
OPi −

−−−−→
PiPi+1 ×

−−−→
OQji =

−−−−→
PiPi+1 ×

−−−→
PiQji

is by convexity considerations just twice the area of ∆PiPi+1Qji , which is nonnegative. By
convexity, it is 0 if and only if Qji lies on the segment PiPi+1. Then we have

deg(K∨ ⊗ E)≥0 ≤
s′∑
i=1

2 ·Area(∆OPiPi+1)

= 2 ·Area(OP1 . . . Ps′+1)

= deg(K∨ ⊗K)≥0 + deg(E∨ ⊗F)≥0.
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To see equality cannot hold, observe that, as by assumption
−→
HN(E) ≤ −→HN(F ⊕D), all Qji lie

inside the triangle ∆OP1Ps′+1. But since the largest slope of E is strictly less than the slope
of F , we see that Qj1 cannot be the point P1, so cannot lie on the segment P1P2 as K is not
semistable. This gives the theorem. �

5.3. Formal proof of Theorem 5.1.1. We now carefully go through a formal argument for
Theorem 5.1.1. This is essentially just a thorough formalization of §5.2, so the reader who is
already convinced by §5.2 can skip ahead to the next subsection.

Maintain the notation of §5.1. By rearranging the vectors ~µi and ~λj in order of decreasing
slopes, we get a sequence of the form

~λ1 � · · · � ~λj1 � ~µ1 � · · · � ~µi1 � ~λj1+1 � · · · � ~λj2 � ~µi1+1 � · · · � ~µi2 � · · ·
� ~λjt−1+1 � · · · � ~λjt=s � ~µit−1+1 � · · · � ~µit=s′ .

For convenience, we set i0 = j0 = 0. Note that inequalities between ~λjk and ~µik−1+1 are not

strict. Let ~β = (r, d) and ~γ = (r′, d′).

5.3.1. A simple special case. Let us first consider the case when t = 1, which occurs precisely

when ~µi � ~λj for all 1 ≤ i ≤ s′ and 1 ≤ j ≤ s. By Lemma 2.3.4, we compute

deg(K∨ ⊗ E)≥0 =
∑
~µi�~λj

~µi × ~λj =
∑
i,j

~µi × ~λj = deg(K∨ ⊗ E)

= rank(K) deg(E)− rank(E) deg(K)

= r(d+ d′)− (r + r′)d = rd′ − r′d,
deg(E∨ ⊗F)≥0 =

∑
~λj�~γ

~λj × ~γ =
∑
j

~λj × ~γ = deg(E∨ ⊗F)

= rank(E) deg(F)− rank(F) deg(E)

= (r + r′)d′ − r′(d+ d′) = rd′ − r′d.
In particular, we have deg(K∨⊗E)≥0 = deg(E∨⊗F)≥0. On the other hand, Proposition 2.3.5
yields deg(K∨⊗K)≥0 > 0, as K is not semistable. Hence we deduce the desired inequality, in
this case.

5.3.2. Reduction to simpler slope relations. We now assume that t ≥ 2. We now reduce to
the case where the slope vectors satisfy a simpler “intertwining” relation.

Define, for each index k = 1, 2, . . . , t,

~̃λk := ~λjk−1+1 + · · ·+ ~λjk ,

~̃µk := ~µik−1+1 + · · ·+ ~µik .

Then we clearly have

~̃λ1 � ~̃µ1 � ~̃λ2 � ~̃µ2 � · · · � ~̃λt � ~̃µt. (5.2)

Define two vector bundles K̃ and Ẽ on XC by
−→
HN(K̃) = (~̃µk)1≤k≤t and

−→
HN(Ẽ) = (~̃λk)1≤k≤t.

Then we have the following properties of K̃ and Ẽ :

• deg(K̃) = deg(K) = d, rank(K̃) = rank(K) = r;

• deg(Ẽ) = deg(E) = d+ d′, rank(Ẽ) = rank(E) = r + r′;
• K̃ is not semistable since t ≥ 2;
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• the maximal slope of K̃ is less than or equal to the maximal slope of Ẽ , as ~̃µ1 � ~̃λ1;
• the maximal slope of Ẽ is strictly less than the slope of F , as ~̃λ1 � ~λ1 ≺ ~γ;
• HN(Ẽ) ≤ HN(E), and hence HN(Ẽ) ≤ HN(D ⊕F).

We claim that it suffices to prove Theorem 5.1.1 for K̃ and Ẽ .

Indeed, K̃ and Ẽ satisfy the same assumptions made on K and E in Theorem 5.1.1. It is
also straightforward to check the identities

deg(K∨ ⊗ E)≥0 = deg(K̃∨ ⊗ Ẽ)≥0 and deg(E∨ ⊗F)≥0 = deg(Ẽ∨ ⊗F)≥0

using Lemma 2.3.4 and the inequalities in (5.2). In addition, since HN(K̃) ≤ HN(K), Corollary
2.3.6 yields

deg(K̃∨ ⊗ K̃)≥0 ≤ deg(K∨ ⊗K)≥0.

Hence for the purpose of establishing Theorem 5.1.1 it suffices to prove the inequality

deg(K̃∨ ⊗ Ẽ)≥0 < deg(K̃∨ ⊗ K̃)≥0 + deg(Ẽ∨ ⊗F)≥0. (5.3)

5.3.3. Some algebraic reductions. We now complete the proof of Theorem 5.1.1.

Using Lemma 2.3.4 and the inequalities in (5.2), we find

deg(K̃∨ ⊗ Ẽ)≥0 =
∑
i≥j

~̃µi × ~̃λj =

t∑
i=1

~̃µi × i∑
j=1

~̃λj


deg(K̃∨ ⊗ K̃)≥0 =

∑
i≥j

~̃µi × ~̃µj =
t∑
i=1

~̃µi × i∑
j=1

~̃µj

 ,

deg(Ẽ∨ ⊗F)≥0 =
t∑

j=1

~̃λj × ~γ =

 t∑
j=1

~̃λj

× ~γ.
Note that ~γ + (~̃µ1 + · · ·+ ~̃µt) = ~̃λ1 + · · ·+ ~̃λt, so we may write

deg(Ẽ∨ ⊗F)≥0 =

(
~γ +

t∑
i=1

~̃µi

)
× ~γ =

t∑
i=1

~̃µi × ~γ.

Substituting this above yields

deg(K̃∨ ⊗ K̃)≥0 + deg(Ẽ∨ ⊗F)≥0 =
t∑
i=1

~̃µi ×
~γ +

i∑
j=1

~̃µj


=

t∑
i=1

~̃µi ×
 t∑
j=1

~̃λj −
t∑

j=i+1

~̃µj

 .
(5.4)
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We thus have

deg(K̃∨ ⊗ K̃)≥0 + deg(Ẽ∨ ⊗F)≥0 − deg(K̃∨ ⊗ Ẽ)≥0

=

t∑
i=1

~̃µi ×
 t∑
j=1

~̃λj −
t∑

j=i+1

~̃µj

− ~̃µi × i∑
j=1

~̃λj


=

t∑
i=1

~̃µi ×
 t∑
j=i+1

~̃λj −
t∑

j=i+1

~̃µj


=

t−1∑
i=1

~̃µi ×
 t∑
j=i+1

~̃λj −
t∑

j=i+1

~̃µj

 .
Hence, to prove (5.3), it suffices to prove

0 < ~̃µi ×

 t∑
j=i+1

~̃λj −
t∑

j=i+1

~̃µj

 for i = 1, 2, . . . , t− 1. (5.5)

5.3.4. Completion of the proof. For the conclusion, it will be useful to refer to the geometry
of the HN polygons. Let O,P1, P2, . . . , Pt+1 = P be the breakpoints of HN(K̃ ⊕ F), listed in
order of increasing x-coordinates. Similarly, let O = Q1, Q2, . . . , Qt+1 = P be the breakpoints
of HN(Ẽ), also listed in order of increasing x-coordinates. See Figure 12.

~γ

~̃µ1

~̃µ2

~̃µ3

~̃λ1

~̃λ2

~̃λ3

O = Q1

P2

P3

P = P4 = Q4

P1

Q2

Q3

Figure 12. Comparison of the HN vectors for HN(K̃⊕F) (the top solid lines)

and HN(Ẽ) (the bottom solid lines).
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Then we have ~̃µi =
−−−−→
PiPi+1 and ~̃λj =

−−−−−→
QjQj+1, which yields

t∑
j=i+1

~̃λj −
t∑

j=i+1

~̃µj =
t∑

j=i+1

−−−−−→
QjQj+1 −

t∑
j=i+1

−−−−→
PjPj+1

=
−−−−−−→
Qi+1Qt+1 −

−−−−−−→
Pi+1Pt+1

=
−−−−−−→
Qi+1Pi+1.

Thus we may rewrite (5.5) as

0 <
−−−−→
PiPi+1 ×

−−−−−−→
Qi+1Pi+1. (5.6)

We will prove the inequality (5.6) by dividing into three cases depending on the sign of the

x-coordinate of
−−−−−−→
Qi+1Pi+1. Note that the x-coordinate of

−−−−→
PiPi+1 is always positive.

(1) Suppose first that the x-coordinate of
−−−−−−→
Qi+1Pi+1 is positive. In this case, (5.6) is

equivalent by Lemma 2.3.2 to

−−−−→
PiPi+1 ≺

−−−−−−→
Qi+1Pi+1

⇐⇒ −−−−→Pi+1Pi �
−−−−−−→
Pi+1Qi+1

which clearly holds by the fact that HN(Ẽ) ≤ HN(K̃ ⊕ F) and ~̃λ1 ≺ ~γ.

(2) Next consider the case when the x-coordinate of
−−−−−−→
Qi+1Pi+1 is negative. In this case,

(5.6) is equivalent to
−−−−→
PiPi+1 �

−−−−−−→
Qi+1Pi+1.

In fact, one has a stronger inequality

−−−−−−→
Pi+1Pi+2 �

−−−−−−→
Qi+1Pi+1

(this is stronger because
−−−−→
PiPi+1 �

−−−−−−→
Pi+1Pi+2 by definition), which can be easily seen

by the fact that HN(Ẽ) ≤ HN(K̃ ⊕ F).

(3) It remains to consider the case when the x-coordinate of
−−−−−−→
Qi+1Pi+1 is zero. In this case,

(5.6) is equivalent to saying that the y-coordinate of
−−−−−−→
Qi+1Pi+1 is positive. In fact, this

is clearly nonnegative by the fact that HN(Ẽ) ≤ HN(K̃ ⊕ F), so it remains to prove
that this coordinate is never zero. Suppose for contradiction that the y-coordinate of−−−−−−→
Qi+1Pi+1 is zero, which means that Pi+1 = Qi+1. However, since HN(Ẽ) ≤ HN(D̃⊕F),

the only point on K̃ which can also lie on Ẽ is P1. Hence we must have P1 = Q1 = O,
which is clearly a contradiction.

�

Remark 5.3.1. We explain a geometric perspective of (5.4), as an example of the translation
from the geometric argument sketched in §5.2. As in the proof, let O = P0, P1, P2, . . . , Pt+1

be the breakpoints of HN(K̃ ⊕ F), listed in the order of increasing x-coordinates. Note that

~γ =
−−→
OP1, ~̃µi =

−−−−→
PiPi+1 and ~̃λ1 + · · ·+ ~̃λt =

−−−−→
OPt+1.

By Proposition 2.3.5, deg(K̃∨ ⊗ K̃)≥0 = 2 ·Area(P1P2 · · ·Pt+1). In addition, we have

deg(Ẽ∨ ⊗F)≥0 = (~̃λ1 + · · ·+ ~̃λt)× ~γ =
−−−−→
OPt+1 ×

−−→
OP1 = 2 ·Area(4OP1Pt+1).
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We may thus write (please refer to Figure 13)

deg(K̃∨ ⊗ K̃)≥0 + deg(Ẽ∨ ⊗F)≥0 = 2 ·Area(P1P2 · · ·Pt+1) + 2 ·Area(4OP1Pt+1)

= 2 ·Area(OP1P2 · · ·Pt+1)

= 2

t∑
i=1

Area(4OPiPi+1) = 2

t∑
i=1

∆i

where we set ∆i = Area(4OPiPi+1).

~γ

~̃µ1

~̃µ2

~̃µ3

1
2
deg

(K̃
∨ ⊗ K̃)

≥0

O

P2

P3

P4

P1

~̃λ1
+~̃
λ2

+~̃
λ3

1
2
de
g(
Ẽ∨
⊗F

)
≥0

Figure 13. Geometric interpretation of the left hand side of (5.4).

On the other hand, for each i = 1, 2, . . . , t we have (please refer to Figure 14):

2∆i =
−−−−→
PiPi+1 ×

−−−−→
OPi+1 =

−−−−→
PiPi+1 ×

(−−−−→
OPt+1 −

−−−−−−→
Pi+1Pt+1

)
= ~̃µi ×

 t∑
j=1

~̃λj −
t∑

j=i+1

~̃µj

 .

Hence we deduce (5.4).

5.4. The extension theorem. We can now complete the proof of the extension theorem.

Proof of Theorem 1.1.2. Let the notation and assumptions be as in the theorem. By the
reduction in 3.4, it suffices to treat the case where the maximal slope of E is strictly less than
the slope of F2. By Theorem 4.1.1, there exists a surjection E → F2; equivalently, Surj(E ,F2)
is nonempty. It now clearly suffices to show that Surj(E ,F2)

F1 is nonempty.

Let K be a vector bundle on X which is isomorphic to the kernel of a surjective map from
E to F2. If K is not semistable, it clearly satisfies the assumptions in Theorem 5.1.1, so we
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~γ

~̃µ1

~̃µ2

~̃µ3

∆1

∆2

∆3

~̃λ1
+~̃
λ2

+~̃
λ3

O

P2

P3

P4

P1

Figure 14. Geometric interpretation of the right hand side of (5.4).

obtain an inequality

deg(K∨ ⊗ E)≥0 < deg(K∨ ⊗K)≥0 + deg(E∨ ⊗F2)
≥0.

Since Surj(E ,F2) is not empty, we can insert this inequality into the dimension formulas for
Surj(E ,F2)

K and Surj(E ,F2) established in Proposition 3.3.6 and Lemma 3.3.14, respectively,
yielding the strict inequality

dimSurj(E ,F2)
K < dimSurj(E ,F2)

for any K satisfying the assumptions of Theorem 5.1.1. Let S denote the set of isomorphism
classes of such Ks. Now, arguing as the proof of Theorem 3.3.11, we deduce that the dimension
of X = |Surj(E ,F2)|r |Surj(E ,F2)

F1 | satisfies the inequality

dimX ≤ sup
K∈S

deg(K∨ ⊗ E)≥0 − deg(K∨ ⊗K)≥0 < deg(E∨ ⊗F2)
≥0,

which again yields a contradiction if |Surj(E ,F2)
F1 | is empty. �

Remark 5.4.1. There is a more quantitative form of Theorem 1.1.2 which we would like to
explain. To describe this result, fix bundles Fi as in the statement of the theorem, and let
Ext(F2,F1) be the sheafification of the presheaf sending S ∈ Perf/SpaF to H1(XS ,F∨2,S⊗F1,S).

By arguments similar to those in §3.3, one checks that Ext(F2,F1) is a locally spatial and
partially proper diamond over SpdF , which (by construction) parametrizes all isomorphism
classes of extensions of F2 by F1. For any given vector bundle E , let Ext(F2,F1)

E denote the
locally closed subdiamond of Ext(F2,F1) parametrizing extensions which are isomorphic to
E at all geometric points. According to Theorem 1.1.2, Ext(F2,F1)

E is nonempty if and only
if HN(E) ≤ HN(F1 ⊕F2). We then have the following result.

Theorem 5.4.2. For any E such that HN(E) ≤ HN(F1 ⊕ F2), the diamond Ext(F2,F1)
E is

equidimensional of dimension

deg(F2 ⊗F∨1 )− deg(E ⊗ E∨)≥0.
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Using Proposition 2.3.5, one easily checks that the difference of degrees appearing here is
twice the area of the region enclosed between HN(E) and HN(F1 ⊕F2).

Roughly, the idea of the proof is that after rigidifying the extension, we obtain an Aut(E)-
torsor

Ext(F2,F1)
E,♥ → Ext(F2,F1)

E

which can also be identified (more or less) with Surj(E ,F2)
F1,♥. One then argues using

dimension theory as before.

6. Multi-step filtrations

We now explain how to deduce Theorem 1.1.4 from Theorem 1.1.2; note that the latter is
simply the special case k = 2 of the former.

As in the assumptions of Theorem 1.1.4, suppose vector bundles F1,F2, . . . ,Fk are given,
along with E such that

HN(E) ≤ HN(F1 ⊕ ...⊕Fk).
We want to find a filtration on E whose subquotients are Fi. We induct on k, with the case
k = 1 being trivial; we shall need to use the case k = 2, which is Theorem 1.1.2, in the
inductive step.

Proof of Theorem 1.1.4. Consider graphing the HN polygons of E and F1 ⊕ ... ⊕ Fk. By
assumption, we have

HN(F1 ⊕ ...⊕Fk) ≥ HN(E).

Since Fk is semistable and has the largest slope, it lies above HN(E). (See Figure 15.)

E

Fk−1
. . .

F1Fk

Figure 15. Depiction of the HN polygons for E and F1 ⊕ . . .⊕Fk.

Now take the upper convex hull of HN(Fk) and HN(E). This gives a polygon which can
be written as HN(E ′) for a bundle E ′ ' Fk ⊕ Ek−1 for some Ek−1 (shown in blue below). We
have not yet shown that Ek−1 is a sub-bundle of E , but we will do so shortly, and then Ek−1
will indeed be the first step of the filtration claimed in Theorem 1.1.4.

Note that HN(Ek−1) will consist of a subset HN(Hk−1) of HN(E) together with a line
segment of maximal slope, which is HN(Gk−1) for some Gk−1, connecting Fk to some vertex of
E . (See Figure 16.) Finally, HN(E) is the union of HN(Hk−1) and HN(Lk−1) for some Lk−1.
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Ek−1

Lk−1
Hk−1

Fk−1
. . .

F1Fk

Gk−1

Figure 16. Construction of the first step of the filtration.

Since all HN filtrations split (Corollary 2.2.11), we know that

Ek−1 ' Gk−1 ⊕Hk−1 (6.1)

and

E ' Lk−1 ⊕Hk−1. (6.2)

Now, by the k = 2 case, which is a reformulation of Theorem 1.1.4, we know that there exists
an exact sequence

0→ Gk−1 → Lk−1 → Fk → 0

Pushing out this sequence with respect to Gk−1 → Gk−1⊕Hk−1 (i.e. taking the direct sum of

the first two terms with Hk−1 Id−→ Hk−1), we obtain an exact sequence (using (6.1) and (6.2))

0→ Ek−1 → E → Fk → 0.

Thus we have constructed a subbundle Ek−1 with E/Ek−1 = Fk.

Ek−1

Fk−1Fk−1
. . .

F1

Figure 17. The proof is completed by induction.

By convexity of the HN polygons, we have HN(Ek−1) ≤ HN(F1⊕ . . .⊕Fk−1) with the same
endpoints. We can then conclude by induction (Figure 17).

�
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Représentations p-adiques de groupes p-adiques. I. Représentations galoisiennes et (φ,Γ)-modules.
MR 2493220

[Ked16] , Noetherian properties of Fargues-Fontaine curves, Int. Math. Res. Not. IMRN (2016), no. 8,
2544–2567. MR 3519123

[KL15] Kiran S. Kedlaya and Ruochuan Liu, Relative p-adic Hodge theory: foundations, Astérisque (2015),
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