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Abstract: The thermodynamics, structures, and applications of thermoresponsive systems, consisting
primarily of water solutions of organic salts, are reviewed. The focus is on organic salts of low melting
temperatures, belonging to the ionic liquid (IL) family. The thermo-responsiveness is represented by
a temperature driven transition between a homogeneous liquid state and a biphasic state, comprising
an IL-rich phase and a solvent-rich phase, divided by a relatively sharp interface. Demixing occurs
either with decreasing temperatures, developing from an upper critical solution temperature (UCST),
or, less often, with increasing temperatures, arising from a lower critical solution temperature (LCST).
In the former case, the enthalpy and entropy of mixing are both positive, and enthalpy prevails at
low T. In the latter case, the enthalpy and entropy of mixing are both negative, and entropy drives
the demixing with increasing T. Experiments and computer simulations highlight the contiguity of
these phase separations with the nanoscale inhomogeneity (nanostructuring), displayed by several
ILs and IL solutions. Current applications in extraction, separation, and catalysis are briefly reviewed.
Moreover, future applications in forward osmosis desalination, low-enthalpy thermal storage, and
water harvesting from the atmosphere are discussed in more detail.

Keywords: thermoresponsive solutions; ionic liquids; UCST; LCST; nanostructured liquids; computer
simulation; desalination; forward osmosis

1. Introduction

Thermoresponsive systems are “a special case of” responsive materials [1,2], whose
properties crucially depend on external stimuli, which, in the thermoresponsive case [3],
primarily consist of a change in temperature. Since every real material will react to changing
conditions, such as temperature and pressure, the important role in the definition is played
by the crucial qualification of the change displayed by the system. In the present discussion,
the systems of interest are solutions of organic salts in water and, to a lesser extent, in
other solvents. Then, the crucial response to changing temperature will be a reversible
transition between a homogeneous state and a phase-separated one, consisting of salt-rich
and solvent-rich phases separated by a relatively sharp interface. Moreover, organic salt
belongs to the room temperature ionic liquid (IL) variety, which, in recent decades, has
been the subject of chemical physics research studies and there are high expectations for its
use in advanced applications [4]. Since the major portion of this discussion will concern
water solutions, the temperatures of interest will be primarily the 0 ≤ T ≤ 100 ◦C range
of liquid water. Despite these drastic limitations, the topic still covers a broad range of
systems, phenomena, and applications.
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The solubility gap—as a function of temperature that defines a thermoresponsive
fluid—may manifest itself in two major ways (see Figure 1). In most cases, the system
will be mixed at high temperatures and demixed at low temperatures, having a so-called
upper critical solution temperature (UCST) (see reference [5] in the IL context). In a smaller
number of cases, displaying a so-called lower critical solution temperature (LCST), the
system is mixed at low temperatures and demixed at high temperatures, a somewhat
counterintuitive behaviour, given the role of positional (ideal) entropy.

Figure 1. Topology of phase diagrams showing UCST and LCST states (red dots). The full line
separates homogeneous and biphasic (II) states. Slightly adapted and reprinted with permission from
reference [6].

A solubility gap will result in stable biphasic systems, which are widely used as
heterogeneous reaction media, but especially for separation and extraction [7] based on
the directional diffusion of organic and biological molecules or metal ions across the
liquid–liquid interface. In a genuine biphasic system, chemical species travel macroscopic
distances to reach the interface. A thermoresponsive transition provides a way to transform
a homogeneous state—in which reacting species are in close contact—into a biphasic state,
in which species are segregated, having been separated through a collective mechanism
not necessarily diffusion-limited. Since it is based on an equilibrium property, the mix-
ing/demixing transition is reversible, which is an essential feature for several applications.

Needless to say, a solubility gap as a function of temperature is not an exclusive
property of IL solutions. Even before the quest for smart materials, several studies have
analysed the stability with respect to demixing of homogeneous solutions made of solute
molecules dissolved in water or other solvents [8]. Examples of neutral mixtures displaying
an upper critical solution temperature are easy to find [8–10]; moreover, several cases of
LCST are documented in the literature [11]. The complexity of the phase behavior of even
simple fluids is illustrated by the systematic (although not fully exhaustive) discussion
of the phase diagrams derived from the van der Waals equation of state for binary fluid
mixtures (therefore a strictly limited selection) reported in reference [12]. Another related
research field has been (and still is) represented by thermoresponsive systems made of
polymers dissolved in molecular solvents [13–15]. In the language of polymer physics, the
homogeneous state corresponds to good solvent conditions, characterised by extended
chains, while the demixed state corresponds to poor solvent conditions and collapsed
chains. Therefore, in UCST cases, chains are collapsed below Tc and extended above
Tc. The reverse occurs for LCST systems. Regarding polymer, most thermoresponsive
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polymer/water solutions display LCST, while UCST systems are harder to find. The
opposite seems to be true for polymers dissolved in organic solvents [16].

In the present review, the focus is on IL/solvent systems, whose solute, i.e., the ILs,
have intermediate complexity between simple fluids and polymer solutions, although the
upper limit of solvent and especially solute complexity is left unspecified. Present and con-
ceivable future applications greatly expand the scope of the discussion, covering separation
and purification technologies [17] biophysics, desalination, and low enthalpy heat storage.
These technologies are increasingly important, for instance, in the environmental context,
to extract metal pollutants from water, or to increase the future availability of fresh water.
The many applications in catalysis are only briefly mentioned since a specific and more
chemical oriented review is available in reference [18] (see also reference [19] for catalysis
in thermoresponsive non-IL solutions).

The first major conceptual point in analysing thermoresponsive liquid mixtures con-
cerns the nature of the critical point that gives UCST and LCST systems their name. Mix-
ing/demixing of neutral fluid mixtures belongs to the 3D Ising universality class [20,21].
The dynamics of the transition, investigated again for neutral species, is also heavily af-
fected by these universality properties [22]. Of course, the presence of mobile electrostatic
charges, and long range Coulomb interactions need to be carefully taken into account.

The simplest model of salt in a solution is provided by the so-called restricted primitive
model (RPM), consisting of hard spheres of equal diameters and opposite charges moving
in a frictionless dielectric continuum, which plays the role of an implicit solvent. In this
idealised picture, the liquid–vapour coexistence curve predicted by theories and deter-
mined by the Gibbs-ensemble Monte Carlo simulation [23] is interpreted as a solubility gap
between a salt-rich (the liquid) and a solvent-rich (the vapour) phase, at moderate tempera-
tures, terminating at a critical point representing the UCST of the solution. The criticality
class of this UCST was long-believed to be the mean field, as suggested by the long range
of potential [24]. However, screening affects the range of the effective interactions, and
the present consensus is that even for RPM, the criticality class is 3D Ising, having critical
exponents β =∼ 0.325, γ ∼ 1.24, ν ∼ 0.63. In the context of our discussion, the UCST of
RPM is important, since it shows that Coulomb interactions alone are sufficient to drive
phase separation. Moreover, if the dielectric constant of the implicit solvent is assumed to
be a decreasing function of T, the upper critical point might turn into a lower critical point,
showing a way in which LCST or even closed-loop miscibility gaps might arise [25].

The RPM, however, is far from being an adequate model for ILs, which, even in the
pure bulk phase differ from a primarily Coulomb paradigm in many essential ways [26],
exemplified by their low melting temperature, large deviation of electric conductivity from
the Nernst–Einstein relation, or, in water solution, by a relatively low osmolality with
respect to a fully dissociated electrolyte. In IL/water solutions, therefore, the liquid–liquid
solubility gap may arise from specific ion–water interactions, due to dispersion energy
or related to hydrogen bonding (HB) or lack thereof [27]. In the literature, these cases
are referred to as solvophobic phase separation [24]. The effect of hydrogen bonding on
solubility/miscibility is also apparent in solutions of IL with several organic solvents. More-
over, in a few cases, hydrogen bonding may occur between anion pairs (anti-electrostatic
hydrogen bonding [28]), promoting ion aggregation and demixing. Despite the variety
of microscopic interactions and mechanisms, the phase separation in solutions of ILs and
molecular solvents still belong to the 3D Ising universality class, as summarised in the
following paragraph.

A detailed and quantitative early analysis of critical properties of an IL/water solu-
tion is reported in reference [29], with the IL being choline bis(trifluoromethylsulfonyl)
[Chol][NTf2] (see also reference [30], on [bmim][BF4], and reference [31] on [N3444][I]).
These studies find 3D Ising critical exponents, although such a behaviour might only be
observed in the close vicinity of the critical point situated at concentration xc and tempera-
ture Tc. The early interest in critical point properties of simple and complex electrolytes
has not been retained in more recent discussions. The exception to this statement is the
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very recent study of criticality for the UCST of 1,4-dioxane solutions in the [C8mim][NTf2]
IL [32]. Once again, close to the critical composition and temperature, 3D Ising critical
exponents are found. However, moving away from the critical composition, correlation
length and optical thickness measured at constant concentration and approaching the
spinodal temperature from above (i.e., in the homogeneous phase, see Figure 2) give mean
field exponents. Away from xc, however, these are not genuine critical exponents; therefore,
the result is in fact compatible with the most recent accepted picture of 3D Ising exponents
at criticality. Admittedly, up until now, the quantitative determination of critical properties
of IL solutions has not been extensive, having been limited to only a few thermoresponsive
cases. However, critical phenomena are the realm of universality [33], and the few explicit
results that are available are sufficient to state that the critical exponents for the demixing
of IL solutions at UCST and LCST are 3D Ising.

Figure 2. Characterisation of the UCST line in [C8mim][NTf2] in 1,4-dioxane. x1,4−DIO is the molar
concentration of dioxane in the solution. The arrows show the direction in the (x1,4−DIO, T) plane
followed by measurements to characterise the system critical properties. Reprinted with permission
from reference [32].

Anticipating the broad picture that emerges from experiments and computational
studies, one can say that UCST and LCST are equilibrium transitions driven by enthalpy
and entropy, respectively. Moreover, since hydrophobicity/hydrophilicity play a role, the
number and structure of hydrogen bonds are important quantitative aspects, and, as a
matter of fact, they depend mainly on the nature of the anion. The entropy variations
that underlie the peculiar demixing with increasing temperature in LCST systems are due
primarily to the hydration/dehydration of the ions: hydration, especially when due to
strong and highly directional hydrogen bonds, decreases the entropy of the system since it
reduces the reciprocal freedom of water and ions. Hence, dehydration, which is an integral
part of the phase separation, is accompanied by a surge in entropy. Another way to look at
LCST is to conjecture the formation of hydrates at low temperature [34].

A remarkable phenomenon occurring in ILs is nanostructuring [35], observed for pure
IL and IL/water (or, more generally, IL/solvent) mixtures [36]. In the case of IL/water
solutions, nanostructuring is observed for amphiphilic IL compounds. The decrease of the
free energy of water/IL interfaces together with the tendency to segregate hydrophobic do-
mains give origin to nanometric aggregates in a system that retains its overall homogeneity.
The amphiphilic character of IL giving origin to nanostructuring, and the moderate hy-
drophobicity of IL underlying thermo-responsiveness are not necessarily the same property,
but they are clearly related aspects. More importantly, our computational investigations
of thermoresponsive IL/water mixtures show a contiguity between nanostructuring and
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phase separation. This point of view is supported by several previous experimental and
computational investigations, as will be discussed in the following sections.

Since this paper is not meant to be a general review on ILs, whose properties however
represent the necessary background for our discussion, we point the reader to a series of
reviews (see the list in reference [37]) published in the Chemical Review (ACS) special issue,
and recent reviews on industrial and environmental applications of ILs, references [38–40].
An additional important aspect that is relevant (in view of applications) but is only superfi-
cially mentioned in the review, concerns toxicity and adverse environmental impacts of
ILs. For reasons of length, we only report the most conventional point of view, noting that
several ILs are only moderately or not toxic, and their low volatility limits their dispersion
in the environment. The full picture, however, is far more complex, as discussed in the
recent review in reference [41].

We add here a few considerations on notation. Alkyl-phosphonium and -ammonium
cations are the most common constituents of the ILs relevant for this review. They will be
denoted by [Pijkl]+ and [Nijkl]+, respectively, with i, j, k, and l being the number of carbon
atoms in the alkyl chains. Popular alkyl substituted methylimidazolium cations will be
denoted by [Cimim]+, where i is again the length of the alkyl chain expressed in carbon
atoms. Short chain members of this family have a conventional name, i.e., [dmim]+ for
i = 1, [emim]+ for i = 2, [pmim]+ for i = 3, [bmim]+ for i = 4. The choline cation will be
denoted by [Chol]+. Anions that will be referred to without their systematic chemical name
will be bis(trifluoromethylsulfonyl)imide (bistriflimide, [NTf2]−), trifluoromethanesul-
fonate (triflate, [TfO]−) and trifluoroacetate ([TFA]−). A short series of benzenesulfonates
([BnzSO3]−) homologous species will be considered as well: toluenesulfonate [TsO]−,
2,4-dimethylbenzene sulfonate [DMBS]−, 2,4,6-trimethylbenzene sulfonate [TMBS]− An-
ions derived from amino acids (AA) will be indicated with the corresponding three-letter
abbreviation such as [Ala]−, [Cys]−, etc.

2. Theoretical, Computational, and Experimental Methods

The presence of a thermally activated mixing/demixing transition in the phase di-
agram of a binary liquid mixture is a genuine thermal equilibrium feature, whose first
analysis, therefore, relies on thermodynamics.

Starting from the demixed state, the system upon mixing will change its enthalpy and
entropy by ∆Hmix and ∆Smix, respectively. At given T and P, the variation of Gibbs free
energy upon mixing is:

∆Gmix = ∆Hmix − T∆Smix

and the system will spontaneously sit on the side of lowest G. If ∆Hmix > 0 and ∆Smix < 0,
the biphasic state is stable at all T. Similarly, if ∆Hmix < 0 and ∆Smix > 0, ∆Gmix is always
negative, and the system is mixed at all T. Thermoresponsive systems have ∆Hmix and
∆Smix of the same sign. The enthalpy term will prevail at low T, and the reverse will be
true at high T. Hence, when ∆Hmix < 0 and ∆Smix < 0, the system is mixed at low T, will
demix with increasing T, and present a LCST. When ∆Hmix > 0, and ∆Smix > 0, the system
presents a UCST, being demixed at low T, and mixed at high T. The ∆Hmix and ∆Smix will
depend on concentration; therefore, the transition temperature will also be concentration
dependent (see Figure 1).

Therefore, the first definite statement is that, in UCST systems, demixing is due to
enthalpy, while in LCST systems, it is driven by entropy. In IL/water solutions, the latter
case is less common than the former, and also somewhat counterintuitive, which makes the
LCST even more intriguing. Both cases underlie important applications, and sometimes the
same type of application, such as catalysis [18] or desalination [42,43], can be implemented
using either UCST or LCST systems.

From this qualitative starting point, the quantitative determination of phase equilibria
requires models for the thermodynamic properties of the IL/molecular solvent systems.
Equilibrium of phases and liquid–liquid equilibrium (LLE), in particular, requires pressure
to be constant throughout the system (mechanical equilibrium), and the chemical potential
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of each species to be the same in the two or more coexisting phases (chemical equilibrium).
Analytical or numerical solutions of thermodynamic models enforcing these conditions
provides coexistence lines in the (composition x, T) plane, possibly identifying UCST and
LCST states.

As briefly outlined in the following paragraphs, the most microscopic method, in
principle able to provide the required thermodynamic information, is molecular dynamics
(MD) based on empirical atomistic force fields or relying on an ab-initio (usually density
functional) potential energy surface [44]. Both varieties of MD, however, are too time
consuming (especially the ab-initio ones) and also too involved to provide the extensive
mapping of thermodynamics functions required for a comprehensive thermodynamic
investigation of phase equilibria. In practice, MD simulations are used to verify whether at
given (P, T, x) conditions a system is homogeneous or biphasic, letting a sample to run until
it reaches equilibrium. However, the target of much thermodynamic research on liquid–
liquid equilibria consists of screening broad families of compounds for UCST and LCST
behaviour, or involves the determination of thermodynamic functions over wide portions
of the phase diagram. These applications are necessarily the realm of semi-empirical
thermodynamics models. Time-honored examples are provided by the van der Waals
model, or the Flory–Huggins used for IL/polymer solutions. More recently, a panoply of
models, and even entire families of models have been developed to achieve these aims,
differing for the choice of interactions and effects to be included or excluded, for the target
accuracy, and for the admissible complexity and cost of the phase diagram determination.
The full description and discussion of thermodynamic modelling of IL and IL/solvent
systems is beyond the scope of the present review. For completeness, we briefly mention the
major approaches, and we refer the reader to recent reviews (see for instance reference [45]),
and to a pedagogical account, freely available from the web, covering several of these
models (see reference [46]).

Thermodynamic models can be expressed in terms of the excess Gibbs free energy as
a function of the total number of particles N, pressure P, temperature T and composition x:

Gexc(N, P, T, x) = RT ∑
i

ln γi (1)

where R is the ideal gas constant, the sum extends over the chemical species (ions, solvent)
i, whose activity coefficient is γi.

Equivalently, models can provide the equation of state (EOS) f (P, V, T, x) = 0 of the
multicomponent fluid system. Once the activity coefficient or the equation of state of the
mixture has been modelled, minimisation of the Gibbs free energy provides a complete
map of the phase diagram. As already mentioned in the introduction, even simple models,
such as van der Waals for binary mixtures, provide a bewildering variety of phase diagram
topologies, including UCST, LCST, and loops with both UCST and LCST states [12,47].

Activity coefficient models include the non-random two-liquid models (NRTL) [48,49],
the universal quasi chemical activity coefficient model, UNIQUAC [50], and the universal
quasi-chemical function group activity coefficient, UNIFAC [51]. Directly or indirectly, these
models rely on the Wilson theory for the local composition [52], which, as the name suggests,
accounts for correlations in the density of different species, deviating from the statistical
average because of specific interactions. This approach, in particular, introduces the effect of
association among molecules, due to hydrogen bonding. The NRTL approach accounts only
for enthalpy contributions expressed as a function of the local coordination of all species,
while UNIQUAC and UNIFAC introduce additional entropy terms. These two last models
differ in their strategy to parameterize these excess contributions. UNIQUAC, in particular,
is based on the parameterization of contributions from whole molecules and ions, while
UNIFAC subdivides species into functional groups before carrying out the parametrization.
The strategy of building models by adding contributions from the functional groups in a
linear or correlated way, is in fact a general approach (group contribution models) used
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extensively to predict a wide variety of properties, looking for regularities and correlations
among vast numbers of chemical compounds.

Equation of state models often rely on a polynomial expansion for the factor Z =
PV/RT in powers of the molar volume Vm of the different species. The lowest order able to
predict the equilibrium of phases terminating into a UCST or LCST is the cubic one [45], and
the simplest prototype of cubic EOS is in fact the van der Waals EOS. Present days versions
of EOS models include the Redlich–Kwong [53,54], Peng–Robinson [55], Patel–Teja [56].

All of these methods, relatively successful for simple molecular fluids, are unable to
provide a satisfactory model for complex molecular units, including most ILs. A significant
improvement is provided by statistical associating fluid theories (SAFT) [46,57,58], which
are based on free energy perturbation theory with respect to simpler statistical mechanics
model of known free energy. For instance, variable range potential SAFT-VR relies on the
known properties of the hard sphere fluid, and PC-SAFT is based on the properties of
hard-sphere chains. In the case of ionic liquids, a variety of contributions due to polarity,
Debye–Hückel screening, etc., are added.

All of the models briefly outlined, until now, have required an initial challenging
parametrization, whose design and quality determine the success of the module. In this
respect, these methods are not really predictive, but they primarily represent interpolations
over known ranges of structure, interactions and conditions. To describe mixing/demixing,
in particular, they need at least one parameter characterising the cross interaction of the
two components, often represented by the solubility or activity γ∞ of one species into the
other at infinite dilution.

Predictive models are represented by COSMO-like models, where COSMO stays
for conductor-like screening model [59,60]. In principle, this approach requires in input
the molecular structure only, which is refined by quantum chemistry computations for
the molecule embedded into a conducting (the original and several present versions) or
dielectric cavity (a few recent versions of the model, see for instance reference [61]) whose
shape closely follows the molecule geometry (see Figure 3). The distribution of screening
charge on this separation surface provides the descriptor for the estimation of properties.
In many ways, it is a the precursors of machine learning. Application of COSMO to ILs and
their water solutions requires the addition of long range electrostatic, sometimes modelled
by Pitzer–Debye–Hückel. The results of the model depend somewhat on the ab-initio
approach (including the completeness of the basis set) used to determine the surface charge.
This dependence, however, does not seem to be very systematic [60], since improving the
ab-initio part does not necessarily improve the model predictions. The results depend
also on the approach used to describe long range Coulomb interactions and screening in
the system.

[bmim]+

Figure 3. Geometric surface representing the boundary between the conducting or dielectric con-
tinuum and an embedded [bmim]+ cation in a COSMO-RS parametrization stage. Reprinted with
permission from reference [62].
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A secondary role in the thermodynamic modelling of UCST and LCST systems, and
also in the polarizable and/or coarse grained models briefly discussed below, is played by
the dielectric constant of the IL and of water [61]. Because of the non-vanishing DC conduc-
tivity of ILs, however, their dielectric constant cannot be measured by static capacitance
measurements [63]. However, the dielectric constant can be estimated as the zero-frequency
limit of the dielectric function, determined by dielectric spectroscopy. Moreover, this route
is not free of difficulties, because electrode polarisation effects prevent a precise measure-
ment of ε(ω) over a broad range of low frequencies. As a result, values of the dielectric
constant are available for a fairly high of ionic liquids, but are affected by non negligible
uncertainties (∼ 5− 10%). The available values span a wide range [63], from ε u 15 up to
ε u 100.

The thermodynamic models briefly outlined in this section are very general, and
extensively used to predict a large number of properties of ILs and their solutions. Their
application to LLE, and to UCST, LCST in particular, has been far less extensive, but
sufficient to formulate a few recommendations, as reported in the following Section 3.

Any of the models listed above for the Gibbs free energy as a function of (T, P) and
composition is also the first major ingredient of a classical density functional theory of fluid
mixtures [64]. Assuming, for the sake of simplicity, a local density or gradient expansion
approximation for the volume density of excess free energy g(r|T, P, x) at position r, one
easily obtains a model for the system free energy G(T, P, x) that allows to investigate the
structure and stability of the interface between two phases of different composition [65].
This, in turn, represents an alternative route to determine phase equilibria, since a biphasic
state requires a stable interface between the two phases, whose destabilisation with chang-
ing thermodynamic conditions marks the proximity of the mixing/demixing transition.
These simple considerations outline a seldom discussed relation between different research
subjects, whose exploration could benefit both the thermodynamic modelling of phase
equilibria and classical density functional theory.

Recently, machine learning has been added to the panoply of approaches devised
to predict IL properties [66] including their equation of state and LLE. An intermediate
approach between traditional thermodynamic models and machine learning arguably is
represented by structure-property quantitative relations, SPQR [67] (also known as quanti-
tative structure–property relations, QSPR). These approaches apply multivariate analysis
to model and then predict properties starting from geometric parameters (descriptors)
derived from the structure of molecules or ions in the system. Once trained on a suitable
database, they hold the promise to predict virtually every system property, including the
UCST and LCST of solutions. The challenge, however, is precisely the choice of the training
set, which should adequately represent the chemical space of interest. In this respect, the
vast number and variety of ILs represents a serious challenge, and even more problematic
is to ensure that all the data in the training set are compatible and consistent, a condition
that has been questioned in very recent papers [68] However, given the practical interest
in the virtual screening of compounds and the power of present computational resources,
there is little doubt that methods of this kind will acquire a growing role. In the meantime,
the formal matching of machine learning and QSPR has been proposed in reference [69,70].
The resulting algorithm, however, has not been applied yet to UCST and LCST properties
of IL solutions.

From the experimental side, several papers on UCST and LCST visualise mix-
ing/demixing showing pictures of liquid samples at temperatures bracketing the
transition (see, for instance, Figure 4 [71]). The phase separation, manifesting itself in
the stratification of two phases of different density, can be made more easily detectable
adding a dye soluble into one phase only in the biphasic system. This macroscopic
identification of demixing can be rendered automatic by measuring with a spectropho-
tometer the temperature and/or concentration dependence of the transmittance of a
beam of light through the sample, which shows a drop at the cloud point of the mixture
(see Figure 5). In practice, the cloud point is intermediate between the coexistence and
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the spinodal (stability) lines of the system [72]. The simultaneous measurement of the
rotational power of the sample on a linearly polarised light beam allows to detect the
formation of chiral liquid crystal phases, even for achiral molecules [73].

Figure 4. Visual detection of LCST transition in 35 wt% [P4444][CF3OO] solution in water. Cooling
and heating are of the order of 5 ◦C. A blue dye soluble in the IL, but not in water, has been added to
identify the volume occupied by the IL. Reprinted with permission from reference [71].

Figure 5. (a) light transmittance through a mixture of 1,3-dimethylimidazolium iodide (IL-I) in ace-
tone; (b) dependence of the cloud point temperature on composition for the same system, displaying
UCST. Reprinted with permission from reference [74].

Thermodynamic measurements include differential scanning calorimetry to identify
phase changes in the pure IL and in their solutions. Moreover, measurements of thermal
and electric conductivity, diffusivity (by quasi-elastic neutron scattering) and viscosity
contain information on the dynamics of molecules in mixtures approaching criticality from
the one-phase side [29]. The formation of nanometric and micrometric structures, again in
the homogeneous state approaching the UPST or LCST lines, can be detected by dynamic
light scattering (DLS) measuring time correlations in the intensity of light scattered from
fluctuating domains in the system, and by neutron (SANS) and X-ray (SAXS) small angle
scattering. Other thermodynamic experimental methods are listed and briefly discussed in
reference [75].

A variety of other methods target molecular level properties, although averaged over
the entire sample. The most powerful technique, providing information on the confor-
mation and bonding of ions and water, is certainly NMR, applied to atomic level probes
such as 1H, 13C and 15N. Both 1D and 2D [76] NMR have been used, characterising the
bonding environment of the target nuclei and the dynamics of the ions through frequency
shifts as well as spin-lattice and spin-spin relaxation times. Additional information on
the geometry and distribution of hydrogen bonds is often acquired by X-ray diffraction
on crystallised samples [29]. As in every other complex chemical system, vibrational
spectroscopy, such as infrared (IR) and Raman, can probe inter- and intra-molecular bond-
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ing. Optical spectroscopy, and UV/Vis absorption spectroscopy in particular, is used less
often to gain further insight on bonding and on its changes through thermally driven
mixing/demixing transitions.

The variety of aims motivating the experimental investigation of thermoresponsive
IL/water solutions, from the quantitative determination of critical properties, to the screen-
ing of thermo-responsiveness over families of compounds and to practical applications,
underlies the variety of methods and the different standards of chemical purity and mea-
surement accuracy adopted in different studies. The most demanding standards have been
used in quantitative studies of critical state properties. According to reference [31], on the
critical properties of [N3444][I] in water, the solution was prepared from a colourless salt
in which no sign of impurity was detected by 1H NMR or by IR spectroscopy. The chem-
ical stability of the salt and of its water solution were tested over one month in nitrogen
atmosphere, finding virtually no decomposition. The coexistence curve was determined on
samples whose temperature was controlled to better than 0.01 K, and whose composition
allowed the determination of the critical composition xc with up to four digits.

Recent explorations of thermo-responsiveness are less strict, declaring a purity of the
salt component of 98.5 wt%, used without further processing, with a temperature control
approximately one order of magnitude less strict. The requirements are even less stringent
in several studies concerning applications, not least because higher standards would be
difficult to enforce outside the lab.

No systematic study is available in the literature of the effect of impurities (halides,
metals, water, products of thermal or chemical decomposition) on UCST and LCST, but a
rough estimate of the role they could play can be gained from the results for the coexistence
curve of ILs dissolved in non-water solvents, in which water plays the role of an impurity.
The results of reference [77], comparing the coexistence line of [emim][NTf2] in three
alcohols (propan-1-ol, butan-1-ol, and pentan-1-ol) contaminated by two different water
concentrations (160± 30 ppm and 480± 50 ppm) are encouraging, since for each nominal
system the two curves for lower and higher water content are nearly indistinguishable
(see Figure 6). The insensitivity of the coexistence curve on impurities very likely does
not extend to other properties, and especially to dynamical properties, such as diffusion,
thermal, and electric conductivity, viscosity, which are know to be affected by contaminants
and by water in particular. These properties, however, have been seldom discussed in
experimental papers concerning UCST and LCST of Ils in water or other simple solvents.
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Figure 6. LLE coexistence curves for [bmim][NTf2] in cyclohexanol (triangles) 1,2-hexanediol (circles)
as a function of mass fraction w1. Filled symbols represent samples whose water content is 160± 30
ppm; empty symbols represent samples whose water content is 480 ± 50 ppm. Reprinted with
permission from reference [77].

Perhaps because the major focus of experimental papers is on the coexistence curve
and on the (x, T) location of UCST and LCST, the results reported and discussed by various
papers on the subject appear to be rather consistent, despite the different and sometimes
not outstanding standards.

A different issue for the accuracy and reproducibility of results concerns the chemical
stability of all compounds over a ∼ 100 ◦C temperature interval, and especially upon
mixing ILs with solvents. This, however, will be briefly discussed in the next section.

Neutron and X-ray scattering represent two of the major experimental tools to probe
the structure of liquid mixtures on several different length scales [78]. The most detailed
information that can be extracted from the scattered intensity is represented by the partial
structure factors. In a homogeneous and isotropic system, the k 6= 0 components of the
density operators:

ρα(k, t) = ∑
j∈α

exp [ik · rj(t)] (2)

(k =| k |) represent fluctuations at time t in the distribution of scattering centres of type
α, whose positions are rj(t); in this expression, k is a wave vector. Then, the partial
structure factors:

Sα,β(k) =
1
N
〈ρα(k, t)ρβ(−k, t)〉t (3)

measure correlations in the fluctuations of species (α, β). In this equation, N is the total
number of scattering centres in the system, and 〈...〉t means average over time.

In practice, for a IL/solvent system, the species represented by i, j cannot span all
the atom types, since the full set of partial structure factors is too difficult to be extracted
from the measured scattered intensity I(k), and moreover the interpretation of all these
data would be equally challenging. Therefore, the information has to be coarse grained,
for instance reducing the species to cation, anion and solvent. For neutron scattering, such
a coarse division of scattering intensities could be achieved using selective deuteration,
i.e., exploiting the large difference in the coherent scattering cross section of H and D. No
similar approach is available with X-ray scattering.

In the case of an IL/solvent solution, one is interested, for instance, in the fluctuation of
the distribution of cations (+) and anions (−) in space. Therefore, one defines the S++, S−−
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and S+− partial structure factors, which can be further combined into a density–density
(nn) and charge–charge (QQ) structure factor for the ions, according to:

Snn(k) = [S++(k) + S−−(k) + 2S+−(k)] (4)

SQQ(k) = [S++(k) + S−−(k)− 2S+−(k)] (5)

where the former represents correlations in the fluctuations of the total density of ions,
while the latter represents correlations in the charge distribution throughout the system.
The cross correlations (SnQ, see reference [79]) between density and charge often are much
less relevant.

Moreover, fluctuations, in the distribution of water in space are quantified by comput-
ing the structure factor:

Sww =
1

Nw
〈ρw(k, t)ρw(−k, t)〉t (6)

where Nw is the number of water molecules, and ρw(k, t) is computed from the distribution
of water molecules in a way similar to Equation (2).

Information on the overall structure of the solution is contained in the low-k range (0 <
k ≤ 0.4 Å−1) of these structure factors, which also provide information on nanostructuring
in the mixed phase, whose amplification foreshadows the transition. In this respect, only
the Snn of the ions and Sww are relevant, since the low-k range of SQQ is strictly constrained
by the electroneutrality condition [80]. To first approximation, peaks of Snn(k) in this low-k
region point to nano-aggregates of IL in dilute water solutions, as complementary peaks in
Sww in concentrate solutions point to water pockets in the liquid salt structure [81].

If the interest is restricted to the mixed/demixed state of the mixture, then the limk→0
of the structure factors carries all the relevant information, and, as a further simplification,
the IL/solvent sample can be seen as a pseudo-binary system, made of water and ions,
without discriminating between cations and anions. Then, the relevant variables are the
fluctuation ∆N of the total number of particles, and the fluctuation ∆x in the mutual
concentration of ion and water, measured on a portion of the system that is macroscopic
without including the whole sample (for which ∆N and ∆x vanish) [78].

Referring, for definiteness, to small-angle X-ray scattering (SAXS), the fluctuation 〈∆x〉
can be computed from the k→ 0 limit of the scattered intensity I(0) according to: [78,79]

I(0)
N

= Z̄2
(

N
V

)
kBTκT + [Z̄δ− (ZIL − ZW)]

2N〈∆x〉2 (7)

where N is the total number of particles (water and ions, without distinction), V the system
volume, κT the isothermal compressibility, ZIL and Zw the number of electrons of IL and
water, respectively, and Z̄ = xILZIL + xwZw their average, weighted by the corresponding
mole fractions. Moreover:

δ =

(
N
V

)
(νIL − νw) (8)

where νIL ad νw are the partial molar volumes of IL and water, respectively.
Since fluctuations in concentrations and in the number of particles are connected by

stoichiometry and by macroscopic relations, once 〈∆x〉 is obtained from Equation (7), the
corresponding fluctuation in the number of particles can be estimated as:(

〈∆N〉2
N

)
=

(
N
V

)
kBTκT + δ2N〈∆x〉2 (9)

completing the picture on the phase state of the system.
As already stated, besides thermodynamic modelling, the major computational activity

on thermoresponsive IL solutions is computer simulation, represented primarily by MD [44]
In most cases, MD simulations of molecular fluids are based on empirical force field,
describing the potential energy of the system as a function of the atomic positions. Systems
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consist of molecules, and molecules are defined in terms of atoms and covalent bonds.
Many generic force fields are currently used to model systems consisting of water, organic
and bio-molecular systems. A few force fields using the same functional form of generic
force fields have been re-tuned to represent IL with optimal accuracy [82–85]. Current force
fields often assume rigid, i.e., unpolarizable, ions. The exceptions are a few polarizable
force fields [85–87], which, up until now, have not represented major tools in IL studies.
Compelling evidence for the need of a polarizable force field, especially for mixtures of IL
in organic solvents of low dielectric constant, are given in reference [88].

Ab-initio MD, which could provide a more predictive approach and has already been
used for IL [89] is still too expensive to deal with the large systems and especially long times
required to follow a near-critical phase transition. Moreover, there is no clear indication
that equilibrium phase boundaries predicted by ab-initio methods are any better than those
given by classical force fields [90] whose accuracy, however, is due to their empirical nature
and fitting underlying their parametrization. Quantum chemical computations currently
play an auxiliary role in parameterizing, tuning and testing the force field.

On the other hand, coarse-graining, already extensively used for ILs [91–93], could
greatly help covering the time ad length scales needed for the transition. However, the
structural, and directional averaging that is implicit in coarse-graining (see reference [87],
page 3) makes it difficult to faithfully reproduce the subtle interplay of geometric packing
and of Coulomb, dispersion and hydrogen-bonding interactions that determine the precise
position of the coexistence curve in thermal responsive systems.

Coarse graining can be pushed to its limit representing multicomponent solutions
in terms of the number or mass density of their different species throughout the system.
Classical density functional theory [64], provides the formal framework to deal with this
class of models on the continuum, whose relation with thermodynamic modelling has
already been pointed out in previous paragraphs.

Mesoscopic models based on dissipative particle dynamics (DPD) or smoothed particle
hydrodynamics, representing the system in terms of mesoscopic blobs evolving according
to stochastic equations of motion, could provide a useful tool in the chemical engineering
of thermoresponsive IL solutions. These models, however, until now have not been used to
this aim.

In the thermoresponsive IL/solvent context, simulations require large sizes and long
times, therefore are usually carried out using highly optimised and parallel computer
packages, running on large clusters and supercomputers. Moreover, most such MD studies
are carried out in the NPT ensemble, in which the volume and the osmotic pressures across
interfaces are automatically equilibrated. The phase equilibrium problem underlying
thermo-responsiveness is particularly suitable for Gibbs-ensemble simulations [94], based
on Monte Carlo (MC). Again, up until now, however, not many studies of phase equilibria
in IL/solvent systems have been carried out using this method (see, however, reference [95],
for an example).

The formation and stability of the interface separating the two components of a bipha-
sic system, whose destabilisation correspond to the onset of miscibility, can be assessed by
computing the corresponding interfacial free energy γs(T) [96]. Assuming that the sample
is enclosed into an orthorhombic simulation box, with the (approximately planar) interface
perpendicular to the z axis, it can be estimated as:

γs = Lz

[
Pzz −

(
Pxx + Pyy

2

)]
(10)

where Lz is the length of the z side of an orthorhombic simulation cell, and {Pαα; α = x, y, z}
are the diagonal (Cartesian) components of the stress tensor, computed from the position
of and forces acting on particles during the MD simulation. Then, free energy methods
(umbrella sampling, potential of mean force) allow to compute the free energy cost of
moving one solute across the interface [96].
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What is also in simulation—the structural analysis of homogeneous systems approach-
ing the mixing/demixing line is often carried in terms of partial structure factors. The
analysis of radial distribution functions, in principle equivalent, is less transparent than
the structure factor route, mainly because in molecular systems many details are blurred
beyond the short range of the first few peaks. Hence, the radial distribution functions are
useful to zoom on short range aspects such as hydrogen bonding or local coordination
of the ions. They may also highlight inhomogeneities on length scales comparable to the
simulation box. Features at intermediate scales are less easy to characterise in this way.

A formal framework to analyse MD trajectories is based on Kirkwood–Buff (KB)
integrals [97,98], defined in terms of structural data (partial structure factors or radial
distribution functions), and providing also non-trivial thermodynamic insight.

In a binary (isotropic) fluid system, the KB integrals {Gα,β, α, β = 1, 2} are defined as:

Gα,β = 4π
∫ ∞

0

[
gα,β − 1

]
r2dr (11)

where gα,β(r) is the radial distribution function for species (α, β), and r is the radial distance.
One could think of Gα,β as a kind of specific absorption between species (α, β). It is easy
to recognize Gα,β as the limit of the corresponding partial structure factor Sαβ(k) already
defined, since:

Gαβ =
1

ραxβ

[
lim
k→0

Sαβ(k)− xαδαβ

]
(12)

Then, given the meaning of Sαβ(k) in terms of correlations of density fluctuations, it is
easy to show that:

Gα,β = lim
V→∞

V

[
〈NαNβ〉 − 〈Nα〉〈Nβ〉

〈Nα〉〈Nβ〉
−

δαβ

Nα

]
(13)

Partial derivatives of the chemical potential with respect to the number of particles,
partial molar volumes and the isothermal compressibility can all be defined in terms of the
Gα,β [99]. The information on the phase stability of the mixture with respect to demixing is
summarised by the parameter:

Γαβ = 1−
xαρβ

(
Gαα + Gββ − 2Gαβ

)
1 + xαρβ

(
Gαα + Gββ − 2Gαβ

) (14)

For a binary mixture, it is relatively easy to show that Γαβ is directly related to the sec-
ond derivative of the Gibbs free energy with respect to composition (or, equivalently, to the
first derivative of the activity coefficient with respect to composition). Hence, Γαβ measures
the stability of the binary solution. For an ideal solution, in particular, Gαα +Gββ− 2Gαβ = 0
and Γαβ = 1. Moreover, a solution is stable if Γαβ is positive, unstable/metastable if Γαβ is
negative. In principle the scheme applies only to homogeneous solutions, and provides a
way to monitor the progressive deterioration of the stability with respect to demixing.

The KB formalism is rigorous and it can be used both in experiments, computing the
Γαβ from structure factors, and in simulation, with Γαβ computed either from the structure
factors or the radial distribution functions. Its application, however, requires some care,
especially in analysing simulation results. First of all, the KB integrals are defined in
the grand canonical ensemble and for an infinite system, at variance from simulations,
usually carried out in the NPT ensemble (or NVT, NVE) for finite and sometimes small
systems. A variety of algorithms have been devised to correct this drawback (see, for
instance, reference [97,98]). Then, the application to IL/solvent systems is confronted with
the fact that the system has in fact at least three components, i.e., cation, anion and solvent,
and beyond two components the KB formulation is rather involved. More importantly,
because of the neutrality condition, the concentration of anions and cations cannot be
varied independently, as instead required by the 3-component formalism. Moreover, in
this case, however, practical way out of the problem have been devised [100], although,
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in some cases, of somewhat empirical character. The simplest approach is to consider
the IL/solvent system as two-component, treating cations ad anions as indistinguishable.
The last comment is that the KB formalism is strictly a reformulation of the same picture
contained in the partial structure factors, whose k-dependence also provides information on
the intermediate length scales, covering nanostructuring, and not only on the macroscopic
scale of full phase separation.

Finally, computational research advances knowledge also through idealised models.
In the case of LCST, a coarse grained model, able to describe long length and time scales, has
been proposed in reference [101], and could be adapted to provide a simple, implicit solvent
description of IL/water solutions. The model consists of a binary mixture of isotropic
particles interacting through pair potentials. The major portion of the Hamiltonian, written
for a system of N particles of type A and N of type B is:

Ĥ0 = ∑
i∈A,B

p2
i

2mi
+

1
2 ∑

i 6=j∈A
φAA(|ri − rj|) +

1
2 ∑

i 6=j∈B
φBB(|ri − rj|) + ∑

i∈A,j∈B
φAB(|ri − rj|) (15)

where {ri} are the particle coordinates, and the first term in this equation is the kinetic
energy of all particles.

The effect of intra- and inter-molecular interactions on entropy is attributed to auxiliary
variables describing l harmonic oscillators carried by each particle. Hence, the full system
Hamiltonian becomes:

Ĥ = Ĥ0 + KEξ +
1
2

N

∑
i=1

l

∑
γ=1

mγ,iω
2
i ξ2

γ,i (16)

where KEξ is the kinetic energy of the oscillators, ξγ,i is the time dependent elongation of
the oscillator γ associated to particle i, and mγ,i is its mass.

The frequency ωi of each oscillator is assumed to depend on the local environment in
which particle i sits, affecting its entropy si since si = kB[1 + log(kBT/h̄ωi)], where kB and
h̄ are the Boltzmann and Plank’s constants, respectively. To model the LCST of a binary
neutral mixture, for instance, one would adopt a binary Lennard–Jones pair potential for
particles whose size and dispersion interactions are derived from the atomistic force field.
The mixed/demixed state of the system can be measured by the number ni of particles of
the same type coordinating particle i (homo-coordination), computed up to a suitable cut-
off radius: the lower ni, the higher is heterocoordination, implying that the system is mixed.
To achieve LCST, the system has to gain entropy when the overall homo-coordination of
particles decreases. In the model, this is achieved by setting:

ωi = ω0

{
1
2
− 1

π
arctan [α(ni − n0)]

}
(17)

In this way, the frequency of the oscillators carried by particle i decreases with in-
creasing coordination ni, resulting in an entropy gain. The constant parameter n0 is the
coordination number of particles in some reference state, and α determines how quickly
entropy changes with changing coordination. Large values of α imply a fast decrease of
entropy with decreasing coordination, meaning a high entropy cost due to hydration (see
Figure 7). The parameter α, therefore, allows to control the temperature of the transition,
decreasing it when α increases. For low values of α, oscillators and particles are nearly
decoupled, and the system is mixed at all liquid state temperatures. At high α values, the
entropy cost of hydrating particles is high, and the system is phase separated at all liquid
state temperatures. At intermediate values of α, the demixing transition occurs in the liquid
temperature range, as illustrated in Figure 8 [101].
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Figure 7. Dependence of the intra-molecular oscillator frequency ω on the local coordination ni (see
Equation (17)) causing the LCST transition in the model of reference [101]. The vertical line identifies
the reference coordination n0 = 6.

To model the LCST for IL/solvent systems, one could adopt an implicit-solvent model,
representing cations and anions with particle Type A and Type B, respectively. The pair
potential would become a charged Lennard–Jones model, and the frequency of the oscillator
would again depend on local coordination ni, computed up to a radius somewhat longer
than the nearest neighbour distance, and counting, in this case, both hetero- and homo-
coordination. Using again Equation (17) with the new definition of ni and n0, low frequency
and high entropy correspond to high coordination at short range, which become favourable
at high T despite the potential energy cost of expanding the system volume and increasing
the ion-ion distance. In the implicit solvent picture, high short-range coordination and
low volume imply de-hydration, while the opposite corresponds to hydrated ions of larger
effective size.

α= 0

T=6

α=0.45

T=6

α=0.8

T=6

α= 0

T=1

α=0.45

T=1

α=0.8
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Figure 8. Snapshots of three samples simulated using the coarse grained model of reference [101].
The panels differ in the simulation temperature (T = 1 and T = 6), and in the value of the parameter
α introduced in Equation (17). Reprinted with permission from reference [101].

3. Overview of Experimental and Computational Studies

Giving a historically accurate account of the development of a recent and complex
research field such as thermoresponsive IL/water solutions is challenging and, in any case,
it might be beyond our professional expertise. The historical considerations in this section,
therefore, are only tentative, and provided mainly to give a structure to the discussion.
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The examples discussed in some detail in the present exposition represent a selection
among a significantly larger but not vast number of studies on the UCST and LCST of
ILs/water and ILs/organic solvents systems. When the historical development was easy
to follow, we selected the studies that introduced some novel feature, and impacted later
studies of the subject. When it was not possible to follow the historical development,
we selected the most recent studies, which give reference to relevant previous studies.
reference [18] contains a comprehensive list of thermoresponsive IL solutions that have
been experimentally characterised.

3.1. Early Studies

Examples of solubility gaps of salts in water and in organic solvents have been discov-
ered long ago, probably by accident, during early electrochemical investigations [102,103]
The root of systematic studies of UCST and LCST in IL/solvent and IL/water in particular,
lies in the intense activity on critical phenomena of the last thirty years of the 20th century.
A paradigmatic study [31] in this area, analysed the miscibility gap of the alkyl-ammonium
[N3444][I] ILs in water. A preliminary study [104] considering [Npppp][I] (p ≥ 3) also in
water identified a UCST, but the shape of the coexistence curve suggested the presence
of a related LCST, whose observation, however, was prevented by crystallisation. This
picture was confirmed by measurements on an IL with the less symmetric cation ([N3444]+),
decreasing the freezing point and revealing the underlying LCST. As in later papers on
thermoresponsive IL/water solutions, the solubility gap, which in this case takes the form
of a closed loop (see part (d) in Figure 1), is attributed to the moderate hydrophobicity
of the [N3444]+ cation. The critical exponent β is determined for both UCST and LCST,
found to be equal in the two cases, and to belong to the 3D Ising class. To achieve the
quantitative accuracy required to distinguish 3D Ising from mean-field criticality, the fit
of thermodynamic properties has to account for the simultaneous presence of LCST and
UCST, separated by 15 ◦C only.

Similar findings were reported in reference [105] for [N4444][Br] in toluene. Moreover,
in this case, the solubility gap is a closed loop in the (concentration x, T) plane, whose LCST
at Tc = 297.75± 0.05 K and xc = 0.0270± 5× 10−4 is below the equilibrium freezing point,
but can be identified in the undercooled regime. The results are contrasted with those of
the restricted primitive model [23] which only has a UCST. Remarkably, the system lacks
hydrogen bonding, which instead is considered a crucial element of thermo-responsiveness,
since it provides (through desolvation) the most handy source of entropy required for LCST.

The new wave of interest for thermoresponsive IL/solutions accompanied the grow
of the room-temperature ionic-liquid research field, expanding to cover an ever larger
number of systems, phenomena and applications [4] In this context, IL/water solutions
showing a LCST [106], might have been know for a few years longer than those displaying
a UCST [30,107,108]. As already mentioned in the introduction, a very detailed early
study of IL/water displaying UCST is reported in reference [29], investigating water
solutions of choline bis(trifluoromethylsulfonyl)imide, whose Tm = 30 ◦C, displaying a
UCST at ∼ 50 wt% composition and Tc = 72 ◦C. This study is remarkable for the extensive
quantitative analysis of properties such as critical exponents and thermodynamic anomalies
in the vicinity of the UCST. The specific heat, for instance, has an anomaly (see Figure 9),
thermal conductivity κ has no anomaly above Tc, and below Tc the two branches have a
difference ∆κ which reflects the water and IL relative composition of the two phases.
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Figure 9. Specific heat anomaly in choline bistriflimide measured by high resolution adiabatic
scanning calorimetry. Reprinted with permission from reference [29].

In the copious new stream of IL-related studies, the first mention of LCST involving
a prototypical ILs ([Cmmim][NTf2], 1 ≤ m ≤ 5) dissolved in chloroform is reported
in reference [109]. Although it does not even mention previous physics literature on
similar systems and phenomena [29]. reference [109] in some sense represents a link
between the early and present stages of thermoresponsive ILs investigations, since the
observation of phase separation is accompanied by a detailed discussion of the phase
diagram topology, and of the closed-loop miscibility gap in particular. A related study [110],
extends the analysis of [Cmmim][NTf2] solubility to other organic solvents (arenes) such as
benzene, toluene and α-methylstyrene. In these non-polar solvents, the solubility of the IL
increases with increasing length of its alkyl chain. The results of both studies emphasise
the crucial balance of solvophobicity/solvophilicity in deciding the location and type of
thermoresponsive transition, which sensitively depend on the length m of the alkyl chain.
This parameter is treated as a continuous variable, exploiting mixtures of cations of different
m. Mapping the system properties on the phase diagram of idealised models, the authors
argue that nano-aggregates consisting of a few IL ion pairs represent the relevant dynamical
unit even in the homogeneous phase, and this assumption is supported by the results of
electrospray mass spectrometry.

3.2. Focus on IL/Water Thermoresponsive Systems

In view of applications, IL/water mixtures are of crucial importance, since, besides
several other reasons, they avoid volatile and/or toxic organic species such as benzene,
toluene, etc. In the context of IL/water mixtures, a series of pioneering papers on LCST
have been published by the Ohno group [111]. The first of these studies is a byproduct of
their success synthesizing twenty amino acid (AA) based IL (with [emim]+ cation) [112].
To bring the phase separation in the 0 ≤ Tc ≤ 100 ◦C interval, [emim]+ was replaced
with [P4444]+ and the AA anions were made somewhat more hydrophobic by adding a
trifluoromethanesulfonyl group to their amino group (see Figure 10) Since several AA-
based IL modified in this way display LCST, it was possible to investigate how the phase
separation temperature depends reproducibly on the ion structure and water content. In
all cases, the observed transition is reversible, and it is not very sharp, since it takes ∼ 5 ◦C
to manifests itself unambiguously.
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Figure 10. Thermoresponsive ionic liquid consisting of a alkyl phosphonium cation and an amino
acid (Leu) anion modified at its amino group to enhance hydrophobicity. Scheme reprinted with
permission from reference [113].

A further paper by the same group concerned dicarboxylic protic ionic liquids [114],
or, more precisely water solution of [P4444]+ combined with fumarate and maleate anions.
Fumarate and maleate are the trans- and cis-isomer of each other, where trans and cis refer
to a double C=C bond in their structure (see Figure 11). Despite the identical composition
and distribution of single and double bonds, water solutions of [P4444]+ neutralised by
either fumarate or maleate have different chemical physics properties, apparently due
to an intra-ion hydrogen bond in maleate which makes its charge more delocalised. As
a result, for instance, their melting temperature differs by more than 50 ◦C, and, more
importantly for our discussion, their phase properties are different (see Figure 11): fumarate
shows UCST, maleate shows LCST. Both for fumarate and maleate, following demixing,
the water concentration in the IL-rich phase decreases continuously but rapidly changing
T away from Tc (see Figure 4 of reference [114] for the [P4444][maleate]/water system), as
could be read from the solubility lines in the two-phase part of the phase diagram. Seen
in reverse, i.e., by approaching Tc from the demixed side, the solubility lines describe
the increase of water concentation in the IL-rich phase, becoming very rapid (but not
diverging, since the overall composition is fixed) at Tc. Although detailed, this picture says
nothing about the mutual structural organization of water and IL, which, instead, might
be relevant to understand the transition. Remarkably, ternary mixtures consisting of both
fumarate and maleate dissolved in water give solutions which remain mixed over a wide
temperature range.

The results of reference [111] suggested that the LCST behaviour of AA-based ILs
depended on the dissociation degree of the carboxyl groups on the AA anion. This imme-
diately opened the way to changing the water solubility by changing pH. Adding strong
acids or bases to the solution would change the nature of the system, but less disruptive
weak acids and bases are already able to trigger the mixing/demixing transition even at
constant temperature. In reference [115], such a dual responsive system was achieved by
injecting CO2 or N2, whose slight change of pH was sufficient to the task. Moreover, a
volatile species such as CO2 can easily be removed from the system, making the transition
reversible with respect to both the temperature and the gas-addition stimuli.

A rapidly expanding set of studies on thermoresponsive IL/water solutions soon
introduced a variety of other systems, displaying either UCST [5,116] or LCST [117,118].
In general, thermoresponsive IL/water solutions arise from ILs made of weakly polar
quaternary phosphonium or ammonium cations with carboxylic (including AA) acid or
sulfonic acid anions. The relatively small number of IL systems displaying LCST with
water has motivated the successful application of combinatorial chemistry to search for
these systems, covering also families of IL not considered in early studies. In reference [118]
for instance, ILs were synthesised based on the 1,2,3-triazolium core structure. The sizeable
number of systems identified (14%) on a medium–large library (160 compounds) allows
to highlight regularities in the composition and structure of compounds having LCST. All
systems displaying LCST, for instance, had 11± 1 carbon atoms in the alkyl side chains, a
regularity possibly reflecting the conditions on hydrophobicity required to show LCST.

A further extension of the field with promising applications concerns water solutions
of paramagnetic IL containing the Fe(III) species in the[FeCl4]− anion [117,119], stable in the
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high-spin state S = 5/2. According to reference [117], water solutions of [bmim][FeCl4] at
50 wt% concentration are demixed at all liquid temperatures. Decreasing the concentration
of IL to 20 wt% introduces an entropy-driven demixing, taking place with increasing T
at Tc = 70 ◦C. The demixing temperature can be moved up or down in the interval from
room temperature up to ∼ 100 ◦C by changing IL concentration, or selecting a [Cnmim]+

cation of different tail length n. Photometry shows that a non-negligible fraction of iron
remains in the water-rich phase. These observations are extended and reinforced by those
of reference [119], investigating a larger set of 16 paramagnetic ILs containing the [FeCl4]−

anion. The results of dynamic light scattering document the evolution of IL clusters in
water, lending support to the picture that nanostructuring and phase separation are related
phenomena. The advantage of [FeCL4]− -based IL is that they contain a metal ion, which is
suitable for a variety of catalytic tasks, and are paramagnetic. Following separation, the
IL-rich phase can be displaced using in inhomogeneous magnetic field, a procedure that
does not apply to the homogeneous paramagnetic-IL/water solution. The disadvantage is
that [FeCL4]− is prone to hydrolysis in the presence of water, although the results of both
reference [117,119], suggest that quantitatively this effect is only a very minor one.

Going beyond the simple proof of principle, the Ohno group analysed the structural
features controlling the mixing/demixing behaviour, focusing on the role of hydropho-
bicity [120] Needless to say, the fact that mixing/demixing of IL and water is determined
by hydrophobicity is nearly a tautology, whose predictive power depends on the possi-
bility of measuring the hydrophobicity of ILs independently from their miscibility with
water. This could be achieved by measuring the partition of the IL in a water–octanol
biphasic system [121], but reference [71,120] from the Ohno group define a hydrophobicity
index HI by the concentration of water molecules remaining in the IL-rich phase well after
demixing. This gives a scale of hydrophobicity/hydrophilicity which agrees with other
empirical scales and is also consistent with the predictions of general models, such as
COSMO-RS, stating that hydrophilicity of anions is in the order Cl− > Br− > [F3COO]− >
[NO3]− > [CF3SO3]− > [BF4]− > [NTf2]−, while, for cations, ammonium-based ILs are
more hydrophilic than phosphonium-based ILs [71].

In principle, the number of water molecules per cation–anion pair in the IL-rich
fraction is just an elaboration of the phase diagram, since the proportion of water and IL in
both phases can be read from the composition scale of a diagram, such as that of Figure 1.
In most systems, in fact, the IL depleted phase is made by nearly pure water. The IL-rich
phase instead contains a non-vanishing proportion of water, but in most thermoresponsive
IL/water systems, the slope of the coexistence curve is nearly vertical at T ≥ 60 ◦C; thus,
allowing to define HI at the conventional high temperature of 60 ◦C. As a predictive tool, the
model is somewhat self-referring, since to measure HI the compound/water mixture has
to be phase separated in the first place. In any case, it is possible to establish a correlation
between the HI and the tendency to phase separate, and also to have an estimate of the
critical temperature (see reference [71]).

Figure 11. Water content dependence of Tc for ionic liquids/water mixtures. (a) fumarate; (b) maleate.
Fumarate and maleate are isomers of each other. Reprinted with permission from reference [114].
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The calibration of the HI index as a predictive parameter has been carried out on
IL/water systems based on homologous anions, combined with the same [Pnnnn]+ cation,
considering primarily water mixtures of nearly equal weight composition. As a validation,
the phase diagram of similar ammonium ([Nnnnn]+) cations was investigated. The results
obtained on many IL/water mixtures show that, as expected, highly hydrophobic ILs,
having HI ≤ 6, form with water stable biphasic systems at all temperatures. On the other
hand, hydrophilic ILs form homogeneous solutions again at all temperatures (but HI is
undefined). Then, LCST is displayed by water solutions of ILs of moderate hydrophobicity,
corresponding to HI∼ 7. Based on these observations, it was proposed and verified that
it is possible to enlarge the set of solutions undergoing LCST transitions by preparing
solutes of intermediate hydrophobicity mixing ILs of high and low hydrophobicity. This
is in fact an interesting observation, since it provides a further way to tune the properties
of thermoresponsive IL towards applications. In fact, in several (optimal) cases, mixing
provides a continuous variation of HI, while changing HI by functionalizing the ions
provides only discrete jumps. Moreover, by combining different ILs, it is in principle
possible to simultaneously tune also other properties, such as the ability to dissolve complex
biomolecules, such as cellulose.

Violations of the combination rule just outlined are as interesting as the regularities. It
turns out that the solubility in water of mixtures of ILs is not necessarily a linear function of
the relative abundance of the ILs (at total IL concentration in water). For instance, according
to reference [122], it is possible to prepare an aqueous biphasic system by combining two
hydrophilic ILs, which, independently, mix with water at all temperatures. Examples
of this behaviour are represented by ILs consisting of the phosphonium cation [P6668]+

combined with amino-acid derived anions, such as [Lys]− and [Asp]−. The peculiarity
is that these AAs have an additional carboxyl ([Asp]−) or amino ([Lys]−) group in their
side chain, which causes the formation of strong (anti-electrostatic) anion–anion hydrogen
bonds, which drive their separation from water. In these examples, high polarity favours
dissolution of macromolecules, hydrogen bonding favours separation from water without
decreasing polarity.

Non-trivial effects can be observed as a function of chemical substitutions on a basic
molecular body. Benzoate, consisting of a benzene ring and a carboxyl group, which easily
dissociates in water, is a hydrophilic anion, and its [P4444]+ salt is fully soluble in water. At
first view, adding one hydroxyl or a further carboxyl group on the benzene ring is bound
to enhance hydrophilicity. The results of reference [123], instead, show that the effect of
functionalization on solubility depends on the ortho, meta- or para- location of the addition.
The addition of -OH on the ortho location (salicylate [Sal]−), or of -COOH at the ortho-
or meta-position decrease the hydrophilicity of the anion, and cause a LCST transition in
the water solution of their salts with [P4444]+. An explanation was proposed in the same
paper, in terms of the formation of an intra-molecular hydrogen bond, which curtails the
attractive interaction with water.

A detailed further study of two of the systems investigated in reference [120], is re-
ported in reference [76]. The results (obtained by DLS and NMR) highlight the opposite
nanostructuring trends in solutions of water/ILs miscible at all temperatures ([P4444][benzene
sulfonate])) and those presenting LCST ([P4444][2,4-dimethylbenzene sulfonate]). In fully
miscible IL/water combinations, the typical size of aggregates measured by DLS decreases
with increasing T, thus enhancing the homogeneity of the system. In thermoresponsive
systems, instead, the nanostructuring in the mixed low-T phase becomes coarser and
coarser with increasing T, and the size of the water-rich and IL-rich domains becomes
macroscopic at Tc. The local coordination of the IL ions, characterised by NMR on the
hydrogen cation, is nearly unchanged across the transition, implying that this is mainly
determined by ion clustering even in the water-rich phase. The formation of micelle-like
clusters at T < Tc and their growth becoming rapid with approaching Tc is not the only
known picture. In another case [78], nanostructuring is due to the formation of fuzzy
(perhaps fractal) structures, whose characteristic lengths increases again approaching Tc.
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In both cases (i.e., micellar aggregates and fuzzy clusters) the transition from mixing to
demixing is rather gradual, mediated by the change of nanostructuring. Interestingly, the
characteristic size of aggregates, which increases rapidly for T → Tc from below, decreases
slowly with increasing T in the IL-rich phase above Tc. It would be very interesting to
compare these properties with those of systems undergoing UCST. This analysis is not
available, either from experiments or simulations.

A closely related system was investigated in reference [124], considering water solu-
tions of a [P4444]+-based IL made with 5-phenyl tetrazolate ([Ph-tet]−]) anion, which should
make it more hydrophobic than benzoate, and therefore having a LCST. The results support
those from the previous study, showing that water solutions of [P4444][Ph-tet] present a
LCST, with a transition temperature ∼ 10 ◦C higher than [P4444][Sal] at all concentrations.
The number of water molecules in the IL-rich phase well beyond Tc is 12 (> 7, which is
the lower limit), thus confirming the picture of the previous papers from the Ohno group.
The replacement of carboxylic group with tetrazolate is one of many pharmacophore
replacements that could be used to control hydrophobicity and other properties of ILs.

For LCST, in particular, several experimental studies and simulations (see Section 4
below) emphasised the role of anions, focusing on their ability to form hydrogen bonds,
which, in turn, could represent the source of the entropy that drives the LCST transition. The
role of cations has been much less investigated, but two studies, in particular, provide useful
insight on this aspect [125,126]. reference [125], for instance, applies a 2D hydrophobicity
index (instead of the single hydrophobicity parameter HI of reference [71,120]) to quantify
independently both the hydrophobicity and the hydrophilicity aspects of solutes. The two
indices are defined in terms of suitable derivatives of thermodynamic functions [127]. In
addition to providing a more detailed description of hydrophilicity/hydrophobicity, and
of their effects on thermo-responsiveness, the method, in particular, allows to estimate
the hydration number nH of cations and anions in solution. This parameter counts the
number of water molecules strongly bound to the solute ion, not to be confused with the
number of solvating water molecules. In other terms, the hydration number is defined in
such a way that the ion and its nH hydration waters behave as a unique dynamical entity.
The hydration number tends to be higher, and sometimes much higher, for cations than
for anions [126]. This number is temperature dependent, and the decrease in hydration
water with increasing T might represent a source of entropy for demixing as important and
perhaps more important than the breaking of anion–water hydrogen bonds. This aspect,
not sufficiently analysed until now, will certainly deserve more quantitative investigations
in the future.

3.3. Non-Water Solvents and Multicomponent Solutions

As already apparent from the discussion so far, UCST and LCST are not exclusive
features of IL/water solutions but can be observed in systems made of IL in a variety of
organic molecular solvents. Interesting, in this respect, is the study in reference [128], com-
paring the solubility in thiophene of [bmim][SCN] and [bmim][NTf2], whose temperature
dependence displays a LCST for the former, and a UCST for the latter. The analysis of
interactions by the experimental determination of the molar volumes and by NMR in the
mixed and demixed phases and by MD simulations highlights an attractive interaction
between a thiophene proton and the S atom in [bmim][SCN], and a solvophobic character
of [bmim][NTf2] in thiophene. These observations point to a difference between the two
systems, but do not explain directly why a LCST transition is found in [bmim][SCN] and a
UCST in [bmim][NTf2].

In addition to the many studies devoted to a single organic solvent, we point out
systematic studies of solubility and thermo-responsiveness of imidazolium-ILs in alco-
hols [129–131], linear and cyclic alkanes [132], and ethers [132]. Taking imidazolium-based
ILs dissolved in alcohol as an example, a clear tendency towards UCST behaviour is ob-
served. Moreover, the solubility of IL/alcohol mixtures ([bmim][PF6] in reference [133])
may be greatly affected by the addition of CO2, which, under appropriate pressure, causes
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the separation of the IL/alcohol mixture into an IL-rich and an alcohol-rich phase, thus
providing an effective way to separate the IL from its organic solvent.

The approach of inducing demixing by adding a suitable third species, sometimes
represented by relatively simple inorganic salts, has also been used in IL/water solution.
The primary aim of the approach has been to create new stable IL and water biphasic
systems [134,135], the side result, however, has been to make thermoresponsive even water
solutions of hydrophilic ILs that are fully soluble in the binary phase [136]. In all of these
cases, the decreased stability of the IL/water solution has been obtained by resorting
to inorganic systems, such as K3PO4, having a strong water structuring (kosmotropic)
effect, resulting in the salting out of the organic IL. The Hofmeister series provides a first
framework to rationalise and predict the effect of simple salts on the thermo-responsiveness
of IL/water solutions [137].

A different strategy to control and enhance the thermo-responsiveness of IL/solvent
systems consists of adding a suitable organic molecule able to form a host–guest supramolec-
ular complex with one of the IL ions. In the example in reference [74], two macrocycle
molecules (pillar[5]arene and a crown ether) added to a thermoresponsive solution of
[dmim][I] in acetone affect the LCST in opposite ways; the first one (pillarene) decreases
the system Tc, while the second one (crown ether) increases it. Both macrocycles are known
to form a host–guest supramolecular complex with imidazolium ions, and the effect of
the crown ether could be rationalised thinking that the sequestration of [dmim]+ reduces
the effective IL density, stabilising its mixed state. The opposite effect of pillarene is more
difficult to understand, and one can only argue (without independent proof) that the imi-
dazolium incorporation into a -OH rich complex favours its solvation into a polar solvent,
such as acetone, despite the contrasting effect of the aromatic side groups.

In some cases, the IL itself could be seen as the additive controlling (and often en-
hancing) the thermo-responsiveness of non-ionic polymer/water solutions [138]. In ref-
erence [138], for instance, adding an ammonium-based protic IL to a water solution of
polypropylene glycol of moderate molecular weight endows the system with a great tun-
ability, allowing to bring the LCST demixing temperature at the value most suitable for
applications. The practical value of the ternary IL/polymer/water mixture has been demon-
strated by the separation of two proteins, i.e., cytochrome c and azocasein segregating them
into the IL-rich solution, going from the homogeneous solution at T = 25 ◦C to the phase
segregated one at T = 45 ◦C. Remarkably, the protic IL-rich phase contains enough water to
retain the protein in its native state, while separation of proteins into pure (non protic) ILs
usually involves denaturation. Finally, reference [138] shows that suitable systems can be
prepared with only limited (≤10 wt%) IL content, decreasing the cost and limiting possible
toxicity effects.

3.4. Polymerised ILs

ILs can be polymerised [139], giving poly-electrolytes. Polymerization, of course, re-
quires one or both ions having suitable polymerizable groups, such as vinyl. The resulting
polyelectrolytes present remarkable properties. According to the authors in reference [140],
these include an exceptionally high affinity with carbon dioxide, low glass transition temperature,
and controllable affinity with water. LCST in water solutions of poly-ILs has been observed
and discussed in this same reference [140]. Moreover, in this case, the important parameter
is the hydrophobicity of the IL polymer. As expected, the preparation of poly-ILs with
LCST is more likely from monomers that already show LCST [140]. For instance, water solu-
tions of (anionic) polymerised tributylhexylphosphonium 3-sulfopropyl methacrylate, i.e.,
poly([P4446][C3S]), present LCST demixing at a temperature Tc, which depends sensitively
on water/poly-IL relative composition, but depends only weakly on the polymerisation
degree (i.e., molecular weight of the polymer), the difference between the [P4446][C3S],
and poly-[P4446][C3S] being 4 ◦C only. The poly-IL-rich phase at T > Tc still contains a
non-negligible water fraction. Upon increasing T a few more ◦C, it undergoes another LCST
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reversible transition, this time from liquid to gel, which represents a further remarkable
type of thermo-responsiveness.

Another early study of thermoresponsive poly-IL solutions is represented by refer-
ence [16], reporting that several poly-ILs displaying UCST in water have been synthesised
and characterised, consisting of alkyl imidazolium cations dangling from poly(vinyl ether)
chains neutralised by [BF4]−. The hydrophobicity of the cation is controlled by the choice
of the imidazolium alkyl chains, while the role of the anion has been assessed by replacing
water with a variety of organic solvents, resulting in a variety of solubility conditions,
ranging from fully miscible or immiscible mixtures at all T, to UCST and LCST behaviour
in several cases. In the thermoresponsive water solutions, the Tc depends very weakly on
the molecular weight of the polymer, but increases with increasing polymer concentration,
up to the 10 wt% polymer fraction explored in the study. The concentration dependence
suggests that the thermoresponsive transition is due more to inter-chain interactions than
to intra-chain ones. Moreover, due to the low hydrogen-bonding capability of the imida-
zolium side groups, Coulomb interactions are likely to be more important than hydrogen
bonding for mixing/demixing. The role of Coulomb forces is confirmed by the compari-
son with the results for other solvents, whose different polarity controls the screening of
electrostatic interactions.

A further very detailed study has been devoted to the LCST of water solutions of
[P4444][SS] and poly-[P4444][SS] [141], with SS being styrenesulfonate, in which polymerisa-
tion concerns the [SS]− anion. At variance from the previous case, the Tc difference between
[P4444][SS] and poly-[P4444][SS] (at equal IL/water composition) is sizeable. Moreover, the
composition dependence of the demixing temperature is different: it has a minimum at Tc
in the monomeric case, it decreases monotonically with increasing IL fraction in the poly-
merised case. These differences point to a different mechanism of demixing. The discussion
in reference [141], focuses on the role of IL and poly-IL aggregates in the two cases, which
are larger in the polymerised case and require higher temperature to form. The conforma-
tion, investigated primarily by different NMR techniques, shows that cations are located
at the periphery of the aggregates in the polymer case, and intermixed with anions in the
monomeric case. The explanation is somewhat qualitative, but has the merit to rationalise
the trends and the differences in the demixing transition temperature.

3.5. Reversing the Role of Solute and Solvent

In binary solutions, the distinction of solute and solvent is to some extent conventional,
based for instance on the relative amount of the two components or the relative size and
mass of the species. Then, the ILs that, up until this point, have been considered the solute
in water and in a variety of organic solvents, may be seen as the solvent in different types of
thermoresponsive systems, especially those made of non-ionic polymers and ILs. An early
example is provided by the thermoresponsive solution of poly(ethylene oxide) derivatives
in [emim][NTf2] [142]. Polyethylene oxide (PEO) itself displays a LCST in [emim][BF4]
and [bmim][BF4] [143,144], with a critical solution temperature only weakly dependent
on the PEO molecular weight. Since the solvent is no longer water but the IL, the range
of temperatures of interest is wider, and the Tc of these solutions can reach ∼200 ◦C. The
analysis of the experimental studies points to hydrogen bonding between the acidic imida-
zolium hydrogen and oxygen in PEO, or F in [BF4]− as the major players in the solubility
change as a function of T. MD simulations [145], discriminate the role of the two type of
hydrogen bonds, arguing that the one with oxygen is more directional and has an entropic
cost higher than that with F, thus having a larger role in the demixing with increasing
temperature. A recent experimental study extends the analysis to poly(benzyl metacrylate)
in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonate)imide ([BMP][NTf2]) [72],
also showing LCST behaviour, with a transition temperature that sensitively depends on
the polymer/IL relative concentration, but, again, depends only weakly on the molecular
weight of the polymer. The unusual aspect is that, even in the demixed temperature range,
the second virial coefficient for the polymer in IL is positive, pointing to good solvent
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conditions. The θ-point of the mixture, estimated using the Flory–Huggins (FH) model, is
significantly higher than the demixing temperature. The deviation between FH, a semi-
empirical but often reliable model of phase coexistence of polymer solutions, is a further
diagnostic indicator of strong directional interactions between the ions and the polymer,
deviating from the smooth and isotropic interactions assumed in the FH approach.

4. The Role of Computational Modeling

Given the vast number of potentially thermoresponsive IL/solvent solutions, quick,
inexpensive and reasonably reliable predictions of UCST and LCST properties are in great
demand. As a result, most of the thermodynamic models briefly outlined in Section 2 have
been applied to the prediction of liquid–liquid phase equilibria of ILs dissolved in organic
solvents and especially in water. Our review of these investigations is not exhaustive, but
aims at giving an idea of what can be achieved by these methods.

An activity coefficient model related to the non-random two-liquid model, neglecting
long-range Coulomb interactions, has been used in reference [146], to investigate vapour–
liquid equilibria (VPE) as well as LLE in IL/water and IL/organic solvent systems. The
model has been parametrised on density data, and on limited solubility data (γ∞). For
LLE, in particular, the picture provided by the model is qualitatively correct, although not
particularly in quantitative agreement with the experimental phase diagrams, especially
for the IL/water solutions, with absolute average deviations of ∼10% in the computed
composition x of the IL-rich and water-rich phases. On the other hand, experimental trends
are rather well reproduced, suggesting that the model can be used to highlight correlations
among properties of homologous systems (as also shown in reference [147]).

Cubic EOS models have also been used several times to predict properties of ILs and
their solutions, introducing a variety of different effects, such as association (CPA) [45],
and polarity (PCPA). To the best of our knowledge, only the first (CPA) has been used
to compute LLE properties of ILs in water. Moreover, in this case, density and limited
solubility data have been used to parameterize the model. The results are somewhat
disappointing, with deviations of predictions from experimental data, as declared by the
authors, ranging from 4 to 100%.

NRTL and UNIQUAC models have been applied to model ternary solutions of ILs,
water, neutral or polar solvents, parametrized on properties of binary systems only [148].
The task is recognised as very challenging, because correlations in the local composition
do not satisfy any transitive property, and in fact the results of the models is mediocre, as
stated by the authors of the study.

As anticipated in Section 2, models based on the statistical associating fluid theory
(SAFT) together with thermodynamic perturbation theory, are more flexible and also more
successful than cubic EOS models. In predicting LLE, however, early applications of the
model still gave rather uncertain results [58], displaying an unequal degree of success
when applied to ILs dissolved in neutral, polar and water solvents. In the water case,
in particular, the model in reference [58] gave good predictions for the composition of
IL-rich phases, and poor predictions for the water-rich phase. More recent applications of
SAFT models [147], however, have achieved much better results, although they are still
dependent on the strategy adopted to adjust the model parameters.

In many respects, COSMO-type models represent the most appealing thermodynamic
approach to investigate liquid–liquid equilibria and, in particular, UCST and LCST of
IL/water solutions, both because of their a-priori predicting capability, and also for their
relation with ab-initio methods. Early applications of COSMO-RS (RS ≡ real solvent) [149],
predicted LLE properties in qualitative agreement with experiments, although the quanti-
tative results deviate somewhat from experiments, with the discrepancy increasing with
increasing hydrophilicity of the IL compound. Representative recent applications are
provided in reference [6] (COSMO-SAC, SAC ≡ segment activity coefficient) and in refer-
ence [60] (COSMO-RS).
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At variance from previous COSMO studies of thermoresponsive IL solutions, dealing
primarily with UCST, reference [6] is devoted mainly to LCST systems, covering 256 binary
solutions. The IL component is treated in two different ways, considering the ions fully
dissociated or fully associated. Once again the results are qualitatively correct, reproducing
the thermo-responsiveness of most experimental systems, but quantitatively not so great.
Absolute average deviations in the composition of the IL-rich phase are up to 15%, while
for the water rich phase, the deviation is about 4%, when assuming fully dissociated ions.
The results for the associated ion case are somewhat better, but still not quantitatively
correct. The disappointment is mitigated by the fact that no fitting of free parameters is
involved in the prediction.

The results of COSMO-RS computations for a statistically significant sample of 181 ILs
support the conclusions of all the previous studies, pointing to a qualitative description of
the phase equilibrium, and a reliable reproduction of trends along families of compounds.

Atomistic MD simulations of thermoresponsive IL/water solutions have, until now,
played different roles from that of thermodynamic models, since MD cannot be used for the
extensive screening of hundred of compounds, although MD has contributed significant
insight into these systems and phenomena. A clear distinction between the contribution of
experiments and simulations to the understanding of thermoresponsive IL solutions is not
really possible, at least because several studies combine both approaches (see, for instance,
references [32,76,128]). Nevertheless, it is also possible to observe that, in this field, the
strength of simulation has been in providing structural details and mechanisms down to
the atomistic level. As in experiments, the most MD studies have been devoted to solutions
of ILs based on the phosphonium [Pijkl]+ and ammonium [Nijkl]+ cations. Because of
the role of hydrophobicity/hydrophilicity (solvophilicity/solvophobicity), most studies
include the analysis of hydrogen bonding (see, for instance, reference [76,150,151], and
reference [145] for PEO/[bmim][BF4]), determined as a function of T and solute/solvent
relative composition.

A paradigmatic simulation study might be represented by reference [150], comparing
three ionic liquids sharing the common [P4444]+ cation and three different anions, i.e.,
[CH3OO]−, [CH3OO]−, [PF6]−. The first IL is miscible and the last is immiscible in
water at all temperatures. In agreement with experiments, [P4444][CF3COO] has a LCST.
The analysis of trajectories points to a rapid loss of water–anion hydrogen bonding with
increasing temperature especially for [P4444][CF3COO], suggesting a likely mechanism for
the observed thermo-responsiveness. This is supported by the temperature dependence of
Coulomb and dispersion energies for cation–anion, cation–water, and anion–water, but,
without a quantitative analysis of the system entropy as a function of T it is impossible
to tell whether the loss of water–anion hydrogen bonding is the cause or the effect of the
mixing/demixing transition.

Inspired by the results in reference [122] on controlling the thermoresponsive be-
haviour by mixing different ILs, the molecular dynamics study in reference [151] investi-
gated water solutions of binary combinations of ILs, having a common cation ([P6668]+) and
different anions, selected among [Lys]−, [Asp]−, [Glu]−, [Ser]−, [Ala]−. Mixing different
AA anions, which carry -COOH and -COO− groups in their side chains, increases the
number of possible H-bonding combinations (including anion-anion), thus decreasing the
affinity of anions and water, and promoting demixing. The increase of this effect with
increasing temperature cannot result from the strengthening at high T of anion–anion HBs
in absolute terms. Instead, the enhancement of anion–anion H-bonding is likely to be a
relative effect due to a faster loss of stability of water–anion HBs, because of the entropy
penalty of binding water to an anion.

Another prototypical study combining simulation, dynamic light scattering and spec-
troscopy (NMR, IR, Raman) is represented by reference [76], analysing the microscopic
details of the LCST transition in water solutions of tetrabutyl-phosphonium benzene sul-
fonates. The role of simulation in this study, however, is rather limited, consisting in the
computation and discussion of radial distribution functions.
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To summarise, simulation has already demonstrated its great value in this field by
highlighting structural details and atomistic mechanisms that could not be identified by
experiments. However, the application of MD to thermoresponsive IL/water systems
and phenomena has until now been affected by severe limitations. First of all, most
simulation studies considered LCST IL/water solutions, neglecting UCST systems, while
a comparison would be crucial for a deeper understanding. Perhaps more importantly,
most simulation studies do not provide much information beyond the local structure
around the ions in solution. Moreover, again, in most cases, simulation samples are
small, consisting of ∼200 ion pairs and a few thousand water molecules, covering length
scales comparable to the size of aggregates in heavily nanostructured systems. The real-
space analysis based on the computation of radial distribution functions has the merit of
highlighting specific interactions such as HBs. However, it is unsuitable to detect phase
separation in its early stages, and unable to provide a direct estimate of the temperature
dependent scale of nanostructuring. In a few cases, the analysis of demixing has been based
on the temperature dependence of the potential energy, decomposed into its electrostatic
and dispersion contributions. This approach is indeed able to detect demixing. However,
it is important to remark that, in empirical force field approaches, the decomposition of
potential energy into different contributions is to some extent arbitrary, and the analysis
cannot be more than qualitative. Last but certainly not least, entropy, which plays a
crucial role in LCST, is seldom mentioned and never explicitly computed, although it could
be done by thermodynamic integration over a temperature path joining the mixed and
demixed phases.

To overcome these limitations, we undertook a large scale simulation study of IL/water
mixtures undergoing LCST, covering [P4444][DMBS], [P4444][TsO], [P4444][TFA], [P4444][TMBS],
[N4444][TMBS]. For a comparison, we also simulated the water solution of a non-ionic com-
pound (2-[2-(hexyloxy)ethoxy]ethanol), as well as a IL/water solution displaying UCST
([Chol][NTf2]. In all cases, sample sizes have been in the range of 1.2× 106 atoms (L & 22 nm),
with simulation times reaching the µs range. Simulation trajectories are still being analysed,
but preliminary results show that, in all cases, the combination of MD and empirical force
fields is able to reproduce the experimental transition (see Figure 12). The analysis of fluid
states in terms of suitable combinations of partial structure factors emphasises the role of
nano-structuring. In agreement with experimental data, the simulation results show that the
size of aggregates grows with increasing T, and the growth is faster ad faster with approaching
Tc from below. Aggregates, in particular, might be described as micelles, but, because of
shape irregularities and some superposition among aggregates, also as a fuzzy distribution of
structures covering a few characteristic lengths. Upon demixing, the water phase is nearly
pure, while the IL-rich phase still contains a non-negligible amount of water. The analysis of
HB shows the crucial role played by them, but the hydration of cations shows similar changes,
although, at this stage, it is difficult to conclude whether it represents a cause or an effect. The
complete determination of thermodynamic properties is still ongoing, but we plan to compute
entropy changes over a wide T range.
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Figure 12. Simulation snapshots showing a 50-50 wt% [P4444][DMBS]/water solution below and
above the demixing temperature.

An interesting contribution, although not framed in the UCST/LCST context, is pro-
vided by reference [96], investigating the IL/water interface at room temperature for
chlorate and acetate ILs compounds with several alkyl-phosphonium cations of different
alkyl-chain lengths. At equal cation, chloride and acetate compounds have similar prop-
erties, but the chlorides are slightly more soluble than acetates. Compounds whose alkyl
chains are more than a few carbon-long give origin to interfaces with water, but judging
from the figures, in most cases, they seem to mark nanostructuring more than genuine bulk
phase separation. The temperature dependence of the interface properties, which could
provide a different view of phase separation or merging, unfortunately, is not reported.
However, the interest of the paper is enhanced by the computation of the potential of mean
force to transfer a cation across the interface. This information quantifies the stability of the
interface, and, once computed for a guest molecule, it could also characterise the kinetics of
transfer across the interface close to a UCST or LCST, which, in turn, might affect extraction
and purification processes.

This brief and non-exhaustive review of computational studies of thermoresponsive
IL solutions, encompassing both thermodynamic modelling and MD simulations, can be
summarised as follows. First of all, the relatively small portion of ILs forming thermore-
sponsive solutions over the vast number of all IL compounds, drives the quest for extensive
screening campaigns, which, up until now, have been the natural playgrounds of thermody-
namic models. Among the approaches briefly outlined in the present review, COSMO-like
models are the most appealing ones, because their results are at least as accurate as those of
competing thermodynamic models, but the parametrization is less open to errors and bias,
and does not need extensive and consistent sets of experimental data to be trained.

Molecular dynamics plays a different role, providing microscopic details of structure,
bonding, and kinetics that are difficult to obtain by experiments. In this way, MD is greatly
contributing to our understanding of thermoresponsive IL solutions. At present, atomistic
or near atomistic (i.e., united atom) force field models seem to be the most suitable level
to simulate these systems and phenomena. More microscopic models, such as ab-initio
MD, are too expensive to cover the system sizes and simulation times of interest, while
simpler methods, such as coarse-grained force fields, are not sufficiently detailed to provide
quantitative information, although they could represent idealised models for investigating
conceptual aspects of thermo-responsiveness [101].

5. The Role of IL/Water Nanostructuring

Nanostructuring is a remarkable phenomenon in molecular liquids, particularly in ionic
liquids [35,152,153], with nominally homogeneous ILs being sometimes inhomogeneous
on the nm scale. This peculiar organisation also appears in IL/water solutions [36,154],
in which it refers to the separation of the system into IL-rich and water-rich nanometric
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domains. Nanostructuring in pure ILs and in IL/water solutions spans a wide range of sizes,
and, as discussed below, this is particularly true in the case of thermoresponsive systems.
Previous discussions of nanostructuring, based on diffraction and simulation, in most cases
cover a size range from 1 to 10 nm. Dynamic light scattering for IL micelles in solution
covers a wider range, up to 1000 nm [76] but not many data are available in the IL/water
context on sizes above 100 nm.

A decisive contribution towards nanostructuring (instead of phase separation) is given
by the amphiphilic character of the IL, which decreases the free energy cost of interfaces.
Another contribution might come from the entropy of the inhomogeneous distribution and
independent motion of domains, or, more likely, from a favourable curvature-dependent
term in the interfacial free energy. A detailed study covering a broad concentration range
for a few IL/water solutions is in reference [81]. Nanostructuring has great implications
for applications, especially in pharmaceutics and biotechnology [155]. The temperature
dependence of nanostructuring can be seen in electron microscopy videos [156]. The sys-
tems exhibiting UCST and especially those exhibiting LCST have a marked tendency to
nanostructuring in the nominally homogeneous phase and it is tempting to see phase
separation as the final stage of nanostructuring with domains growing in size up to macro-
scopic scale. It is also apparent that the amphiphilic character favouring nanostructuring is
closely related to the moderate hydrophobicity invoked for thermo-responsiveness, already
suggesting a connection between the two phenomena.

The picture, discussed here for the LCST case, is supported by several experimental
and simulation studies. The most explicit statements of the continuity between nanostruc-
turing and demixing are expressed in reference [76,157] (see Figure 13). Further support is
provided by our simulation results (see Figure 12), showing a patchwork of IL-rich and
water-rich domains in the nominally homogeneous phase at T < Tc. A more quantitative
analysis relies on the low-k limit of the partial structure factors (see Figure 14), which also
shows the growth of the characteristic size of domains when approaching (from lower T)
the transition temperature. Some sort of nanostructuring, whose nature has not been clari-
fied yet, seems to persist in both phases present at T > Tc, as documented in reference [76]
Moreover, again according to reference [76], the characteristic size of the nanostructuring in
the IL-rich phase starts to decrease with increasing T above Tc, reversing the trend observed
for T < Tc.

Figure 13. Temperature dependence of the size of [P4444][CF3COO] domains in water for five different
IL concentrations in wt%. Reprinted with permission from reference [157].
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Figure 14. Density–density structure factor Snn(k) (see Equation (4)) of [P4444][DMBS]/water at
50 wt% composition computed by MD for four temperatures that bracket LCST demixing.

Nanostructured IL/water solutions show an obvious resemblance with nano- and
microemulsions [157]. The major distinction is that emulsions are usually ternary sys-
tems, made of an oily phase, water and a surfactant. Nanostructured ILs are usually
binary systems, in which an amphiphilic IL plays, at the same time, the role of the oily
phase and the surfactant. An intermediate case is represented by a pair of ILs dissolved
in water, in which the ILs fill two different roles. Using a thermoresponsive IL, it is
possible to prepare an equally thermoresponsive micro-emulsion. An excellent exam-
ple is represented by a mixture of [P4444][CF3COO] and [C12mim][Br] dissolved in wa-
ter [158]. [P4444][CF3COO]/water is thermoresponsive with a LCST at 30 ◦C and composi-
tion ∼50 wt%, while [C12mim][Br] is a good surfactant. The system has been investigated
by experiments, using DLS to characterise the aggregates, and by MD simulation. The anal-
ysis of the system properties as a function of composition highlights the typical swelling
properties of microemulsions. The analysis of temperature effects allows to investigate
the mechanism of de-emulsification, which takes place at low temperature (∼15 ◦C), due
to the interplay of hydrogen bonding between cation–anion and anion–water. Perhaps
more importantly, the paper shows that the addition of a minority IL component to the
binary system, playing the role of the surfactant, i.e., decreasing the free energy cost of
the interface, could greatly extend the range of thermo-responsiveness, and improve the
control of this crucial phenomenon. Of course, thermoresponsive microemulsions could
find useful applications in the same areas now under considerations for ILs, including
catalysis, oil recovery, pharmaceutics, and drug delivery, in particular.

6. Applications

The focus on applications, with their extended cycling between temperatures and
chemical conditions and their economic and environmental constraints, requires the careful
considerations of chemical stability and reactivity [159]. We disregard issues of thermal and
electrochemical stability because up to 100 ◦C thermal decomposition is not quantitatively
important for the species considered in this paper, while electrochemical stability is not a
concern for the applications covered by the review.

Ionic liquids are usually described as chemically stable, but, of course, this statement
has exceptions and limitations. This is particularly true in the case of IL solutions in water,
which can drive hydrolization processes [4,160]. Another important degradation process,
especially important for cations, is photo-oxidation, which, however, besides negative
effects, could also have a positive role in removing residual ILs in waste products.
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The most obvious problematic case is represented by fluorinated ILs, based on anions
such as [BF4]− and [PF6]−, which are prone to hydrolysis and produce HF, which is toxic
and corrosive [4]. The hydrolysis rate depends also on the cation, with long-alkyl chain
imidazolium ions being far from optimal in this context [161]. According to reference [162],
however, other fluorinated species such as [NTf2]−, [(C2F5)3PF3]−, or [H(C2F4)SO3]−

are practically stable with respect to hydrolysis, having a half-life of 1 year at ambient
conditions, and showing significant degradation only after several days at T = 50 ◦C
in water solutions of pH ranging from 1 to 13. On the other hand, other promising
thermoresponsive IL compounds, based on methyl-, ethyl-, butyl-, and octyl sulfates
undergo hydrolysis at ambient conditions, although over times of several days [163]. As
already mentioned, hydrolysis problems also affect the thermoresponsive solutions of
magnetic ionic liquids based on [FeCl4]−.

To summarise, the chemical stability of IL compounds in thermoresponsive solutions
certainly raises a series of concerns. These are amplified when considering real-life applica-
tions, because the unavoidable presence of impurities greatly expands the range of possible
reactions, whose products could also affect the environment or the general safety of the
process. However, there seem to be still a range of compounds and conditions that could
support a variety of applications besides those in separation, extraction and purification, or
catalysis that are already relevant in industrial and technological settings [38–40].

6.1. Extraction and Separation, Catalysis

Extraction and separation are widely used chemical processing techniques often based
on the usage of liquid biphasic systems, and aqueous biphasic systems (ABSs), in particular.
In this domain of applications, ILs have already gained an important foothold, whose state
of the art is summarised in reference [7,164]. In this context, UCST or LCST add more
control and selectivity, and can greatly improve the kinetics of the process. Liquid–liquid
extraction, in particular, can take place both through UCST [165,166] or LCST [113]. The
process applies both to the recovery of IL from water or to the extraction, purification and
separation of biomolecules from solutions. An exemplary early application in this domain is
the extraction of the cytochrome c (Cyt. c) protein from a water solution [113] exploiting the
LCST of [P4444][Tf-Leu]/water mixtures, where [Tf-Leu]− is the trifluoromethanesulfonyl
leucine anion, derived from the leucine amino acid. According to reference [113], the
IL/water mixture is homogeneous at T = 20 ◦C and inhomogeneous at T = 25 ◦C, and
the extraction process, or, in other terms, the transfer of Cyt. c from the water phase to the
IL phase is simple. First, the water solution with Cyt. c is mixed with the IL at T < Tc,
giving a homogeneous liquid mixture. Then, T is raised above T = 25 ◦C, resulting in
a phase-separated system, in which Cyt. c is found predominantly in the IL-rich phase,
which also contains ∼20 wt% of water. The residual water content in the IL-rich phase is
instrumental in enhancing the protein solubility, and preserving the protein native state.
The crucial parameter in the extraction process is the partition ratio of Cyt. c between water
and IL in the phase separated state at higher T. For any given protein (such as Cyt. c) the
ratio depends on the IL choice. In the [P4444][Tf-Leu] case, less than 0.1% (representing the
lower detection limit of the UV-Vis spectrometry measurement) Cyt. c remained on the
water side of the biphasic system. This value is an equilibrium value, determined by the
different solvation free energy of Cyt. c in the two solvents; hence, it does not depend on
the presence of the LCST at lower temperatures. However, mixing the initial water solution
of Cyt. c with IL below the LCST point greatly enhances the kinetics of the transfer from
water to IL, with positive effects on the viability of the extraction approach. As expected,
the partition varies according to the protein, as shown in reference [113] by measuring the
partition of several haem and non-haem proteins, displaying a full range of behaviours,
from virtually complete transfer from water to [P4444][Tf-Leu] to protein segregation into
the water-rich phase, depending on the electrostatic charge and hydrophobicity.

A similar approach, based on biphasic IL/water systems with a reversible LCST,
has been followed in later studies to extract a number of other proteins [167], but also
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simpler organic and biomolecules, fragrances, and cosmetics [168], as well as drug-like
molecules [169]. Thermoresponsive IL are also promising in view of extracting oily species
from microalgae for biodiesel production [170], or to remove noxious sulfur species from
hydrocarbon fuels [171].

Another major task for thermoresponsive IL/water mixtures is the extraction of heavy
ions from water [166,172]. The aim is both to refine valuable rare earths [173], as well as
to extract a variety of metals from drinkable water. As an example, a water solution of
[Chol][NTf2] with a UCST of 72 ◦C has been used in reference [174] to extract Nd(III). The
extraction process is enhanced by adding a suitable extractant, represented by a chelating
compound able to sequester Nd(III) into a tight complex more soluble in the IL than in
water. In a final stage, Nd(III) is recovered from the IL-rich phase with a concentrated
HNO3 solution. A special niche application of thermoresponsive IL solutions is the recovery
of valuable metals from electronic waste [40].

Separation by thermoresponsive IL-solvent systems has a special application in cataly-
sis. Moreover, in this case, UCST and LCST are used to improve the kinetics of the catalytic
process, carrying out the relevant chemical reaction in the homogeneous phase, while
extracting the products and recovering the (often expensive) catalyst upon crossing the
demixing line towards the two phases regime. The practical importance of this application
is large and growing rapidly. As a consequence, the corresponding literature is overwhelm-
ing. Therefore, we refer to a recent review [18], which is more chemistry-oriented than our
chemical physics view of the field.

6.2. Water Desalination and Purification by Forward Osmosis, and Water Harvesting from
the Atmosphere

The demand of non-conventional fresh water to meet the ever growing needs of
humanity is so apparent that it does not need to be discussed in this review. Driven
by these needs, desalination of seawater (salt content from 3 to 4%) and brackish water
(from 0.5 to 3%) has become a relevant player in the global water market, with about
100 million m3/day desalinated water produced per day. This amount, however, still
represents about 1% of the total fresh water consumption, hence desalination still has an
enormous margin of growth. Current desalination methods rely on: (1) distillation, in
which water is vaporised by heating (possibly combined with a sudden pressure drop in
flash distillation) and then re-condensed, and (2) reverse osmosis (RO), in which water
is pushed through a thin membrane by the application of mechanical pressure, which is
needed to overcome the osmotic pressure. Both methods, however, are energy intensive,
with the most efficient one (RO) currently requiring around 2 kWh per cubic meter of fresh
water [175]. Additional problems faced by RO are due to the sizeable applied pressure,
which causes the wear and fouling of the membrane.

An appealing alternative might be represented by forward osmosis (FO) [176,177],
which, similar to RO, relies on the filtering by a thin membrane. A few key choices,
however, may give an edge to FO with respect to RO, although achieving this advantage
still requires significant development. In the first FO step (see Figure 15), water flows
spontaneously through the semipermeable membrane from the saline feed solution to a so
called draw solution, which, at the beginning, consists of a dry hygroscopic compound. The
flow continues until the osmotic pressure is equalised on the two sides of the membrane.
Hence, this step virtually does not require any energy input, since the osmotic pressure
replaces mechanical pressure in driving the flow of water through the membrane. Since
at this stage filtration does not require the application of external pressure, this step is
less prone to wear and fouling of the membrane than in RO. Moreover, since IL ions are
of medium–large size, back diffusion of IL ions into the feed solution is limited. The
second step, however, consist of the separation of water from the draw solution, at the
same time regenerating the draw solute, which can be reused to continue the process. In
principle, this second step is again a desalination step (IL being the salt) from a solution
whose osmotic pressure is even higher than the feed solution. Hence, FO cannot be as
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energy efficient as the best competing desalination process. In practice, the requirements
of high osmotic pressure for the first step and easy separation for the second at first
seem contradictory. Resorting to a thermoresponsive solution, and to a thermoresponsive
IL/water solution in particular, allows carrying out the separation at the cost of a moderate
(10–20 ◦C) increase of temperature, taking place not far from room temperature (while
most distillation plants operate at T > 150 ◦C). In this way, the separation of product
water and the regeneration of the draw solution can be largely carried out using low-grade
heat that can be represented by waste heat from industrial processes or provided by solar
power with no or limited concentration. Hence, on the long run, FO might represent the
most cost-effective alternative. Moreover, FO is suitable also for small installations, serving
isolated communities in less economically favoured regions. The separation of the draw
solution into water and solute, which is then recovered and reused, can take place either
upon cooling or heating. The second possibility is the preferred one, since in this case the
feed solution and especially the delicate polymeric membrane separation operates at room
temperature and only the draw solution needs to be moderately heated. Following this FO
route, therefore, demixing takes place through an entropy driven transition, with the draw
solution crossing on heating its so-called lower critical solution temperature (LCST).

Figure 15. Scheme of principle for FO desalination. The change of temperature required to recover
the draw solution is positive with LCST solutions, negative for UCST solutions. Reprinted with
permission from reference [42].

Before reviewing FO desalination applications, we should remind the reader that the
molarity of sea water is 0.6 M of NaCl, corresponding to an osmotic pressure of about 27 bar.
The minimum theoretical energy required for desalination computed from thermodynamic
functions is 1.09 kW/m3. Important parameters for a FO installation are the osmotic pressure
of the draw solution, the flux of water that can be achieved through the membrane, and the
reverse diffusion of draw solute into the feed water, which could impose frequent addition
of (expensive) draw solute to the system. As a proxy for the osmotic pressure, one can
use osmolality m, i.e., the number of particles and ions in particular (converted in moles
through the Avogadro constant) per Kg of solvent. An approximate value of the osmotic
pressure is obtained as π = mρRT, where ρ is the density of the solution, and R is the molar
gas constant. Osmolality of electrolytes is increased by dissociation, and decreased by ion
association. Therefore, one is confronted again by a nearly contradicting requirement, since to
increase molality one should achieve good dissociation, but good dissociation, corresponding
to hydrophilic conditions, might prevent demixing and thermo-responsiveness.

As already stated, FO desalination could be based both on UCST and on LCST
demixing, with a preference for the latter. Remarkably, the two major papers intro-
ducing thermoresponsive IL to FO desalination made a different choice on this aspect,
with reference [43] relying on LCST, and reference [42] relying on UCST. reference [43],
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in particular, compares the performance as draw solutes of three IL, i.e., [P4444][2,4-
dimethilbenzenesulfonate] ([P4444][DMBS]), [P4444][mesitylene sulfonate] ([P4444][TMBS])
and [P4444][Br]. Of these compounds, [P4444][DMBS] at 70 wt% has the best drawing per-
formance, while [P4444][Br] has no practical ability, i.e., has insufficient osmotic pressure,
to draw water from saltwater. Both [P4444][DMBS] and [P4444][TMBS] have a potential for
applications. Their LCST demixing points vary from 30 to 50 ◦C, depending on concentra-
tion. Even for [P4444][DMBS] the drawing ability is a sensitive function of temperature. At
14 ◦C (that might be too low for several applications), a 70 wt% solution draws water from
a 1.6 M NaCl solution, which is 2.7 times more concentrated than seawater. Considering
seawater as the feed solution, expected operational parameters for real-life application
could be: pristine draw solution of [P4444][DMBS] at 70 wt%; diluted solution after water
sorption at 30–50 wt%. Heating ∼16 ◦C above the LCST demixing point regenerates the
draw solution at a level that can be reused without further processing, while the water
rich phase contains less than 10 wt% IL, with an osmotic pressure of about 6 bar. This
last fraction has to be purified by nano-filtration or RO (but operated at low pressure and
requiring less energy), recovering the residual IL and producing high-quality fresh water.

A detailed estimate of the energy required for the process shows that the electrical
energy consumption (for the final RO step, for instance), is much below (about 16%) the
minimum thermodynamic value of 1.09 kWh/m3. The full desalination process requires
a larger amount of thermal energy (for the first demixing step), bringing the total above
the thermodynamic minimum, and above current RO values. Because of the low demixing
temperature of thermoresponsive IL/water solutions, however, the heat can be provided
by waste heat or by solar irradiation, as already stated. The flow of water through the
device, which is a further important parameter, is comparable to that of high-performance
RO desalination. Higher capital investment, however, can be required.

Promising results were presented also in reference [42], investigating the FO per-
formance of a draw solution based on a protonated betaine cation with [NTf2]− anion
([Hbet][NTf2]), which has a UCST of ∼56 ◦C. In this case, the pristine draw solution has
88 wt% salt concentration, and the sorption step takes place at 60 ◦C. Regeneration of the
draw solution takes place on cooling to room temperature, with an overall performance
comparable (and in some aspects even better) to that of reference [43]. For instance, the
osmotic pressure of the draw solution is such to draw water from a 3.0M NaCl solution.
Moreover, in this case, the regenerated draw solution could be used without further pro-
cessing , and the water-rich phase requires further purification. The energy balance is
less detailed than the one given in reference [43], and the thermal energy requirement
(44.15 kWh/m3) seems to be relatively large. However, the study is meant to provide a first
proof of principle of FO using UCST draw solution, and several choices might not have
been carefully optimised.

A recent paper that might represent the state of the art to date [178] focuses on the
same class of phosphonium ionic liquids of reference [43], i.e., [P4444][DMBS] (Tc = 36 ◦C)
and [P4444][trifluoroacetate] ([P4444][TFA], Tc = 31 ◦C), but implements a different heating
approach. Perhaps, more importantly, it introduces a lab-scale prototype and a testing
protocol. Heating, in this case, is achieved by a photonic heater, which converts solar
radiation into black body radiation whose intensity peaks in the mid-infrared, efficiently
absorbed by the solution. This non-contact heating increases the thermal efficiency, thus
improving the overall energy balance, bringing FO with ILs one step closer to break even
with RO. In the testing stage, pristine draw solutions at 70 wt% IL concentration are diluted
to 40–50 wt%. The diluted solution is heated ∼20 ◦C above the LCST, obtaining again
a draw solution at 70–80 wt% concentration, and water in which the IL concentration is
<10 wt%, to be processed by nanofiltration or low-pressure RO.

In between the early and latest papers, a few studies analysed a variety of aspects
in the FO process. reference [179], in particular, analyses a few more ILs than in the
other papers, and discusses the relation of osmolality and hydrophobicity of the ILs.
In the limit of vanishing concentration, the osmolality of an [M][X] electrolyte is two
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times its molarity. With increasing concentration, even weakly hydrophobic ILs will
form aggregation, decreasing osmolality below its ideal (fully dissociated) value. This, in
turn, decreases the osmotic pressure, which is the first most important parameter of the
draw solution. Hydrophobicity, however, affects a variety of other properties, such as the
occurrence of demixing, the surface tension and viscosity. reference [179] confirms the clear
correlation of all these properties. Moreover, it emphasises the role of the critical micellar
concentration, i.e., the concentration at which IL aggregates start to form, which marks the
appearance of anomalies in all the properties listed in the previous sentence. The interest
of reference [179] is that it shows directions to explore to optimise ILs as components
of draw solutions, although, at the same time, it shows that the common relation with
hydrophobicity poses constraints on the property optimisation that can be achieved.

Several very recent papers might mark a renewed interest in the subject [180–182]. An
urgent problem that needs to be addressed in future studies is the relatively low water flow
achieved until now by thermoresponsive IL/water desalination set ups.

Arsenic contamination of ground water is a major health hazard in several countries
(for instance, Bangladesh, China, India, Nepal, Argentina, Mexico) and methods to de-
crease its concentration in drinking water are in great need. Brackish water suitable for FO
desalination may also be affected by high arsenic content, and unfortunately present FO
membranes are not effective in preventing its transfer to the product water. An approach
being developed relies in functionalizing FO membranes by the imidazolium group, able
to increase the membrane selectivity in containing cationic arsenic species [183]. Another
approach, not discussed in the literature, but that could be envisageable, consists in per-
forming desalination and arsenic sequestration in the same FO demixing step, confining
As in the IL-rich phase. Such an approach would require also a way to extract arsenic from
the IL before re-using it as the draw solution.

An open direction for improving the FO performance of thermoresponsive IL/water
solution is based on the usage of a hybrid IL-hydrogel mixture as the draw solution [184].
The chemical composition and schematic structure are indicated in Figure 16. The IL
([P4444]+ coupled to one of the three anions shown in Figure 16) is similar to those discussed
in the previous paragraphs of this subsection. The hydrogel was obtained by polymerising
[P4444][VBS] through the vinyl group on the anion, and producing a 3D mesh in water by a
suitable cross-linker (see Figure 16). The resulting system retains the thermo-responsiveness
of its constituents. The advantages, resulting from purely materials science aspects, include:
a more durable draw solution; enhanced purity of the produced water; the possibility of
devising a continuous FO process. Since this subtopic is somewhat removed from the main
subject of our review, we refer to reference [184] for all the details.

Figure 16. The [P4444]+ cation and the three arene anions considered in the preparation of the
IL-hydrogel hybrid thermoresponsive draw solution for FO desalination [184]. The hydrogel was
obtained by polymerising [P4444][VBS], cross-linking the polymeric chains through a suitable linker,
as shown in the figure. Reprinted with permission from reference [184].
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A qualitatively new technology named directional solvent extraction (DSE) does not require
membrane filtration and is based on oily solvents (including ILs)[185], which do not dissolve
in water, but absorb water and repel simple salts, such as NaCl. To separate water and its
directional solvent, this approach also relies on strong variations of the relevant solubilities,
which, however, do not need to "rich" the stage of a genuine UCST or LCST transition. We
should note that FO devices could be used for drying biomolecules and in food processing.
Moreover, in this case, the advantage of a thermoresponsive IL would be that of easily
regenerating the (possibly expensive) draw solution, although in this niche, application of
energy considerations might be less pressing than in large scale desalination.

While seawater desalination is already a reality, and it is likely to greatly expand in the
coming decades, it is also apparent that it cannot meet the needs of vast arid regions far from
the sea and from other sources of salty and brackish water. Even in the desert, however, the
relative saturation of water in the atmosphere can reach 40% during the night, and could be
captured by suitable sorbent materials to be released during the day [186]. Water harvesting
from the atmosphere following the approach just outlined has been proposed and implemented
using a variety of sorbent materials, including zeolites, metal-organic frameworks, hygroscopic
salts, desiccants, such as silica gels [187]. Both ionic liquids [188] and thermo-responsiveness (of
polymers and gels) [189,190], have been separately considered for this task, but to the best of
out knowledge thermoresponsive ionic liquids have non been tested as sorption materials for
atmospheric water harvesting. It might be worth it to analyse this application in more detail
in the future, since the rapid variation of solubility with temperatures at relatively low water
concentrations of thermoresponsive IL/water systems could help, especially at conditions that
prevent the usage of different methods, such as moisture and dew collection.

6.3. Heat Storage in Thermoresponsive IL/Water Systems

The intermittent operation of renewable power generation sources, such as wind and
solar energy, has greatly increased the need for large scale energy storage. A popular
approach to store thermal energy relies on the high specific heat capacity of molten salts,
and especially on the latent heat of phase–change materials. In this context, ILs have
been considered several times as promising systems, because of a favorable combination
of properties, including a relatively low operational temperature (suitable for domestic
applications), moderate environmental risk and low flammability [191–194].

We should note that the mixing/demixing transition of UCST and LCST IL/water
mixtures represents an additional example of phase change that could be exploited for heat
storage and, the LCST case in particular, has a specific advantage for long term storage. Let
us consider this latter case. Starting from room temperature, at which the IL/water solution
is stable and homogeneous because of lower enthalpy, increasing T progressively increases
the role of entropy, stabilizing the de-mixed state, whose enthalpy is higher, but whose
entropy is higher too. Physical separation of the two phases (inserting a diaphragm, for
example), possibly favoured by the different density of the water-rich and IL-reach fractions,
permanently traps the system into a demixed state, preventing its degradation through
mixing when T decreases below Tc. No mixing enthalpy can be lost after separation, but the
mixing enthalpy can be recovered as heat by mixing again IL and water. In principle, any
temperature reversible chemical reaction could be used to the same aim, but the IL/water
de-mixing has crucial advantages, because mixing/de-mixing is completely reversible, the
IL and water can be recycled indefinitely, many IL are not particularly dangerous for the
environment, and Tc is only moderately beyond room temperature, allowing again the
exploitation of low grade heat.

To validate this hypothetical picture, we re-analysed the data of our MD simula-
tions, comparing the temperature dependence of the potential energy Umix(T) of the
[P4444][DMBS]/water solution undergoing LCST phase separation with the Udemix(T) of
equal amounts of water and IL simulated independently over the 0 < T < 100 ◦C interval.
The results are reported in Figure 17. The two curves (nearly but not quite straight lines)
cross at height T, since in this case even the combined IL+water sample consist of two
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separated phases. At the lowest temperature T = 0 ◦C, however, the two curves differ,
and their difference ∆U = Udemix(0)−Umix(0) is the mixing energy of [P4444][DMBS] and
water at 50 wt% composition and T = 0 ◦C. This difference ∆U represents the amount of
heat that can be permanently stored in the demixed system. As already stated, it can be
recovered simply mixing again IL and water. Admittedly, in the system, we simulated
∆U(T = 0) is relatively small (only 10%) compared to the potential energy difference
Umix(T = 100 ◦C) −Umix(T = 0 ◦C) to be provided in order to drive the system from
the low-T mixed state to the high-T demixed state. However, the appeal of the approach
we propose is increased by considering that also the heat that is not permanently stored
does not need to be wasted, but can be recovered on a shorter time scale for a variety of
heating purposes. Moreover, the estimated ∆U(T = 0) quoted above is only the the result
for the first IL we tried, and certainly there is a margin for improvement. The enthalpy
associated to nanostructuring has already been factored into the heat storage capability
of ILs, but the progression from nanostructuring to phase separated has the advantage to
make permanent part of this storage capacity [195,196].
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Figure 17. Potential energy of [P4444][DMBS]/water systems at 50 wt% composition from MD
simulations. Blue line: unconstrained system, mixed at low T and demixing with increasing T. Red
line: system whose biphasic state is retained by physical separation at all T.

7. Summary and Discussion

Thermoresponsive IL/water solutions consist of systems with a mixing/demixing
transition located in the liquid–water range ([0− 100] ◦C) of temperature, taking place
with decreasing T in systems with a UCST (see Figure 1b), or with increasing T in systems
having a LCST (see Figure 1a). A few systems display both a UCST and a LCST, having
a closed-loop solubility gap in their phase diagram on the (composition, T) plane. In the
IL/water case, systems with UCST seem to be more numerous than those with LCST. This
observation, however, is only empirical, it might reflect our limited knowledge of the phase
diagram for the vast multitude of IL/water systems, and, in any case, the prevalence is
reversed in other related systems, such as IL/polymer or poly-IL/solvent systems. Again,
for the IL/water case, the UCST and LCST points tend to occur at nearly equal composition
(50− 50 wt%) in IL and water.

In the known cases, thermo-responsiveness occurs in systems such that the hydropho-
bic and hydrophilic character of the IL solute, usually associated to different chemical
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groups, nearly compensate each other, making the IL marginally soluble, with a mix-
ing/demixing that is sensitive to T over the limited 0 < T < 100 ◦C range. The chemical
physics properties of these systems have been probed mainly by differential scanning
calorimetry, able to identify phase changes in the solution; by light, neutron and X-ray
scattering, highlighting the T-dependent nanostructuring in the nominally homogeneous
phase; by 1D and 2D NMR, probing the local environment of different species, their spatial
arrangement and the relaxation channels among them; by molecular dynamics simulation,
providing a microscopic view of structure and bonding, as well as kinetics and mechanisms
of the thermoresponsive transition. All these techniques together emphasise the role of
the anions, and, in most cases, of their hydrogen bonding with water, cations and among
themselves. In the LCST case, in particular, entropy is the eventual winning side of the
competition with enthalpy, driving demixing with increasing T. The decrease in the number
of hydration water molecules, tightly bound (primarily) to anions by hydrogen bonds is
the most apparent mechanism for the entropy increase and related demixing at high T.

A recurring theme in this field is the relation of nanostructuring in the one-phase
stability range and phase separation, which is emphasised by a number of experimental
studies and especially by simulation. Moreover, it is apparent that the demixing transition
is rather continuous, even away from the single critical point at UCST and LCST. However,
it is not clear yet whether nanostructuring over increasingly wide domains is a general and
necessary feature of thermo-responsiveness.

The broad experimental exploration of thermo-responsiveness of ILs has shown ex-
amples of IL compounds that, at the same time, give origin to thermoresponsive solutions
when dissolved in water, and are made ions that are relatively simple, chemically stable,
moderately- or non-toxic and easy to keep under confinement, opening the way to a host
of applications. The earliest applications, and those that up to now are the most relevant
in practice, are in chemical processing, and, in particular, concern extraction, separation
and purification technologies, suitable for large-scale applications, such as, for example,
the extraction of rare earth ions from water or of contaminants from hydrocarbons, but also
suitable for niche applications in biochemistry and in biotechnology, drug preparation and
delivery. Examples of this type of lab-scale applications are represented by the extraction,
purification and preservation of proteins and genetic material in their native form, the
purification of drugs, and their release in response to a change of temperature from room
to body temperature. Another major group of applications in chemical processing concerns
catalysis, in which the phase separation is used first to perform the catalytic reaction in the
homogeneous phase, with optimal contact of all components, and the successive phase
separation under a temperature change is exploited to separate the products from the
solvent, and to recover the catalyst. In extraction, separation, purification, and catalysis,
thermo-responsiveness is primarily used to favour the kinetics of the entire process, by-
passing diffusion-limited steps in the separation of solvent and target products in the final
stages of these processes.

Applications that are already developed and, to some extent, deployed, at least at the
laboratory scales, are only briefly covered in the present paper, mainly because they are the
topic of recent and comprehensive reviews. We selected instead to discuss in some detail
water, energy, and environmental applications, which are still in very preliminary stages
of development (FO desalination using thermoresponsive IL/water draw solutions), or
still at the level of speculation, such as IL/water solutions for permanently storing low
grade heat, and water harvesting from the atmosphere. Of these, FO desalination based
on thermoresponsive IL/water draw solutions already has a well established factual basis,
and represents a technology that only needs further materials science and engineering
developments to overcome an industrial and economic handicap to break into the open
and gain a foothold in the expanding market for fresh water. At the very least, it is likely to
play a role in the desalination of non-seawater resources, such as, for instance, brine from
oil and gas wells, having high salinity and a variety of contaminants.
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The expected practical and conceptual development of thermoresponsive IL/water
(and, more in general, IL/solvent) systems will depend on the extension to this research
area of old (combinatorial chemistry) and new (machine learning) tools able to explore
a wider portion of the vast number of IL/solvent systems. The aim of new research
will be to better understand the role of cations, and to explore a variety of different or
intermediate systems, such as IL/polymers, poly-ILs in water and in organic solvents, ILs
in hydrogels, nanoparticles in water and ILs, deep eutectic systems, as well as systems
with a higher number of components. Another open research direction concerns multi-
responsive systems, reacting to the combination of stimuli that involve temperature, but
also light, pH, magnetic fields, addition of gases or chemical contaminants. Both research
directions dramatically increase the number and variety of systems and properties of
interest. Developments along these lines, fortunately or unfortunately, will make the
exploration of thermoresponsive, IL-related solutions an endless effort, whose impact on
applications can also be very extensive and profound.

Finally, any discussion of future applications of ILs cannot neglect considerations on
the cost of these compounds. One cannot be too specific because the cost of ILs depends
very sensitively on which IL is considered, and the cost will go down in the case of
bulk production, but it is likely that it will remain high compared to that of traditional
organic solvents [197]. It might be useful to remark, however, which applications of
thermoresponsive IL/solvent solutions rely precisely on the ability to separate easily
and virtually completely the IL following demixing. Therefore, the IL component will
need to be replenish only slightly after each application cycle, reducing the impact of the
high cost of ILs. In forward osmosis desalination, which could require large amounts
of solute, the recovery of the IL can be substantially better than the ratio (10 wt% of IL
remaining in the water-rich phase) resulting from the spontaneous phase separation when
supplemented by a second stage of recovery, which is needed in any case to obtain fresh
water of drinkable quality.
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60. Paduszyński, K.; Królikowska, M. Extensive evaluation of performance of the COSMO–RS approach in capturing liquid—-liquid

equilibria of binary mixtures of ionic liquids with molecular compounds. Ind. Eng. Chem. Res. 2020, 59, 11851–11863. [CrossRef]
61. del Olmo, L.; Lage–Estebanez, I.; López, R.; de la Vega, J.M.G. Effect of dielectric constant on estimation of properties of

ionic liquids: an analysis of 1–alkyl–3–methylimidazolium bis(trifluoromethylsulfonyl)–imide. RSC Adv. 2015, 5, 72709–72715.
[CrossRef]

62. Balchandani, S.; Ramesh Singh, R. COSMO–RS analysis of CO2 solubility in n–methyldiethanolamine, sulfolane, and 1–butyl–3–
methyl–imidazolium acetate activated by 2–methylpiperazine for postcombustion carbon capture. ACS Omega 2021, 6, 747–761.
[CrossRef] [PubMed]

63. Weingärtner, H. The static dielectric permittivity of ionic liquids. J. Mol. Liq. 2014, 192, 185–190. [CrossRef]
64. Löwen, H. Density functional theory of inhomogeneous classical fluids: recent developments and new perspectives. J. Phys.

Condens. Matter 2002, 14, 11897–11905. [CrossRef]
65. Gross, J. A density functional theory for vapor–liquid interfaces using the PCP–SAFT equation of state. J. Chem. Phys. 2009, 131,

204705. [CrossRef]
66. Yusuf, F.; Olayiwola, T.; Afagwu, C. Application of artificial intelligence—-based predictive methods in ionic liquid studies: A

review. Fluid Phase Equil. 2021, 531, 112898. [CrossRef]
67. Goscinny, R.; Uderzo, A. Le tour de Gaule; Hachette: Paris, France, 1999; ISBN 978-2012100053.
68. Sepehri, B. A review on created QSPR models for predicting ionic liquids properties and their reliability from chemometric point

of view. J. Mol. Liq. 2020, 297, 112013. [CrossRef]

http://dx.doi.org/10.3390/molecules25215207
http://www.ncbi.nlm.nih.gov/pubmed/33182328
http://dx.doi.org/10.1016/j.molliq.2022.118556
http://dx.doi.org/10.3390/ijms22115612
http://www.ncbi.nlm.nih.gov/pubmed/34070636
http://dx.doi.org/10.1021/acs.est.5b03747
http://dx.doi.org/10.1039/C4EW00073K
http://dx.doi.org/10.1016/j.fluid.2012.06.026
http://dx.doi.org/10.1021/j100181a058
http://dx.doi.org/10.1002/aic.690140124
http://dx.doi.org/10.1016/j.fluid.2010.08.021
http://dx.doi.org/10.1002/aic.690210115
http://dx.doi.org/10.1021/ja01056a002
http://dx.doi.org/10.1021/cr60137a013
http://dx.doi.org/10.1016/0009-2509(72)80096-4
http://dx.doi.org/10.1021/i160057a011
http://dx.doi.org/10.1016/0009-2509(82)80099-7
http://dx.doi.org/10.1021/ie0003887
http://dx.doi.org/10.1021/jp3009207
http://dx.doi.org/10.1016/j.fluid.2010.02.002
http://dx.doi.org/10.1021/acs.iecr.0c00449
http://dx.doi.org/10.1039/C5RA11425J
http://dx.doi.org/10.1021/acsomega.0c05298
http://www.ncbi.nlm.nih.gov/pubmed/33458527
http://dx.doi.org/10.1016/j.molliq.2013.07.020
http://dx.doi.org/10.1088/0953-8984/14/46/301
http://dx.doi.org/10.1063/1.3263124
http://dx.doi.org/10.1016/j.fluid.2020.112898
http://dx.doi.org/10.1016/j.molliq.2019.112013


Molecules 2022, 27, 1647 42 of 46

69. Sun, Y.; Chen, M. C.; Zhao, Y.; Zhu, Z.; Xing, H.; Zhang, P.; Zhang, X.; Ding, Y. Machine learning assisted QSPR model for
prediction of ionic liquid’s refractive index and viscosity: The effect of representations of ionic liquid and ensemble model
development. J. Mol. Liq. 2021, 333, 115970. [CrossRef]

70. Baskin, I.; Epshtein, A.; Ein-Eli, Y. Benchmarking machine learning methods for modeling physical properties of ionic liquids. J.
Mol. Liq. 2022, 351, 118616. [CrossRef]

71. Kohno, Y.; Ohno, H. Temperature–responsive ionic liquid/water interfaces: Relation between hydrophilicity of ions and dynamic
phase change. Phys. Chem. Chem. Phys. 2012, 14, 5063–5070. [CrossRef] [PubMed]

72. Carrick, B.R.; Seitzinger, C.L.; Lodge, T.P. Unusual lower critical solution temperature phase behavior of poly(benzyl methacrylate)
in a pyrrolidinium–based ionic liquid. Molecules 2021, 26, 4850. [CrossRef] [PubMed]

73. Feng, Z.; Ishikawa, K. Development of simultaneous measurement system of birefringence, optical rotational power, and
transmission spectra for chiral liquid crystal phases. Jpn. J. Appl. Phys. 2016, 55, 050301. [CrossRef]

74. Dong, S.; Heyda, J.; Yuan, J.; Schalley, C.A. Lower critical solution temperature (LCST) phase behaviour of an ionic liquid and its
control by supramolecular host–guest interactions. Chem. Commun. 2016, 52, 7970–7973. [CrossRef] [PubMed]

75. Nitta, A.; Morita, T.; Nishikawa, K.; Koga, Y. Mixing scheme of an aqueous solution of tetrabutylphosphonium trifluoroacetate in
the water–rich region. Phys. Chem. Chem. Phys. 2017 19, 16888–16896. [CrossRef]

76. Kang, H.; Suich, D.E.; Davies, J.F.; Wilson, A.D.; Urban, J.J.; Kostecki, R. Molecular insight into the lower critical solution
temperature transition of aqueous alkyl phosphonium benzene sulfonates. Chem. Commun. 2019, 2, 51. [CrossRef]

77. Heintz, A.; Lehmann, J.K.; Wertz, C.; Jacquemin, J. Thermodynamic properties of mixtures containing ionic liquids. 4. LLE of
binary mixtures of [C2MIM][NTf2] with propan–1–ol, butan–1–ol, and pentan–1–ol and [C4MIM][NTf2] with cyclohexanol and
1,2–hexanediol including studies of the influence of small amounts of water. J. Chem. Eng. Data 2005, 50, 956–960.

78. Nitta, A.; Morita, T.; Saita, S.; Kohno, Y.; Ohno, H.; Nishikawa, K. Density fluctuations in aqueous solution of ionic liquid with
lower critical solution temperature: Mixture of tetrabutylphosphonium trifluoroacetate and water. Chem. Phys. Lett. 2015, 628,
108–112. [CrossRef]

79. Bhatia, A.B.; Thornton, D.E. Structural aspects of the electrical resistivity of binary alloys. Phys. Rev. B 1970, 2, 3004–3012.
[CrossRef]

80. Hansen, J.P.; Mc Donald, I.R. Theory of Simple Liquids; Academic Press: London, UK, 1986.
81. Kumari, P.; Pillai, V.V.S.; Gobbo, D.; Ballone, P.; Benedetto, A. The transition from salt–in–water to water–in–salt nanostructures in

water solutions of organic ionic liquids relevant for biological applications. Phys. Chem. Chem. Phys. 2021, 23, 944–959. [CrossRef]
[PubMed]

82. Canongia Lopes, J.N.; Deschamps, J.; Pádua, A.A.H. Modeling ionic liquids using a systematic all–atom force field. J. Phys. Chem.
B 2004, 108, 2038–2047. [CrossRef]

83. Canongia Lopes, J.N.; Pádua, A.A.H. CL&P: A generic and systematic force field for ionic liquids modeling. Theor. Chem. Acc.
2012, 131, 1–11.

84. Canongia Lopes, J.N.; Pádua, A.A.H. Molecular force field for ionic liquids III: Imidazolium, pyridinium, and phosphonium
cations; chloride, bromide, and dicyanamide anions J. Phys. Chem. B 2006, 110, 19586–19592. [CrossRef]

85. de Souza, R.M.; Karttunen, M.; Ribeiro, M.C.C. Fine–tuning the polarizable CL&Pol force field for the deep eutectic solvent
ethaline. J. Chem. Inf. Model. 2021, 61, 5938–5947

86. Goloviznina, K.; Canongia Lopes, J.N.; Costa Gomes, M.; Pádua, A.A.H. Transferable, Polarizable Force Field for Ionic Liquids. J.
Chem. Theory Comput. 2019, 15, 5858–5871. [CrossRef]

87. Goloviznina, K.; Gong, Z.; Pádua, A.A.H. The CL&Pol polarizable force field for the simulation of ionic liquids and eutectic
solvents. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, e1572. doi: 10.1002/wcms.1572. [CrossRef]

88. McDaniel, J.G. Polarization effects in binary [BMIM][BF4]/1,2–Dichloroethane, acetone, acetonitrile, and water electrolytes. J.
Phys. Chem. B 2018, 122, 4345–4355. [CrossRef]

89. Kirchner, B. Ionic liquids from theoretical investigations. Top. Curr. Chem. 2009 290, 213–262.
90. Du, S.; Yoo, S.; Li, J. Comparison of the melting temperatures of classical and quantum water potential models. Front. Phys. 2017,

5, 34. [CrossRef]
91. Uhlig, F.; Zeman, J.; Smiatek, J.; Holm, C. First–principles parametrization of polarizable coarse–grained force fields for ionic

liquids. J. Chem. Theory Comput. 2018, 14, 1471–1486. [CrossRef] [PubMed]
92. Wang, Y.; Feng, S.; Voth, G.A. Transferable coarse–grained models for ionic liquids. J. Chem. Theory Comput. 2009, 5, 1091–1098.

[CrossRef] [PubMed]
93. Salanne, M. Simulations of room temperature ionic liquids: from polarizable to coarse–grained force fields. Phys. Chem. Chem.

Phys. 2015, 17, 14270–14279. [CrossRef] [PubMed]
94. Panagiotopoulos, A. Direct determination of phase coexistence properties of fluids by Monte–Carlo simulation in a new ensemble.

Mol. Phys. 1987, 61, 813–826. [CrossRef]
95. Marin–Rimoldi, E.; Shah, J.K.; Maginn, E.J. Monte Carlo simulations of water solubility in ionic liquids: A force field assessment.

Fluid Phase Equilib. 2016 407, 117–125. [CrossRef]
96. Venkatesan, S.S.; Huda, M.M.; Rai, N. Molecular insights into ionic liquid/aqueous interface of phosphonium based phase–

separable ionic liquids. AIP Adv. 2019, 9, 045115. [CrossRef]

http://dx.doi.org/10.1016/j.molliq.2021.115970
http://dx.doi.org/10.1016/j.molliq.2022.118616
http://dx.doi.org/10.1039/c2cp24026b
http://www.ncbi.nlm.nih.gov/pubmed/22334119
http://dx.doi.org/10.3390/molecules26164850
http://www.ncbi.nlm.nih.gov/pubmed/34443438
http://dx.doi.org/10.7567/JJAP.55.050301
http://dx.doi.org/10.1039/C6CC02838A
http://www.ncbi.nlm.nih.gov/pubmed/27253850
http://dx.doi.org/10.1039/C7CP02997G
http://dx.doi.org/10.1038/s42004-019-0151-2
http://dx.doi.org/10.1016/j.cplett.2015.03.026
http://dx.doi.org/10.1103/PhysRevB.2.3004
http://dx.doi.org/10.1039/D0CP04959J
http://www.ncbi.nlm.nih.gov/pubmed/33367394
http://dx.doi.org/10.1021/jp0362133
http://dx.doi.org/10.1021/jp063901o
http://dx.doi.org/10.1021/acs.jctc.9b00689
http://dx.doi.org/10.1002/wcms.1572
http://dx.doi.org/10.1021/acs.jpcb.8b01714
http://dx.doi.org/10.3389/fphy.2017.00034
http://dx.doi.org/10.1021/acs.jctc.7b00903
http://www.ncbi.nlm.nih.gov/pubmed/29357238
http://dx.doi.org/10.1021/ct800548t
http://www.ncbi.nlm.nih.gov/pubmed/26609619
http://dx.doi.org/10.1039/C4CP05550K
http://www.ncbi.nlm.nih.gov/pubmed/25592219
http://dx.doi.org/10.1080/00268978700101491
http://dx.doi.org/10.1016/j.fluid.2015.07.007
http://dx.doi.org/10.1063/1.5090775


Molecules 2022, 27, 1647 43 of 46

97. Schnell, S.K.; Vlugt, T.J.H. Simon, J.M.; Bedeaux, D.; Kjelstrup, S. Thermodynamics of a small system in a µt reservoir. Chem. Phys.
Lett. 2011, 504, 199–201. [CrossRef]

98. Cortes–Huerto, R.; Kremer, K.; Potestio, R. Communication: Kirkwood–Buff integrals in the thermodynamic limit from small–
sized molecular dynamics simulations. J. Chem. Phys. 2016, 145, 141103. [CrossRef] [PubMed]

99. Dawass, N.; Krüger, P.; Schnell, S.K.; Simon, J.-M.; Vlugt, T.J.H. Kirkwood–Buff integrals from molecular simulations. Fluid Phse
Equilib. 2019, 486, 21–36. [CrossRef]

100. Schnell, S.K.; Englebienne, P.; Simon, J.-M.; Krüger, P.; Balaji, S.P.; Kjelstrup, S.; Bedeaux, D.; Bardow, A.; Vlugt, T.J.H. How to
apply the Kirkwood–Buff theory to individual species in salt solutions. Chem. Phys. Lett. 2013, 582, 154–157. [CrossRef]

101. Gobbo, D.; Ballone, P.; Garabato, B.D. Coarse–grained model of entropy–driven demixing. J. Phys. Chem. B 2020, 124, 9267–9274.
[CrossRef]

102. Walden, P.; Centnerszwer, M. Ober Verbindungen des Schwefeldioxyds mit Salzen. Z. Phys. Chem. (Leipzig) 1903, 42, 432.
[CrossRef]

103. Friedman, H.L. Electrolyte solutions that unmix to form two liquid phases. Solutions in benzene and diethyl ether. J. Phys. Chem.
1962, 66, 1595–1600. [CrossRef]

104. Weingärtner, H.; Steinle, E. p, T, x surface of liquid–liquid immiscibility in aqueous solutions of tetraalkylammonium salts. J. Phys.
Chem. 1992, 96, 2407–2409. [CrossRef]

105. Dittmar, H.R.; Schröer, W.H. Lower critical solution temperature in the metastable region of an ionic solution in a non–polar
solvent. J. Phys. Chem. B 2009, 113, 1249–1252. [CrossRef] [PubMed]

106. Buckingham, S.A.; Garvey, C.J.; Warr, G.G. Effect of head–group size on micellization and phase behavior in quaternary
ammonium surfactant systems. J. Phys. Chem. 1993, 97, 10236–10244. [CrossRef]

107. Suarez, P.A.Z.; Einloft, S.; Dullius, J.E.L.; de Souza, R.F.; Dupont, J. Synthesis and physical-chemical properties of ionic liquids
based on 1-n-butyl-3-methylimidazolium cation. J. Chim. Phys. 1998, 95, 1626–1639. [CrossRef]

108. Dyson, P.J.; Ellis, D.J.; Welton, T. A temperature–controlled reversible ionic liquid–water two phase–single phase protocol for
hydrogenation catalysis. Can. J. Chem. 2001, 79, 705–708. [CrossRef]

109. Lachwa, J.; Szydlowski, J.; Najdanovic–Visak, V.; Rebelo, L.P.N.; Seddon, K.R.; da Ponte, M.N.; Esperança, J.M.S.S.; Guedes, H.J.R.
Evidence for lower critical solution behavior in ionic liquid solutions. J. Am. Chem. Soc. 2005, 127, 6542–6543. [CrossRef]

110. Lachwa, J.; Szydlowski, J.; Makowska, A.; Seddon, K.R.; Esperança, J.M.S.S.; Guedes, H.J.R.; Rebelo, L.P.N. Changing from an
unusual high–temperature demixing to a UCST–type in mixtures of 1–alkyl–3–methylimidazolium bis{(trifluoromethyl)sulfonyl}
amide and arenes. Green Chem. 2006, 8, 262–267. [CrossRef]

111. Fukumoto, K. Ohno, H. LCST–type phase changes of a mixture of water and ionic liquids derived from amino acids. Angew.
Chem. Int. Ed. 2007, 46, 1852–1855. [CrossRef] [PubMed]

112. Fukumoto, K.; Yoshizawa, M.; Ohno, H. Room temperature ionic liquids from 20 natural amino acids. J. Am. Chem. Soc. 2005, 127,
2398–2399. [CrossRef] [PubMed]

113. Kohno, Y.; Saita, S.; Murata, K.; Nakamura, N.; Ohno, H. Extraction of proteins with temperature sensitive and reversible phase
change of ionic liquid/water mixtures. Polym. Chem. 2011, 2, 862–867. [CrossRef]

114. Fukaya, Y.; Sekikawa, K.; Murata, K.; Nakamura, N.; Ohno, H. Miscibility and phase behavior of water–dicarboxylic acid type
ionic liquid mixed systems. Chem. Commun. 2007, 3089–3091. [CrossRef]

115. Kohno, Y.; Arai, H.; Ohno, H. Dual stimuli–responsive phase transition of an ionic liquid/water mixture. Chem. Commun. 2011,
47, 4772–4774. [CrossRef]

116. Rebelo, L.P.N.; Najdanovic–Visak, V.; Visak, Z.P.; Nunes da Ponte, M.; Szydlowski, J. Cerdeirin, C.A.; Szydlowski, J.; Cerdeiriña,
C.A.; Troncoso, J.; Romaní, L.; et al. A detailed thermodynamic analysis of [C4mim][BF4] + water as a case study to model ionic
liquid aqueous solutions. Green Chem. 2004, 6, 369–381. [CrossRef]

117. Xie, Z.-L.; Taubert, A. Thermomorphic behaviour of the ionic liquids [C4mim][FeCl4] and [C12mim][FeCl4]. Chem. Phys. Chem.
2011, 12 364–368. [CrossRef]

118. Chu, Y.-H.; Cheng, M.-F.; Chiang, Y.-H. Combinatorial discovery of small–molecule 1,2,3–triazolium ionic liquids exhibiting
lower critical solution temperature phase transition. Sci. Rep. 2020, 10, 18247. [CrossRef]

119. Pei, Y.; Cao, Y.; Huang, Y.; Song, X.; Wang, H.; Zhao, Y.; Wang, J. Tunable LCST–type phase behaviour of [FeCl4]−−–based ionic
liquids in water. Sci. China Chem. 2016, 59, 587–593. [CrossRef]

120. Kohno, Y.; Arai, H.; Saita, S.; Ohno, H. Material design of ionic liquids to show temperature–sensitive LCST–type phase transition
after mixing with water. Aust. J. Chem. 2011, 64, 1560–1567. [CrossRef]

121. Ropel, L.; Belvèze, L.S.; Aki, S.N.V.K.; Stadtherr, M.A.; Brennecke, J.F. Octanol–water partition coefficients of imidazolium–based
ionic liquids. Green Chem. 2005, 7, 83–90. [CrossRef]

122. Saita, S.; Kohno, Y.; Nakamura, N.; Ohno, H. Ionic liquids showing phase separation with water prepared by mixing hydrophilic
and polar amino acid ionic liquids. Chem. Commun. 2013, 49, 8988–8990. [CrossRef] [PubMed]

123. Ando, T.; Kohno, Y.; Nakamura, N.; Ohno, H. Introduction of hydrophilic groups onto the ortho–position of benzoate anions
induced phase separation of the corresponding ionic liquids with water. Chem. Commun. 2013, 49, 10248–10250. [CrossRef]

124. Moura, L.; Brown, L.C.; Blesic, M.; Holbrey, J.D. LCST–phase behavior and complexation with water of an ionic liquid incorporat-
ing the 5–phenyltetrazolate anion. Phys. Chem. Phys. 2017, 8, 3384–3389. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.cplett.2011.01.080
http://dx.doi.org/10.1063/1.4964779
http://www.ncbi.nlm.nih.gov/pubmed/27782513
http://dx.doi.org/10.1016/j.fluid.2018.12.027
http://dx.doi.org/10.1016/j.cplett.2013.07.043
http://dx.doi.org/10.1021/acs.jpcb.0c07575
http://dx.doi.org/10.1515/zpch-1903-4230
http://dx.doi.org/10.1021/j100815a007
http://dx.doi.org/10.1021/j100185a004
http://dx.doi.org/10.1021/jp8103485
http://www.ncbi.nlm.nih.gov/pubmed/19140743
http://dx.doi.org/10.1021/j100141a054
http://dx.doi.org/10.1051/jcp:1998103
http://dx.doi.org/10.1139/v01-084
http://dx.doi.org/10.1021/ja0510257
http://dx.doi.org/10.1039/b513308d
http://dx.doi.org/10.1002/anie.200604402
http://www.ncbi.nlm.nih.gov/pubmed/17274096
http://dx.doi.org/10.1021/ja043451i
http://www.ncbi.nlm.nih.gov/pubmed/15724987
http://dx.doi.org/10.1039/c0py00364f
http://dx.doi.org/10.1039/B704992G
http://dx.doi.org/10.1039/c1cc10613a
http://dx.doi.org/10.1039/B400374H
http://dx.doi.org/10.1002/cphc.201000808
http://dx.doi.org/10.1038/s41598-020-75392-z
http://dx.doi.org/10.1007/s11426-016-5577-0
http://dx.doi.org/10.1071/CH11278
http://dx.doi.org/10.1039/B410891D
http://dx.doi.org/10.1039/c3cc45302b
http://www.ncbi.nlm.nih.gov/pubmed/23970357
http://dx.doi.org/10.1039/c3cc45671d
http://dx.doi.org/10.1002/cphc.201700942
http://www.ncbi.nlm.nih.gov/pubmed/28851007


Molecules 2022, 27, 1647 44 of 46

125. Morita, T.; Miki, K.; Nitta, A.; Ohgi, H.; Westh, P. Effects of constituent ions of a phosphonium–based ionic liquid on molecular
organization of H2O as probed by 1–propanol: tetrabutylphosphonium and trifluoroacetate ions. Phys. Chem. Chem. Phys. 2015,
17, 22170–22178. [CrossRef] [PubMed]

126. Zavitsas, A.A. Properties of water solutions of electrolytes and nonelectrolytes. J. Phys. Chem. B 2001, 105, 7805–7817. [CrossRef]
127. Koga, Y. 1–Propanol probing methodology: Two–dimensional characterization of the effect of solute on H2O. Phys. Chem. Chem.

Phys. 2013, 15, 14548–14565. [CrossRef]
128. Batista, M.L.S. Tomé, L.I.N.; Neves, C.M.S.S.; Rocha, E.M.; Gomes, J.R.B.; Coutinho, J.A.P. The origin of the LCST on the

liquid–liquid equilibrium of thiophene with ionic liquids. J. Phys. Chem. B 2012, 116, 5985–5992. [CrossRef]
129. Crosthwaite, J.M.; Aki, S.N.V.K.; Maginn, E.J.; Brennecke, J.F. Liquid phase behavior of imidazolium–based ionic liquids with

alcohols. J. Phys. Chem. B 2004, 108, 5113–5119. [CrossRef]
130. Turnaoglu, T.; Ritchie, S.G.; Shiflett, M.B. Liquid–liquid equilibria in binary mixtures of dihydroxy alcohols and imidazolium–

based ionic liquids. J. Chem. Eng. Data 2019, 64, 3179–3186. [CrossRef]
131. Makowska, A.; Ewa Sztank, E.; Szydłowski, J. Liquid phase behavior of hexafluorophosphate ionic liquids with polyhydric

alcohols. Fluid Phase Equilibr. 2012, 314, 140–145. [CrossRef]
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