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ON p-ADIC L-FUNCTIONS FOR HILBERT MODULAR FORMS

JOHN BERGDALL AND DAVID HANSEN

Abstract. We construct p-adic L-functions associated with p-refined cohomological cuspidal Hilbert
modular forms over any totally real field under a mild hypothesis. Our construction is canonical,
varies naturally in p-adic families, and does not require any small slope or non-criticality assumptions
on the p-refinement. The main new ingredients are an adelic definition of a canonical map from
overconvergent cohomology to a space of locally analytic distributions on the relevant Galois group,
and a smoothness theorem for certain eigenvarieties at critically refined points.
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1. Introduction

The goal of this article to define canonical p-adic L-functions associated with p-refined cohomological
cuspidal automorphic representations of GL2 over totally real number fields. We make no assumptions
on the so-called slope (other than finiteness), and our construction varies naturally in p-adic families.

1.1. The main result. To state our results we begin by setting notation. Let F be a totally real
number field of degree d and write ΣF for the set of embeddings F →֒ R. The completion of F at a
place v will be written Fv; the ramification index will be written ev; the residue field will have qv-many
elements. We write π for a cohomological cuspidal automorphic representation of GL2(AF ) and λ for
its weight. Throughout the introduction we will omit ‘cohomological cuspidal’ and simply refer to π
as an automorphic representation, except when more precision is helpful. In our normalization, the
cohomological condition means the weight λ is a pair (κ,w) such that κ = (κσ)σ∈ΣF is a ΣF -tuple
of non-negative integers, w ∈ Z, and κσ ≡ w mod 2. An integer m is called (Deligne-)critical with
respect to λ if

w − κσ
2

≤ m ≤ w + κσ
2

(∀σ ∈ ΣF ).
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For precise explanations of the basic definitions and normalizations, see Sections 2 and 3.
The starting point of our work is a famous algebraicity result of Shimura for special values of the

L-functions associated with such π. More precisely, for any finite order Hecke character θ we may
consider the completed L-function Λ(π ⊗ θ, s) associated with the twist of π by θ. It is entire in the
variable s, and it satisfies a functional equation under s 7→ w+2− s. Shimura proved ([82]) that there
is a collection of periods Ωǫπ ∈ C× indexed by signs ǫ = (ǫσ) ∈ {±1}ΣF with the property that for any
integer m critical with respect to λ and any finite order θ, the number

Λalg(π ⊗ θ,m+ 1) :=

(∏
σ∈ΣF

θσ(−1)i1+m+κσ−w
2

)
∆m+1
F/QΛ(π ⊗ θ,m+ 1)

ΩǫπG(θ)

lies in the field Q(π, θ) generated by the Hecke eigenvalues of π together with the values of θ. Here
G(θ) is a certain Gauss sum and the sign ǫ is determined by ǫσ = (−1)mθσ(−1) for all σ ∈ ΣF (θσ
being the σ-th component of θ). Technically, Shimura assumes the weights κσ are 3 or larger. See
Theorem 4.3 of loc. cit. We will give a complete exposition of this result in Section 4, roughly following
Hida ([51]).

Now let p be a prime number. We will fix an isomorphism ι : C
∼−→ Qp where Qp is a fixed

algebraic closure of the field of p-adic numbers Qp. It then makes sense to try to p-adically interpolate
the algebraic special values ι

(
Λalg(π ⊗ θ,m+ 1)

)
as m and θ vary.

In order to do this, we introduce a certain p-adic analytic space of characters. Let ΓF be the Galois
group of the maximal abelian extension of F unramified away from p and ∞. This is a compact and
abelian topological group. It also contains an open (so finite index) subgroup topologically isomorphic
to finitely many copies of the p-adic integers Zp. Given any such group, there is a canonically associated
rigid analytic character variety X (ΓF ) whose Cp-points correspond to continuous characters ΓF →
C×
p . In particular, if θ is finite order Hecke character with p-power conductor, then θι := ι ◦ θ defines

a point in X (ΓF ). By global class field theory, each character χ ∈ X (ΓF ) can be seen as a p-adic
Hecke character and so in particular has signs, at infinity, as above. The group ΓF and its character
variety play a key role in this article: our p-adic L-functions will be elements in the ring O(X (ΓF ))
of rigid analytic functions on X (ΓF ).

We also need the notion of a p-refinement. For simplicity, we assume for the remainder of the
introduction that π is an unramified principal series at each v | p. In the body of the text we will
also allow π to be an unramified special representation. Let χπ be the nebentype character of π. If
v | p, then write aπ(v) for the v-th eigenvalue in the Hecke eigensystem associated to π and ̟v for a
uniformizing parameter.

Definition 1.1.1. A p-refinement for π is a tuple (αv)v|p where αv is a root of the v-th Hecke

polynomial X2 − aπ(v)X + χπ(̟v)q
w+1
v .

If α is a p-refinement, we write (βv)v|p for the list of ‘other’ roots determined by the factorizations

X2 − aπ(v)X + χπ(̟v)q
w+1
v = (X − αv)(X − βv).

We often refer to the pair (π, α) as a p-refined automorphic representation (or some minor variant
thereof). When F = Q and π corresponds to a holomorphic eigenform f(z) of level N that is prime
to p, a p-refinement α is often instantiated through the eigenform

fα(z) = f(z)− βf(pz)

which now has level Np. See Section 3.4 for more details.
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In Section 1.5, we will define what it means for a p-refined (π, α) to be non-critical and, more
generally, decent. We call α critical if it is not non-critical.1 We note immediately that non-critical
is implied by a ‘small slope’ condition on α, but it is certainly not equivalent, and that non-critical
implies decent. The condition of being decent is very mild in our estimation. Conjecturally, being
critical but decent reduces to the condition that αv and βv as above are distinct for all v | p, which
is expected to always hold when p is totally split in F . In Section 1.6 we discuss the hypothesis of
decency in detail.

Absent the definition of decent we can state our main theorem. We re-iterate that we have assumed
π cohomological cuspidal and, for simplicity only, that π is an unramified principal series at each v | p.
Theorem 1.1.2 (Section 8.2). Let (π, α) be a decently p-refined cohomological cuspidal automorphic
representation of weight λ. Let E = Q(π, α) be the subfield of C generated by Q(π) and the refinement
α, and let L ⊂ Qp be the subfield generated by ι(E).

Then, for each ǫ ∈ {±1}ΣF there exists an element Lǫp(π, α) ∈ O(X (ΓF )) ⊗Qp L satisfying the
following properties.

a. Canonicity: The construction of Lǫp(π, α) is canonically specified up to L×-multiple in general

and up to ι(E×)-multiple if α is non-critical.

b. Support: Lǫp(π, α)(χ) = 0 unless sgn(χσ) = ǫσ for all σ ∈ ΣF .

c. Growth: Lǫp(π, α) has growth bounded by
∑

v|p evvp(ι(αv)) +
∑

σ∈ΣF
κσ−w

2 .2

d. Interpolation: Let m be an integer that is critical with respect to λ, and assume that θ is a finite
order Hecke character of p-power conductor with ǫσ = sgn(θσ)(−1)m for each σ ∈ ΣF . Then,

Lǫp(π, α)(θ
ιχmcycl) = ep(α,m) · ι

(
Λalg(π ⊗ θ,m+ 1)

)

where the interpolation factor ep(α,m) =
∏
v|p ev(α,m) is defined as follows:

(i) If α is non-critical, then

ι−1(ev(α,m)) =





(
1− θ(̟v)α

−1
v qmv

)(
1− θ(̟v)βvq

−(m+1)
v

)
(if θv is unramified);

(
qm+1
v

αv

)fv
(if θv is ramified of conductor ̟fv

v ).

(ii) If α is critical then ev(α,m) = 0 for all v | p.

e. Variation: Suppose the eigenvariety E (n)mid is smooth at the classical point xπ,α associated with
(π, α).3 Then for any sufficiently small open neighborhood U of x in E (n)mid there exists an element
Lǫp ∈ O(U)⊗̂QpO(X (ΓF )) canonically specified up to O(U)×-multiple and such that for each decent
point x′ ∈ U associated with a p-refined cohomological cuspidal automorphic representation (π′, α′) we
have

Lǫp|x′ = cx′Lǫp(π
′, α′)

1There are two completely unrelated uses of the word ‘critical’ in this article, an unfortunate collision. We will
stress the context by always referring to an integer as being critical with respect to a weight and a refinement being a
(non-)critical refinement.

2Growth is defined in Section 7.4.
3This is almost always satisfied for decent (π, α). See Theorem 1.7.2 and the discussion following that result.
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for some non-zero constant cx′ in the residue field kx′ of E (n)mid at x′.

f. Uniqueness: If the Leopoldt defect of F at p is zero, then (up to L× ambiguity) the assignment
(π, α) Lǫp(π, α) is uniquely determined by conditions b. through e.

This article is not the first place a result like Theorem 1.1.2 has been proven, and we owe a great
deal to previous work. On the other hand, our results apply in many situations that were previously
inaccessible. For instance, recall that if F is a (real) quadratic extension of Q, then any elliptic curve
over F is modular by [42].

Corollary 1.1.3. Let F be a real quadratic field, and let E/F be a non-CM elliptic curve with associated
automorphic represenatation πE. Then, for all sufficiently large rational primes p that are split in F ,
all four possible p-refinements (πE , α) are decent, and consequently each determines a canonical p-adic
L-function Lǫp(πE , α) as in Theorem 1.1.2.

By contrast, at 100% of the prime split in F all previous constructions were only able to uncondition-
ally access one of these four p-adic L-functions, namely the one associated with the “ordinary-ordinary”
refinement.

We will further compare our results with the literature in Section 1.8. In order to put these
comparisons in the proper context, however, we first expand on the definition of decency and the
method of our construction. We hope this delay is not taken as a slight.

1.2. The story when F = Q. Our strategy is modeled on the case F = Q which is more or less
understood. To motivate our constructions, we outline the necessary ingredients in that case.

1.2.1. Archimedean considerations. Let f =
∑
an(f)q

n be a normalized cuspidal Hecke newform of
weight k ≥ 2 and level Γ1(N) with N prime to p. The construction of Eichler and Shimura associates
with f a canonical cohomology class ωf ∈ H1

c (Y1(N),Lk−2) where Lk−2 is a local system on the
modular curve Y1(N) defined by a ‘weight k− 2’ action on the space of complex polynomials of degree
at most k − 2 in a single variable. It turns out that when m = 0, 1, . . . , k − 2 (i.e., when m is critical
with respect to k), the special value Λ(f,m+ 1) can be realized as Λ(f,m+ 1) = evm(ωf ) where

evm : H1
c (Y1(N),Lk−2)→ C

is a certain canonical linear functional. The functional evm is actually defined over Q, and after
renormalizing the Eichler–Shimura construction by a period, everything is defined over a number field.
Putting these observations together, one obtains Shimura’s result. (One also considers variants of
these constructions taking finite-order twists into account, cf. below.) To summarize, this argument
for Shimura’s result makes use of two essentially distinct ingredients:

(1) Canonical cohomology classes ωf associated with each f .
(2) Natural functionals evm on cohomology that record L-values.

1.2.2. p-adic considerations. In the authors’ view, the construction of p-adic L-functions should closely
mirror the steps (1) and (2) above. The emphasis on a dichotomy like this is largely due to Stevens in
the case F = Q. Let us explain the two steps in reverse.

The local systems Lk−2 are algebraic, so they can be taken to have p-adic coefficients, and they
exist on modular curves of any level. On modular curves of level Np (with p ∤ N) there is a second
local system Dk−2 of locally analytic distributions on Zp equipped with a ‘weight k − 2’ action of a
certain monoid containing Γ := Γ1(N) ∩ Γ0(p). If Φ ∈ H1

c (Y (Γ),Dk−2) is any cohomology class, then
it makes sense to evaluate Φ on the cycle ‘{∞} − {0}’ on Y (Γ). The output of this evaluation is thus
a distribution on Zp that can be restricted to Z×

p . So, each Φ defines natural elements in the space
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D(Z×
p ) of locally analytic distributions on Z×

p . Now note that ΓQ ≃ Z×
p , and so a theorem of Amice

from the 1970’s ([2]) implies that D(Z×
p ) is canonically isomorphic to O(X (ΓQ)), which is exactly

where our p-adic L-functions are meant to live. This suggests the following (2’) as an analog of (2)
above:

(2’) Consider the linear map

Pk−2 : H1
c (Y (Γ),Dk−2)→ O(X (ΓQ))

that associates to each Φ ∈ H1
c (Y (Γ),Dk−2) the element Φ({∞} − {0})|Z×

p
.

To further illuminate the connection with the maps evm, note that there is a canonical map Ik−2 :
Dk−2 → Lk−2 of local systems over Y (Γ) given by recording the first k− 2 moments of a distribution.
It is then not difficult to establish a direct relationship between the map Pk−2, the map induced by
Ik−2 on cohomology, the evaluation maps evm defined above, and the Hecke operators at p. (More
glibly: the cycle ‘{∞} − {0}’ is ‘clearly’ related to L-values by the integral representation of L-series
as a Mellin transform on the upper-half plane.)

One important point to stress is that the local system Dk−2 can only be defined over modular curves
with Γ0(p)-structure. Thus to an eigenform f of level N with p ∤ N , we are naturally led to consider
the p-refined eigenform fα of level Γ, corresponding to some choice of refinement α. An ambitious
choice for the p-adic analog to the archimedean step (1) would then be:

(1’) ‘Canonically’ associate with each p-refined eigenform fα a class Φfα ∈ H1
c (Y (Γ),Dk−2).

If (1’) can be carried out, then one may combine (1’) and (2’) to produce a p-adic L-function as in
Theorem 1.1.2.

To what extent is (1’) possible? For any α, the class ωfα ∈ H1
c (Y (Γ),Lk−2) is in the image of

the map Ik−2, but the kernel of Ik−2 is infinite-dimensional. One might then try to produce a Hecke
eigenclass Φfα that maps to ωfα under Ik−2, and one might hope that it is unique; this would certainly
pin down a ‘canonical’ Φfα . However, this is only possible some of the time. Specifically, ωfα can be
uniquely lifted to a Hecke eigenclass exactly when the refinement α is non-critical in our sense. In the
case F = Q this combines the two cases commonly referred to as being ‘non-critical slope’ or ‘critical
slope but not θ-critical’. These cases were handled by Pollack and Stevens ([70, 71]).

When α is critical, but still decent, Belläıche ([11]) observed that it is never possible to lift ωfα to
a Hecke eigenclass via Ik−2. He did this by showing, in an indirect way, that there is still a unique
(up to scalar) Hecke eigenclass Φfα ∈ H1

c (Y (Γ),Dk−2) with the same Hecke eigensystem as fα; it just
happens to lie in the kernel of Ik−2. This is precisely why one sees ‘funny’ behavior in the interpolation
properties of p-adic L-functions for critical α (Theorem 1.1.2). We will explain Belläıche’s method in
more detail below; the argument uses p-adic families in a crucial way.

In any case, we can safely say that when F = Q the ingredient (1’) is available (under the decency
hypothesis). The aim of the present paper is to generalize both steps (1’) and (2’) to any totally real
base field F , while maintaining a view towards unrestrictive hypotheses.

1.3. Basic objects. Having stated our result and outlined the known methods when F = Q, we now
unload the requisite terminology and notations for the general case.

Write AF for the adeles of F , AF,f for the finite adeles. The p-th component of AF is Fp =
F ⊗QQp ≃

∏
v|p Fv, and we also write OF ⊗ZZp = Op ⊂ Fp for the corresponding product of rings of

integers. The tuple of uniformizers ̟v at v | p thus defines an element ̟p ∈ Op. Suppose that n ⊂ OF
is an integral ideal that is prime to p. We will assume from now on that π has conductor exactly n. We

will write K =
∏
vKv for the compact open subgroup of GL2(ÔF ) consisting of matrices

(
a b
c d

)
whose
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entries satisfy c ≡ 0 mod ̟pnÔF and d ≡ 1 mod nÔF . We write YK for the open Hilbert modular
variety of level K (it is the analog of the modular curve Y (Γ) above).

For a fixed cohomological weight λ = (κ,w), we will consider a finite-dimensional local system Lλ

on YK of L-vector spaces, where L ⊂ Qp is the field generated over Qp by all embeddings ι(σ(F )).
More precisely, Lλ is defined as the finite-dimensional vector space Lλ ⊂ L[{Xσ}σ∈ΣF ] spanned by
polynomials whose Xσ-degree is at most κσ, and the group GL2(Fp) acts by a natural weight λ left
action (see Section 2.4 for the precise definition of the action). The cohomologyH∗

c (YK ,Lλ) is naturally
acted upon by the Hecke algebra T generated by the ‘standard’ Hecke operators Tv (v ∤ np), Uv (v | p),
and Sv (v ∤ n), cf. Definition 3.2.1. If (π, α) is a p-refined automorphic representation, then it has (via
ι) an associated Qp-valued T-eigensystem (in particular, the eigenvalue of Uv is ι(αv)). This defines a
maximal ideal mπ,α ⊂ T and the Eichler–Shimura construction implies that H∗

c (YK ,Lλ)mπ,α is non-
zero and concentrated in middle degree. More precisely, the cohomology H∗

c (YK ,Lλ) decomposes into
2d-many direct summands H∗

c (YK ,Lλ)
ǫ indexed by signs ǫ ∈ {±1}ΣF , which correspond to choosing

eigenvalues for each of the d ‘archimedean Hecke operators’ induced by the partial complex conjugations
on YK (cf. Section 4.1 for a precise discussion). For each ǫ the eigenspace

(
H∗
c (YK ,Lλ)⊗L Qp

)ǫ
[mπ,α]

is one-dimensional and concentrated in middle degree.
To introduce p-adic automorphic forms we first consider p-adic weights. For us, this is a pair

λ = (λ1, λ2) of continuous characters λi : O×
p → C×

p . If λ = (κ,w) is cohomological then it defines a
p-adic weight (λ1, λ2) by the recipe

λ1(x) =
∏

σ∈ΣF

(ι ◦ σ)(x)w+κσ
2 , λ2(x) =

∏

σ∈ΣF

(ι ◦ σ)(x)w−κσ
2 .

Note that if λ is a cohomological weight, then the values of the characters λi generate a field kλ that
is a subfield of L.

For each p-adic weight we then define a kλ-Frechet space Dλ whose underlying module is the locally
analytic distributions D(Op) on Op. The subscripted λ indicates that we equip it with a specific left
action of the monoid

∆ = {
(
a b
c d

)
∈M2(Op) ∩GL2(Fp) | c ∈ ̟pOp and d ∈ O×

p }.
We omit the definition of the action here (see Section 5.3). Now, since ∆ ⊃ Kp, we can also consider
the cohomology H∗

c (YK ,Dλ) for each p-adic weight λ, and the Hecke algebra T still acts on this
cohomology by endomorphisms. Moreover, in the special case that λ is a cohomological weight, there
is a natural map

Iλ : H∗
c (YK ,Dλ ⊗kλ L)→ H∗

c (YK ,Lλ)

induced by a ∆-equivariant map on the underlying local systems. In particular, Iλ commutes with the
T-action, and it commutes with the archimedean Hecke operators.4

All of these objects are designed as analogs of the objects we considered when discussing the case
F = Q earlier. Let us now turn towards our ingredients for p-adic L-functions.

1.4. The period maps. The portion of this article that requires no hypotheses is the construction
of a certain O(X (ΓF ))-valued functional Pλ on the middle-degree distribution-valued cohomology
Hd
c (YK ,Dλ). We call Pλ a period map because of its interaction with the Hecke integrals that

compute the completed L-series of automorphic representations in the case where λ is a cohomological

4Strictly speaking, the map Iλ only commutes with the Uv-operators for v|p up to a scaling; we elide this point in
the introduction.
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weight. We remark ahead of time that is absolutely crucial to the generality of Theorem 1.1.2 that
the definition of Pλ works for more general p-adic weights, as well as for affinoid families of weights.

To state a precise result here, we need a little more notation. Let λ be a cohomological weight.
Then we can consider the local system L ∨

λ on YK dual to Lλ, and then we can take its middle degree
Borel–Moore homology HBM

d (YK ,L
∨
λ ) (homology defined by locally finite chains). There is a natural

pairing

〈−,−〉 : Hd
c (YK ,Lλ)⊗L HBM

d (YK ,L
∨
λ )→ L ⊂ Qp.

In Section 7.5 we will define, for each integer m critical with respect to λ, a certain evaluation class
clp(m) ∈ HBM

d (YK ,L
∨
λ ). Its purpose is that if ψπ,α ∈ Hd

c (YK ,Lλ) is the Hecke eigenclass associated
with a p-refined cohomological cuspidal automorphic representation (π, α) of weight λ (via Eichler–
Shimura), then 〈ψπ,α, clp(m)〉 is a natural scaling (depending on α) of the special value Λ(π,m + 1).
In fact, ψ 7→ 〈ψ, clp(m)〉 is a p-adic analog of the evaluation maps evm.

Theorem 1.4.1. For each p-adic weight λ, there exists a canonical linear morphism

Pλ : Hd
c (YK ,Dλ)→ O(X (ΓF ))⊗ kλ

that, among other things, satisfies the following formal interpolation property:
If λ is a cohomological weight, m is an integer that is critical with respect to λ, and Ψ ∈ Hd

c (YK ,Dλ)
is a Uv-eigenvector with eigenvalue α♯v, for each v | p, then

Pλ(Ψ)(χmcycl) =
∏

v|p

(1− (α♯v̟
w−κ

2
v )−1qmv ) · 〈Iλ(Ψ), clp(m)〉.

One should compare the formal interpolation in Theorem 1.4.1 with the interpolation property in

Theorem 1.1.2. (The scalar factor̟
w−κ

2
v , whose meaning can be found in Section 1.10, appears because

of the implicit scaling mentioned in Footnote 4.) The formal interpolation of course generalizes to also
allow twists by finite order Hecke characters of p-power conductor; see Theorem 7.6.4 and Corollary
7.6.7 for these more complicated statements. In addition, the period maps enjoy certain growth
properties (Section 7.4) and natural interaction with the signs ǫ (Section 7.3). Finally, they also vary
naturally in the p-adic weight variable λ (in fact, we define period maps functorially for any affinoid
weight). The map described in Theorem 1.4.1 is thus a natural analog of ‘evaluating at {∞} − {0}’
in the setting of F = Q. (It is also a short exercise to check that our definition truly generalizes that
construction.)

In fact, the definition of Pλ is quite brief once the groundwork is laid. It involves first constructing
a natural kλ-linear map Pλ : Hd

c (YK ,Dλ) → Homkλ(A (ΓF ) ⊗ kλ, kλ) where A (ΓF ) is the ring of
locally analytic functions on ΓF . We then manage to check that the image of Pλ actually lands in the
subspace of locally analytic distributions D(ΓF ), which is the continuous (as opposed to abstract) kλ-
linear dual of A (ΓF )⊗kλ. Once this is proven (Theorem 7.2.2), it is easy to obtain the map described
in Theorem 1.4.1 using the theorem of Amice we previously mentioned. The proof of the continuity
condition in the definition of Pλ amounts to constructing it canonically enough that it naturally
preserves various integral structures on both sides. We refer to Section 7.2 for further details.

1.5. Control of Hecke eigenclasses. With Theorem 1.4.1 in hand, we also need a means of canon-
ically associating distribution-valued Hecke eigenclasses with p-refined automorphic representations
(π, α). Recall that there is a natural integration map Iλ : H∗

c (YK ,Dλ⊗kλ L)→ H∗
c (YK ,Lλ), and that

to a pair (π, α) we have a maximal ideal mπ,α ⊂ T.

Definition 1.5.1 (Non-critical). A p-refined automorphic representation (π, α) is called non-critical
if Iλ : H∗

c (YK ,Dλ ⊗kλ L)mπ,α → H∗
c (YK ,Lλ)mπ,α is an isomorphism.
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A well-known argument shows that non-critical slope implies non-critical, but the two condi-
tions are not equivalent (see Section 6.3). In the case F = Q, non-critical is equivalent to what
is sometimes known as being ‘not θ-critical’ as in [71]. Reasoning with classical facts about auto-
morphic representations, it is easy to prove that if (π, α) is non-critical, then the Hecke eigenspace(
Hd
c (YK ,Dλ)⊗kλ Qp

)ǫ
[mπ,α] is one-dimensional (for any ǫ) and so Theorem 1.4.1 can be used to asso-

ciate p-adic L-functions Lǫp(π, α) with non-critically refined forms (π, α). More precisely the Eichler–

Shimura construction gives us, after scaling by a period, a canonical class in Hd
c (YK ,Lλ)

ǫ[mπ,α]. We
lift this class via the isomorphism Iλ (in the non-critical case) and thus define the p-adic L-function
Lǫp(π, α) as the output of Pλ applied to this lift.

In general, and already when F = Q, there definitely exist critically refined (π, α). To handle
these cases, our methods demand some input from the theory of Galois representations. Given any
π, write ρπ for the natural two-dimensional irreducible representation of the absolute Galois group
GF = Gal(F/F ) associated with π. Recall also that if α = (αv)v|p is a refinement then there is an
evident tuple of ‘other roots’ β = (βv)v|p (Definition 1.1.1).

Definition 1.5.2. A p-refined automorphic representation (π, α) is called decent if at least one of the
following two conditions is true.

(1) (π, α) is non-critical.
(2) The following three conditions hold.

(a) Hj
c (YK ,Dλ)mπ,α is non-zero if and only if j = d (the middle degree).

(b) The adjoint Bloch–Kato Selmer group H1
f (GF , ad ρπ) is trivial.

(c) αv 6= βv for each v | p.
Before discussing the three conditions in part (2) of this definition, we state our main result on the

Hecke eigenspaces in distribution-valued cohomology associated with a decently p-refined (π, α).

Theorem 1.5.3. If (π, α) is a decently p-refined automorphic representation of weight λ, then

dimQp
Hd
c (YK ,Dλ ⊗kλ Qp)

ǫ[mπ,α] = 1

for each ǫ ∈ {±1}ΣF .
We already mentioned why Theorem 1.5.3 is true when (π, α) is non-critical, but the fact that it

extends to all decently refined (π, α) is rather more difficult. In any case, if we apply the period map
of Theorem 1.4.1 to the unique-up-to-scalar Hecke eigenclass provided by Theorem 1.5.3, we get the
p-adic L-functions Lǫp(π, α) claimed in Theorem 1.1.2. We make no further claim on how to canonically
choose a non-zero vector in the above one-dimensional vector space, so we are ambiguous up to scalars
in a p-adic field rather than a number field.

The proof of Theorem 1.5.3 relies in a crucial way on p-adic families of p-refined automorphic
representations and their finer geometric properties. Before discussing this further, let us explain what
is known about the decency hypothesis.

1.6. The decency hypothesis. It is worth detailing what is known about part (2) of the ‘decent’
hypothesis.5 In order to orient the discussion from least technical to most technical, let us discuss the
conditions in reverse from (c) to (a).

The simplest condition is the condition that αv 6= βv for each v | p. Unfortunately, this is also the
only condition we do not conjecture always holds. For instance, if E/Q is an elliptic curve with good
supersingular reduction at p, F is a real quadratic field in which p is inert, and π is the parallel weight
two automorphic representation associated with the base change E/F , then the Hecke polynomial of

5The terminology is borrowed directly from Belläıche ([11]).
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π at the unique p-adic place is (X − p)2. We do not know if all such examples are non-critical, but
we have no strong feeling either way. We do note, however, that when p is totally split in F , it would
follow from the Tate conjecture that αv 6= βv for each v | p (cf. [35]). Moreover, if π is associated with
a modular elliptic curve and v|p has degree one, then αv 6= βv; in particular, if p splits completely, it
is easy to see that condition 2(c) holds. In any case, for a fixed π and p, the condition that αv 6= βv
is surely easy to check (depending on the data you are given to represent the fixed π, of course).

The next condition we consider is the vanishing of the Selmer group in part (b). This is a well-
established consequence of a conjecture of Bloch and Kato ([20]) extending the Birch–Swinnerton-Dyer
conjecture. In fact, condition 2(b) is now known to hold for all non-CM π by very recent work of
Newton-Thorne [69], building on earlier work of Kisin (for F = Q, see [58]) and Allen (for general
totally real F , see [1]). Note as well that hypothesis (b) does not involve the refinement α in any way.

Finally we come to the thorniest of the three hypotheses: the assumption that the distribution-
valued eigensystem associated to (π, α) occurs only in the middle degree. This is a classically known
fact for the finite-dimensional classical cohomology H∗

c (YK ,Lλ). So, in particular the non-critical
hypothesis overlaps with the middle-degree support hypothesis. Further, when F = Q the condition
2(a) is also true by a direct analysis: the relevant H2

c ’s only contain Eisenstein Hecke eigensystems.
With current technology, we can verify condition 2(a) unconditionally under a mild assumption on
the mod p representation ρπ, building on recent work of Caraiani-Tamiozzo. We refer the reader to
Appendix B for a precise statement and proof. Based on these evidences, we conjecture that condition
2(a) always holds (remember that π is cuspidal).

Synthesizing these observations, we deduce that decent refinements are ubiquitous. Here is one
precise result in this direction; the proof is given in the final lines of Appendix B.

Theorem 1.6.1. Let E/F be a non-CM modular elliptic curve over a totally real field F of degree
d, with associated automorphic representation π. Let p be any sufficiently large prime that splits
completely in F . Then all of the 2d distinct p-refinements of π are decent.

1.7. The eigenvariety (proving Theorem 1.5.3). The method we use to prove Theorem 1.5.3 in
the decent, but possibly critical cases, is closely modeled on the method used by Belläıche in [11].
However, there are a number of new complications that arise in our more general setting. We would
like to discuss this in some detail since we expect it will also help explain the role of the hypothesis
2(a) for the reader whose experience with p-adic families is limited to the eigencurve and to other
simple situations like groups that are compact modulo their center at infinity.

The first point is the Hecke eigenvarieties parameterizing eigensystems corresponding to (finite slope)
automorphic representations for GL2/F come in different flavors. For instance, there is the parallel
weight eigencurve of Kisin and Lai ([59]) and one modeled on overconvergent p-adic Hilbert cusp forms
by Andreatta, Iovita and Pilloni ([4]). But history (and Theorem 1.4.1) teaches us that the models
for eigenvarieties that are closest to seeing p-adic L-functions are those built using distribution-valued
cohomology. Beyond the case of F = Q, these appear in the work of Urban ([89]) and the more
general construction of the second author ([46]). (They are exposed for F = Q in [11] following ideas
of Stevens).

More precisely, in [46] the second author constructed a rigid analytic space E (n) parametrizing
the finite slope T-eigensystems appearing in the total cohomology H∗

c (YK ,Dλ) as λ runs over the
space of p-adic weights W (1) ⊂ W that are trivial on the image of the global units (these are the
only weights where the cohomology is non-trivial; see Section 6.1). For notation, if ψ is a finite slope
T-eigensystem appearing in the total cohomology, then write xψ ∈ E (n) for the corresponding point.
For instance, if (π, α) is a p-refined automorphic representation as above then its eigensystem appears
in the cohomology, in some degree, and thus we get classical points xπ,α on E (n).
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The first difficulties are that E (n) is certainly not equidimensional if F 6= Q, and it is possibly not
reduced. Both the equidimensionality and reducedness of the Coleman-Mazur eigencurve are crucial
in the proof of Theorem 1.5.3 given by Belläıche in [11] for F = Q. One of the theorems we prove is
the following.

Theorem 1.7.1 (Section 6.4). There exists a Zariski-open subspace E (n)mid inside E (n) uniquely
characterized by the following property: a point xψ, of weight λ, is in E (n)mid if and only if the
eigensystem ψ appears only in the middle degree Hd

c (YK ,Dλ).
Moreover, E (n)mid is reduced, equidimensional of the same dimension as its weight space W (1), and

the classical points (up to twist) are Zariski-dense and accumulating.

The space E (n)mid is defined as the complement of a finite union of closed subspaces in E (n), each
of which has dimension strictly smaller than the dimension of weight space. The characterization of
E (n)mid in Theorem 1.7.1 follows from two spectral sequences developed by the second author in [46].
The density of classical points and the reduced-ness follow standard lines of argument. Finally, the
equidimensionality uses a theorem of Newton proved in an appendix to [46].

Now the role of the hypothesis 2(a) comes into view: assuming that (π, α) is decent tells us that the
corresponding classical point xπ,α on E (n) in facts lies on the much better behaved sub-eigenvariety
E (n)mid. We then prove the following statement:

Theorem 1.7.2. If (π, α) satisfies condition (2) in Definition 1.5.2, then xπ,α is a smooth point on
E (n)mid.

The proof is an argument using deformations of Galois representations; this is where conditions 2(b)
and 2(c) come in. The local deformation-theoretic calculations that are needed were carried out by
the first author in [15] (see also [25]). We should emphasize that the properties in Theorem 1.7.1, thus
condition 2(a), are absolutely crucial to getting the strategy off the ground: they are used not just to
guarantee the variation of Galois representations over E (n)mid but also that the key generalizations of
Kisin’s theorem on crystalline periods ([57, 63]) hold as well.

Theorem 1.7.2 (Theorem 6.6.3 in the text) is also true when (π, α) is non-critical, if it is further
assumed that condition 2(c) in Definition 1.5.2 holds. The argument (due to Chenevier) is somewhat
different and proves the stronger statement that the weight map is étale. While we expect that étaleness
of the weight map definitely fails whenever 2(c) fails, it is open whether or not Theorem 1.7.2 as stated
holds without 2(c).

Finally we deduce the one-dimensionality result in Theorem 1.5.3 as a consequence of Theorem 1.7.2
(again, it was already known in the non-critical case). The strategy is to prove that the image Tπ,α of
the Hecke algebra T in the endomorphism ring ofMπ,α = Hd

c (YK ,Dλ)mπ,α is Gorenstein (of dimension
zero), and that each sign eigenspace M ǫ

π,α is free of rank one over Tπ,α. The idea to prove this is that
Theorem 1.7.2 implies the statement for Tπ,α replaced by the weight fiber OE (n),xπ,α ⊗OW (1),λ

kλ. In
general, the base change map OE (n),xπ,α ⊗OW (1),λ

kλ → Tπ,α is surjective with nilpotent kernel, but we

use classical theorems in commutative algebra (the Auslander–Buchsbaum formula and properties of
depth) to show it is an isomorphism at xπ,α. We refer to the text (Section 8.1) for more details.

1.8. Comparison to other results. As we have already indicated, when F = Q the results we
prove can be found in Belläıche’s article. The first paragraph of that article provides more than ample
references to the relevant history.

We note, however, that there is something a bit special about F = Q. Precisely, the truth of
Leopoldt’s conjecture implies that the group ΓF is a 1-dimensional p-adic Lie group, so a theorem
of Amice and Vélu ([3]) implies in turn that the p-adic L-functions described in Theorem 1.1.2 are
uniquely determined by their growth and interpolation properties when the growth is sufficiently small.
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This has the notable advantage that constructions by different methods (for instance, modular symbols
vs. Rankin–Selberg methods) necessarily give the same p-adic L-functions in non-critical slope cases,
and so only p-adic L-functions beyond non-critical slope have any ambiguity. In the critical slope
case, there are constructions by Pollack–Stevens ([71]) and Belläıche ([11]). These obviously agree on
their overlap. There is also a construction, which applies in the critical slope case, using Kato’s Euler
systems the dual exponential map of Perrin-Riou (cf. the introduction to [61]). This construction
agrees with the previous references in the non-theta-critical case (see [90] for instance).

Now let us move to a general totally real field F . We would first like to mention the articles of Ash–
Ginzburg ([5]), Januszewski ([52, 53, 54]), Manin ([64]), and Haran ([47]), which all give constructions
of p-adic L-functions associated with Hilbert modular forms in varying degrees of generality. However,
the main goals of these articles are somewhat orthogonal to ours. On the one hand they are more
general in some ways. For instance, they actually do not assume the base field is totally real and [5]
and [52, 54] construct p-adic L-functions for GL2n and GLn+1×GLn, respectively. On the other hand,
of these only the very recent [54] considers variation in families (ordinary, in this case), and none of
them go beyond small slope cases. And without input from Leopoldt’s conjecture, we can not say for
certain that their methods produce the same objects as ours in the overlapping cases.

More closely related to the present article are the recent works of Dimitrov ([38]), Barrera ([8]),
Barrera and Williams ([10]), and a very recent article of Dimitrov, Barrera, and Jorza ([9]). Dimitrov’s
article, in particular, gives a clean and definitive construction of p-adic L-functions associated with
ordinary p-refined Hilbert modular forms and with Hida families thereof. In [8], Barrera combined
the formalism of overconvergent cohomology with the modular cycles introduced in [38], obtaining a
construction of p-adic L-functions in the non-critical case with the correct growth and interpolation
properties. This method was generalized in [10] to allow for any number field. (The statements in
[8, 10] assume non-critical slope, but it is clear from reading these works that non-criticality is a
sufficient hypothesis.) In the course of all these works, and in [9] in particular, one finds a map from
eigenclasses in overconvergent cohomology to distributions on a Galois group that bears a resemblance
to the period map we have defined and which presumably can be verified to be the same map. In
particular, even without Leopoldt one might hope that our constructions and those of [8, 9, 10] coincide
in the overlapping cases.

The difference between our period map and that of the above works is best illustrated by examining
the proofs of the interpolation property. For instance, in [10], the authors check the interpolation
property by making use of modular cycles and “hands-on” calculations with group cohomology. These
modular cycles do not appear explicitly in our calculations (although they are implicit in some way
in what we do). Rather than introduce auxiliary cycles, we instead calculate directly using the adelic
chains and cochains introduced by Ash and Stevens (see Section 2). At first glance, this may seem
more complicated. However, we believe our approach is quite natural, for at least two reasons.

First, modular cycles were originally introduced in the context of Hida theory, and in particular
in a framework where p-adic families can be constructed by considering cohomology with constant
coefficients of a Y1(np

∞)-tower. In this context, it is natural (and in some sense, necessary) to introduce
fairly complicated cycles when defining p-adic L-functions and checking their interpolation property.
In Stevens’s setup, by contrast, there is no tower, but the cohomology has extremely complicated
coefficients. Our perspective then is that the difficulty should be shifted from defining the correct
modular cycles to defining the correct period map. Second, the details of our construction are consistent
with the adelic philosophy we have adopted. For instance, our definition eliminates the need to choose
representatives for various objects, thereby avoiding the ambiguities such choices can engender. This is
in contrast to several points in the arguments of the referenced works where one has to check somewhat
non-trivial independence of choices. Our approach avoids this kind of issue.
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1.9. Organization. The body of this article is divided into seven main sections. The first three (Sec-
tions 2, 3, and 4) are comprised of a verbose discussion of adelic (co)chains on locally symmetric spaces,
Hilbert modular forms, and Shimura’s algebraicity theorem. Here we have adopted a maximalist ap-
proach to the exposition, so that our notations are as precise as possible and to ensure this work is
reasonably self-contained.

Starting in Section 5 we turn towards p-adic matters. First we discuss generalities on certain p-adic
Lie groups and define various modules of locally analytic functions and distributions.

Section 6 is devoted to an exposition of the middle-degree Hilbert modular eigenvariety mentioned
above. We include here (and in the previous section) a lengthy discussion, most of which is moot if
we were to assume Leopoldt’s conjecture, of twisting classical points by p-adic Hecke characters.

In Section 7 we define and analyze the period maps. The heart of this section is the proof of the
abstract interpolation theorem, which is the key ingredient in proving the correct interpolation formula
for our p-adic L-functions.

The final section, Section 8, contains the definition of p-adic L-functions and the proofs of Theorem
1.5.3 and Theorem 1.1.2.

1.10. Notations. For convenience, we list here notations that will remain in force throughout the
paper.

We will always write GL2 for the general linear group over Z (and GL2/R for its base change to a
ring R if needed). We write Z ⊂ T ⊂ GL2 for the center, resp. the diagonal torus. If H is a real Lie
group we generally write H◦ for the connected component of H containing the identity.

Unless noted, F is a totally real number field of degree d. Its ring of integers is written OF . We
write ΣF = Hom(F,C). The adeles of F are written AF . We write F∞ = F ⊗Q R for the infinite
component of AF . We write AF,f for the finite component of AF .

The map F → RΣF given by ξ 7→ (σ(ξ)) for ξ ∈ F extends R-linearly to an isomorphism F∞ ≃ RΣF

of R-algebras. If x ∈ F∞ we write x = (xσ) for its coordinates in RΣF . We say x ∈ F∞ is totally
positive if xσ > 0 for all σ ∈ ΣF ; the set of totally positive elements is written F∞,+. Or, the invertible
totally positive elements of F∞ is equal to (F×

∞)◦ (our preferred notation in many places).
We fix a prime number p. We write Qp for an algebraic closure of the p-adic numbers. We also fix

an isomorphism ι : C
∼→ Qp. Using ι we have a decomposition

(1.10.1) ΣF =
⊔

v|p

Σv

where an element σ ∈ ΣF lies in Σv if and only if the composition ι ◦ σ induces the p-adic place v on
F . Write Fp = F ⊗Q Qp ≃

∏
v|p Fv where Fv is the completion of F with respect to v | p. If σ ∈ Σv

then σ extends to a Qp-linear embedding σ : Fv →֒ Qp for which we use the same symbol. In this way

Σv is identified with HomQp(Fv,Qp).

If K/Qℓ is a finite extension, ℓ a prime, we write ArtK : K× → Gab
K for the local Artin map,

normalized so uniformizers map to geometric Frobenius elements. If π is a smooth, irreducible rep-
resentation of GLn(K) we denote recK(π) the Weil–Deligne representation corresponding to π by
the local Langlands correspondence as constructed by Harris and Taylor ([49]). We further specify

r(π) = recK(π ⊗ |det| 1−n2 ) for the arithmetically normalized local Langlands correspondence. Finally,
we write rι(π) for the corresponding representation over Qp obtained via ι.

We also use two shorthand notations for tuple-based operations. First, suppose that S is a set and

we are given collections {Xs}s∈S , {Ys}s∈S , and {Zs}s∈S with a binary operations Xs × Ys •s−→ Zs. If

X =
∏
s∈S Xs, Y =

∏
s∈S Ys and Z =

∏
s∈S Zs we then define a binary operation X × Y •−→ Z by
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(xs) • (ys) := (xs •s ys). A typical situation where we might use this is when, for each s ∈ S, Xs is a
group acting on a set Ys (so Ys = Zs). The second situation we will find ourselves in is we are given
a collection x = (xs)s∈S of elements of a common ring R, and we are given a collection n = (ns)s∈S
of integers. In that case we define xn =

∏
s∈S x

ns
s . This notation satisfies the obvious compatibilities

with usual multiplication in a ring.
If v is a place of F then we write pv for the corresponding prime ideal. If p is a prime then we will

use the bold letter p :=
∏
v|p pv for the product of the primes above p.
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2. Cohomology and local systems

This section concerns the cohomology of local systems on symmetric spaces which arise in the
context of Hilbert modular forms. Almost nothing is original in our treatment. However, a number of
calculations later in the paper rely on the precise formulas we present and so we found it prudent to
expose them in detail. The reader is encouraged to skim the results as needed.

2.1. Topology. Throughout this subsection, we writeX and Y for topological spaces which are locally
compact and Hausdorff. We let R be a fixed principal ideal domain. Unless otherwise noted, “sheaves”
are sheaves of R-modules.

If L is a sheaf on X we consider the cohomology H∗(X,L ), homology H∗(X,L ), compactly
supported cohomology H∗

c (X,L ) or Borel–Moore homology HBM
∗ (X,L ). These are all R-modules.

Primary sources for H∗
c and HBM

∗ are [84, 22]. We refer to [24] for what follows.6 Along with the usual
functorialities in algebraic topology (pushforward in homology, pullback in cohomology, and so forth)
we summarize important properties of compactly supported cohomology and Borel–Moore homology.

If L and M are two sheaves on X , there is a functorial cup product ([24, Sections II.7])

(2.1.1) ∪ : Hp
? (X,L )⊗R Hq(X,M )→ Hp+q

? (X,L ⊗R M )

6We warn the reader that our homology notation is in conflict with [24]. Namely, HBM
∗ here is written H∗ there and

H∗ here is written Hc
∗ there (cf. the caution at the start of [24, Section V.3]).
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for ? either c or the empty symbol. Further, there are two separate cap products ([24, Section V.10])

Hp
c (X,L )⊗R HBM

q (X,M )
∩−→ Hq−p(X,L ⊗R M );(2.1.2)

Hp(X,L )⊗R HBM
q (X,M )

∩−→ HBM
q−p(X,L ⊗R M ).

The cup and cap products commute in the sense that

(2.1.3) (Ψ ∪Ψ′) ∩ Φ = Ψ ∩ (Ψ′ ∩ Φ),

under apparent qualifications on where these elements are defined.
If L is a sheaf on Y and f : X → Y is a proper morphism, then there are functorial pushforward

and pullback maps

HBM
∗ (X, f∗

L )
f∗−→ HBM

∗ (Y,L );(2.1.4)

H∗
c (Y,L )

f∗

−→ H∗
c (X, f

∗
L ).

The cup product commutes with pullbacks. The cap products are compatible with pushfowards and
pullbacks along proper morphisms f : X → Y in that

(2.1.5) f∗(f
∗Ψ ∩ Φ) = Ψ ∩ f∗Φ

for all Ψ ∈ Hp
? (Y,L ) and Φ ∈ HBM

q (X, f∗M ).
Now suppose that p = q in (2.1.2) and that we have a pairing L ⊗R M → R. Taking the natural

composition

H?
0(X,L ⊗R M )→ H?

0(X,R)
tr−→ R

and combining it with the cap product, 〈Ψ,Φ〉 := tr(Ψ ∩ Φ) defines a functorial R-bilinear pairing

〈−,−〉 : Hp
c (X,L )⊗R HBM

p (X,M )→ R

under which f∗ and f∗ are adjoint (by (2.1.5) and because trace commutes with pushforwards). Thus,
our convention is that cap products Φ ∩ Ψ are homology classes and values of pairings 〈Φ,Ψ〉 are
elements of R.

Suppose now that X is an oriented real manifold of dimension n. Then there is a Borel–Moore
fundamental class [X ] ∈ HBM

n (X,R) with the property that PD(Ψ) := Ψ ∩ [X ] defines a functorial
isomorphism

(2.1.6) PD : Hq(X,L )→HBM
n−q(X,L )

for each 0 ≤ q ≤ n. See [24, Theorem V.10.1 and Corollary V.10.2]. We refer to PD as “Poincaré
duality.” It satisfies the following properties. First, if f : X → X is an orientation preserving
homeomorphism, then f∗[X ] = [X ] and so (2.1.5) implies that

(2.1.7) f∗ PD f
∗ = PD .

Second, if f : X → Y is a proper morphism, L is a sheaf on X , M is a sheaf on Y and we have a
pairing L ⊗R M → R, then from (2.1.3), (2.1.5), and (2.1.6) we obtain

(2.1.8) 〈Φ, f∗ PD(Ψ)〉 = 〈f∗Φ ∪Ψ, [X ]〉
for all Φ ∈ Hp

c (Y,L ) and Ψ ∈ Hn−p(X, f∗M ) (the cup product f∗Φ ∪ Ψ is implicitly viewed in
Hn
c (X,R) for the purposes of this formula). Finally, when R is a subring of C there is an integration

map
∫
X

: Hn
c (X,R) → R which is natural with respect to Poincaré duality in that

∫
X

= tr ◦PD on
Hn
c (X,R).
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2.2. Adelic cochains on symmetric spaces. In this subsection, we review the adelic (co)chains
introduced by Ash and Stevens (see [46, Section 2] and the references there).

Write G for a connected reductive group over Q, A for the adeles of Q, and Af for the finite adeles
(rather than AQ and AQ,f as Section 1.10 would suggest). Let G(R)◦ be the connected component of
the identity in G(R) and let K◦

∞ ⊂ G(R)◦ be a subgroup which is either maximal compact or maximal
compact mod-center. Let Z be the center of G.

Write D∞ = G(R)◦/K◦
∞ and DA = D∞ ×G(Af ), which we view as topological spaces where D∞

gets its structure as a real manifold and G(Af ) gets the discrete topology. Then, we write C•(DA)
for the chain complex of singular chains in DA. The discrete topology is totally disconnected, so any
singular chain in G(Af ) is a single point, meaning C•(DA) = C•(D∞)⊗Z Z[G(Af )] with ∂ ⊗ 1 as the
boundary map (and we could have also given G(Af ) its natural topology).

Fix a compact open subgroup K ⊂ G(Af ). Then G(Q)◦ acts diagonally on DA = D∞ × G(Af )
from the left, and K acts on the right via the second coordinate. We write YK for the double quotient

(2.2.1) YK := G(Q)\G(A)/K◦
∞K = G(Q)◦\DA/K.

In general, although this may not be a manifold, it is a disjoint union of orbifolds. Specifically, if {gi}
is a finite collection of elements gi ∈ G(Af ) such that G(A) =

⊔
iG(Q)◦G(R)giK, then

(2.2.2) YK =
⊔

i

Γ(gi)\D∞,

where Γ(g) := gKg−1 ∩ G(Q)◦ ⊂ G(Q)◦ for g ∈ G(Af ). When the Γ(gi)/(Z ∩ Γ(gi)) are without
torsion, YK is a real manifold of dimension 2d (compare with Proposition 2.3.3 below).

Now suppose that N is a (G(Q)◦,K)-bimodule, meaning:

(1) N is a right K-module whose action we write n|k for n ∈ N and k ∈ K, and
(2) N is a left G(Q)◦-module whose actions we write γ · n for n ∈ N or γ ∈ G(Q)◦.

For instance, the left action of G(Q)◦, and the right action of K, on DA equips C•(DA) with a natural
structure of complex of (G(Q)◦, DA)-bimodules. We consider any N with the discrete topology and
write N (in the text we will remove underlines for readability) for the local system defined by the sheaf
of locally constant sections of the natural projection map

G(Q)◦\(DA ×N)/K → YK .

We also use the standard abuse of notation to write N for the double quotient itself.
The adelic cochain complex associated with N is

C•
ad(K,N) := Hom(G(Q)◦,K)(C•(DA), N).

The subscript “ad” in this context refers to the word adelic.
Let gf ∈ G(Af ). Then, for each singular chain σ∞ ∈ C•(D∞) there is a singular chain σ∞ ⊗ [gf ] ∈

C•(DA). This allows us to define a morphism of abelian groups

Hom(C•(DA), N)→ Hom(C•(D∞), N);(2.2.3)

φ 7→
[
φgf : σ∞ 7→ φ(σ∞ ⊗ [gf ])

]
.

We note that the chain complex C•(D∞) is naturally a chain complex of left Γ(gf )-modules, where
Γ(gf) acts on D∞ through the inclusion Γ(gf) ⊂ G(Q)◦. On the other hand, we write N(gf ) for the
left Γ(gf )-module whose underlying abelian group is still N but equipped with a left Γ(gf )-action

γ ·gf n = γ · n|(g−1
f γ−1gf).
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These definitions given, it is straightforward to see that the map (2.2.3) descends to a morphism

C•
ad(K,N)→ HomΓ(gf )(C•(D∞), N(gf )).

Finally, let C•(D∞;N) = Hom(C•(D∞), N) and write C•
c (D∞;N) ⊂ C•(D∞;N) for the cochains on

D∞ with compact support. We define the compactly supported adelic cochains by

C•
ad,c(K,N) := {φ ∈ C•

ad(K,N) | φgf ∈ C•
c (D∞;N) for all gf ∈ G(Af )}.

Proposition 2.2.1. There are canonical isomorphisms

H∗(C•
ad,c(K,N))

≃ //

��

H∗
c (YK , N)

��

H∗(C•
ad(K,N))

≃ // H∗(YK , N)

Proof. This follows from the same argument as in [46, Proposition 2.1.1]. �

“Canonical” in Proposition 2.2.1 refers to at least the following functorialities:

(i) If f : N → N ′ is a (G(Q)◦,K)-equivariant morphism, then the natural map H∗
? (YK , N)

f→
H∗

? (YK , N
′) is induced by the morphism of cochain complexes f◦− : C•

ad,?(K,N)→ C•
ad,?(K,N

′).

(ii) If K ′ ⊂ K is a subgroup then the inclusion C•
ad,?(K,N) ⊂ C•

ad,?(K
′, N) induces the pullback

pr∗ : H∗
? (YK , N)→ H∗

? (YK , N
′) on cohomology.

(iii) Suppose that K ′ ⊂ K is a subgroup of finite index. Then, pr : YK′ → YK is proper, so it
induces a pushfoward map pr∗ : H∗

? (YK′ , N) → H∗
? (YK , N). On the other hand, if K =

∐
xiK

′

then tr(φ)(σ) =
∑
φ(σxi)|x−1

i induces a natural map of cochain complexes tr : C•
ad,?(K

′, N) →
C•

ad,?(K,N), whose induced map on cohomology is pr∗.

(iv) Finally, let g ∈ G(Af ). Write N(g−1) for the (G(Q)◦, g−1Kg)-module whose right g−1Kg-action
is given by n|g−1x = n|gxg−1. Then, the map rg : YK → Yg−1Kg given by x 7→ xg induces
a map on cohomology r∗g : H∗

? (Yg−1Kg, N(g−1)) → H∗
? (YK , N). On the other hand, if we set

rg(φ)(σ) = φ(σg) then rg : C
•
ad,?(g

−1Kg,N(g−1))→ C•
ad,?(K,N) is a map of cochain complexes

which induces r∗g on cohomology.

We next recall how to canonically lift Hecke operators to endomorphisms of adelic cochains. Let
K ⊂ G(Af ) be an compact open subgroup, and let ∆ ⊂ G(Af ) be a monoid containing K such that
K and δ−1Kδ are commensurable for all δ ∈ ∆. We assume that N is equipped with a left ∆-module
structure δ · n which commutes with a given left G(Q)◦-module structure. We give N the structure
of a right K-module by n|k = k−1 · n under which we now have a (G(Q)◦,K)-bimodule again. We
equip HomG(Q)◦(C•(DA), N) with the left action of ∆ given by (δ · φ)(σ) = δ · φ(σδ) under which we

have C•
ad(K,N) = HomG(Q)◦(C•(DA), N)K (and an obvious analog for C•

ad,c(K,N)). If δ ∈ ∆ is a

given element and KδK =
∐
δiK is a decomposition into right cosets, then for any φ ∈ C•

ad,?(K,N)
the sum

(2.2.4) [KδK](φ) =
∑

i

δi · φ

is independent of the choice of δi’s and defines another element of C•
ad,?(K,N). The resulting endo-

morphism of C•
ad,?(K,N) canonically lifts the usual Hecke operator on cohomology, i.e. the operator
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defined by the composition

(2.2.5) H∗
? (YK , N)

pr∗−→ H∗
? (YK∩δ−1Kδ, N)→ H∗

? (YK∩δ−1Kδ, N(δ−1))

r∗δ−→ H∗
? (YK∩δKδ−1 , N)

pr∗−→ H∗
? (YK , N).

Here, for δ ∈ ∆ the morphism n 7→ δ · n defines a morphism N → N(δ−1) which is equivariant for the
action of K ∩ δ−1Kδ on either side, giving the unlabeled arrow.

We end our discussion with an algebraic situation. Suppose that F is any number field, and
write N for an F -algebraic representation of G, i.e. an F -vector space N and a representation
G→ ResF/Q GL(N ). Recall that we fixed an isomorphism ι : C ≃ Qp. Suppose that E ⊂ C is a field
and L := Qp(ι(E)). Then, we deduce linear representationsG(L)→ GLL(Np), andG(E)→ GLE(N∞)
where Np := N ⊗QL and N∞ := N ⊗QE. By construction, ι induces a morphism of Q-vector spaces
ι : N∞ → Np, which becomes an isomorphism ι : N∞⊗E,ιL ≃ Np. Let K be a compact open subgroup
of G(Af ), and write Kp ⊂ G(Qp) for its p-th component. Using the inclusion G(Q)◦ ⊂ G(E) we thus
get a local system N∞ on YK ; or we can use the inclusion Kp ⊂ G(Qp) ⊂ G(L) to get a local system
Np. Note that kp ∈ Kp acts on the right of Np via n|kp = k−1

p · n.
Proposition 2.2.2.

(1) If γ ∈ G(Q) then γpι(n) = ι(γ∞n) for all n ∈ N∞.
(2) The map ι((g, n)) = (g, g−1

p ι(n)) defines a morphism ι : N∞ −→ Np of local systems on YK .

(3) The map ι(φ)(σ∞ ⊗ [gf ]) = g−1
p ι(φ(σ∞ ⊗ [gf ])) defines a morphism ι : C•

ad,?(K,N∞) →
C•

ad,?(K,Np) of cochain complexes.

(4) The maps in parts (2) and (3) induce a canonical commuting diagram

H∗
? (C

•
ad(K,N∞))

ι

��

≃ // H∗
? (YK , N∞)

ι

��

H∗
? (C

•
ad(K,Np))

≃ // H∗
? (YK , Np).

Proof. Everything is straightforward to check. �

2.3. Symmetric spaces for F . Here we specialize the above discussion to the setting of this article.
In particular, F now denotes a totally real number field.

First, let G = ResF/Q GL1. Write ÔF for the profinite completion of OF and K◦
∞ = {1} ⊂ (F×

∞)◦

(maximal compact) and K = Ô×
F ⊂ GL1(AF,f ) . The corresponding symmetric space is written

C∞ := F×\A×
F /Ô×

F .

Write A×
F,+ := (F×

∞)◦×A×
F,f and F×

+ = F×∩(F×
∞)◦. By weak approximation, F×\A×

F ≃ F×
+ \A×

F,+

and so we may also write

(2.3.1) C∞ = F×\A×
F /Ô×

F ≃ F×
+ \A×

F,+/Ô×
F .

This is a real Lie group that sits inside an exact sequence

(2.3.2) 1→ (F×
∞)◦/O×

F,+ → C∞ → Cl+F → 1

where Cl+F is the narrow class group and O×
F,+ are the totally positive units in F .

We will write dx∞

x∞
for the canonical choice of Haar measure on (F×

∞)◦, which then induces a

translation-invariant orientation on C∞. This fixes a Borel–Moore fundamental class [C∞] ∈ HBM
d (C∞,Z).

We record this discussion as a proposition.
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Proposition 2.3.1. If x ∈ A×
F then right multiplication rx : C∞ → C∞ is orientation preserving. In

particular, (rx)∗[C∞] = [C∞].

Now let G = ResF/Q GL2. Here, we take K◦
∞ = SO2(F∞)Z(F∞) ⊂ GL2(F∞)◦ (maximal compact

mod-center). For K ⊂ GL2(AF,f ) we write YK for the symmetric space as in (2.2.1). We will be a
bit more concrete regarding YK . Let h denote the complex upper half plane. Then, GL2(F∞)◦ acts
on hΣF via fractional linear transformations

(2.3.3) g · z := az + b

cz + d

for g =
(
a b
c d

)
∈ GL2(F∞)◦ and z ∈ hΣF . If i ∈ hΣF means the complex number i diagonally embedded

then K◦
∞ is the stabilizer of i so that D∞ = GL2(F∞)◦/K◦

∞ ≃ hΣF . Thus

(2.3.4) YK = GL2(F )\GL2(AF )/K
◦
∞K ≃ GL+

2 (F )\D∞ ×GL2(AF,f )/K,

and YK is a 2d-dimensional real orbifold, decomposing into a finite disjoint union of quotients Γ(g)\D∞

where Γ(g) = gKg−1 ∩GL+
2 (F ) (see (2.2.2)). We make the following definition.

Definition 2.3.2. Let K ⊂ GL2(AF,f ) be a compact open subgroup.

(1) K is neat if Γ(g)/Z(Γ(g)) is torsion-free for all g ∈ GL2(AF,f ).

(2) K is t-good if
(

Ô×
F

1

)
⊂ K.

As mentioned above, if K is a neat level then YK is a manifold. The purpose of the t-good definition
is that for t-good levels K, the map A×

F → GL2(AF ) given by x 7→ ( x 1 ) descends to a closed (thus,
proper) immersion

(2.3.5) t : C∞ →֒ YK .

In particular, for such K one gets pullbacks (resp. pushforwards) along t on compactly supported
cohomology (resp. Borel–Moore homology).

Beginning in Section 3.2 we will mostly be concerned with level subgroups of the form

(2.3.6) K1(n) =

{
g =

(
a b
c d

)
∈ GL2(ÔF ) | c ≡ 0 mod nÔF , d ≡ 1 mod nÔF

}

with n an integral ideal.

Proposition 2.3.3. Let n ⊂ OF be an integral ideal.

(1) There exists n′ ⊂ n such that K1(n
′) is neat.

(2) K1(n) is t-good.

Proof. (1) follows from [37, Lemma 2.1]. (2) is clear. �

2.4. Weights and algebraic local systems. Here we specify a collection algebraic local systems.

Definition 2.4.1. A cohomological weight λ = (λ1, λ2) is a pair of characters λi : F
× → C× of the

form

λi(ξ) =
∏

σ∈ΣF

σ(ξ)ei(σ)

for ei(σ) ∈ Z such that:

(1) If ωλ = λ1λ2 : F× → C× then ωλ is trivial on a finite index subgroup of O×
F , and

(2) e1(σ) ≥ e2(σ) for all σ ∈ ΣF .
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Let λ be a cohomological weight. An argument of Weil implies that w(σ) = e1(σ) + e2(σ) is
independent of σ ∈ ΣF . Set κσ = e1(σ)− e2(σ); this is a non-negative integer. Thus a cohomological

weight λ is the same data as a pair (κ,w) ∈ ZΣF
≥0 × Z with κσ ≡ w mod 2 for each σ ∈ ΣF . We will

almost always write λ = (κ,w) to indicate a cohomological weight in this way.
If n is a non-negative integer, write Ln for the space of polynomials over Z with degree at most n.

If R is a ring, write Ln(R) = Ln ⊗Z R. We equip Ln with an algebraic left-action of GL2 via

(2.4.1) (g · P )(X) = (a+ cX)nP

(
b+ dX

a+ cX

)

for g =
(
a b
c d

)
∈ GL2(R) and P ∈ Ln(R). Given a cohomological weight λ = (κ,w) we write

(2.4.2) Lλ :=
⊗

σ∈ΣF

(
Lκσ(F )⊗ det

w−κσ
2

)

(where det : GL2 → Gm is the determinant character). Thus Lλ is an F -vector space equipped with
an algebraic representation of the F -algebraic group (ResF/Q GL2) ×Q F , and so we can apply the
discussion at the end of Section 2.2 to G = ResF/Q GL2 and N = Lλ.

Specifically, suppose that E ⊂ C contains σ(F ) for all σ ∈ ΣF , and let L = Qp(ι(E)). Then,
G(E) = GL2(F ⊗Q E) ≃ GL2(E)ΣF and the action of GL2(E)ΣF on

Lλ(E) :=
⊗

σ∈ΣF

Lκσ(E)⊗ det
w−κσ

2

is the one where the σ-th factor acts on the σ-th term in the tensor product, as in (2.4.1). On the
other hand,

G(L) = GL2(F ⊗Q L) ≃ GL2(Fp ⊗Qp L) ≃
∏

v|p

GL2(Fv ⊗Qp L) ≃
∏

v|p

GL2(L)
Σv

and G(L) acts on the L-vector space

(2.4.3) Lλ(L) :=
⊗

v|p

⊗

σ∈Σv

Lκσ(L)⊗ det
w−κσ

2

in the analogous way.

Remark 2.4.2. For any compact open subgroup K ⊂ GL2(AF,f ), the above representations define
local systems Lλ(E) and Lλ(L) on YK , and ι induces a Q-linear morphism of local systems ι :
Lλ(E) → Lλ(L) by Proposition 2.2.2. However, we note that the ι-transfer from Lλ(E) to Lλ(L)
has a non-trivial effect on certain formulas (cf. Section 5.5).

For instance, suppose that g ∈ GL2(AF,f ), K ⊂ GL2(AF,f ) is a compact open subgroup and
K ′ ⊂ K is another compact open subgroup so that g−1K ′g ⊂ K. Write Lλ(L)(g) for the left G(L)-
representation whose action is given by h ·g P := g−1

p hgp · P for P ∈ Lλ(L) and h ∈ G(L). Then

P 7→ g−1
p · P defines a G(L)-equivariant isomorphism Lλ(L) ≃ Lλ(L)(g) (compare with (2.2.5)) that
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fits into a commutative diagram of local systems whose bases are as indicated:

(2.4.4) Lλ(E)/YK′

ι //

rg

��

Lλ(L)/YK′

P 7→g−1
p ·P

((P
PP

PP
PP

PP
PP

P

Lλ(E)/Yg−1K′g

pr

��

Lλ(L)/Yg−1K′g

pr

��

Lλ(L)(g)/YK′rg
oo

Lλ(E)/YK ι
// Lλ(L)/YK .

3. Hilbert modular forms

3.1. Recollection of definitions. The goal of this subsection is to describe the three points of
view that we need to adopt regarding Hilbert modular forms. General references for automorphic
representation theory are [21, 27]. Specific to Hilbert modular forms, one might refer to [50, Section
2] or [51, Section 3]. For us, the most frequently useful reference is [43], which itself follows Hida’s
papers in my places. To help the reader, after our definitions we will explain how to translate between
our notations (or, if you like, conventions) and those of [43]. See Remark 3.1.6.

Let t be a real number. We write ωt for the character of F×
∞ given by ωt(x∞) =

∏
σ x

t
σ for

x∞ = (xσ) ∈ F×
∞. When t = w is an integer, the restriction to F× ⊂ F×

∞ is what we called ωλ in
Definition 2.4.1. Suppose that ω : F×

∞ → C× is a continuous character such that ω|(F×
∞)◦ = ωt|(F×

∞)◦ .

We write L2(GL2(F )\GL2(AF ), ω) for the space of functions f : GL2(F )\GL2(AF )→ C that satisfy
the following two properties:

(1) f(x∞g) = ω−1(x∞)f(g) for all g ∈ GL2(AF ) and x∞ ∈ F×
∞.

(2) |det g|t/2|f(g)| is square-integrable on (F×
∞)◦ GL2(F )\GL2(AF ).

The condition in (2) is well-defined by the condition (1) and the assumption on ω. We further write
L2
0(GL2(F )\GL2(AF ), ω) for those f ∈ L2(GL2(F )\GL2(AF ), ω) which are cuspidal, meaning that

(3.1.1)

∫

F\AF

f (( 1 u1 ) g) du = 0 (for all g ∈ GL2(AF )).

Note that the group GL2(AF ) acts on these L2-spaces by right translation in the domain.

Definition 3.1.1. A cuspidal automorphic representation π for GL2(AF ) is an irreducible admissible
GL2(AF )-subrepresentation of L2

0(GL2(F )\GL2(AF ), ω) for some ω.

By admissible here, we mean the induced (gl2(F∞),K◦
∞) × GL2(AF,f )-module on the K◦

∞-finite
vectors of π are admissible in the usual sense ([27, Section 3.3]). For a cuspidal automorphic repre-
sentation π, we write π =

⊗′
v πv for its factorization as a restricted tensor product ([40]). We further

specify the notation π∞ :=
⊗

σ∈ΣF
πσ, and πf :=

⊗′
v πv where v runs over finite places of F , so

π = π∞ ⊗ πf .
For the rest of this subsection, fix a cohomological weight λ = (κ,w). We need two representations

associated to λ. First, Cλ is the 1-dimensional C-vector space Cλ = C · v on which we let K◦
∞ act by

(3.1.2) v|k∞ := ω−1
w (x∞)eiθ∞(κ+2) · v.

Here, k∞ ∈ K◦
∞ is written k∞ = x∞r∞ with x∞ ∈ F×

∞ and r∞ =
(

cos θ∞ sin θ∞
− sin θ∞ cos θ∞

)
∈ SO2(F∞). Second,

for σ ∈ ΣF we write Dκσ+2,w for the weight κσ + 2 discrete series representation of GL2(R) with
central character x 7→ x−w (see [60, Section 11] for example). Then, we define Dλ :=

⊗
σ∈ΣF

Dκσ+2,w

(a representation of GL2(F∞)).
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Definition 3.1.2. A cuspidal automorphic representation π is cohomological of weight λ if π∞ ≃ Dλ.

We recall that there is a unique K◦
∞-equivariant embedding Cλ ⊂ Dλ, the image of which generates

Dλ as a GL2(F∞)-representation. Given π, cohomological of weight λ, we write π+
∞ ⊂ π∞ for the

corresponding line. We also note that the irreducibility and admissibility of such a π implies that A×
F

acts on π through a Hecke character ωπ (the central character). Of course, ωπ,∞ := ωπ|F×
∞

= ω−1
w and

thus π ⊂ L2
0(GL2(F )\GL2(AF ), ωw).

We now turn towards automorphic forms.

Definition 3.1.3. Let K ⊂ GL2(AF,f ) be a compact open subgroup. The space of cohomological
cuspidal automorphic forms of weight λ and levelK is the set Sλ(K) of all functions φ : GL2(AF )→ Cλ

satisfying the following conditions.

(1) If gf ∈ GL2(AF,f ), then the function g∞ 7→ φ(g∞gf ) is a smooth function on GL2(F∞).
(2) If σ ∈ ΣF , then Cσ(φ) =

(
κσ + 1

2κ
2
σ

)
φ, where Cσ denotes the Casimir operator.7

(3) If γ ∈ GL2(F ), g ∈ GL2(AF ), k∞ ∈ K◦
∞ and k ∈ K, then φ(γgk∞k) = φ(g)|k∞ .

(4) φ is cuspidal in the sense that (3.1.1) holds for f = φ and all g ∈ GL2(AF ).

The C-vector space Sλ(K) is finite-dimensional, but it is not a representation of GL2(AF ). Instead,
if g ∈ GL2(AF ) and φ ∈ Sλ(K) then (g · φ)(g′) := φ(g′g) defines a natural C-linear map Sλ(K) →
Sλ(gKg

−1). Note as well that Sλ(K) ⊂ L2
0(GL2(F )\GL2(AF ), ωw). Indeed, this is true by [21,

Section 4.4] when φ ∈ Sλ(K) has a central character (i.e. there exists a Hecke character ωφ such that
φ(zg) = ω(z)φ(g) for all z ∈ A×

F ) and it is not difficult to see that any φ is a finite sum of φ’s with
central character (because Sλ(K) is finite-dimensional). Moreover, the discussion in [21] implies:

Proposition 3.1.4. Let A0
λ be the set of all cohomological cuspidal automorphic representations of

weight λ. Then, for each compact open subgroup K ⊂ GL2(AF,f ) there is a canonical isomorphism

(3.1.3) Sλ(K) ≃
⊕

π∈A0
λ

π+
∞ ⊗C πKf

as subspaces of L2
0(GL2(F )\GL2(AF ), ωw).

In order to describe the Eichler–Shimura construction (Section 4.2), we also need a holomorphic

version of the previous notion. Recall from Section 2.3 that we write D∞ := hΣF . If g =
(
aσ bσ
cσ dσ

)
∈

GL2(F∞) and z = (zσ) ∈ D∞, then we define an automorphy factor

j(g, z) = (cσzσ + dσ)σ∈ΣF ∈ CΣF .

In particular, one can take g = γ ∈ GL2(F ) embedded diagonally into GL2(F∞). Recall also that
γ ∈ GL+

2 (F ) acts on z ∈ D∞ by fractional linear transformation z 7→ γ · z.
Definition 3.1.5. LetK ⊂ GL2(AF,f ) be a compact open subgroup. A holomorphic Hilbert cuspform
f of weight (κ+ 2, w) and level K is a function

f : D∞ ×GL2(AF,f )→ C

satisfying the following conditions.

(1) If gf ∈ GL2(AF,f ), then the function z 7→ f(z, gf) is holomorphic in z.

7The Casimir operator is the element XY + Y X + 1
2
H2 in the center of U(sl2(R) ⊗R C) where X = 1

2

(
1 i
i −1

)
,

Y = 1
2

(
1 −i
−i −1

)
and H =

(
0 i
−i 0

)
. It acts as a differential operator on smooth functions GL2(R) → C. What we mean

by Cσ is the Casimir operator acting on the σ-th component of functions GL2(F∞) → C.
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(2) If γ =
(
a b
c d

)
∈ GL+

2 (F ), k ∈ K and gf ∈ GL2(AF,f ) then

(3.1.4) f(γ · z, γgfk) = det(γ)
w−κ

2 −1j(γ, z)κ+2f(z, gf ).

(3) f is cuspidal in the sense that φf as defined below satisfies (3.1.1).

We write Shol
λ (K) for the space of holomorphic Hilbert cuspforms f of weight (κ+2, w). It is entirely

straightforward to compare the spaces Shol
λ (K) and Sλ(K). Namely, given φ ∈ Sλ(K) we define

fφ(g∞, gf) := det(g∞)
w−κ

2 −1 · j(g∞, i)κ+2φ(g∞gf ).

Here g∞ ∈ GL2(F∞)◦ and gf ∈ GL2(AF,f ). It is straightforward to see that g∞ 7→ fφ(g∞, gf ) is
invariant under right-multiplication by K◦

∞ and thus descends to a function on D∞ ×GL2(AF,f ).
8 It

is also readily verified that fφ ∈ Shol(K), i.e. that fφ is actually holomorphic, cf. [51, p. 460]. To go
backwards, given f ∈ Shol

λ (K), view it as a function on GL2(F∞)◦ × GL2(AF,f ). Then define φf on
the same domain by

φf (g) := det(g∞)1−
w−κ

2 j(g∞, i)
−κ−2f(g∞, gf)

for g = g∞gf ∈ GL2(F∞)◦ ×GL2(AF,f ). Finally, extend φf to all of GL2(AF ) by (2.3.4). We finally
remark that φ↔ fφ and f ↔ φf are clearly compatible with right translation by gf ∈ GL2(AF,f ).

Remark 3.1.6. It remains an open question how many notations and normalizations for Hilbert
modular forms possibly exist. We pause here to align our own notations with just one of our major
references, the text of Getz–Goreskey [43].

The most fundamental normalization is the weight. For us, a weight is a certain pair (κ,w). Getz
and Gorskey define weights in [43, Section 5.3] as a certain pair (k,m), each of k,m being a ΣF -tuple.
Our pair (κ,w) defines a pair (k,m) via the dictionary kσ = κσ and mσ = w−κσ

2 .
Under this correspondence the space Sλ(K) we defined in Definition 3.1.3 is, up to fixing central

character, the spaces denoted S(k,m)(K,χ) in [43, Section 5.4]. (Notice the assumption (5.4.2) in loc.

cit., which explains in part how we came to choose to insert an inverse into the L2(−, ω) notation at
the start of this subsection.)

Getz and Goresky also helpfully discuss the issue of normalizations for Hilbert modular forms.
One discussion focuses on what they call the cohomogical normalization. See [43, Section 5.5]. The
cohomological normalization will be needed for readers of this paper who want to compare our claims
in Section 4.2 below, on the Eichler–Shimura constructions, with those in [43, Chapter 6]. The second
discussion, which can be found in see [43, Section 5.13], compares their notations (and thus ours) with
those of Hida’s papers [50, 51]. .

3.2. Hecke operators, Fourier expansions and newforms. The main goal of this subsection to
make precise the notion of the newform associated to a cohomological cuspidal automorphic represen-
tation π. We will also record information about Hecke operators and Fourier expansions. We leave
transcription of the discussion to Shol

λ (K) to the reader.
Let K be a compact open subgroup in GL2(AF,f ) and g ∈ GL2(AF,f ). The double coset KgK

can be decomposed into a finite disjoint union KgK =
⋃
i giK of right K-cosets. Then for any

cohomological weight λ, we get a Hecke operator [KgK] acting on the space Sλ(K) by

(3.2.1) ([KgK]φ)(g) =
∑

φ(ggi) (φ ∈ Sλ(K)).

The operator [KgK] is independent of the choice of the gi’s.

8To be clear: to compute fφ(z, gf ) one finds a g∞ ∈ GL2(F∞)◦ such that g∞ · i = z and then computes fφ(g∞, gf )

by the formula we just gave.
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For the rest of the subsection we are interested in K of the form K1(n) (see (2.3.6)) for n ⊂ OF an
integral ideal.

Definition 3.2.1. Let m ⊂ OF be an integral ideal, written m =
∏
v p

mv
v , and ̟m =

∏
v̟

mv
v ∈ A×

F,f .

(1) Tm := [K1(n) (
̟m

1 )K1(n)].
(2) If (m, n) = 1, Sm := [K1(n) (

̟m
̟m

)K1(n)].
(3) When m = pv is a prime ideal we write Tv := Tpv and Sv = Spv (when (pv, n) = 1).

We denote TZ(K1(n)) the Z-algebra abstractly generated by the Hecke operators. So, for each
cohomological weight λ we have a natural morphism of C-algebras

TC(K1(n)) := TZ(K1(n))⊗Z C→ EndC(Sλ(K1(n))).

Remark 3.2.2. We will assume the reader is familiar with basic properties of the Tm (see [43, Section
5.6] for example). For instance, Tm and Sm, when defined, are independent of the choice of uniformizers
and they are multiplicative over co-prime ideals m because the double coset representatives gi as in
(3.2.1) are calculated “locally at m” in that they can be chosen to be ( 1 1 ) at each place v where pv ∤ n.

Remark 3.2.3. If m | n, then we will sometimes use the notations Um := Tm, Uv := Tv, etc. Let
us recall an explicit formula in that case. When m | n, one may check that the representatives
K1(n) (

̟m

1 )K1(n)/K1(n) can be chosen to be of the form (̟m a
1 ) where a runs over a choice of

representatives in
∏
v|mOv for

∏
pv|m
Ov/mOv. So, we will often write expressions like

(3.2.2) (Umφ)(g) =
∑

a∈Ov/mOv

φ (g (̟v a1 )) ,

omitting the choices of lifts. This makes clear, for instance, that U
p
j
v
= U jv for all integers j ≥ 0.

Remark 3.2.4. If pv ∤ n then there is a formula similar to (3.2.2) for Tv. Specifically,

(Tvφ)(g) = φ(g
(
1
̟v

)
) +

∑

a∈Ov/̟vOv

φ (g (̟v a1 )) .

Thus Tv “is equal to” Uv + V −
v where V −

v means translation by
(
1
̟v

)
(see Section 3.4 below). The

quotes refer to Tv being the bona fide endomorphism of Sλ(K1(n)) given by Definition 3.2.1 whereas
Uv (resp. V −

v ) means the formal operator on functions GL2(AF ) → C given by (3.2.2) (resp. right
translation by

(
1
̟v

)
). Their sum Uv + V −

v happens to be well-defined on Sλ(K1(n)). See the
calculation in Proposition 3.4.4 below.

In this article, an eigenform means an element φ ∈ Sλ(K1(n)) such that there exists a C-algebra
morphism ψ : TC(K1(n))→ C such that Tφ = ψ(T )φ for all T ∈ T(K1(n)). If φ is an eigenform then
we refer to ψ = ψφ as its Hecke eigensystem.

An eigenform is only possibly unique up to scalar, but we can normalize it in a natural way using
Fourier expansions. Start by writing eQ : AQ → C× for the natural non-degenerate character

eQ(x) = e2πix∞e−2πi{xf},

where {−} is the morphism on the finite adeles given by the composition

{−} : AQ,f → AQ,f/Ẑ ≃ Q/Z →֒ R/Z.

Then, define eF : AF → C× to be the composition eF := eQ ◦ trF/Q. Next, if λ = (κ,w) is a

cohomological weight, then we define Wλ : F×
∞ → C (an Archimedean Whittaker function) to be

Wλ(x∞) :=
∏

σ∈ΣF

|xσ|
κσ−w

2 e−2π|xσ|.
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Finally, we set two more notations. If xf ∈ AF,f , then we define [xf ] to be the fractional ideal F∩xf ÔF
and we also write DF/Q for the different ideal associated to the extension F/Q.

Proposition 3.2.5. For each φ ∈ Sλ(K1(n)) there exists a uniquely determined function ãφ : A×
F,f →

C such that ãφ(xf ) depends only on [xf ] and

(3.2.3) φ (( x y1 )) = |x|AF

∑

ξ∈F×
+

ãφ(ξxf )Wλ(ξx∞)eF (ξy).

Moreover, ãφ(xf ) = 0 if [xf ]DF/Q is not integral.

Proof. See [43, Theorem 5.8] (also, [51, Theorem 6.1]). �

Definition 3.2.6. Let φ ∈ Sλ(K1(n)).

(1) If m ⊂ OF is an integral ideal, then aφ(m) := ãφ(ξxf ) for any choice of ξ ∈ F×
+ and xf ∈ A×

F,f

such that m = [ξxf ]DF/Q.
(2) We say that φ is a normalized if aφ(OF ) = 1.

Remark 3.2.7. For each m, the function φ 7→ aφ(m) is linear. It is also helpful to note that aφ(m) =
aTmφ(OF ) (see [51, Corollary 6.2] where the central character is not fixed and [91, Chapter VI]).
Combining these points, if φ is an eigenvector for Tm and aφ(OF ) = 0, then aφ(m) = 0 as well.

Proposition 3.2.8. Let φ ∈ Sλ(K1(n)) be a normalized eigenform.

(1) If m is an integral ideal, then aφ(m) = ψφ(Tm).
(2) φ has a central character ωφ of conductor dividing n, and ωφ(̟v) = ψφ(Sv) for pv ∤ n.

Proof. For (1), see the end of [43, Section 5.9] (and [51, Corollary 6.2]). For part (2), we give a standard
argument. If x ∈ A×

F,f then the translate x · φ is a Tm-eigenvector with the same eigenvalue as φ, so

Remark 3.2.7 above implies ax·φ(O) 6= 0. So, by multiplicity one, x · φ = ωφ(x)φ for some non-zero
constant ωφ(x). The assertions about ωφ follow immediately from Definitions 3.1.3 and 3.2.1. �

If δ ∈ ÔF and n′ is an integral ideal with nÔF ⊂ δn′ÔF , then φ 7→ φδ(g) := φ
(
g
(
1/δ

1

))
gives

a well-defined morphism jn′,δ : Sλ(K1(n
′)) → Sλ(K1(n)). The Hecke-stable subspace Snew

λ (K1(n)) ⊂
Sλ(K1(n)) is the orthogonal complement of

∑
n(n′ im(jn′,δ) under the Petersson product (see [51,

Section 3] or [43, Sections 5.7-8]). We highlight our convention for the word “newform”:9

Definition 3.2.9. A newform φ of level n is a normalized eigenform φ ∈ Snew
λ (K1(n)).

If π is a cohomological cuspidal automorphic representation then there exists an ideal n, called the

conductor of π, which is maximal among all ideals with π
K1(n)
f 6= (0). A famous result of Casselman

([31]) implies in fact that dimC π
K1(n)
f = 1.

Definition/Proposition 3.2.10. If π is a cohomological cuspidal automorphic representation of con-
ductor n, then there exists a unique newform φπ of level n such that φπ generates the representation π
under the isomorphism (3.1.3). We call φπ the newform associated to π.

Proof. From Casselman’s theorem, we immediately get a unique normalized cuspform φπ ∈ Sλ(K1(n))
which generates π under (3.1.3). Its unicity implies it is a normalized eigenform, and checking it is a
newform is straightforward (see [43, Theorem E.1] for instance). �

9Note that by [43, Theorem 5.7], an equivalent definition would be to require that φ ∈ Snew
λ

(K1(n)) which is

normalized and an eigenform just for almost all the Hecke operators Tv.
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Now let π be a cohomological cuspidal automorphic representation. We define its Hecke eigensystem
ψπ to be ψπ = ψφπ where φπ is the associated newform, aπ(m) = ψπ(Tm) for each integral ideal m,
and the Hecke field of π is Q(π) := Q(ψπ(T ) | T ∈ TZ(K1(n))).

Proposition 3.2.11. If π is a cohomological cuspidal automorphic representation then Q(π) is a finite
extension of Q.

Proof. See [82, Proposition 2.8] (and replace φπ by fφπ). �

3.3. L-functions. Suppose that φ ∈ Sλ(K1(n)). Its L-series is defined to be

(3.3.1) L(φ, s) :=
∑

m⊂OF

aφ(m)NF/Q(m)−s,

where the sum m runs over integral ideals of F and NF/Q(−) means the absolute norm. The se-
ries (3.3.1) converges absolutely for the real part of s sufficiently large. Further, it admits analytic
continuation to all s ∈ C as we now recall.

Define ΓC(s) = (2π)−sΓ(s) and then complete L(φ, s) by defining

Λ(φ, s) := ΓC

(
s+

κ− w
2

)
L(φ, s) =

( ∏

σ∈ΣF

ΓC

(
s+

κσ − w
2

))
L(φ, s).

We can also define the Mellin transform of φ

(3.3.2) M(φ, s) :=

∫

F×\A×
F

φ (( x 1 )) |x|sd×x.

The integral (3.3.2) is absolutely convergent for all s ∈ C ([27, Section 3.5]). Here, d×x is the natural

Haar measure on A×
F : d

×x∞ is the canonical measure
∏
σ
dxσ
|xσ|

on F×
∞ and d×xv is the unique multiple

of dxv
|xv|v

on F×
v such that O×

v has measure one.

Now write ∆F/Q for the absolute discriminant ∆F/Q = NF/Q(DF/Q). The analytic continuation of
Λ(φ, s) follows from the proposition.

Proposition 3.3.1. If φ ∈ Sλ(K1(n)), then M(φ, s) = ∆s+1
F/QΛ(φ, s+ 1).

We include a proof of this proposition for completeness, especially as this integral expression of the
(completed) L-function is crucial for the algebraicity of the special values (see Section 4.5).

Proof of Proposition 3.3.1. By weak approximation, the integral (3.3.2) is unchanged by replacing
F×\A×

F by F×
+ \A×

F,+. Further, x 7→ φ (( x 1 )) |x|sAF
is invariant under x 7→ ξx for ξ ∈ F×. Thus,

using the Fourier expansion (Proposition 3.2.5) and unfolding the integral (3.3.2), we get

∫

F×
+ \A×

F,+

φ

((
x

1

))
|x|sAF

d×x =

∫

F×
+ \A×

F,+



∑

ξ∈F×
+

ãφ(ξxf )|x|s+1
AF

Wλ(ξx∞)


 d×x

=

∫

A
×
F,+

ãφ(xf )|x|s+1
AF

Wλ(x∞)d×x

=

(∫

(F×
∞)◦

x
1+s+κ−w

2
∞ e−2πx∞

dx∞
x∞

)
·
(∫

A
×
F,f

ãφ(xf )|xf |s+1
AF

d×xf

)
.(3.3.3)
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The first integral in the product (3.3.3) is clearly
∫

(F×
∞)◦

x
1+s+κ−w

2
∞ e−2πx∞

dx∞
x∞

=
∏

σ∈ΣF

∫ ∞

0

(xσ
2π

)1+s+ κσ−w
2

e−xσ
dxσ
xσ

= ΓC

(
1 + s+

κ− w
2

)
.(3.3.4)

For the second integral in (3.3.3), recall that ãφ(xf ) depends only on [xf ] and is trivial unless [xf ]DF/Q
is an integral ideal. Thus we may compute the integral

∫

A
×
F,f

ãφ(xf )|xf |s+1d×xf =
∑

m⊂OF

aφ(m)

∫

mD−1
F/Q

Ô×
F

|xf |s+1
AF

d×xf

= ∆s+1
F/Q

∑

m⊂OF

aφ(m)NF/Q(m)−(1+s).(3.3.5)

For the final equality we used that xf ∈ mD−1
F/QÔ

×
F if and only if |xf |AF = ∆F/QNF/Q(m)−1. Putting

(3.3.4) and (3.3.5) back into (3.3.3), the proof is complete. �

If φ is a normalized eigenform with central character ωφ (Proposition 3.2.8), the Dirichlet series
L(φ, s) admits an Euler product expansion L(φ, s) =

∏
v Lv(φ, s), where

(3.3.6) Lv(φ, s)
−1 =

{
1− aφ(pv)q−sv + ωφ(̟v)q

1−2s
v (if pv ∤ n);

1− aφ(pv)q−sv (if pv | n).
See [43, Section 5.12.1]. If, furthermore, φ = φπ is the newform associated to a cohomological cus-
pidal automorphic representation π (Proposition 3.2.10) then this is the same as the Euler product
expresssion

(3.3.7) L(φ, s) = L(π, s) :=
∏

v

Lv(πv, s)

where the product runs over finite places v of F and the local L-factor Lv(πv, s) is defined to be

Lv(πv, s) := det
(
1− q−sv Frobv

∣∣
r(πv)Iv,N=0

)−1

.

Here, r(πv) is Weil–Deligne representation associated to πv via the normalized local Langlands corre-
spondence (see Section 1.10), and N is the monodromy operator acting on r(πv).

3.4. Refinements. In this subsection we discuss the notion of (p-)refinements of cohomological cus-
pidal automorphic representations. Fix a cohomological weight λ.

If v is a finite place of F and ̟v is a choice of uniformizer then write V −
v =

(
1
̟v

)
. (As for why

“−” is here, the opposite ordering of the diagonal will be denoted by V +
v in Section 7.5.) If φ ∈ Sλ(K),

then the translate V −
v φ belongs to Sλ(V

−
v K(V −

v )−1) and explicitly depends on the choice of ̟v. Its
independence of ̟v can be shown if the level is prime to v.

Lemma 3.4.1. Let n be an integral ideal, φ ∈ Sλ(K1(n)), and assume that pv ∤ n.

(1) V −
v φ belongs to Sλ(K1(npv)) and it is independent of the choice of ̟v.

(2) For any c ∈ C, we have aφ(O) = a(1−cV −
v )φ(O). In particular, if φ is normalized then so is

(1 − cV −
v )φ.

(3) UvV
−
v φ = qvSvφ.

(4) If m is an integral ideal and pv ∤ m, then V −
v Tmφ = TmV

−
v φ.
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Proof. Since pv ∤ n,
(

1
O×
v

)
⊂ K1(n) and thus V −

v φ is independent of the choice of ̟v. That

it is an automorphic form of level K1(npv) follows from the straightforward inclusion K1(npv) ⊂
V −
v K1(n)(V

−
v )−1. This completes the proof of (1).

We will check (2) using Fourier expansions. As mentioned in Remark 3.2.7, φ 7→ aφ(m) is linear.
So, it suffices to show that aV −

v φ
(OF ) = 0. To this end, we note the relation

(3.4.1) ( x y0 1 )
(
1 0
0 ̟v

)
=
(
x̟−1

v y
0 1

) (
̟v 0
0 ̟v

)
.

By (3.4.1) and Proposition 3.2.5 we deduce that

(3.4.2) ãV −
v φ

(ξxf ) = |̟−1
v |AF ãSvφ(ξxf̟

−1
v ).

In particular, if ξ and xf are chosen so that [ξxf ]DF/Q = OF then certainly [ξxf̟
−1
v ]DF/Q is not an

integral ideal. But then the quantity (3.4.2) vanishes by Proposition 3.2.5, completing the proof of (2).
For part (3), we have already checked in part (1) that V −

v φ ∈ Sλ(K1(npv)). Thus by Remark 3.2.3
and (3.4.1) we get

(3.4.3) (UvV
−
v φ)(g) =

∑

a∈Ov/̟vOv

φ
(
g (̟v a1 )

(
1
̟v

))
=

∑

a∈Ov/̟vOv

φ(g ( 1 a
1 ) (

̟v
̟v )).

The a-th term in the sum (3.4.3) is equal to (Svφ)(g ( 1 a1 )) which equals (Svφ)(g) because ( 1 a
1 ) ∈ K1(n)

and Svφ ∈ Sλ(K1(n)). Thus from (3.4.3) we get

(UvV
−
v φ)(g) =

∑

a∈Ov/̟vOv

(Svφ)(g) = (qvSvφ)(g),

as promised.
Part (4) is clear. Indeed, the matrices involved in the definition of Tm are the identity at v because

pv ∤ m (Remark 3.2.2), so they obviously commute with the action of V −
v . �

For the rest of this subsection, we fix a cohomological cuspidal automorphic representation π and a
prime p. We write n for the conductor of π (not necessarily prime to p) and assume that π has weight
λ.

Definition 3.4.2.

(1) π is called p-refinable if for each place v | p, πv is either an unramified principal series repre-
sentation or an unramified twist of the Steinberg.10

(2) If π is p-refinable, then a p-refinement α for π is the choice of α = (αv)v|p of one of the following
equivalent data.
(a) For each v where πv is an unramified principal series, αv is a root of X2 − aπ(pv)X +

ωπ(̟v)qv, and for each v where πv is Steinberg, αv = aπ(pv).
(b) αv = χv(̟v) where χv is the choice of smooth character χv : F×

v → C× such that
χv ◦Art−1

Fv
is a subrepresentation of r(πv).

(3) If α is a p-refinement of π, then the associated refined eigenform is

φπ,α :=
∏

v|p
pv∤n

(1− α−1
v V −

v ) · φπ,

10There is a more general notion of π being “finite slope” at p (we will not use it). Specifically one could say that
π is finite slope at p provided the smooth GL2(Fv)-representation πv has non-zero Jacquet module (πv)Nv for all v | p
([32, Section 3.2]). It follows from Frobenius reciprocity that a p-refinement as in Definition 3.4.2(2) is the equivalent to
an eigenspace for the torus action on (πv)Nv .
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where φπ ∈ Sλ(K1(n)) is newform associated with π (see Proposition 3.2.10).

The equivalence in parts (a) and (b) of Definition 3.4.2(2) is the same unwinding of definitions
that goes into (3.3.7). As a matter of course, we will often abuse language and simply say things like
“Let α be a p-refinement for π...” by which we mean “Assume that π is p-refineable and that α is a
p-refinement for π...” (we already did this in part (3) of Definition 3.4.2 for instance).

Remark 3.4.3. We stress that if v | p and pv | n then πv is necessarily a Steinberg representation, so
αv = aπ(pv) already, and p2v ∤ n.

Recall that we write p =
∏
v|p pv for the product of the primes above p in F .

Proposition 3.4.4. Let α be a p-refinement for π.

(1) φπ,α ∈ Sλ(K1(n ∩ p))
(2) φπ,α is a normalized eigenform which generates the representation π under (3.1.3) and the

Fourier coefficients/Hecke eigenvalues of φπ,α are given by

aφπ,α(p
j
v) =

{
aπ(p

j
v) if v ∤ p;

αjv if v | p.
In particular, Uv(φπ,α) = αvφπ,α for each v | p.

Proof. The fact that φπ,α lies in Sλ(K1(n∩p)) and is normalized (thus non-zero!) follows from repeated
uses of parts (1) and (2) in Lemma 3.4.1. Since φπ,α is a GL2(AF,f )-translate of φπ , it lies in π under
(3.1.3) and thus generates π since π is irreducible and φπ,α is non-zero. This proves parts (1) and the
normalized portion of part (2).

It remains to check that φπ,α is an eigenform with the prescribed Hecke eigensystem. For that,
it is enough to show that φπ,α is a Uv-eigenvector with eigenvalue αv when v | p and pv ∤ n (by
Lemma 3.4.1(4) and the end of Remark 3.2.3). So, fix v | p and pv ∤ n. Then, αv is a root of
X2 − aπ(pv)X + ωπ(̟v)qv. Write βv = aπ(pv)− αv = α−1

v ωπ(̟v)qv for the other root. Then,

(3.4.4) Uv(1 − α−1
v V −

v )φπ = Uvφπ − βvφπ
by Lemma 3.4.1(3). Since the operator Tv on Sλ(K1(n)) decomposes into a sum Tv = Uv+V

−
v (Remark

3.2.4) we can continue (3.4.4) and get

Uv(1− α−1
v V −

v )φπ = Uvφπ − βvφπ = (Tv − V −
v )φπ − βvφπ = aπ(pv)φπ − V −

v φπ − βvφπ
= (αv − V −

v )φπ .

Thus, (1− α−1
v Vv)φπ is a Uv-eigenvector with eigenvalue αv, completing the proof. �

4. Algebraicity of special values

4.1. Archimedean Hecke operators. We denote by K any compact open subgroup of GL2(AF,f )

and N any (GL+
2 (F ),K)-bimodule with a left action of a monoid ∆ ⊂ GL2(AF,f ) as in Section 2.2.

Write π0(F
×
∞) = F×

∞/(F
×
∞)◦ for the component group of F×

∞. There is a natural isomorphism π̂0(F
×
∞) ≃

{±1}ΣF where π̂0(F
×
∞) is the character group of π0(F

×
∞). So, we will often confuse signs ǫ ∈ {±1}ΣF

with the corresponding character of π0(F
×
∞). On the other hand, the function sgn : F×

∞ → {±1}ΣF
defines a section π0(F

×
∞) →֒ F×

∞ of the natural quotient map. We fix this identification. By doing so,
we may consider the double coset operator Tζ = [K◦

∞

(
ζ
1

)
K◦

∞] acting on the cohomology H∗
c (YK , N)

(trivially on N). Since
(
ζ
1

)
normalizes K◦

∞, this operator is just pullback under right multiplication

by
(
ζ
1

)
. Since

(
ζ
1

)
⊂ GL2(F∞), Tζ obviously commutes with any Hecke action arising from elements
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of ∆ ⊂ GL2(AF,f ). Further, if ζ, ζ
′ ∈ π0(F×

∞), then TζTζ′ = Tζζ′ . In particular Tζ commutes with Tζ′

and T 2
ζ = 1. Thus Tζ has only eigenvalues ±1. If 2 acts invertibly on N , then for each ǫ ∈ {±1}ΣF we

define

prǫ =
1

2d

∑

ζ∈π0(F
×
∞)

ǫ(ζ)Tζ

as an endomorphism of H∗
c (YK , N). It is an idempotent projector mapping onto

H∗
c (YK , N)ǫ = {v ∈ H∗

c (YK , N) | Tζ(v) = ǫ(ζ)v for all ζ ∈ π0(F×
∞)}.

4.2. The Eichler–Shimura construction. We now recall a transcendental construction associating
a certain differential form to a holomorphic Hilbert modular form. Throughout this subsection we fix
a cohomological weight λ.

Recall that D∞ = hΣF . Denote by Ωd(D∞) the space of C-valued smooth differential forms on D∞

(as a real manifold). For z = (zσ) the canonical coordinate on D∞, we define dz := ∧σdzσ ∈ Ωd(D∞).
Here we have to choose an ordering of ΣF , technically, and so we do that by insisting that dz restricts
to dx∞/x∞ along (F×

∞)◦ →֒ D∞ (see Section 2.3). Before the next lemma, we remind ourselves that
GL+

2 (F ) acts on both D∞ and the algebraic local system Lλ(C) defined in Section 2.4.

Lemma 4.2.1. If z ∈ D∞ and Pz ∈ Lλ(C) is defined by Pz = (z +X)κ, then

Pγ(z) = (det γ)
κ−w

2 j(γ, z)κ(γ · Pz)
for all γ ∈ GL+

2 (F ).

Proof. Clear. �

Now denote by Ωd(D∞,Lλ(C)) = Ωd(D∞)⊗C Lλ(C) the smooth Lλ(C)-valued differential forms
on D∞. If K is a neat level, so that YK is a smooth real manifold, then we denote by Ωd(YK ,Lλ(C))
the smooth Lλ(C)-valued d-forms on YK .

Proposition 4.2.2. Let K ⊂ GL2(AF,f ) be a neat compact open subgroup and f ∈ Shol
λ (K).

(1) The differential form

ωf (z, gf) := f(z, gf )(z +X)κdz ∈ Ωd(D∞,Lλ(C)) ⊗C C∞(GL2(AF,f ),C)

descends to Ωd(YK ,Lλ(C)). In fact, it defines a canonical element ωf ∈ Hd
c (YK ,Lλ(C)).

(2) If g ∈ GL2(AF,f ), then gKg
−1 is also neat and if rg : YgKg−1 → YK is right multiplication by

g, then r∗gωf = ωg·f .
(3) If K ′ ⊂ K is an open subgroup and pr : YK′ → YK is the projection map, then pr∗ ωf = ωf .

Proof. For (1), the descent of ωf to YK follows from (3.1.4), Lemma 4.2.1 and the chain rule. Next,
ωf naturally defines an element of Hd(YK ,Lλ(C) and, in fact, by [51, Proposition 2.1], it lies in the
cuspidal cohomologyHd

cusp(YK ,Lλ(C)) ⊆ Hd(YK ,Lλ(C). (See [51, p. 465] or [48, p. 61] for definitions
of H•

cusp. The reader might like to compare with [43, Proposition 6.6] for this article’s normalizations.)
As explained in [51, Section 5], the cuspidal cohomology is itself a subspace of the compactly supported
cohomology. This completes the proof of (1). The claims (2) and (3) of the proposition are formal. �

Now let K be any compact open subgroup. We may choose a finite index normal subgroup K ′ ⊂ K
so thatK ′ is neat. Then we have a natural map Shol

λ (K ′)→ Hd
c (YK′ ,Lλ(C)) given by f 7→ ωf . By part

(2) of Proposition 4.2.2, it is equivariant with respect to the action of K/K ′ on either side, so descends
to well-defined map Shol

λ (K) → Hd
c (YK ,Lλ(C)). By part (3) of Proposition 4.2.2, construction is

independent of the choice of K ′.
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Definition 4.2.3. If K ⊂ GL2(AF,f ) is a compact open subgroup, then the Eichler–Shimura map is
the map ES : Shol

λ (K)→ Hd
c (YK ,Lλ(C)) defined above.

We will sometimes also write ES for the map ES : Sλ(K) → Hd
c (YK ,Lλ(C)) obtained by pre-

composing with φ 7→ fφ. This should cause no confusion. Note as well that parts (2) and (3) of
Proposition 4.2.2 imply that ES is Hecke-equivariant. We now state a theorem proven by Hida and its
apparent applications.

Theorem 4.2.4. Suppose that π is a cohomological cuspidal automorphic representation of weight λ
and conductor n. Assume that E ⊂ C is any subfield containing Q(π) and the Galois closure of F
inside C. Then, for each choice of sign ǫ ∈ {±1}ΣF ,

dimE H
d
c (Y1(n),Lλ(E))ǫ[ψπ] = 1,

where (−)[ψπ] denotes subspace on which the Hecke operators acts through the character ψπ, and so
there exists an element Ωǫπ ∈ C× such that

prǫ ES(fπ)

Ωǫπ
∈ Hd

c (Y1(n),Lλ(E))ǫ[ψπ].

Proof. By (4.2) in [51, Section 4], for any choice of sign ǫ ∈ {±1}ΣF , the composition

prǫ ◦ES : Shol
λ (Y1(n))→ Hd

c (Y1(n),Lλ(C))ǫ

is a Hecke-equivariant injection onto the ǫ-component of the cuspidal cohomologyHd
cusp(Y1(n),Lλ(C))ǫ.

Moreover, the cokernel of the inclusion Hd
cusp(Y1(n),Lλ(C)) ⊆ Hd

c (Y1(n),Lλ(C)) supports only Eisen-
stein Hecke eigensystems. Indeed, by [48, Section 2], up to Eisenstein eigensystems there is no dis-
tinction between Hd

c (Y1(n),Lλ(C)) and its image Hd
! (Y1(n),Lλ(C)) (sometimes called interior coho-

mology) in Hd(Y1(n),Lλ(C)). Then, the difference between the interior cohomology and the cuspidal
cohomology is shown to be Eisenstein in [48, Section 3.2] (especially p. 61 of loc. cit., where H•

! will

be written H̃ ·). And so, in fact, prǫ ◦ES induces an isomorphism

(4.2.1) Shol
λ (Y1(n))[ψπ ] ∼= Hd

c (Y1(n),Lλ(C))ǫ[ψπ].

By the existence and the uniqueness of the newform associated with π (see Proposition 3.2.10), either
side of (4.2.1) is thus one-dimensional. Since ψπ takes values in E, for E as in the theorem statement,
this completes the proof. �

Remark 4.2.5. The choice of Ωǫπ in Theorem 4.2.4 is unique up to an element of E× (for E as in in
the theorem statement). We do not discuss further how to possibly specify these periods.

4.3. Twisting. In this subsection we discuss twisting by finite order Hecke characters. We will do this
carefully since we will need a less familiar p-adic version of these ideas in Section 5.5. Our treatment
here is inspired by [43, Sections 5.10 and 9.4]. Throughout, we fix a cohomological weight λ and an
integral ideal n. We will also let E denote a variable subfield of C containing the Galois closure of F .

To start, if t ∈ AF,f then write ut := ( 1 t1 ). For an integral ideal m, we write

K11(m) = {
(
a b
c d

)
∈ GL2(ÔF ) | a, d ≡ 1 mod mÔF and c ≡ 0 mod mÔF }.

Now let f be an integral ideal and t ∈ f−1ÔF . Then, K11(nf
2)t := u−1

t K11(nf
2)ut ⊂ K1(n). In

particular if φ ∈ Sλ(K1(n)), then φt(g) := φ(gut) is in Sλ(K11(nf
2)). We also have a diagram of
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Hilbert modular varieties

Y11(nf
2)

pr

yytt
tt
tt
tt
t

vt
**❯

❯
❯

❯
❯

❯
❯

❯
❯

❯

rut // YK11(nf2)t

pr

$$❏
❏❏

❏❏
❏❏

❏❏

Y1(nf
2) Y1(n)

where vt is defined to be the composition as indicated. Since ut ∈ GL2(AF,f ), the identity map defines
an isomorphism v∗tLλ(E) ≃ Lλ(E) of local systems on Y11(nf

2).

Lemma 4.3.1. For each t ∈ f−1ÔF , the diagram

Sλ(K1(n))
ES //

φ 7→φt

��

Hd
c (Y1(n),Lλ(C))

v∗t
��

Sλ(K11(nf
2))

ES
// Hd

c (Y11(nf
2),Lλ(C)).

is commutative.

Proof. See parts (2) and (3) of Proposition 4.2.2. �

Now consider a finite order Hecke character θ and let f be an ideal dividing the conductor of θ.11

Write Υf = f−1ÔF /ÔF and Υ×
f for cosets represented by x/f with f ∈ f and x ∈ Ô×

F . We naturally

view θ as a character on Υ×
f . If t ∈ Υ×

f write t0 ∈ ÔF for a lift of t which is zero outside of v | f. Then,
for φ ∈ Sλ(K1(n)) then we define twθ(φ) by

twθ(φ)(g) = θ(det g)
∑

t∈Υ×
f

θ(t)φ (gut0) .

By [43, Proposition 5.11], this defines a linear map twθ : Sλ(K1(n))→ Sλ(K1(nf
2)).

On the other hand, suppose E contains the values of θ. Then, θdet(g) := θ(det g) defines an
element of H0(Y11(nf

2), E) (compare with Remark 4.3.3 below). So, cup product with θdet defines an
endomorphism of H∗

c (Y11(nf
2),Lλ(E)) and we get a natural map

twθ : H
∗
c (Y1(n),Lλ(E))→ H∗

c (Y11(nf
2),Lλ(E))

given by

(4.3.1) twθ = θdet ∪
∑

t∈Υ×
f

θ(t)v∗t0 .

We claim that (4.3.1) descends to the cohomology at levelK1(nf
2). To see that, note that Y11(nf

2)→
Y1(nf

2) is a Galois cover with Galois group (ÔF /nf2ÔF )×. Specifically, if a ∈ Ô×
F then ηa := ( a 1 )

normalizesK11(nf
2) and so right multiplication by ηa defines an automorphism of Y11(nf

2) over Y1(nf
2)

which depends only on the image of a inside (ÔF /nf2ÔF )×. Since (ÔF /nf2ÔF )× is a finite group,

and E has characteristic zero, we may identify H∗
c (Y1(nf

2),Lλ(E)) as the (ÔF /nf2ÔF )×-invariants in
H∗
c (Y11(nf

2),Lλ(E)) (with a acting via pullback η∗a).

11Recall this means that θ(1 + fÔF ) = {1}.
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Lemma 4.3.2. twθ (H
∗
c (Y1(n)),Lλ(E))) ⊂ H∗

c (Y1(nf
2),Lλ(E)) and the diagram

Sλ(K1(n))
ES //

twθ

��

Hd
c (Y1(n),Lλ(C))

twθ

��

Sλ(K1(nf
2))

ES
// Hd

c (Y1(nf
2),Lλ(C))

is commutative.

Proof. We need to show that η∗a twθ = twθ for each a ∈ Ô×
F . If t ∈ AF,f then

ηaut = ( a at1 ) = ( 1 at
1 ) ( a 1 ) ∈ uatK1(n),

so η∗av
∗
t = v∗at. Moreover, η∗aθdet = θ(a)θdet. So, since at0 = (at)0 for t ∈ Υ×

f , we can finally compute:

η∗a twθ = η∗aθdet ∪
∑

t∈Υ×
f

θ(t)η∗av
∗
t0 = θ(a)θdet ∪

∑

t∈Υ×
f

θ(t)v∗(at)0 = θdet ∪
∑

t∈Υ×
f

θ(at)v∗(at)0 = twθ .

The commutativity of twθ with ES follows from Lemma 4.3.1. �

Remark 4.3.3. One may also consider twisting by characters of the form | · |nAF
θ where θ is finite

order and n is an integer. Namely, there is a suitable modification of θdet (compare with Definition
4.4.5) so that the cup product (4.3.1) induces a linear map

(4.3.2) tw|·|n
AF

θ : H
∗
c (Y1(n),Lκ,w(E))→ H∗

c (Y1(nf
2),Lκ,w−2n(E)).

We omit an explicit description, but in Section 5.5 we will explain the same idea.

We note for later (Lemma 4.5.5) the interaction between twisting and Archimedean Hecke operators.

Proposition 4.3.4. If ζ ∈ π0(F×
∞), then Tζ ◦ twθ = θ(ζ) twθ ◦Tζ.12

Proof. Recall that Tζ is pullback along right-multiplication by
(
ζ
1

)
on YK (for any K). In the

definition (4.3.1) of twθ, the pullbacks v
∗
t0 are pullbacks along multiplication by elements of GL2(AF,f ),

so they obviously commute with Tζ . Since pullbacks commute over cup products, the result is a
straightforward check after noticing that Tζ ◦ θdet = θ(ζ)θdet. �

We continue to assume that θ is a finite order Hecke character as above. We define a Gauss sum

G(θ−1) =
∑

t∈Υ×
f

θ(δ−1)θ(t)eF (δ
−1t)

where δF/Q ∈ A×
F,f is any choice of finite idele with [δF/Q] = DF/Q (notations as in Section 3.2). We

note now that if θ has conductor exactly f, then

(4.3.3) G(θ−1) =
sgn(θ∞)NF/Q(f)

G(θ)
,

where NF/Q(−) is the absolute norm. (This is a classical calculation.)

By [43, Proposition 5.11], if φ ∈ Sλ(K1(n)) then G(θ−1)−1 twθ(φ) =: φ ⊗ θ is what one usually
thinks of as the “twist”: the Fourier coefficients of φ⊗ θ are given by

(4.3.4) aφ⊗θ(m) =

{
θ(m)aφ(m) if (m, f) = 1;

0 otherwise.

12The twθ here means the one on cohomology. It must be, since the Tζ are not defined on automorphic forms.
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Here we have descended θ to a character of the prime-to-f part of the ideal class group. It follows from
(4.3.4) that if φ is a normalized eigenform of level n then φ⊗ θ is a normalized eigenform of level nf2.

We end with the following synopsis of the relationship between twisting and p-refinements.

Proposition 4.3.5. Let p be a prime. Suppose that π is a cohomological cuspidal automorphic rep-
resentation of conductor n, α is a p-refinement of π, and θ is a finite order Hecke character with
conductor of the form f =

∏
v|p p

fv
v with fv ≥ 0. If v | p and πv is a principal series representation,

then write βv = aπ(pv)− αv.
(1) φπ ⊗ θ and φπ,α ⊗ θ are normalized eigenforms of levels nf2 and (n ∩ p)f2, respectively.
(2) If v ∤ p or fv > 0 or pv | n then Lv(φπ,α ⊗ θ, s) = Lv(φπ ⊗ θ, s).
(3) If v | p and fv = 0 and pv ∤ n then

Lv(φπ,α ⊗ θ, s) = (1− θv(̟v)βvq
−s
v )Lv(φπ ⊗ θ, s).

(4) Lv(φπ ⊗ θ, s) = Lv(π ⊗ θ, s) for all v.13

(5) Writing M(−, s) for the Mellin transform as in §3.3, we have

M(φπ,α ⊗ θ, s) =
[ ∏

v|p
pv ∤nf

(1− βvθv(̟v)q
−(s+1)
v )

]
∆s+1
F Λ(π ⊗ θ, s+ 1).

Proof. As mentioned above, twisting by θ preserves the property of being a normalized eigenform.
Since φπ is a normalized eigenform, and φπ,α is one by Proposition 3.4.4, part (1) is proven.

We will prove (2) and (3) at the same time. First note that since f is divisible only by primes
above p, the level of φπ ⊗ θ and the level of φπ,α ⊗ θ are the same away from p. Note as well that the
central characters are the same: they are both ωπθ

2. Thus we see that (2) is true in the case v ∤ p by
Proposition 3.4.4 and (4.3.4).

Now we consider v | p. If fv > 0 or pv | n then pv divides the level of both φπ,α ⊗ θ and φπ ⊗ θ,
and the v-th Fourier coefficient of either eigenform is the same: if fv > 0 then the coefficients are both
zero, and if fv = 0 but pv | n then both coefficients are θ(̟v)αv = θ(̟v)aπ(pv) (compare with Remark
3.4.3). This completes the proof of (2).

Finally suppose that v | p and fv = 0 and pv ∤ n. Since pv is then co-prime to the level of φπ ⊗ θ,
we have from (4.3.4) that

Lv(φπ ⊗ θ, s) =
1

1− θ(̟v)aπ(pv)q
−s
v + ωπθ2(̟v)q

1−2s
v

=
1

(1− θ(̟v)αvq
−s
v )(1− θ(̟v)βvq

−s
v )

.

On the other hand, by Proposition 3.4.4 and (4.3.4) we have aφπ,α⊗θ(pv) = θ(̟v)αv. Since φπ,α ⊗ θ
has level divisible by pv, its local L-factor is

Lv(φπ,α ⊗ θ, s) =
1

1− aφπ,α⊗θ(pv)q−sv
=

1

1− θ(̟v)αvq
−s
v
.

Comparing the previous two displayed equations completes the proof of (3).
Point (4) is obvious if fv = 0. Otherwise θ is ramified at v and in particular v | p. We claim that

Lv(π ⊗ θ, s) = 1 = Lv(φπ ⊗ θ, s). Since π is p-refineable and v | p, the first equality follows because
twisting an unramified principal series or an unramified twist of the Steinberg by a ramified character
trivializes the local L-factor. For the second equality, note that if θv is ramified then pv divides the
level of φπ ⊗ θ and aφπ⊗θ(pv) = 0 by (4.3.4). The second inequality now follows from (3.3.6).

Finally, (5) follows from the previous parts and Proposition 3.3.1 �

13Here, π ⊗ θ is the automorphic representation on which the action of GL2(AF ) on π is twisted by θ(det g).
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4.4. Evaluation classes. In this subsection, E denotes a subfield ofC that contains the Galois closure
of F . We will also fix a cohomological weight λ = (κ,w). Our goal is to define an evaluation class in
homology which is used to detect L-values.

Recall Lλ(E) is equipped with a left action of GL2(F ). We write Lλ(E)∨ for E-linear dual space
of Lλ(E) with its canonical right action of GL2(F )

µ
∣∣
g
(P ) = µ(g · P )

if µ ∈ Lλ(E)∨, g ∈ GL2(F ) and P ∈ Lλ(E).

Lemma 4.4.1. If x ∈ F× and P ∈ Lλ(E), then (( x 1 ) · P ) (X) = x
w+κ

2 P
(
X
x

)
.

Proof. See definition (2.4.2). �

We now make two definitions.

Definition 4.4.2. An integer m is critical with respect to λ if

w − κσ
2

≤ m ≤ w + κσ
2

for all σ ∈ ΣF .

Definition 4.4.3. Let m be critical with respect to λ. Then, δ⋆m ∈ Lλ(E)∨ is defined by

δ⋆m(Xj) =

{(
κ
j

)−1
if j = κ+w

2 −m,
0 otherwise.

Lemma 4.4.4. If x ∈ F×, then δ⋆m
∣∣
( x 1 )

= xmδ⋆m.

Proof. By Lemma 4.4.1, if 0 ≤ j ≤ κ then

(4.4.1) δ⋆m
∣∣
( x 1 )

(Xj) = x
κ+w

2 −jδ⋆m(Xj).

If j 6= κ+w
2 −m, then both xmδ⋆m(Xj) and the right-hand side of (4.4.1) vanish. And if j = κ+w

2 −m
then clearly xmδ⋆m(Xj) is equal to the right-hand side of (4.4.1). The result follows. �

Recall the definition (2.3.1) of the Shintani cone C∞ = F×\A×
F /Ô×

F . Above we took a right action
of GL2(F ) on Lλ(E)∨ but now we restrict this to the left action of F× where x ∈ F× acts by
x · µ = µ|(x−1

1

). Using this action, we define a local system

t∗Lλ(E)∨ = F×\A×
F ×Lλ(E)∨/Ô×

F ։ C∞.

Definition/Proposition 4.4.5. If m is critical with respect to λ, then the formula

δm(x) := (sgn(x∞)|xf |AF )
m
δ⋆m, x ∈ A×

F

defines an element of H0(C∞, t
∗Lλ(E)∨).

Proof. Since δm(x) is clearly constant on the connected component (F×
∞)◦, what we need to show is

that if ξ ∈ F×, x ∈ A×
F and u ∈ Ô×

F then

(4.4.2) δm(ξxu) = δm(x)
∣∣(
ξ−1

1

).

Since elements of Ô×
F have trivial adelic norm and no infinite component, we see that δm is right

Ô×
F -invariant. On the other hand, the product formula implies that

δm(ξx) = (sgn(ξ∞)|ξf |AF )
mδm(x) = ξ−m∞ δm(x),
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if ξ ∈ F×. But this is exactly the right-hand side of (4.4.2) by Lemma 4.4.4. �

Now suppose that K ⊂ GL2(AF,f ) is a t-good subgroup (Definition 2.3.2). As in (2.3.5) we consider
the proper embedding t : C∞ → YK given by t(x) = ( x 1 ). The local system Lλ(E)∨ on YK defined
by the left-action of GL2(F ) on Lλ(E)∨ pulls back exactly to the local system t∗Lλ(E)∨ on C∞ which
we just considered.14 Since t is proper, we get a pushforward map

t∗ : HBM
∗ (C∞, t

∗
Lλ(E)∨)→ HBM

∗ (YK ,Lλ(E)∨)

on the level of Borel–Moore homology. Furthermore, we also have a Poincaré duality map (see (2.1.6))

PD : H0(C∞, t
∗
Lλ(E)∨)→ HBM

d (C∞, t
∗
Lλ(E)∨)

given by cap product with a Borel–Moore fundamental class [C∞].

Definition 4.4.6. If m is critical with respect to λ, and K is a t-good subgroup, then we define

cl∞(m) = t∗(PD(δm)) ∈ HBM
d (YK ,Lλ(E)∨).

We call cl∞(m) an Archimedean evaluation class.

Note that strictly speaking we should write something like clK∞(m) to indicate the dependence on
K. But, the local systems Lλ(E)∨ live at all levels simultaneously and the next lemma shows we do
not need this extra notation.

Lemma 4.4.7. If K ′ ⊂ K are two compact open subgroups of GL2(AF,f ) and K ′ is t-good, then

pr∗(clK∞(m)) = clK
′

∞ (m).

Proof. The two possible embeddings t commute with the projection YK′ → YK . �

We end by recording how Archimedean Hecke operators act on the Archimedean evaluation classes.

Proposition 4.4.8. If ζ ∈ π0(F×
∞) then Tζ cl∞(m) = ζ−m cl∞(m).

Proof. Write ρζ : YK → YK for right-multiplication by
(
ζ
1

)
, so Tζ acting on homology is the push-

foward (ρζ)∗. Also write rζ : C∞ → C∞ for right multiplication by ζ so that ρζ ◦ t = t ◦ rζ . Since
ζ = sgn(ζ∞), it follows from the definition of δm that r∗ζδm = ζmδm. Using this, we get

Tζ cl∞(m) = (ρζ)∗t∗ PD(δm) = t∗(rζ)∗ PD(ζ−mr∗ζδm) = ζ−mt∗(rζ)∗ PD(r∗ζδm).

The proposition now follows from Proposition 2.3.1 and (2.1.7). �

4.5. Special values of L-functions. Throughout this subsection we will use λ to denote a cohomo-
logical weight, m an integer that is critical with respect to λ, and n an integral ideal. Further, we will
use 〈−,−〉 to denote the natural pairing (see Section 2.1)

〈−,−〉 : Hd
c (YK ,Lλ(E))⊗E HBM

d (YK ,Lλ(E)∨)→ E.

We combine our previous results to compute pairing between the image of the Eichler–Shimura map
and Archimedean evaluation classes.

Theorem 4.5.1. If φ ∈ Sλ(K1(n)), then 〈ES(φ), cl∞(m)〉 = i1+m+κ−w
2 M(φ,m).

Remark 4.5.2. Note that since κ = (κσ) is a ΣF -tuple, i
1+m+κ−w

2 means the product
∏
σ i

1+m+κσ−w
2 .

14We consider left actions in order to define the local systems on YK because the quotient by GL+
2 (F ) is on the left.
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Proof of Theorem 4.5.1. By Proposition 4.2.2(3), Lemma 4.4.7, Proposition 2.3.3, and becauseM(φ, s)
only depends on the underlying automorphic form φ, we can and will assume that K1(n) is a neat
level subgroup. Then, we will write f = fφ ∈ Shol

λ (K1(n)) for the holomorphic Hilbert modular
form corresponding to φ, and ωf = ES(f) for the bona fide differential form on Y1(n) constructed in
Proposition 4.2.2. Now we turn towards computation. By the push-pull formula (2.1.8) we have

(4.5.1) 〈ωf , cl∞(m)〉 = 〈t∗ωf ∪ δm, [C∞]〉
where ∪ is the cup product

∪ : Hd
c (C∞, t

∗
Lλ(E))⊗E H0(C∞, t

∗
Lλ(E)∨)→ Hd

c (C∞, E).

Let us first compute the E-valued differential form t∗ωf ∪ δm on C∞. We recall that we have fixed our
coordinate z at the start of Section 4.2 to be compatible with the canonical coordinate x∞ on (F×

∞)◦.
Thus, t∗ωf is the d-form on C∞ given in coordinates on A×

F,+ = (F×
∞)◦ ×A×

F,f by

t∗ωf (x∞, xf ) = f (ix∞, (
xf

1 )) (ix∞ +X)κd(ix∞)

for x = x∞xf ∈ A×
F,+. Further, by definition, δ⋆m ((ix∞ +X)κ) = (ix∞)

κ−w
2 +m. So, in coordinates we

have

(t∗ωf ∪ δm)(x∞, xf ) = δm(x) (f (ix∞, (
xf

1 )) (ix∞ +X)κ) d(ix∞)(4.5.2)

= idf (ix∞, (
xf

1 )) |xf |mAF
(ix∞)

κ−w
2 +mdx∞

= i1+m+κ−w
2 |x|mAF

φ (( x 1 ))
dx∞
x∞

.

Now we note that the pairing (4.5.1) is computed by integrating t∗ωf ∪ δm over C∞. Since x 7→
|x|mAF

φ (( x 1 )) is invariant under right multiplication by Ô×
F , we get from (4.5.2) that

〈t∗ωf ∪ δm, [C∞]〉 =
∫

C∞

t∗ωf ∪ δm

= i1+m+κ−w
2

∫

F×
+ \A×

F,+

φ (( x 1 )) |x|mAF
d×x

= i1+m+κ−w
2 M(φ,m).

This completes the proof. �

Corollary 4.5.3. If φ ∈ Sλ(K1(n)), then

〈ES(φ), cl∞(m)〉 = i1+m+κ−w
2 ∆m+1

F/QΛ(φ,m+ 1).

Proof. This is immediate from Proposition 3.3.1 and Theorem 4.5.1. �

In the special case of a p-refined newform, we have the following.

Corollary 4.5.4. Let p be a prime. Suppose that π is a cohomological cuspidal automorphic represen-
tation of conductor n, α is a p-refinement of π, and θ is a finite order Hecke character with conductor
of the form f =

∏
v|p p

fv
v with fv ≥ 0. If v | p and πv is a principal series representation, then write

βv = aπ(pv)− αv. Then,

〈ES(φπ,α ⊗ θ), cl∞(m)〉 =
( ∏

v|p
pv ∤nf

(1− βvθv(̟v)q
−(m+1)
v )

)
i1+m+κ−w

2 ∆m+1
F/QΛ(π ⊗ θ,m+ 1).

Proof. Apply Theorem 4.5.1 to φ = φπ,α ⊗ θ, and then apply Proposition 4.3.5. �
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Prior to the final result of this section, we need one more calculation.

Lemma 4.5.5. Let θ be a finite order Hecke character and E ⊂ C a field containing the Galois closure
of F and the values of θ. For each ω ∈ Hd

c (Y1(n),Lλ(E)) and ζ ∈ π0(F∞) we have

(4.5.3) 〈twθ(Tζω), cl∞(m)〉 = θ(ζ)ζ−m〈twθ(ω), cl∞(m)〉.

In particular, if ǫ ∈ {±1}ΣF is uniquely defined by ǫ(ζ) = θ−1(ζ)ζm for all ζ ∈ π0(F×
∞), then

〈twθ(ω), cl∞(m)〉 = 〈twθ(prǫ ω), cl∞(m)〉.

Proof. Proposition 4.3.4 and the adjointness of pushfowards/pullbacks under 〈−,−〉 implies that

〈twθ(Tζω), cl∞(m)〉 = θ(ζ)〈Tζ twθ(ω), cl∞(m)〉 = θ(ζ)〈twθ(ω), Tζ cl∞(m)〉.

So, (4.5.3) follows from Proposition 4.4.8. �

Remark 4.5.6. The next result is originally due to Shimura [82], albeit with a minor restriction on
the weight λ. The general result, and the method we have followed, is due to Hida. See [51].

Theorem 4.5.7. Let π be a cohomological cuspidal automorphic representation of weight λ. Write E
for the smallest subfield of C containing Q(π) and the Galois closure of F . Then, for each ǫ ∈ {±1}ΣF
there exists Ωǫπ ∈ C× such that, if θ is a finite order Hecke character of conductor f, then

(4.5.4)
sgn(θ∞)NF/Q(f)i1+m+κ−w

2 ∆m+1
F/QΛ(π ⊗ θ,m+ 1)

G(θ)Ωǫπ
∈ E(θ),

where

(1) E(θ) is the field generated by E and the values of θ, and
(2) ǫ is chosen so that ǫ(ζ) = θ−1(ζ)ζm for all ζ ∈ π0(F×

∞).

Proof. Write φπ for the newform associated to π. For each ǫ ∈ {±1}ΣF choose the period Ωǫπ as in
Theorem 4.2.4. We claim that, given θ, (4.5.4) now holds for the specific ǫ as in (3).

To see the claim, let ω = ES(φπ)/Ω
ǫ
π ∈ Hd

c (Y1(n),Lλ(C)). The choice of period Ωǫπ means that
prǫ ω is actually defined over E and so Lemma 4.5.5 implies that

(4.5.5) 〈twθ(ω), cl∞(m)〉 ∈ E(θ).

On the other hand,

twθ(ω) =
1

Ωǫπ
twθ(ES(φπ)) =

1

Ωǫπ
ES(twθ φπ) =

G(θ−1)

Ωεπ
ES(φπ ⊗ θ).

Here we used Lemma 4.3.2 for the second equality. Combining Corollary 4.5.3 and (4.5.5), we conclude

G(θ−1)i1+m+κ−w
2 ∆m+1

F/QΛ(φπ ⊗ θ,m+ 1)

Ωǫπ
∈ E(θ).

The translation between this and (4.5.4) follows from (4.3.3). Finally, φπ and π have the same L-
function up to an element of E× so we can replace Λ(φπ ⊗ θ,m+ 1) with Λ(π ⊗ θ,m+ 1) as well. �
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5. Locally analytic distributions and p-adic weights

5.1. Compact abelian p-adic Lie groups.

Definition 5.1.1.

(1) A compact abelian p-adic Lie group G (CPA group for short) is an abelian topological group
G which is compact and which contains an open subgroup topologically isomorphic to Znp for
some 0 ≤ n <∞.

(2) The dimension of a CPA G is the integer dimG := n.
(3) A chart of a CPA group G is an injective and open group morphism ZdimG

p →֒ G.

We note that CPA groups are exactly the p-adic Lie groups which are compact and abelian ([80])
and the dimension is the dimension of the underlying p-adic manifold.15 The salient facts are contained
in the next lemma. The proofs are left to the reader.

Lemma 5.1.2.

(1) If G and H are CPA groups then G×H is a CPA group.
(2) If G is a CPA group and H is a closed subgroup then H and G/H are CPA groups.
(3) If f : G → H is a group morphism between CPA groups then f is continuous, ker(f) ⊂ G

and im(f) ⊂ H are closed subgroups and the group isomorphism G/ ker(f) ≃ im(f) is a
homeomorphism.

(4) Let 0 → G → H → J → 0 be any short exact sequence of abelian groups. If any two of
the groups are CPA, then all three are CPA and the morphisms in the sequence are continu-
ous. In particular, any abelian group which is an extension of one CPA group by another is
automatically CPA.

For the rest of this subsection we fix a CPA group G and write n = dimG. We also fix a Qp-Banach
algebra R.

For each integer s ≥ 0 and each chart ν : Znp →֒ G, we write As(G, ν,R) for the functions f : G→ R
with the following property: for each g ∈ G, the function z 7→ f(gν (psz)) is an R-valued rigid analytic
function in the variable z = (z1, . . . , zn) ∈ Znp . If f ∈ As(G, ν,R) then f(gν(psz)) is defined by an
element in the Tate-algebra R〈z1, . . . , zn〉 (for each g) and so As(G, ν,R) is naturally an R-Banach
algebra by considering the largest of the pullback norms from R〈z1, . . . , zn〉 for any finite choice of

coset representatives of G/ν(psZnp ). Further, for s
′ ≥ s the canonical map As(G, ν,R)→ As′(G, ν,R)

is injective with dense image and compact if s′ > s. We define the R-valued locally analytic functions
on G as the compact type space (see [39, Section 1.1])

A (G,R) := lim−→
s→∞

As(G, ν,R).

This is independent of the chart ν.
Next, we define Ds(G, ν,R) := As(G, ν,R)′ as the R-Banach module dual (equipped with the

operator topology). This is also an R-Banach algebra under the convolution product (µ1, µ2) 7→ µ1∗µ2.

If s′ ≥ s then the canonical map Ds′(G, ν,R) → Ds(G, ν,R) is still injective (because the transpose
has dense image) and compact when s′ > s. We define the R-valued locally analytic distributions on
G as the projective limit

D(G,R) := lim←−
s→∞

Ds(G, ν,R).

15As in “näıve” p-adic manifolds, as opposed to rigid analytic spaces, etc.
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Notice that there is a natural R-bilinear pairing

D(G,R)⊗R A (G,R)→ R

which we write (µ, f) 7→ µ(f).

Remark 5.1.3. Each of R 7→ As(G, ν,R), A (G,R), and D(G,R) commute with completed tensor
products; the distributions with a fixed value of s do not. Compare with [11, Remark 3.1].

We now define the space of p-adic characters on G.

Definition 5.1.4. X (G) = Spf(Zp[[G]])
rig.

Thus X (G) is a rigid analytic space over Qp whose R-valued points are nothing but continuous
characters χ : G → R×. It is well-known (see [39, Proposition 3.6.10] for example) that if χ ∈
X (G)(Qp) then g 7→ χ(g) defines an element of A (G,Qp). Further, if µ ∈ D(G,Qp)

Aµ(χ) := µ(g 7→ χ(g))

extends to a rigid analytic function on X (G). For instance, if g ∈ G and δg ∈ D(G,Qp) is the
Dirac distribution then Aδg is the rigid function evg on X (G) given by “evaluation at g”. Further,
Aµ1∗µ2 = Aµ1Aµ2 . See [77, Sections 1-2] for more details.

Definition 5.1.5. The Amice transform is the natural map

D(G,R)
A−→ O(X (G))⊗̂QpR

µ 7→ Aµ.
Proposition 5.1.6. The Amice transform is a topological isomorphism.

Proof. By Remark 5.1.3, we can assume that R = Qp. Let H be an open (thus finite index) subgroup
of G. Then, D(G,Qp) is finite free over D(H,Qp) with basis given by {δg} with g running over coset
representatives of G/H and O(X (G)) is finite and free over O(X (H)) with basis given by {evg}.
Since Aδg = evg, the result for G follows from the result for such an H . Since G is a CPA group, there
exists an H topologically isomorphic to Znp , in which case the theorem is known by a multi-variable
version of Amice’s theorem [2] (see [77]). �

5.2. Locally analytic distributions on Op. In this section we consider the CPA group Op =
OF ⊗Z Zp =

∏
v|pOv. For v | p, we fix a uniformizer ̟v ∈ Ov and we write ̟p ∈ Op for the

corresponding tuple. Let ev be the ramification index at v | p, and e = (ev)v|p ∈ Z
{v|p}
≥1 .

Start by choosing a Zp-linear isomorphism ν : Zdp ≃ Op which we use as a chart. Using this we
write A◦(Op,Qp) for the ring of functions f : Op → Qp such that f ◦ ν is defined by an element
of the Tate algebra Zp〈z1, . . . , zd〉. The ring A(Op,Qp) := A◦(Op,Qp)[1/p] is the ring we denoted
A0(Op, ν,Qp) in Section 5.1, so f 7→ f ◦ ν defines an isomorphism A(Op,Qp) ≃ Qp〈z1, . . . , zd〉. The
Qp-Banach structure on with the norm ‖f‖0 on A(Op,Qp) defined by pulling back the supremum
norm on Qp〈z1, . . . , zd〉. It is independent of ν.

For s = (sv)v|p ∈ Z
{v|p}
≥0 we now define

As,◦(Op,Qp) := {f : Op → Qp | z 7→ f(a+̟s
pz) lies in A◦(Op,Qp) for all a ∈ Op};

As(Op,Qp) = As,◦(Op,Qp)[1/p].

If f ∈ As(Op,Qp), then f(a+̟s
pz) depends on a mod ̟s

pOp only up to translation in the z-variable.
Thus we equip As(Op,Qp) with a Qp-Banach norm by

‖f‖s := max
a∈Op/̟s

pOp
‖f(a+̟s

pz)‖0.
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If s′ ≥ s (i.e. s′v ≥ sv for all v | p) then the natural map As(Op,Qp) → As′(Op,Qp) is continuous
with dense image. If s′ ≥ s + e (i.e. s′v ≥ sv + ev for each v | p) then it is compact. Furthermore,
the Qp-Banach algebras As(Op,Qp) are a co-final defining sequence for A (Op,Qp), as in Section 5.1,
because if s ∈ Z≥0 and s := (sev)v|p then we have an obvious (topological) equality

As(Op,Qp) = As(Op,mup ◦ ν,Qp)

where mup is multiplication by ̟e
pp

−1 on Op. Thus we also have a topological isomorphism

(5.2.1) A (Op,Qp) = lim−→
|s|→+∞

As(Op,Qp)

where |s| = min(sv : v | p).
IfR is aQp-Banach algebra and s ∈ Z

{v|p}
≥0 , we defineAs(Op, R) := As(Op,Qp)⊗̂QpR with its induc-

tive tensor product topology. Any Qp-Banach space is potentially orthonormalizable ([79, Proposition
1]), so the R-Banach modules As(Op, R) are potentially orthonormalizable as well ([28, Lemma 2.8]).
If s′ ≥ s then the natural map As(Op, R) → As(Op, R) is injective with dense image ([39, Corollary
1.1.27]) and if s′ ≥ s+e then the map is compact ([76, Lemma 18.12]). By (5.2.1) and [39, Proposition
1.1.32(i)] we deduce a topological identification

(5.2.2) A (Op, R) = lim−→
|s|→+∞

As(Op, R).

Finally, we write Ds(Op, R) for R-Banach dual As(Op, R)′ equipped with its operator topology and
convolution product. The R-Banach algebras Ds(Op, R) are co-final with the Banach algebras in
Section 5.1 (for the same reasons as above) and thus we have a topological identification

D(Op, R) = lim←−
|s|→+∞

Ds(Op, R).

Remark 5.2.1. The R-Banach modules Ds(Op, R) are not the same as Ds(Op,Qp)⊗̂QpR and thus
not obviously potentially orthornormalizable.

We now recall the following definition.

Definition 5.2.2. If R is a Qp-Banach algebra, a ring of definition R0 for R is a subring R0 ⊂ R
which is open and bounded.

We note that this implies as well that R0 is p-adically separated and complete, and R0[1/p] = R.
After fixing R0 ⊂ R a ring of definition, we now define

As,◦(Op, R) := As,◦(Op,Qp)⊗̂ZpR0.

The R0-algebra As,◦(Op, R) is naturally an open and bounded R0-subalgebra As(Op, R) and we have
an equality after inverting p. For the distributions, still with R0 fixed, we define Ds,◦(Op, R) as the
R0-linear dual

Ds,◦(Op, R) := HomR0(A
s,◦(Op, R), R0).

Remark 5.2.3. The notations As,◦ and Ds,◦ are misleading in that they obviously depend on R0. If
R is reduced, then we may take R0 to be the subring of power-bounded elements in R. In any case,
the reader may also notice that we never make “natural use” of the lattices (as opposed to the functors
As(Op,−) and Ds(Op,−)).
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5.3. Actions by the monoid ∆. We maintain the notations of the previous subsection and we also
fix a Qp-Banach algebra R and a ring of definition R0 ⊂ R. If h(z) is a function on O×

p valued in a
ring, then write h(z)! for its extension by zero to Op.

Lemma 5.3.1. If χ : O×
p → R× is a continuous character, then there exists s(χ) ∈ Z

{v|p}
≥0 such that

f ∈ As(χ)(Op, R) when f is a function of either of the following two forms.

(1) f(z) = χ(d+ cz) with c ∈ ̟pOp and d ∈ O×
p .

(2) f(z) = χ(z)!.

If χ(O×
p ) ⊂ R×

0 , then there exists s◦(χ) ∈ Z
{v|p}
≥0 depending on R0 so that f ∈ As◦(χ),◦(Op, R) for the

same functions.

Proof. If c ∈ ̟pOp and d ∈ O×
p then χ(d+ cz) = χ(d+ cz)!. Since z 7→ d+ cz is polynomial in z, we

only need to prove the lemma where f(z) = χ(z)!. In the case where p is inverted, this is well-known.
We now deduce the R0-case from the R-case.

First, we observe that if g ∈ A(Op, R) and g(0) ∈ R0, then there exist s(g) so that g(̟
s(g)
p z) ∈

A◦(Op, R) (expand the series defining g). Now write f(z) = χ(z)!. For a running over a (finite) set of

coset representatives for Op/̟s
pOp, there exists ga ∈ A(Op, R) such that f(a+̟

s(χ)
p z) = ga(z). Since

ga(0) = f(a) ∈ R0, the first sentence of this paragraph applies to each ga and the lemma follows. �

Recall that T ⊂ GL2/Z denotes the diagonal torus. Thus T (Op) ≃ (O×
p )

2 is naturally a CPA group.

Definition 5.3.2. The space of p-adic weights is W = X (T (Op)).
If Ω = Sp(R) and λΩ : Ω → W is a point then we often confuse it with the corresponding pair

λΩ = (λΩ,1, λΩ,2) where λΩ,i : O×
p → R× are continuous character. If R is a finite extension of Qp we

write just λ. In either case, we generally refer to both the point and the character as a p-adic weight.
Now consider the submonoid of GL2(Fp) defined by

∆ :=

{(
a b
c d

)
∈ GL2(Fp) ∩M2(Op) | c ∈ ̟pOp and d ∈ O×

p

}
.

If g =
(
a b
c d

)
∈ ∆ then cz + d ∈ O×

p and so the left action g · z = az+b
cz+d of ∆ on Op is well-defined and

it is clearly continuous.
Now consider Ω = Sp(R) and let λΩ : Ω→ W be a p-adic weight. Set s(Ω) := max{s(λΩ,1λ−1

Ω,2), s(λ
−1
Ω,2)}

as above.16 Then, for s ≥ s(Ω) we may endow As(Op, R) with a continuous R-linear right action of ∆
via

(5.3.1) f
∣∣
g
(z) = λΩ,1λ

−1
Ω,2(cz + d)λΩ,2

(
det g ·̟−v(det g)

p

)
f(g · z)

where g =
(
a b
c d

)
∈ ∆, f ∈ As(Op, R) and z ∈ Op.17 This definition is well-posed by Lemma 5.3.1. We

then equip Ds(Op, R) with the dual left action: (g · µ)(f) = µ(f |g). Either action is referred to as a
“weight λ-action.”

Remark 5.3.3. The monoid ∆ and the action (5.3.1) differ from their definitions in [46, Section 2.2]
by conjugation by

(
1

̟p

)
∈ GL2(Fp). Compare with Proposition 6.3.8(1).

The above action of ∆ is compatible with the injective restriction map As(Op, R) → As′(Op, R)
when s′ ≥ s, so we get a continuous action of ∆ on A (Op, R). On the dual side, Ds(Op, R) is equipped
with a continuous R-linear left action by ∆ and the compatibility extends this to a continuous action

16Inserting s(λ−1
Ω,2) into the maximum is purely for convenience of notation later on (see Lemma 7.2.1).

17To be clear, we recall that ̟
−v(det g)
p means

∏
v|p ̟

−v(det gv)
v .
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on D(Op, R). Finally, when the image of λΩ is contained in R0, then (5.3.1) defines an action of ∆ on

As,◦(Op, R) as well as a left action on Ds,◦(Op, R) for all s ≥ s◦(Ω) := max{s◦(λΩ,1λ−1
Ω,2), s

◦(λ−1
Ω,2)}.

We summarize the notations presented above as follows.

Definition 5.3.4.

(1) If Ω = Sp(R) is a Qp-affinoid space, λΩ : Ω → W is a p-adic weight and s ≥ s(Ω), then we
write As

Ω := As(Op, R), Ds
Ω := Ds(Op, R), AΩ := A (Op, R), and DΩ := D(Op, R) for the

above R-modules equipped with their continuous actions of ∆ via λΩ above. When R0 is a
ring of definition containing the image of λΩ and s ≥ s◦(Ω) then we write As,◦

Ω = As,◦(Op, R)
and Ds,◦ = Ds,◦(Op, R) for the R0-modules equipped with their action of ∆ above.

(2) If λ ∈ W (Qp) with residue field kλ, we write As
λ, D

s
λ, Aλ, and Dλ in place of As

Spkλ
, Ds

Sp kλ
,

ASp kλ , and DSp kλ .

5.4. The integration map for cohomological weights. Throughout this subsection we fix L ⊂ Qp

and assume it contains the Galois closure of F inside Qp. We also consider a fixed cohomological weight
λ = (κ,w). (The notations of the previous two subsections also remain in force.)

Recall we defined the L-vector space Lλ(L), equipped with a left action of GL2(Fp) in (2.4.3). It
thus inherits an action of the monoid ∆ ⊂ GL2(Fp) from Section 5.3. We also view λ as a p-adic
weight λ = (λ1, λ2) where λi is given by

λi(z) =
∏

v|p

∏

σ∈Σv

σ(z)ei(σ)

where e1(σ) = 1
2 (w + κσ) and e2(σ) = 1

2 (w − κσ). The residue field kλ of λ ∈ W is contained in

the Galois closure of F inside Qp. Thus to a cohomological weight λ we also have a ∆-module of
distributions Dλ ⊗kλ L.
Definition 5.4.1. The integration map is the L-linear map Iλ : Dλ ⊗kλ L→ Lλ(L) given by

(5.4.1) Iλ(µ)(X) = µ((z +X)κ) :=
∑

0≤j≤κ

(
κ

j

)
µ(zj)Xκ−j.

It is elementary to check the action of ∆ has the following relationship to the integration map: if
g ∈ ∆ and µ ∈ Dλ ⊗kλ L, then

(5.4.2) Iλ(g · µ) =
(
̟−v(det g)
p

)w−κ
2

g · Iλ(µ).

Definition 5.4.2. L
♯
λ(L) := Lλ(L)⊗ (̟

−v(det g)
p )

w−κ
2 (as a left ∆-module).

Thus L
♯
λ coincides with L

♯
λ as a representation of the Iwahori subgroup of GL2(Op), but the full

action of ∆ has been twisted so that Iλ becomes equivariant (point (1) below). Before stating the next

proposition, we note that any left ∆-module becomes a left O×
p -module via the inclusion

(
O×
p

1

)
⊂ ∆.

Proposition 5.4.3.

(1) Iλ : Dλ ⊗kλ L→ L
♯
λ(L) is ∆-equivariant.

(2) If OL ⊂ L denotes the ring of integers and L
♯
λ(OL) are those polynomials with OL-coefficients

then L
♯
λ(OL) is ∆-stable.

(3) The identity map Lλ(L)→ L
♯
λ(L) is an isomorphism of left O×

p -modules.

Proof. Point (1) is immediate from (5.4.2). The second point is straightforward from the definition.

The third point is because if x ∈ O×
p and g = ( x 1 ) then det(g) ∈ O×

p , so λ2(̟
−vp(det g)
p ) = 1. �
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5.5. p-adic twisting. In this subsection we consider two p-adic analogs of the twisting studied in
Section 4.3. Recall that ΓF is the Galois group of the maximal abelian extension of F unramified away
from p and ∞. Global class field theory defines an isomorphism

ΓF ≃ F×\A×
F /H

where H is the closure of the subgroup generated by (F×
∞)◦Ô(p),×

F . Thus there is a natural short exact
sequence

(5.5.1) 1→ O×
p

/
O×
F,+ → ΓF → Cl+F → 1,

where Cl+F is the narrow class group, O×
F,+ are the totally positive units, and the bar indicates the

p-adic closure under the natural inclusion O×
F,+ ⊂ O×

p . By Lemma 5.1.2 and (5.5.1), ΓF is a CPA

group. We write X (ΓF ) for the rigid analytic space parameterizing continuous p-adic characters on
ΓF .

Definition 5.5.1. Suppose that R is a Qp-Banach algebra and N is an R-module equipped with an
R-linear left action g · n of the monoid ∆. If ϑ : ΓF → R× is an R-valued point of X (ΓF ) then we
define a new left ∆-module by

N(ϑ) = N ⊗ ϑ−1|O×
p
(det g ·̟−v(det g)

p ).

We note that X (ΓF ) also acts on W by central twists: if λ = (λ1, λ2) is a character on (O×
p )

⊕2

then we define we define ϑ · λ := (ϑ|O×
p
λ1, ϑ|O×

p
λ2).

For the next three results, let Ω → W be a p-adic weight. The previous paragraph allows us to
define a new p-adic weight ϑ−1 · Ω whenever ϑ ∈X (ΓF )(Ω).

Lemma 5.5.2. If ϑ ∈X (ΓF )(Ω), then the identity map is an isomorphism DΩ(ϑ) ≃ Dϑ−1·Ω.

Proof. This follows immediately from the definitions. �

Now consider a compact open subgroup K of GL2(AF,f ) such that Kp ⊂ ∆. If N is a left ∆-module

then we define a local system on YK as in Section 2.2, with GL+
2 (F ) acting trivially and k ∈ Kp acting

on the right as k−1 acts on the left. We view O(Ω) as a trivial left ∆-module.

Lemma 5.5.3. If ϑ ∈ X (ΓF )(Ω), then ϑdet : GL2(AF ) → O(Ω)× given by g 7→ ϑ(det g) defines an
element of H0(YK ,O(Ω)(ϑ)).

Proof. Since ϑ is trivial on (F×
∞)◦, ϑdet is trivial on GL+

2 (F∞). So, ϑdet is a locally constant on
GL2(AF ) and invariant under multiplication by K◦

∞. Further, ϑdet trivial on GL2(F ) since ϑ is trivial
on F×. Finally, if k ∈ K then ϑ(det k) = ϑ(det kp) because ϑ vanishes on the units away from p. So
finally, if g ∈ GL2(AF ) and k ∈ K, then

ϑdet(gk) = ϑ(det kp)ϑdet(g) = ϑdet(g)|k.
This concludes the proof. �

Following Lemma 5.5.3, the following definition is well-posed.

Definition 5.5.4. If ϑ ∈ X (ΓF )(Ω) and N is a left O(Ω)[∆]-module then we define the twisting map

twϑ : H∗
c (YK , N)→ H∗

c (YK , N(ϑ))

to be cup product with ϑdet.
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Twisting defined this was is directly related to twisting the action of Hecke operators [KδK] acting
on H∗

c (YK , N), as the next proposition shows. Its relation to twisting automorphic forms is explained
afterward.

Proposition 5.5.5. Assume that
(

O×
p

1

)
⊂ Kp. Then, for each finite place v of F we have

[K (̟v 1 )K] ◦ twϑ = ϑ(̟v) twϑ ◦[K (̟v 1 )K].

Proof. First, we claim that we can write K (̟v 1 )K =
⋃
δiK with δi ∈ GL2(Fv) such that det δi = ̟v

if v | p and ϑ(det δi) = ϑ(̟v) in general. This is true for any δi if v ∤ p since ϑ is trivial on det(Kp).
But if v | p and δi is any choice then det(δi) = ̟vu

−1
i for some ui ∈ O×

v . By the assumption on K,
we can replace δi by δi (

ui
1 ) ∈ δiK.

Now to prove the proposition we fix a choice of δi as above. By Proposition 2.2.1 it suffices to
individually calculate twϑ([KδK]φ) and [KδK] twϑ(φ) on the level of adelic cochains, from Section
2.2. For clarity, let us write δ · n for the action of ∆ on N and δ ⋆ n for the action of ∆ on N(ϑ).

Let φ ∈ C•
ad(K,N). Each adelic chain (an element of C•(DA) as in Section 2.2) is a finite linear

combination of the simple tensors σ ⊗ [gf ] where σ ∈ C•(D∞) and gf ∈ GL2(AF,f ). For such simple
tensors we have:

twϑ([KδK]φ)(σ ⊗ [gf ]) = ϑ(det gf)([KδK]φ)(σ ⊗ [gf ])

= ϑ(det gf)
∑

i

δi · φ(σ ⊗ [gfδi]).

On the other hand, since ϑ(det δi) = ϑ(̟v), and det δi,p ·̟−v(det δi,p)
p = 1 we get

[KδK] twϑ(φ)(σ ⊗ [gf ]) =
∑

i

δi ⋆ (twϑ φ)(σ ⊗ [gfδi])

=
∑

i

ϑ(det gf det δi)ϑ(det δi,p ·̟−v(det δi,p)
p )−1δi · φ(σ ⊗ [gfδi])

= ϑ(̟v)ϑ(det gf )
∑

i

δi · φ(σ ⊗ [gfδi]).

Thus, the proposition is proven. �

So, under the mild hypothesis of Proposition 5.5.5 (which is satisfied in practice), we can twist
distribution-valued Hecke eigenclasses by p-adic characters of ΓF and obtain new Hecke eigenclasses
of a possibly different weight. But the twisting maps twϑ do not preserve the cohomology of the
finite-dimensional spaces Lλ, so we also need a second kind of twisting analogous to Section 4.3.

As before, write θ : A×
F → C× for a finite order Hecke character but we assume now that it is

unramified away from p. Write f for its conductor. Then θι := ι ◦ θ defines a finite order character

θι : A×
F → Q

×

p which descends to a character of ΓF . Suppose that L is a subfield of Qp containing
the Galois closure of F and the values of θι and also let n be an integral ideal of OF . In analogy with
Section 4.3 we define a linear map

(5.5.2) twcl
θι : H

∗
c (Y1(n),Lλ(L))→ H∗

c (Y1(nf
2),Lλ(L))

by

twcl
θι = θιdet ∪

∑

t∈Υ×
f

θι(t)v∗t0,p.
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Here the notation is just as in Section 4.3. Note, however, that because the local systems Lλ(L) are
defined with respect to a right action of GL2(Fp), we no longer have an isomorphism between v∗tLλ(L)
and Lλ(L). In fact, the map written v∗t,p above is the map on cohomology fitting into the diagram

(5.5.3) H∗
c (Y1(n),Lλ(L))

v∗t,p
//

pr∗

��

H∗
c (Y11(nf

2),Lλ(L))

H∗
c (YK11(nf2)t ,Lλ(L))

r∗ut

// H∗
c (Y11(nf

2),Lλ(L)(ut)),

≃

OO

where the right vertical arrow is induced by the isomorphism P 7→ ut ·P of local systems Lλ(L)(ut)→
Lλ(L) in the opposite direction of the diagonal arrow in (2.4.4).

The image of twcl
θι is contained in H∗

c (Y1(nf)
2,Lλ(L)) just as in the proof of Lemma 4.3.2. And, if

E is a subfield of C containing the Galois closure of F and the values of θ and L = Qp(ι(E)), then
(2.4.4) implies that the diagram

(5.5.4) Hd
c (Y1(n),Lλ(L))

twcl
θι // Hd

c (Y1(nf
2),Lλ(L))

Hd
c (Y1(n),Lλ(E))

twθ
//

ι

OO

Hd
c (Y1(nf

2),Lλ(E)).

ι

OO

is commutative.
We also record another adelic cochain computation, which will be used in the proof of Lemma 7.6.3.

Proposition 5.5.6. If ψ ∈ H∗
c (Y1(n),Lλ(L)) is represented by ψ̃ ∈ C•

ad,c(K1(n),Lλ(L)), then

twcl
θι(ψ) ∈ H∗

c (Y1(nf
2),Lλ(L)) is represented by twcl

θι(ψ̃) ∈ C•
ad,c(K1(nf

2),Lλ(L)) whose value on a

singular chain σ = σ∞ ⊗ [gf ] is given by

twcl
θι(ψ̃)(σ) = θι(det gf )

∑

t∈Υ×
f

θι(t)
(
1 t0

1

)
· ψ̃(σ

(
1 t0

1

)
).

Proof. First, θιdet ∈ H0(Y11(nf
2), L) is given by g 7→ θι(det g) and it is clearly represented on the level

of adelic cochains by σ∞ ⊗ [gf ] 7→ θι(det gf ) (since θ
ι is trivial on (F×

∞)◦). Comparing our claim with
the definition of twθι , it is enough to show that v∗t,p(ψ) is represented by the adelic cochain

(5.5.5) v∗t,p(ψ̃)(σ) = ( 1 t1 ) · ψ̃(σ ( 1 t1 ))

for any t ∈ AF,f . According to the definition (5.5.3) above, v∗t,p is the composition of three maps. The
first map is the pullback of a projection. The second is the map induced by right multiplication by
ut. The third map is the map P 7→ ut · P on the level of local systems Lλ(L)(ut) 7→ Lλ(L). Thus the

computation (5.5.5) of v∗t,p(ψ̃) is immediate from the explanation following Proposition 2.2.1. �

Remark 5.5.7. The classical twisting (5.5.2) defined here compares directly with the twisting in
Definition 5.5.4. Suppose that ϑ = θι is a finite order p-adic Hecke character of ΓF . We can apply the
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above discussion to n ∩ p and then deduce is a commuting diagram

H∗
c (Y1(n ∩ p),Dλ)

twϑ //

Iλ

��

H∗
c (Y1(n ∩ p),Dλ(ϑ))

Iλ // H∗
c (Y1(n ∩ p),L ♯

λ(ϑ))

∑
θι(t)v∗t0

��

H∗
c (Y1(n ∩ p),L ♯

λ)
twcl
θι // H∗

c (Y1((n ∩ p)f2),L ♯
λ),

where the right vertical arrow makes implicit use of the identity map inducing an isomorphism Lλ(ϑ) ≃
Lλ of local systems on Y11((n ∩ p)f2). (The ♯-notation is defined in Definition 5.4.2.)

6. The eigenvariety

In this section we assume that n is an integral ideal that is co-prime to p. Our goal is to define a
certain eigenvariety of tame level n and then show that reasonable classical points are smooth on this
eigenvariety. Since this section is likely perceived as more technical than others in this article, let us
elaborate on our motivations before continuing.

Eigenvarieties are families, parametrized by weights, of systems of Hecke eigenvalues (‘eigensystems’)
that generalize p-adic systems of eigenvalues appearing in classical spaces of automorphic forms. For
our purposes, the relevant eigensystems appear in the Dλ-valued cohomology as λ varies over p-adic
weights and are required to have non-vanishing eigenvalues on Hecke operators at places dividing the
prime p.

The eigenvariety is necessary in this article, first of all, to make sense of the variation statement
in part e. of Theorem 1.1.2. It is also required for a less tautological reason. The p-adic L-functions
constructed in Section 8 arise from applying the period maps of Section 7 to distribution-valued
cohomology classes. If each classical eigensystem obviously gave rise to a unique distribution-valued
cohomology class, the story would end there. However, the supposition is unclear. In fact, by definition,
it is only the “non-critical” eigensystems (see Definition 6.3.4) that lift via the integration map. For
other eigensystems, which are called critical, the situation is more subtle. Belläıche’s work when
F = Q ([11]) suggests that identifying a canonical cohomology class is linked to the smoothness of an
eigenvariety.18 This link is made precise by commutative algebra in Section 8.1.

So, in this section we start by defining the eigenvariety we use and then establishing its basic fea-
tures, before moving on to justifying the smoothness statement. The essential source of all difficulty
is that, in general, distribution-valued cohomology is supported in many degrees, not just the middle
degree d = (F : Q). Related to this, the canonical eigenvariety is constructed from all cohomology
classes may be non-reduced and may contain irreducible components of varying dimensions. (See [46]
or [89] for some discussion on the very interesting problem of dimensions of components of eigenva-
rieties.) Both features are problematic for applying various “soft” p-adic analytic arguments from
the literature, which usually only work well for eigenvarieties of maximal dimension. The purpose of
Sections 6.1 through 6.4 is to define what we call the middle-degree eigenvariety E (n)mid, which is an
eigenvariety that parametrizes eigensystems supported only in middle degree. Conjecturally, E (n)mid

is the complement of the irreducible components of non-maximal dimension within the larger canoni-
cal eigenvariety, and in principle E (n)mid contains all points corresponding to classical cohomological
p-refined automorphic representations. The main technical requirements for the definition are the in-
troduction of an auxiliary eigenvariety constructed from Borel–Moore homology and related spectral
sequences from [46]. We prove E (n)mid is equidimensional of the maximal possible dimension and
reduced (see Proposition 6.4.7 and Theorem 6.4.9).

18In loc. cit., Belläıche clearly also credits Chenevier with the particular smoothness argument and its consequences.
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We then prove the key smoothness statement in Sections 6.5 and 6.6. The high-level strategy goes
back to Hida and Mazur and the earliest connections between p-adic modular forms and deformations
of Galois representations. Namely, we aim to control the rigid local rings on the eigenvariety by
defining and controlling a deformation problem on Galois representations instead. The deformation
condition imposed, which is called either being refined or weakly-refined depending on the reference,
was discovered in the setting of F = Q by Kisin ([57]) and sometimes is also referred to as the p-adic
interpolation of crystalline eigenvalues. In the case at hand, the interpolation of crystalline eigenvalues
is due to Liu ([63]) and Kedlaya, Pottharst, and Xiao ([56]). The relevant smoothness theorems for
F = Q (for cuspidal cohomological automorphic forms) were established by Belläıche ([11]). We
take his argument as a model for our own. A portion of the argument requires p-adic Hodge theory,
including the theory of (ϕ,Γ)-modules, in the background. We have tried to provide many references
and suggestions for the reader unfamiliar with these theories, though nearly all that we need is already
contained in the literature (albeit sometimes in an obscured form). Appendix A discusses technical
points on p-adic Galois representations and the main result there is required in order to include, in
our key smoothness statement, the possibility of automorphic representations that are special at some
p-adic places.

The non-critical versus critical dichotomy is important to be aware of, although it is ultimately
immaterial for the smoothness statement. If the reader would like a geometric way to understand the
distinction, Proposition 6.6.4 shows the weight map is smooth at non-critical points, whereas it is only
the eigenvariety itself that is smooth at critical points. For p-adic automorphic forms in more general
settings, the dichotomy is more striking and the geometry of the attendant eigenvarieties is more
interesting. The interested reader could begin by focusing their attention on Remark 6.6.6, leading to
the reference [15] or the work of Breuil, Hellmann, and Schraen (see [25, 26], for instance).

6.1. A weight space. Recall the notation from the start of Section 5.5. View O×
F,+ ⊂ T (Op) as a

closed subgroup via the diagonal embedding.

Definition 6.1.1. W (1) := X (T (Op)/O×
F,+).

The dimension of W (1) as a rigid analytic space is 1 + d + δF,p where δF,p is the Leopoldt defect,

defined here to be one less than the dimension of O×
p /O×

F as a CPA group. There is a natural closed

immersion W (1)→ W and every cohomological weight defines a point in W (1)(Qp).
19 There is also a

natural action of X (O×
p /O×

F,+) on W (1) by central twisting (compare with Section 5.5). We denote

this action by η · λ for η ∈X (O×
p /O×

F,+) and λ ∈ W (1).

Definition 6.1.2. A weight λ ∈ W (1)(Qp) is called twist cohomological if it is in the X (O×
p /O×

F,+)(Qp)-
orbit of the cohomological weights.

The ambiguity in being simultaneously twist cohomological and cohomological is easy to control.

Lemma 6.1.3. If λ = (κ,w) and λ′ = (κ′, w′) are two cohomological weights and η ∈ X (O×
p /O×

F,+)(Qp)

such that λ = η · λ′, then η is of the form z 7→ zn for some n ∈ Z, κ = κ′, and w = w′ + 2n.

19We could have also considered a more general p-adic weight space. Namely, we could also take W (n) defined to

be those continuous characters of T (Op) which vanish on the finite index subgroup Γ(n) ⊂ O×
F,+ of units u which are

congruent to 1 mod n. Then W (1) ⊂ W (n) is an open and closed embedding onto a union of connected components
containing all the cohomological weights. But the local systems Dλ at level np considered below are non-trivial exactly
for λ ∈ W (n).
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We clarify before the proof that z 7→ zn means the character on O×
p given by z = (zv) 7→∏

v|p

∏
σ∈Σv

σ(zv)
n.

Proof of Lemma 6.1.3. Write λ = (λ1, λ2) and similarly for λ′. By assumption, we have λi = ηλ′i for

i = 1, 2. In particular zκ = λ1λ
−1
2 = λ′1λ

′−1
2 = zκ

′

, so κ = κ′. Since κ determines the parity of w
(and the same for κ′ and w′) we conclude that w −w′ is an even integer, say w−w′ = 2n. We finally

deduce η = λ1λ
′−1
1 = z

w−w′

2 = zn, as claimed. �

Recall that ifX is a rigid analytic space and Z ⊂ X(Qp) is a subset then Z is said to be accumulating
if for each z ∈ Z and U a connected admissible open neighborhood of z, Z ∩ U is Zariski-dense in U .

Lemma 6.1.4. The twist cohomological weights in W (1) are Zariski-dense and accumulating.

Proof. Clear. �

6.2. Distribution-valued cohomology and eigenvarieties. We write I ⊂ GL2(Op) for the sub-
group of matrices that are upper triangular modulo ̟pOp. Since I ⊂ ∆, each point Ω→ W (1) defines
a local system DΩ on YK1(n)I and so we get associated O(Ω)-modules H∗

c (n,DΩ) := H∗
c (YK1(n)I ,DΩ)

and H∗
c (n,D

s
Ω) := H∗

c (YK1(n)I ,D
s
Ω) (for s ≥ s(Ω)). We define HBM

∗ (n,AΩ) and HBM
∗ (n,As

Ω) simi-
larly. Denote by T(n) ⊂ TQp(K1(n)I) the Qp-subalgebra generated just by the operators Tv, Sv for
v ∤ np and Uv for v | p. Because ∆ contains the elements (̟v 1 ) for v | p, the algebra T(n) acts by
O(Ω)-linear endomorphisms on H∗

c (n,DΩ), H
BM
∗ (n,AΩ), H

∗
c (n,D

s
Ω), and H

BM
∗ (n,As

Ω). Finally we set
Up :=

∏
v|p U

ev
v ∈ T(n).

Remark 6.2.1. Before moving forward, we acknowledge that we will reference many results from
[46] below that are, strictly speaking, written with ordinary (co)homology rather than (co)homology
with supports. The changes required in [46] are either explained there, implicit there, or they are
inconsequential and transparent. We will directly reference [46] without further warning.

For the rest of this subsection, Ω will denote an affinoid open subdomain in W (1) and s will implicitly
mean s ≥ s(Ω). Since Ds

Ω and As
Ω are Qp-vector spaces, the homology HBM

∗ (n,As
Ω) is computed by

a Borel–Serre complex CBM
• (n,As

Ω). The cohomology H∗
c (n,D

s
Ω) is also computed by a Borel–Serre

cochain complex C•
c (n,D

s
Ω) (similarly for AΩ and DΩ). These are complexes whose terms are finite

direct sums of copies of the coefficients, or possibly the invariants of such a complex by the action of
a finite group (see [46, Section 2.1]).

The operator Up lifts to a compact operator (which we abusively write using the same symbol) on
CBM

• (n,As
Ω). The Fredholm series fΩ(t) = det

(
1− tUp|CBM

• (n,As
Ω)
)
is an entire function in t over

O(Ω), by [46, Proposition 3.1.1] it is independent of s, and it behaves naturally under base change
Ω → Ω′. Write f(t) ∈ O(W (1)){{t}} for the unique function whose restriction to each Ω is fΩ.
Following [46, Section 4.1], we say that a pair (Ω, h), with h ≥ 0 a real number, is slope adapted if
the series fΩ admits a slope-≤ h decomposition fΩ = QΩ,hRΩ,h (where QΩ,h is a polynomial; see [6,
Section 4]). In that case, ZΩ,h := Sp(O(Ω)[t]/QΩ,hO(Ω)[t]) is naturally an affinoid open subdomain
of the spectral variety Z ⊂ W (1)×Gm for f . By [46, Proposition 4.1.4], the ZΩ,h form an admissible
covering of Z , as (Ω, h) runs over slope adapted pairs. We summarize the facts we will need from [46,
Section 3.1].

Proposition 6.2.2. Suppose that (Ω, h) is slope adapted.

(1) CBM
• (n,AΩ) and C

•
c (n,DΩ) admit slope-≤ h decompositions

CBM
• (n,AΩ) ≃ CBM

• (n,AΩ)≤h ⊕ CBM
• (n,AΩ)>h

C•
c (n,DΩ) ≃ C•

c (n,DΩ)≤h ⊕ C•
c (n,DΩ)>h.
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(2) C•
c (n,DΩ)≤h ≃ HomO(Ω)(C

BM
• (n,AΩ)≤h,O(Ω)).

(3) The homology HBM
∗ (n,AΩ) and cohomology H∗

c (n,DΩ) also admit slope-≤ h decompositions

HBM
∗ (n,AΩ) ≃ HBM

∗ (n,AΩ)≤h ⊕HBM
∗ (n,AΩ)>h

H∗
c (n,DΩ) ≃ H∗

c (n,DΩ)≤h ⊕H∗
c (n,DΩ)>h.

(4) HBM
∗ (n,AΩ)≤h = H∗(C

BM
• (n,AΩ)≤h) and H

∗
c (n,DΩ)≤h = H∗(C•

c (n,DΩ)≤h).
(5) If Ω′ ⊂ Ω is an affinoid subdomain, then the slope-≤ h parts in (1) and (3) naturally commute

with base change O(Ω)→ O(Ω′).

Proof. See the second through the fifth propositions of [46, Section 3.1]. �

The complexes CBM
• (n,AΩ)≤h and C•

c (n,DΩ)≤h are naturally complexes O(ZΩ,h)-modules where
t ∈ O(ZΩ,h) acts via U

−1
p .

Proposition 6.2.3. There exists complexes of coherent OZ -modules K BM
• and K •

c on Z uniquely
determined by the property that

K
BM
• (ZΩ,h) ≃ CBM

• (n,AΩ)≤h

K
•
c (ZΩ,h) ≃ C•

c (n,DΩ)≤h

for any slope adapted pair (Ω, h).

Proof. This is proven just like [46, Proposition 4.3.1] (the essential point is Proposition 6.2.2(5)). �

Definition 6.2.4. MBM
∗ (resp. M ∗

c ) is the homology (resp. cohomology) sheaf of the complex K BM
•

(resp. K •
c ).

Thus, MBM
∗ and M ∗

c are graded coherent OZ -modules and if (Ω, h) is a slope adapted pair, then
MBM

∗ (ZΩ,h) ≃ HBM
∗ (n,AΩ)≤h and M ∗

c (ZΩ,h) ≃ H∗
c (n,DΩ)≤h. We further have natural ring mor-

phisms

EndO(ZΩ,h) (H
∗
c (n,DΩ)≤h)

T(n)

ψ′
Ω,h ))❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

ψΩ,h

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

EndO(ZΩ,h)

(
HBM

∗ (n,AΩ)≤h
)
,

which glue to define morphisms of algebras ψ : T(n)→ EndOZ
(M ∗

c ) and ψ
′ : T(n)→ EndOZ

(MBM
∗ ).

(Compare with the text prior to [46, Definition 4.3.2]. Notice also that it is the same if we replace
EndO(ZΩ,h)(−) with EndO(Ω)(−), the former being a subring of the latter.)

Definition 6.2.5. The eigenvariety E (n) (resp. E ′(n)) is the Qp-rigid analytic space associated to the
eigenvariety datum (W (1),Z ,M ∗

c ,T(n), ψ) (resp. (W (1),Z ,MBM
∗ ,T(n), ψ′)) as in [46, Definition

4.3.2].

Remark 6.2.6. By calling one E (n) and the other E ′(n), we indicate our focus on the distribution-
valued cohomology. The function-valued homology is only a technical tool used later (see Section 6.4).
Thus, in what follows, we will only indicate homology versions of results when strictly necessary (the
reader should not infer a lack of truth from their lack of exposition).
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By definition (see [46, Definition 4.2.1 and Theorem 4.2.2]), the space E (n) is a Qp-rigid analytic
space that comes equipped with a pair of maps υ : E (n) → Z , which is finite, and λ : E (n) →
W (1), and a coherent (graded) sheaf M ∗,†

c of OE (n)-modules equipped with a ring morphism ψ :

T(n) → EndOE(n)
(M ∗,†

c ) such that M ∗
c ≃ υ∗M

∗,†
c , with the isomorphism being compatible with the

two possible morphisms we have called ψ.20 The morphism υ and λ factorize

(6.2.1) E (n)
υ //

λ
##❋

❋
❋
❋
❋
❋
❋
❋

Z

pr

��

W (1)

where pr : Z ⊂ W (1)×Gm → W (1) is the projection. If x ∈ E (n) we prefer to write λx ∈ W (1) for its
weight, rather than λ(x). By [46, Theorem 4.3.3], if λ ∈ W (1) is fixed, then the points x ∈ E (n)(Qp)

with λx = λ are in bijection with the ring morphisms ψx : Tλ(n)→ Qp where

Tλ(n) := lim←−
h→∞

im (T(n)→ Endkλ(H
∗
c (n,Dλ)≤h)) .

Given x ∈ E (n)(Qp), we write mx ⊂ T(n) for the maximal ideal

mx := ker
(
T(n)→ Tλ(n)

ψx−→ Qp

)
.

We also write kx for the residue field of x.
The rigid analytic spaces Z and W (1) are both equidimensional of the same dimension. Since

the map υ in (6.2.1) is finite, every irreducible component of E (n) has dimension at most dimZ =
dimW (1) = 1 + d + δF,p. The space E (n) is generally not equidimensional beyond the case F = Q.
For instance, if d > 1 there is always an Eisenstein component of E (n) of dimension strictly smaller
than 1 + d+ δF,p.

Proposition 6.2.7. If X ⊂ E (n) is an irreducible component of (maximal) dimension 1 + d + δF,p,
then λ(X) ⊂ W (1) is Zariski-open.

Proof. The map υ is finite and X is closed in E (n), so υ(X) ⊂ Z is closed. Moreover, it is evidently
irreducible of dimension dimZ . Thus υ(X) is an irreducible component of Z ([36, Corollary 2.2.7]).
Since the irreducible components of the Fredholm variety Z are all defined by Fredholm hypersurfaces
([46, Proposition 4.1.2]), we deduce λ(X) = pr(υ(X)) is Zariski-open in W (1) from [46, Proposition
4.1.3]. �

Having described E (n) by its defining characteristics, we will also need to briefly give an atlas. The
eigenvariety E (n) is admissibly covered by affinoid subdomains EΩ,h := Sp(TΩ,h) where TΩ,h is the
O(Ω)-algebra generated by the image of ψΩ,h inside EndO(Ω)(H

∗
c (n,DΩ)≤h) and (Ω, h) runs over slope

adapted pairs. The sections M ∗,†
c (EΩ,h) are canonically identified with M ∗

c (ZΩ,h) = H∗
c (n,DΩ)≤h.

This follows from the construction of eigenvarieties as in the proof of [46, Theorem 4.2.2]. By a slight
abuse of notation, we will drop the † from the notation completely. Context should clarify whether an
instance of the notation M ∗

c is the sheaf on Z or E (n).
To set notations for an atlas on E ′(n), it is covered by affinoid subdomains E ′

Ω,h := Sp(T′
Ω,h) where

T′
Ω,h is the O(Ω)-algebra generated by the image of ψ′

Ω,h inside EndO(Ω)(H
BM
∗ (AΩ)≤h) and (Ω, h)

is a slope adapted pair. There is also a graded sheaf MBM
∗ on E ′(n) whose sections are given by

MBM
∗ (E ′

Ω,h) ≃ HBM
∗ (n,AΩ)≤h.

20The morphisms υ and λ are, respectively, labeled π and w in [46].
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Definition 6.2.8. Let x ∈ E (n)(Qp). A good neighborhood of x is a connected affinoid open U
containing x with the property that there exists a slope adapted pair (Ω, h) such that U is a connected
component of EΩ,h.

If U is a good neighborhood of x and (Ω, h) is as in the definition thereof, denote by eU ∈ TΩ,h

the idempotent so that O(U) = eUTΩ,h. Then, M ∗
c (U) ∼= eUH

∗
c (n,DΩ)≤h is a Hecke-stable direct

summand of H∗
c (n,DΩ)≤h. The affinoid U is completely determined by the triple (Ω, h, eU ), and we

say that U belongs to the slope adapted pair (Ω, h).

Proposition 6.2.9. For any x ∈ E (n), the collection of good neighborhoods of x are cofinal in the
collection of admissible opens containing x.

Proof. This proposition is a direct consequence of the construction of E (n). �

6.3. Some special points. In this subsection, we catalog certain important points on E (n). Tra-
ditionally this would mean discussing “classical points.” Here we discuss, as well, twists of classical
points by p-adic Hecke characters. Since we are not assuming the truth of Leopoldt’s conjecture, we
need to do this in order to unconditionally produce a dense set of points at which we have good a
priori control on the eigenvariety.

For the moment, suppose that ψ : T(n) → Qp is a Hecke eigensystem and ϑ ∈ X (ΓF )(Qp). Then
we define a new Hecke eigensystem

(6.3.1) twϑ(ψ)(T ) :=

{
ϑ(̟v)ψ(T ) if T = Tv and v ∤ np or T = Uv and v | p;
ϑ(̟v)

2ψ(T ) if T = Sv and v ∤ np.

Let mψ = ker(ψ) and similarly set mtwϑ(ψ) = ker(twϑ(ψ)). Recall that in Definition 5.5.4 we introduced
a linear map twϑ on the distribution-valued cohomology (see Lemma 5.5.2 also).

Lemma 6.3.1.

(1) vp(ψ(Uv)) = vp(twϑ(ψ)(Uv)) for each v | p.
(2) The linear map twϑ induces an isomorphism

twϑ : H∗
c (n,Dλ)mψ

≃−→ H∗
c (n,Dϑ−1·λ)mtwϑ(ψ)

.

Proof. The group ΓF is compact, so ϑ(̟v) is a unit for all places v. That proves part (1). For part
(2), twϑ defines an isomorphism on the level of vector spaces (before localizing) because its inverse is
twϑ−1 . The compatibility with the Hecke action follows from Proposition 5.5.5. �

Lemma 6.3.1 implies the following is well-posed.

Definition 6.3.2. If x ∈ E (n)(Qp) and ϑ ∈ X (ΓF )(Qp), then we define twϑ(x) ∈ E (n)(Qp) to be
the point corresponding to the Hecke eigensystem twϑ(ψx).

One can view twisting by characters of ΓF as giving a group action of X (ΓF )(Qp) on E (n)(Qp)
compatible with the weight twisting in that

(6.3.2) X (ΓF )(Qp)× E (n)(Qp)
(ϑ,x) 7→twϑ(x)

//

(
ϑ|

O
×
p
,λ

)

��

E (n)(Qp)

λ

��

X (O×
p /O×

F,+)(Qp)×W (1)(Qp)
(η,λ) 7→η−1·λ

// W (1)(Qp)
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is a commuting diagram. Of course, this is completely functorial and then gives actions on the level
of rigid analytic groups.

Lemma 6.3.3. For x ∈ E (n)(Qp), x is in the X (ΓF )(Qp)-orbit of a point of cohomological weight if
and only if λx is twist cohomological (Definition 6.1.2).

Proof. By (6.3.2), if x = twϑ(x
′) and x′ has cohomological weight, then x has twist cohomological

weight. On the other hand, suppose that λx = η · λ where λ is a cohomological weight and η ∈
X (O×

p /O×
F,+)(Qp). Then, choose any one of the finite number of extensions ϑ of η to a character

of ΓF and set x′ = twϑ(x). By (6.3.2) again, x′ has weight λ and thus x = twϑ−1(x′) is in the
X (ΓF )(Qp)-orbit of a point of cohomological weight. �

Now suppose that π is a cohomological cuspidal automorphic representation whose prime-to-p con-
ductor divides n. Then, each choice of p-refinement α for π defines a Hecke eigensystem ψ(π,α) : T(n)→
Qp, depending on ι. Write m(π,α) = ker(ψ(π,α)) ⊂ T(n). If L ⊂ Qp denotes the residue field of ψ(π,α)

then H∗
c (n,Lλ(L))m(π,α)

6= (0).
Recall the ♯-twisting in Definition 5.4.2, which allows for comparison between Lλ and Dλ. Given

(π, α) we define ψ♯(π,α) : T(n)→ Qp to be the ring morphism where ψ♯(π,α)(T ) = ψ(π,α)(T ) for T = Tv
or T = Sv with v ∤ np and

ψ♯(π,α)(Uv) = α♯v = ̟
κ−w

2
v αv = ̟

κ−w
2

v ψ(π,α)(Uv) (if v | p).

We write m
♯
(π,α) = ker(ψ♯(π,α)). Thus, H

∗
c (n,L

♯
λ(L))m♯

(π,α)
6= (0) and there is a canonical isomorphism

H∗
c (n,L

♯
λ(L))m♯

(π,α)

∼= H∗
c (n,Lλ(L))m(π,α)

of L-vector spaces that is equivariant for the prime-to-p Hecke operators, and twisted-equivariant (in
the evident sense) for the Hecke operators at p.

Definition 6.3.4. Let x ∈ E (n)(Qp) be a point of cohomological weight λ = (κ,w).

(1) x := x(π, α) is called classical if ψx = ψ♯(π,α) for some (unique) p-refined cuspidal automorphic

representation (π, α) of weight λ and prime-to-p conductor dividing n. In this case we write
x = x(π, α). We refer to the prime-to-p conductor of x as the prime-to-p conductor of π.

(2) x is called non-critical if x is classical and the integration map

Iλ : H∗
c (n,Dλ ⊗kλ kx)mx → H∗

c (n,L
♯
λ(kx))mx

is an isomorphism.

We stress that (π, α) being p-refined, for us, includes the condition that π is Iwahori-spherical at
places dividing p, i.e. either an unramified twist of a special representation or an unramified principal
series.

We will extend these definitions below, and then we will also give numerical criteria for point to be
non-critical. First, we check that being non-critical is stable (among classical points) under twisting.

Lemma 6.3.5. Suppose that x, x′ ∈ E (n)(Qp) are classical points and x = twϑ(x
′) for some ϑ ∈

X (ΓF )(Qp). Then, the following conclusions hold.

(1) ϑ = Nn
pϑ

′ for ϑ′ an unramified Artin character and n ∈ Z.
(2) x is non-critical if and only if x′ is non-critical.
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Proof. We first prove (1). By Lemma 6.3.3 and Lemma 6.1.3, there exists an n ∈ Z such that ϑ|O×
p
is

z 7→ zn. Thus ϑ′ := ϑN−n
p is trivial on O×

p . We deduce from (5.5.1) that it factors through a character
of the narrow class group, as promised.

For point (2) we use the notation of the previous paragraph, and we also write λx = λ and λx′ = λ′.
We can write ϑ′ = (θ′)ι where θ′ is a finite order, unramified Hecke character. So, it follows from
Remark 5.5.7 that the diagram

H∗
c (n,Dλ′)

twϑ

≃
//

I′λ
��

H∗
c (n,Dλ)

Iλ
��

H∗
c (n,L

♯
λ′)

twNnp θ
ι

≃ // H∗
c (n,L

♯
λ)

is commutative (see Remark 4.3.3 for including twists by the adelic norm). Localizing at Hecke
eigensystems, this proves the claim. �

Now consider a twist cohomological weight λ. Thus there exists a cohomological weight λ0 = (κ0, w0)
and λ = η ·λ0 for some η. If λ1 = (κ1, w1) is another cohomological weight that can twisted to λ, then
Lemma 6.1.3 implies that κ0 = κ1. Thus we can always write a twist cohomological weight λ = (κ, ∗)
to mean λ = η · (κ,w) for some w. This allows us to define numerical criteria at points x ∈ E (n)(Qp)
of twist cohomological, not just cohomological, weight.

Definition 6.3.6. Let x ∈ E (n)(Qp) be of twist cohomological weight λx = (κ, ∗). We say that:

(1) x is twist classical if there exists a classical point x′ ∈ E (n)(Qp) and ϑ ∈ X (ΓF )(Qp) such
that x = twϑ(x

′).
(2) x is twist non-critical if x = twϑ(x

′) with x′ a classical, non-critical point.
(3) x has non-critical slope if vp(ψx(Up)) < infσ(1 + κσ).
(4) x is extremely non-critical if vp(ψx(Up)) <

1
2 infσ(1 + κσ).

Note that Definition 6.3.6 applies in particular to points of cohomological weight. Further, Lemma
6.3.5 implies that whether or not x is twist non-critical is independent of the choice of classical point
in the definition thereof. Finally, whether or not a point has non-critical slope (resp. is extremely
non-critical) can be checked before or after twisting (by Lemma 6.3.1).

By definition a twist non-critical point is twist classical, but a priori the points (3) and (4) do not
assume classicality. Proposition 6.3.8 below fills in the only non-trivial implication in the chain:

extremely non-critical =⇒ non-critical slope =⇒ twist non-critical =⇒ twist classical.

To prove this, we need a lemma.

Lemma 6.3.7. If π is a cohomological cuspidal automorphic representation and α is a p-refinement,
then 0 ≤ vp(α♯v) for all v | p.

Proof. If L ⊂ Qp is sufficiently large, then Hd
c (n,L

♯
λ(L))[m

♯
π,α] 6= (0). But by Proposition 5.4.3, the

Uv-operator acting on Hd
c (n,L

♯
λ(L)) preserves the integral lattice Hd

c (n,L
♯
λ(OL)). Thus α♯v must be

integral. �

Proposition 6.3.8. Let x ∈ E (n)(Qp) be of twist cohomological weight λ.

(1) If x has non-critical slope, then x is twist non-critical.
(2) If x is extremely non-critical, then the action of Tλ(n) on H

d
c (n,Dλ)mx is semi-simple.
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Part (2) of this Proposition will play a key role in the proof that the eigenvariety E (n)mid constructed
in the next section is reduced, cf. Theorem 6.4.9.

Proof. In case (1) (resp. (2)) we can write x = twϑ(x
′) where x′ has cohomological weight and x′ has

non-critical slope (resp. is extremely non-critical). By Lemma 6.3.5 in case (1) and Lemma 6.3.1 in
case (2), it suffices to replace x by x′ and thus assume that x has cohomological weight. In that case,
point (1) follows from [46, Theorem 3.2.5].21

We now prove (2) in the case x has cohomological weight. First, by definition an extremely
non-critical point has non-critical slope and so is non-critical by point (1). Thus Hd

c (n,Dλ)mx ≃
Hd
c (n,L

♯
λ(L))mx . Now write x = x(π, α). It is known that the Hecke operators away from np are

semi-simple on the whole space Hd
c (n,L

♯
λ(L)). If we localize at mx then the same is true for the oper-

ators Uv when πv is Steinberg. Thus it remains to show that if πv is unramified, then the Uv operator
acts semi-simply. For that, it is sufficient to show that the two roots of X2 − av(π)X + ωπ(̟v)qv are
distinct. Here, ωπ(̟v) = ζqwv where ζ is a root of unity, and qv = pfv . In particular, it is enough to
show that

(6.3.3) vp(αv) <
fv(1 + w)

2
=

1

ev

∑

σ∈Σv

1 + w

2
.

But α♯v = ψx(Uv) = αv̟
κ−w

2
v satisfies vp(α

♯
v) ≥ 0 (Lemma 6.3.7) and, since ψx(Up) =

∏
v|p(α

♯
v)
ev and

x is extremely non-critical, we see that

vp(α
♯
v) <

1

ev
inf
σ∈Σv

1 + κσ
2

<
1

ev

∑

σ∈Σv

1 + κσ
2

.

The bound (6.3.3) follows immediately, completing the proof of (2). �

Remark 6.3.9. By Proposition 6.3.8, any point x that is extremely non-critical is of the form
x = twϑ(x

′) where x′ is classical. With an assumption slightly stronger than extremely non-critical,
slightly more can be said. Specifically, suppose that x has twist cohomological weight λx = (κ, ∗) and,
moreover,

(1) we have κσ ≥ 2 for all σ, and
(2) vp(ψx(Up)) <

1
3 infσ(1 + κσ).

Then, we claim that x = twϑ(x
′) where x′ is a classical point such that the associated automorphic

representation is an unramified principal series at each v | p. (The constants 2 and 3 in the conditions
(1) and (2) are not particularly important. See the proof of Proposition 6.5.8.)

Indeed, it suffices to show the claim holds when x = (π, α) is classical. Suppose instead that πv is
Steinberg while (1) and (2) both hold. Since πv is Steinberg, α2

v is a unit multiple of qwv . So,

vp((α
♯
v)
ev ) = ev

(
fvw

2
+

1

ev

∑

σ∈Σv

κσ − w
2

)
=
∑

σ∈Σv

κσ
2
.

But, since κσ ≥ 2 by (1) we have κσ
2 ≥

1+κσ
3 for any σ ∈ Σv and thus

vp((α
♯
v)
ev ) ≥

∑

σ∈Σv

1 + κσ
3

≥ 1

3
inf
σ
(1 + κσ) > vp(ψx(Up)),

21To make this calculation, one should take the Borel in [46] to be the upper-triangular Borel and the element t in

[46, Theorem 3.2.5] to be
(

1
̟
ep
p

)
. Then, the Ut-operator in that reference is the Up-operator in this paper (see Remark

5.3.3).



56 JOHN BERGDALL AND DAVID HANSEN

using (2). But this contradicts that each α♯v is p-adically integral (Lemma 6.3.7), which completes the
proof of the claim.

6.4. The middle-degree eigenvariety. We now return to the eigenvarieties E (n). Recall the open
affinoid charts EΩ,h = Sp(TΩ,h) and E ′

Ω,h = Sp(T′
Ω,h) defined towards the end of Section 6.2. If A is a

commutative ring we write Ared for its nilreduction, and if X is a rigid analytic space we write Xred

for its nilreduction.

Proposition 6.4.1.

(1) If (Ω, h) is a slope adapted pair, then we have a natural commuting diagram

T(n)⊗Qp O(Ω)
ψ′

Ω,h
// //

ψΩ,h

����

T′
Ω,h

��

TΩ,h
// // Tred

Ω,h

(2) The morphisms T′
Ω,h → Tred

Ω,h in part (1) glue to a canonical morphism τ : E (n)red → E ′(n).

We emphasize that the Hecke action on homology defined in [46] is perhaps slightly nonstandard,
but this normalization of the action is chosen exactly so the equivariance claim in the following proof
holds true.

Proof. By [46, Theorem 3.3.1] there is a first quadrant spectral sequence

(6.4.1) Ei,j2 = ExtiO(Ω)(H
BM
j (n,AΩ)≤h,O(Ω))⇒ Hi+j

c (n,DΩ)≤h

which is equivariant for the action of T(n) ⊗Qp O(Ω). Thus, if T ∈ ker(ψ′
Ω,h), then acts trivially on

every term in the E2-page for the spectral sequence (6.4.1). In particular, that means that T acts
nilpotently on the abutment H∗

c (n,DΩ)≤h, which is what we wanted to show in (1).
The second part of the proposition is immediate from the construction of the eigenvariety and the

local nature of the nilreduction. �

Now consider the graded sheaves MBM
∗ =

⊕
j MBM

j on E ′(n). Le τ be as in Proposition 6.4.1(2).

Since MBM
j is a coherent sheaf on E ′(n), its pullback τ∗MBM

j to E (n)red is also coherent. The natural

map i : E (n)red → E (n) is a closed immersion, so i∗τ
∗MBM

j is thus a coherent sheaf on E (n). In

particular, its support is a closed analytic subset. In general, we write supp(M ) for the support of a
sheaf M .

Definition 6.4.2.

E (n)mid := E (n)−






2d⋃

j=d+1

supp(M j
c )


 ∪



d−1⋃

j=0

supp(i∗τ
∗
M

BM
j )






We immediately give a separate characterization of E (n)mid. The entire reason for introducing the
homology-based eigenvariety was to give Definition 6.4.2 because it is not clear that condition (2) in
the next proposition gives a well-defined affinoid open subspace.

Proposition 6.4.3. If x ∈ E (n)(Qp), then the following conditions are equivalent.

(1) x ∈ E (n)mid(Qp).

(2) Hj
c (n,Dλx ⊗kλx kx)mx 6= (0) if and only if j = d.

Moreover, E (n)mid ∩ supp(M j
c ) is empty if 0 ≤ j ≤ d− 1 also.
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Proof. This follows from [46, Proposition 4.5.2] and elementary manipulations of supports. �

Using Proposition 6.4.3, we can affirm that E (n)mid is non-empty, and afterwards we will go deeper
into its properties.

Lemma 6.4.4. Every non-critical point on E (n) belongs to E (n)mid.

Proof. If x ∈ E (n)(Qp) is non-critical of cohomological weight λ, thenH∗
c (n,Dλ⊗kλkx)mx ≃ H∗

c (n,L
♯
λ(kx))mx .

Since cuspidal eigensystems in H∗
c (n,Lλ) appear only in middle degree (see [48]), we have x ∈

E (n)mid(Qp) by Proposition 6.4.3. �

We note that E (n)mid is (non-empty) Zariski-open in E (n). In particular, if x ∈ E (n)mid then any
sufficiently small good neighborhood U of x in E (n) is actually contained in E (n)mid (Proposition
6.2.9).

Proposition 6.4.5.

(1) The coherent sheaf M d
c |E (n)mid

is flat over W (1).
(2) E (n)mid is admissibly covered by good neighborhoods U belonging to slope adapated pairs (Ω, h)

such that O(U) acts faithfully on the finite projective O(Ω)-module M d
c (U) = eUH

d
c (n,DΩ)≤h.

Proof. For (1), we want to show that if x ∈ E (n)mid is of weight λ = λx, then for any slope adapated
pair (Ω, h) the module (Hd

c (n,DΩ)≤h)mx = M d
c (EΩ,h)mx is finite free over O(Ω)mλ . To do this, we

consider a second quadrant spectral sequence ([46, Theorem 3.3.1])

(6.4.2) Ei,j2 = Tor
O(Ω)mλ
−i (M j

c (EΩ,h)mx , kλ)⇒ (Hi+j
c (n,Dλ)≤h)mx .

If j 6= d then, since x ∈ E (n)mid, the E
i,j
2 -term in (6.4.2) vanishes for all i. Thus we deduce canonical

isomorphisms

(6.4.3) Tor
O(Ω)mλ
n (M d

c (EΩ,h)mx , kλ) ≃ (Hd−n
c (n,Dλ)≤h)mx

for all n ≥ 0. By Proposition 6.4.3 we further deduce that either side of (6.4.3) vanishes for n > 0. By
the local criterion for flatness ([65, Section 22]), M d

c (EΩ,h)mx is free over O(Ω)mλ . This proves (1).
Now we prove (2). First, it is immediate that E (n)mid is admissibly covered by good neighborhoods

U of E (n). By definition, O(U) = eUTΩ,h acts faithfully on M ∗
c (U) = eUH

∗
c (n,DΩ)≤h. But if

U ⊂ E (n)mid and j 6= d, then AnnO(U)(M
j
c (U)) = O(U) by Proposition 6.4.3. We thus deduce that

O(U) acts faithfully on M d
c (U). Since M d

c (U) is finite projective over O(Ω) by part (1), we have
completed the proof of (2). �

Remark 6.4.6. Equation (6.4.3) shows, for instance, that if x ∈ E (n)mid is of weight λ then the
natural map (Hd

c (n,DΩ)≤h)mx ⊗O(Ω) kλ → (Hd
c (n,Dλ)≤h)mx is an isomorphism.

Proposition 6.4.7.

(1) E (n)mid is stable under twisting by X (ΓF ).
(2) Every twist non-critical point on E (n) belongs to E (n)mid.
(3) If X ⊂ E (n)mid is an irreducible component then dimX = dimW (1) and X is contained in a

unique irreducible component of E (n).
(4) The extremely non-critical points are a Zariski-dense accumulation subset of E (n)mid.

Recall that if X is a rigid space, a subset Z ⊂ X is an accumulation subset if every z ∈ Z admits a
basis of affinoid neighborhoods U ⊂ X such that U ∩ Z is Zariski-dense in U .
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Proof. Part (1) follows immediately from Proposition 6.4.3 and Lemma 6.3.1. Part (2) then follows
from part (1) and Lemma 6.4.4.

From [46, Theorem 1.1.6] and Proposition 6.4.3 we deduce that if x is a point on E (n)mid then any
irreducible component of E (n) passing through x has dimension equal to dimW (1). Thus the claim
(3) follows from [36, Corollary 2.2.9].

Finally we prove (4). First, if X ⊂ E (n)mid is an irreducible component then λ(X) is Zariski-open
in W (1) (by part (3) and Proposition 6.2.7). By Lemma 6.1.4 we deduce that X contains a point x0 of
twist cohomological weight. This reduces the statement of (4) to proving that extremely non-critical
points are accumulating on a neighborhood near any point x0 of twist cohomological weight.

Consider a good neighborhood U ⊂ E (n)mid of x0. Say U belongs to a slope adapted pair (Ω, h).
First, U is the rigid analytic spectrum of O(U). Second, Proposition 6.4.5 implies O(U) acts faithfully
on the finite projective O(Ω)-module M d

c (U). So, by [33, Lemme 6.2.10], the irreducible components
of U map surjectively onto Ω, and by [33, Lemme 6.2.8] we deduce that the pre-image (λ|U )−1(Z) ⊂ U
of any Zariski-dense subset Z ⊂ Ω is still Zariski-dense in U . Since x0 has twist cohomological weight
we conclude that U contains a Zariski-dense accumulating set of points of twist cohomological weight.
On the other hand, we can easily shrink U so that x 7→ vp(ψx(Up)) is constant on U as well, and
thus see clearly that in fact we can take a Zariski-dense accumulating subset of extremely non-critical
points as claimed. �

We now pause for a lemma of commutative algebra.

Lemma 6.4.8. Suppose that A is a noetherian integral domain of characteristic zero and A → B is
a finite morphism with B torsion free over A. Then, the following conditions are equivalent.

(1) B is reduced.
(2) A→ B is generically étale.
(3) The support of Ω1

B/A in Spec(B) has positive codimension. (See the beginning of the proof.)

If furthermore M is a finite projective A-module and B is actually a commutative A-subalgebra of
EndA(M) then these conditions are all equivalent to:

(4) There exists a Zariski-dense subset X ⊂ Spec(A) such that B has reduced image inside
EndAp/pAp

(Mp/pMp) for all p ∈ X.

Here we say a finite map of Noetherian rings A → B is generically étale if it satisfies either of the
following two equivalent conditions:

a. For all minimal primes p ⊂ A, the ring B ⊗A Frac(A/p) is a finite étale Frac(A/p)-algebra.
b. There is an open dense subsecheme U ⊂ Spec(A) such that Spec(B)×Spec(A) U → U is finite étale.

These conditions are equivalent because the locus where Spec(B) → Spec(A) is not étale is closed
in Spec(B) (see [67, Proposition 3.8] for instance) and this locus has closed image in Spec(A) because
Spec(B)→ Spec(A) is proper (B being finite over A).

Proof of Lemma 6.4.8. If p ∈ Spec(A) write k(p) for its residue field. When p is the generic point, we
write K = k(p).

We note first that the hypotheses imply that B is equidimensional of the same dimension as A. This
gives meaning to condition (3). Now we will show that (1) and (2) are equivalent. Since B is torsion
free over A, B is reduced if and only if B ⊗A K is reduced. Thus it suffices to show that B ⊗A K is
reduced if and only if B ⊗AK is a finite étale K-algebra. Since K has characteristic zero, this follows
from Wedderburn’s theorem (see [23, Prop. 3, Chap. VIII] for instance).
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Our second claim is that (2) and (3) are equivalent. Since A is reduced, noetherian and A → B
is finite we have that A → B is generically flat ([45, Theorem 6.9.1]). So being generically étale and
generically unramified are equivalent, the latter being clearly equivalent to condition (3).

For the rest of the proof we will assume that B is as in the “furthermore”. It is elementary to check
that B is then a finite torsion free A-algebra, so that (1) through (3) are all equivalent. We will show
that (2) implies (4) and (4) implies (1).

Begin by assuming (2) and choose a dense open subscheme U ⊂ Spec(A) that Ap → B ⊗A Ap is
finite étale for each p ∈ U . Then the fiber B ⊗A k(p) is a finite étale k(p)-algebra; in particular it is
reduced. Since the natural map B → Endk(p)(M ⊗A k(p)) factors through B ⊗A k(p) we see that B
has reduced image as in (4) for all p ∈ U meaning we can take X = U to witness (4).

Finally assume that (4) holds and consider such a set X . Since M is projective over A and X is
Zariski-dense in Spec(A), the natural map

EndA(M)→
∏

p∈X

Endk(p)(M ⊗A k(p))

is injective. Thus we deduce that

(6.4.4) B →
∏

p∈X

Endk(p)(M ⊗A k(p))

is also injective. On the other hand, B has reduced image in each coordinate of (6.4.4) by our
assumption (4), so it follows that B is reduced. �

The previous lemma is applied to prove the following theorem.

Theorem 6.4.9. E (n)mid is reduced.

Proof. We proved in Proposition 6.4.5 that E (n)mid is admissibly covered by good affinoid opens U
belonging to slope adapated pairs (Ω, h) such that O(U) is an O(Ω)-subalgebra of the endomorphism
EndO(Ω)(M

d
c (U)), and M d

c (U) is finite projective over O(Ω). So, Lemma 6.4.8 provides criteria to
check that each O(U) is reduced, which is what we will do. If U itself contains an extremely non-critical
point, then condition (4) of Lemma 6.4.8 holds by Proposition 6.3.8. So, O(U) is reduced when U
contains an extremely non-critical point.

In general, let Z be the support of Ω1
E (n)mid/W (1). Point (3) of Lemma 6.4.8 and the prior paragraph

implies that Z meets any U containing an extremely non-critical in a closed subspace of positive
codimension. By Proposition 6.4.7, such U are Zariski-dense and accumulating on each irreducible
component of E (n)mid. Thus Z does not contain any irreducible component of E (n)mid.

But now it follows that Z itself has positive codimension in E (n)mid (see the argument in [36,
Corollary 2.2.7] for instance) and a fortiori meets any good neighborhood U (all of which are equidi-
mensional), regardless of whether U contains an extremely non-critical point, in a closed subspace of
positive codimension. Thus, the equivalence between conditions (1) and (3) in Lemma 6.4.8 prove that
O(U) is reduced in general. �

6.5. Interlude on Galois representations. If K is a field andK is a fixed algebraic closure we write
GK for the Galois group of K over K. Recall that if K/Qℓ is finite extension, and if ℓ 6= p, then any
continuous representation ρ : GK → GL2(Qp) has a corresponding Weil–Deligne representation WD(ρ)
([86]). When ℓ = p we use the language (and standard notations likeDdR, Dcrys, etc.) developed within
the p-adic Hodge theory of Galois representations by Fontaine ([41]). In particular, if ℓ = p and ρ
is potentially semistable then it too has an associated Weil–Deligne representation WD(ρ). For each
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embedding σ : K → Qp, we also write HTσ(ρ) for σ-th Hodge–Tate weight which is defined to be the

jumps in the Hodge filtration on the Qp-vector space DdR(ρ)⊗K,σ Qp.

Recall that we defined a normalized local Langlands correspondence rι overQp (Section 1.10). If ρ is
a representation of GF then and v is a place of F then we write ρv for its restriction to a decomposition
group at v. The previous paragraph then applies to the various ρv.

Let GF,np denote the Galois group of the maximal extension of F unramified away from all infinite
places and all places dividing np.

Theorem 6.5.1. Let π be a cohomological cuspidal automorphic representation of GL2/F of conductor
n. Then there exists a unique continuous and irreducible representation

ρπ : GF → GL2(Qp)

such that ρπ,v is potentially semi-stable at all v | p and WD(ρπ,v) = rι(πv) for all v. In particular,
ρπ,v factors over the surjection GF → GF,np.

Furthermore, if π has weight λ = (κ,w) and v | p then the following conclusions hold:

(1) If σ ∈ Σv, then HTσ(ρπ,v) = {w−κσ
2 , w+κσ

2 + 1}.
(2) If πv is an unramified special representation then ρπ,v is semistable non-crystalline.
(3) If πv is an unramified principal series representation then ρπ,v is crystalline.

(The second two are deduced from the equation WD(ρπ,v) = rι(πv), already.)

Proof. The construction of ρπ and proof that it satisfies local-global compatibility away from p can
be deduced from independent work of Carayol ([30]), Wiles ([92]), Blasius and Rogawski ([19]), and
Taylor ([87]). The local-global compatibility at the p-adic places is due to Saito ([74, 75]), Blasius and
Rogawski as before, and Skinner ([83]). �

Remark 6.5.2. If πv is an unramified principal series, then the characteristic polynomial of ϕfv acting
onDcrys(ρπ,v) is equal to the characteristic polynomial of rι(πv)(Frobv) or, what is the same, the image
of the v-th Hecke polynomial pv(X) = X2 − av(π)X + ωπ(̟v)qv under ι. In particular, in the same
case, if α is a p-refinement of π, then ι(αv) is an eigenvalue of ϕfv acting on Dcrys(ρπ,v). Note that if
βv is the second roots of pv(X) then the Ramanujan–Petersson conjecture for Hilbert modular forms
(see [18] and the references there) implies that αv and βv are Weil numbers of the same weight.

We will now globalize the construction of Galois representations in Theorem 6.5.1 over E (n)mid.
Write ψ : T(n)→ O(E (n)mid) to denote the universal Hecke eigensystem on E (n)mid.

Proposition 6.5.3. There exists a unique two-dimensional pseudorepresentation

T : GF,np → O(E (n)mid)

such that if v ∤ np then T (Frobv) = ψ(Tv).

Proof. First, Theorem 6.4.9 implies that E (n)mid is reduced. Second, Theorem 6.5.1 and Proposition
6.4.7 implies that we have a Zariski-dense subset Z ⊂ E (n)mid(Qp) such that if z ∈ Z then there is a

Galois representations ρz : GF,np → GL2(Qp) with tr(ρz(Frobv)) = ψz(Tv) for all v ∤ np. Specifically,
we take Z to be all those points which are twist classical and for z ∈ Z of the form z = twϑ(x), with
x = x(π, α) classical, we take ρz = ρπ ⊗ ϑ with ρπ as in Theorem 6.5.1. This tautologically gives
the Hecke eigensystem ψz′ away from np by (6.3.1). The Zariski-density of these points follows from
Propositions 6.3.8 and 6.4.7. Thus this proposition follows from a result of Chenevier ([33, Proposition
7.1.1]) once we check a boundedness condition. Specifically, the eigenvariety E (n)mid is reduced and
nested (in the sense of [12, Section 7.2]), so by [12, Lemma 7.2.11] the power bounded functions
on E (n)mid form a compact subring of O(E (n)mid). The Lemma 6.5.4(2) below implies the Hecke
eigenvalues away from np lie in this compact subring, and so Chenevier’s result applies for us. �
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To fill the gap in the previous proposition we need a small bit of notation. Define Tnr
Zp

(n) as the

Zp-span of the Hecke operators (Tv)v∤np inside T(n). Let EΩ,h be an affinoid neighborhood on E (n)
with (Ω, h) slope adapted. Let R = O(Ω) and suppose that R0 ⊂ R is a ring of definition, so we get
an R0-lattice D

s,◦
Ω ⊂ Ds

Ω as in Section 5.2. We then define an R0-module Hd
c (n,D

s,◦
Ω )≤h by

Hd
c (n,D

s,◦
Ω )≤h := im

(
Hd
c (n,D

s,◦
Ω )→ Hd

c (n,D
s
Ω)։ Hd

c (n,D
s
Ω)≤h

)
.

Thus Hd
c (n,D

s,◦
Ω )≤h is an R0-submodule of the finite Banach R-module Hd

c (n,D
s
Ω)≤h.

Lemma 6.5.4. Assume the notations of the previous paragraph.

(1) Hd
c (n,D

s,◦
Ω )≤h is bounded and stable under the natural action of Tnr

Zp
(n).

(2) ψ(Tnr
Zp

(n)) ⊂ O(E (n)) consists of power bounded elements.

Proof. First, we will show that (2) follows from (1). Since, ψ is an algebra morphism, it is enough to
check that ψ(Tnr

Zp
(n)) is bounded. Part (1) of this lemma implies that the induced endomorphisms

on Hd
c (n,D

s
Ω)≤h are bounded and that is enough because the topology on O(E (n)) is the weakest

topology making all of the natural maps O(E (n))→ O(EΩ,h) = TΩ,h continuous.
Now we prove (1). Write K = K1(n)I. If K

′ ⊂ K is an open and normal subgroup then we consider
the diagram

Hd
c (YK ,D

s,◦
Ω )

��

// Hd
c (YK ,D

s
Ω)

// // Hd
c (YK ,D

s
Ω)≤h

Hd
c (YK′ ,Ds

Ω)
K/K′

//
� _

��

Hd
c (YK′ ,Ds

Ω)
K/K′

≤h� _

��

Hd
c (YK′ ,Ds,◦

Ω ) // Hd
c (YK′ ,Ds

Ω)
// // Hd

c (YK′ ,Ds
Ω)≤h.

The two equalities are because Ds
Ω is a Q-vector space and K/K ′ is a finite group. The right-hand

column consists of finite R-modules and thus the inclusion is continuous for the unique Banach R-
module topologies. So, to check that the image of the top horizontal row is bounded, it is enough to
check that the image of the bottom horizontal row is bounded. Replacing n by a smaller ideal we can
assume YK is a neat level (Proposition 2.3.3). In that case, the cohomology Hd

c (YK ,M) is computed
by Borel–Serre complexes C•

c (YK ,M) for M = Ds,◦
Ω or M = Ds

Ω (see the start of Section 6.2 or [46,

p.15-16]). In that case, the image of Hd
c (YK ,D

s,◦
Ω )→ Hd

c (YK ,D
s
Ω)≤h is obviously bounded as it is the

image, in cohomology, of the bounded subcomplex C∗
c (K,D

s,◦
Ω ) ⊂ C∗

c (K,D
s
Ω) under the quotient map

C∗
c (K,D

s
Ω)→ C∗

c (K,D
s
Ω)≤h. �

The lemma completes the proof of Proposition 6.5.3. So now, for x ∈ E (n)mid(Qp), we write Tx for
the specialization of the pseudorepresentation in Proposition 6.5.3 to the residue field kx. A theorem
of Taylor ([88, Theorem 1(2)]) implies that for each x there exists a unique continuous and semi-simple
representation ρx : GF → GL2(Qp) so that tr(ρx) = Tx. Note that if x is a classical point then in fact
ρx may be defined over kx by the unicity, and the construction of the classical ρx (as in the proofs of
Theorem 6.5.1).

We now turn towards the important properties of ρx at the p-adic places. If λ = (λ1, λ2) ∈ W is
any p-adic weight then we can restrict to each λi to λi,v along O×

v →֒ O×
p . We then define characters
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ηi,v on O×
v by

η1,v(λ) := λ−1
2,v(6.5.1)

η2,v(λ) := (λ1,v
∏

σ∈Σv

σ)−1.

Writing η(λ)v = η1,v(λ)η2,v(λ), which is a character on O×
v , for each λ we thus have a η(λ) ∈X (O×

p )
given by the collection (η(λ)v)v|p. All together, λ 7→ η(λ) defines a morphism of rigid analytic spaces

η : W →X (O×
p ),

which induces a morphism on sub-rigid analytic spaces

(6.5.2) η : W (1)→X (O×
p /O×

F,+).

The next lemma will only be used later (see the proof of Theorem 6.6.3). If x ∈ E (n)mid(Qp) then
det(ρx), which is a character on GF , can be restricted to a character det(ρx)|O×

p
using the local Artin

map at the p-adic places.

Lemma 6.5.5. If x ∈ E (n)mid(Qp), then det(ρx)|O×
p
= η(λx). In particular, the map

E (n)mid
detp−→ X (O×

p )

x 7−→ det(ρx)|O×
p

factors through X (O×
p /O×

F,+).

Proof. The lemma is true at classical x by Theorem 6.5.1, twist classical x by the definition of twisting,
and all x by interpolation. �

Lemma 6.5.6. Suppose that x ∈ E (n)mid(Qp) is a classical point. Then, there exists a good affinoid
neighborhood x ∈ U ⊂ E (n)mid and a continuous linear representation ρU : GF,np → GL2(O(U)) such
that ρU ⊗O(U) ku = ρu for each u ∈ U .

Proof. Write x = x(π, α). Since π is cuspidal, the Galois representation ρx = ρπ is absolutely irre-
ducible. Write Ox for the rigid local ring of x on E (n)mid. Then Ox is a Henselian local ring ([17,
Theorem 2.1.5]), so by [73, Corollarie 5.2] there exists a continuous lift ρOx of ρx to Ox such that
tr(ρOx) is equal to the specialization of the pseudorepresentation T as in Theorem 6.5.3 to the ring Ox.
By [12, Lemma 4.3.7] we can extend ρOx to a continuous representation ρU over some affinoid neigh-
borhood of U in a manner compatible with the pseudorepresentation T . Being absolutely irreducible
is a Zariski-open condition on U ([33, Section 7.2.1]) and so we may, if necessary, shrink U and assume
that ρu is absolutely irreducible at each u ∈ U . At that point the equality tr(ρu) = tr(ρU ⊗O(U) ku)
becomes an equality of true representations by the theorem of Brauer and Nesbitt. This proves the
lemma. �

Lemma 6.5.7. Suppose that x ∈ E (n)mid(Qp) is a classical point of prime-to-p conductor n. Then, if
U is a good neighborhood of x in E (n)mid, then U contains a Zariski-dense and accumulating subset of
points y that are twist classical of the form y = twϑ(x

′) where x′ is classical and also has prime-to-p
conductor n.

Proof. For n ( n′, write Ẽ (n′) for the eigenvariety constructed out of the finite slope subspaces
H∗(n′,Dλ)≤h except only with endomorphisms by T(n) (i.e. ignore the Hecke operators at primes

dividing n/n′). Then the construction we outlined gives a natural closed immersion Ẽ (n′) →֒ E (n).
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Let x be in the statement of the lemma, so x is a classical point of prime-to-p conductor. Then,
x is not in the image of any of the finitely many such embeddings by the same argument as [11,
Lemma 2.7] (which relies on the family of Galois representations we’ve just established). So, you can
shrink U and assume in fact that U misses any of these embeddings. Then, U contains a Zariski-dense
and accumulating subset of points y as above, where the claim on the conductors follows because the
quantity “prime-to-p conductor of x′” is actually independent of choosing x′, since any chosen ϑ is
unramified away from p. �

For any character η on O×
v , we write LT̟v (η) for the extension of η to a character of F×

v defined
by stipulating that ̟v 7→ 1. The character LT̟v (η) is unitary, so we use the same notation to denote
its continuous extension to a Galois character on GFv .

22 These normalizations are designed so that
λ = (κ,w) is a cohomological weight, then HTσ(LT̟v (η1,v(λ))) =

w−κσ
2 and HTσ(LT̟v (η2,v(λ))) =

w+κσ
2 + 1 for all σ ∈ Σv (compare with Theorem 6.5.1).

Proposition 6.5.8. Let x = x(π, α) ∈ E (n)mid(Qp) be a classical point with prime-to-p conductor n.
Choose U and ρU as in Lemma 6.5.6. Write Ox for the rigid local ring on E (n)mid at x and ρOx for
the specializiation of ρU along O(U)→ Ox.

(1) If w ∤ p and Iw is the choice of an inertia subgroup at w then ρOx |Iw ≃ ρx|Iw ⊗kx Ox.
(2) Assume further that if v | p and πv is an unramified principal series then the v-th Hecke

polynomial has distinct roots.23 Then, if v | p, then

D+
crys(ρU,v ⊗ LT̟v (η1,v(λU ))

−1)ϕ
fv=ψ(Uv)

is locally free of rank one over F nr
v ⊗Qp O(U) and commutes with base change on U .

In part (2), F nr
v ⊂ Fv means the maximal unramified extension of Qp inside Fv. If ρ is an R-linear

representation of GFv , then Dcrys(ρ) is an (F nr
v ⊗Qp R)-module.

Proof of Proposition 6.5.8. The argument for part (1) follows exactly as in the argument for “prop-
erty (iii)” in the proof of [11, Theorem 2.16], including when w is a ramified place for ρx, once [11,
Lemma 2.7] is replaced by Lemma 6.5.7. The details of that argument, which we provide here, require
referencing the text [12]. Let Kx be the total field of fractions of the (reduced, by Theorem 6.4.9) ring
Ox. Thus Kx =

∏
s(x) Ks(x) where s(x) runs over germs of irreducible components of E (n)mid passing

through x, and Ks(x) is the fraction field of the germ s(x). We write ρgens(x) = ρOx ⊗K
gen
s(x) for the

extension of scalars to K
gen
s(x) . We now fix the place w as in (1) and consider the three Weil–Deligne

representations (rx, Nx), (rOx , NOx), and (rgens(x), N
gen
s(x)) associated with ρx,w, ρOx,w, and ρ

gen
s(x),w. Since

x is classical, ρx is irreducible and defined over kx, so ρ
gen
s(x) is the unique continuous and irreducible

representation GF,np → GL2(Ks(x)) whose trace agrees with the pseudorepresentation T (compare
with the text prior to [12, Corollary 7.5.10]). Thus (rgens(x), N

gen
s(x)) is the projection onto Ks(x) of the

generic Weil–Deligne representation as in [12, Definition 7.8.16], which validates using the references
below. First, by [12, Lemma 7.8.17], each rgens(x)|Iw is isomorphic to the constant Iw-representation

rx|Iw ⊗kx K
gen
s(x) , which implies rOx |Iw is also constant. To prove (1) it thus suffices to identify Nx and

NOx . Using [12, Proposition 7.8.9(ii)], we can replace Ox by each Ks(x) and show that Ngen
s(x) and Nx

have the same Jordan normal forms. There are only two such forms, since each operator is nilpotent

22As a character of GFv , LT̟v (η) coincides with the composition η ◦ χ̟v , where χ̟v : GFv → O×
v is the character

obtained from the GFv -action on the Tate module of the Lubin-Tate formal Ov-module associated with the uniformizer

̟v. This explains the notation.
23Compare with condition 2(c) in Definition 6.6.1 below.
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on a two-dimensional vector space. By [12, Proposition 7.8.19(iii)], if Ngen
s(x) = 0, then Nx = 0 as well.

On the other hand, if Ngen
s(x) is non-trivial, then [12, Proposition 7.8.19(ii)] and Lemma 6.5.7 implies

that Nx′ is non-trivial on a Zariski dense set of a twist classical points x′, with prime-to-p conductor
n, that accumulate near at x. In particular, this forces w to be a place dividing n, so Nx 6= 0 in this
case. This completes the proof of (1).

Now we prove part (2). Fix v | p. We claim that the family rU := ρU,v ⊗ LT̟K (η1,v(λU ))
−1 of

two-dimensional Galois representations over the reduced rigid analytic space U is a weakly-refined
family in the sense of [63, Definition 1.5]. Namely, we choose as the definining data {h1, h2, F, Z},
where

• h1 = 0 and h2 = ∂
∂z

∣∣
z=1

(
η2,v(λU )η1,v(λU )

−1
)
,

• F = ψ(Uv), and
• Z ⊆ U is the Zariski-dense subset of the extremely non-critical points z that satisfy the slightly
stronger conditions in Remark 6.3.9. Namely, writing the weight of z as (κ, ∗), then κσ ≥ 1
for all σ ∈ ΣF , and vp(ψz(Up)) <

1
3 infσ(1 + κσ).

The subset of extremely non-critical points is known to be dense by part (4) of Proposition 6.4.7,
but the same proof shows that our chosen subset Z is also Zariski-dense. By assumption in (2), the
eigenvalues of ϕfv acting on D+

crys(rx) are distinct, and so part (2) of the proposition follows from [63,

Proposition 5.13], once we verify that the axioms in [63, Definition 1.5].24

We pause the proof now for an observation on twisting. Suppose that z ∈ E (n)mid(Qp) and ϑ ∈
X (ΓF )(Qp) and consider z′ = twϑ(z). Then ρz′ ≃ ρz ⊗ ϑ and λz′ |O×

v
= λz |O×

v
⊗ ϑ−1

v (see (6.3.2)).

Since η1,v = λ−1
2,v, by definition (6.5.1), we see that

(6.5.3) rz′ ≃ rz ⊗ LT̟v (ϑ
−1
v )ϑv.

The factor LT̟v (ϑ
−1
v )ϑv appearing here is the unramified (hence crystalline, with Hodge–Tate weights

all zero) character of O×
v sending ̟v to ϑv(̟v).

With this observation, we can verify the axioms of [63, Definition 1.5] (which we label (a) thru (f)
as in loc. cit.). For instance, axiom (b) asks that rz is crystalline for z ∈ Z. When z is classical,
Remark 6.3.9 implies that z is associated with an unramified principal series. Thus rz is crystalline
by Theorem 6.5.1. When z is only twist classical, the same conclusion follows from (6.5.3). Similarly,
by Theorem 6.5.1 and (6.5.3), the set of Hodge–Tate weights HTσ(rz) is equal to {h1(z), h2(z)} for
z ∈ Z and σ ∈ Σv. On the one hand, [12, Lemma 7.5.12] implies that HTσ(ru) = {h1(u), h2(u)} for all
u ∈ U , so axiom (a) is confirmed. On the other hand, if z ∈ Z is classical then Theorem 6.5.1 implies
h1(z) = 0 < h2(z), and inequality continues to hold on all of Z by (6.5.3). So, axiom (c) is confirmed.
The most crucial axiom is (d), which states that

D+
crys(rz)

ϕfv=ψz(Uv) 6= 0

for all z ∈ Z. By (6.5.3), and because ψtwϑ(z)(Uv) = ϑ(̟v)ψz(Uv), we may assume that z ∈ Z is
classical. As mentioned above, this implies that z is associated with an unramified principal series.
Thus, the fact that ψz(Uv) is a crystalline eigenvalue for rz follows from Remark 6.5.2. Axiom (e)
follows from Lemma 6.1.4, Proposition 6.2.7, and part (3) of Proposition 6.4.7 (which is the key point

24There are two minor alerts for the reader. First, the notation in [63] is for the functions hi to be written κi,
notation we did not use since it collides with our prior notations in this paper. Second, technically, the axioms cannot
literally be verified because [63] uses the convention that the Hodge–Tate weights are the negatives of the ones we use
here. However, the only change, given that h1 = 0 for us, is that axiom (c) in [63, Definition 1.5] should have the word
smallest in place of the word biggest.
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that components of E (n)mid have maximal dimension). Finally, axiom (f) is true by construction of
the hi. This completes the proof. �

6.6. Smoothness at p-distinguished decent classical points. We now generalize the definition
of non-critical.

Definition 6.6.1. A classical point x = x(π, α) ∈ E (n)(Qp) is decent if either:

(1) It is non-critical as in Definition 6.3.4, or
(2) The following three conditions hold.

(a) H∗
c (n,Dλ)mx is concentrated only in degree d,

(b) The Selmer group H1
f (GF , ad ρπ) vanishes, and

(c) For each v | p, αv is a simple root of X2 − av(π)X + ωπ(̟v)qv.

In condition 2(b) of Definition 6.6.1, ad ρπ is the adjoint representation ρπ ⊗ ρ∨π ≃ End(ρπ).

Lemma 6.6.2. If x ∈ E (n)(Qp) is decent, then x ∈ E (n)mid(Qp).

Proof. If x is non-critical, then this follows from Lemma 6.4.4. Otherwise, condition (2a) implies the
claim by Proposition 6.4.3. �

We will see later (Theorem 8.1.4) that the Hecke eigensystem corresponding to a decent point x
has multiplicity one in the distribution-valued cohomology. When x is a non-critical point, this is a
classical automorphic fact. But if x satisfies condition (2) of Definition 6.6.1, we deduce it from the
following geometric theorem on the eigenvariety. The proof occupies the rest of this subsection.

Theorem 6.6.3. Suppose that x ∈ E (n)mid(Qp) is decent, the prime-to-p conductor of x is n, and
condition 2(c) in Definition 6.6.1 is satisfied. Then, E (n)mid is smooth at x.

To be clear, the assumption on x in Theorem 6.6.3 is that either x satisfies condition (2) of Definition
6.6.1 or x is non-critical and further satisfies condition 2(c) of Definition 6.6.1. The proof in case x
satisfies (2) is at the end of the subsection. In case x is non-critical, the proof is in Proposition 6.6.4
below.

We now fix some notation that will remain in force for the rest of this section. We will write
x ∈ E (n)mid(Qp) and λ = λx for its weight. Write L = kx for the residue field at x. We write Ox for
the rigid local ring on E (n)mid at x and Oλ for the rigid local ring on W (1) at λ.

We first prove Theorem 6.6.3 in the non-critical case.

Proposition 6.6.4. If x ∈ E (n)mid(Qp) is as in Theorem 6.6.3 and non-critical, then λ : E (n)mid →
W (1) is étale at x.

Proof. This argument is essentially due to Chenevier ([34, Theorem 4.8]).25

Let U be a sufficiently small good neighborhood of x, belonging to a slope adapted pair (Ω, h), such
that x is the unique reduced point of U lying above λ ∈ Ω. Set M = M d

c (U). For each ǫ ∈ {±1}ΣF ,
let M ǫ be the ǫ-component, so M =

⊕
ǫM

ǫ. Since these are O(Ω)-direct summands of M they are
each finite projective over O(Ω) (see Proposition 6.4.5) and U is the rigid analytic spectrum of the
image of T(n)⊗Qp O(Ω)→ EndO(Ω)(M

ǫ) (for any ǫ). Further, if λ′ ∈ Ω is any weight then

(6.6.1) M ǫ/mλ′M ǫ =
⊕

y∈U
λy=λ

′

Hd
c (n,Dλ′)ǫmy′ .

25In the case of F = Q there is also an argument given by Belläıche ([11, Lemma 2.8]) that relies on a priori knowing
that the weight map is flat. In general, this is only observed at decent points and only after the arguments in this section.
See Section 8.1.
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Remember that we have assumed x is the unique point above λ. So, since x is assumed to be non-
critical, the prime-to-p conductor of π is n, and part (c) of Definition 6.6.1 holds, we deduce that (6.6.1)
is in fact 1-dimensional. If λ′ is any other weight near to λ over which all the points y′ are extremely
non-critical with prime-to-p conductor n (such weights are accumulating at λ) then Hd

c (n,Dλ′)ǫmy′ is

also 1-dimensional. Since the dimension of (6.6.1) is constant with respect to λ′ we deduce M ǫ is
projective of rank one over O(Ω). So, the composition O(Ω) → O(U) → EndO(Ω)(M

ǫ) becomes an
isomorphism after a finite field extension, meaning O(Ω)→ O(U) is étale. �

For the remainder of this subsection we fix a decent classical point x ∈ E (n)mid(Qp) of weight λ as
in Theorem 6.6.3. Because Proposition 6.6.4 deals with the non-critical case of Theorem 6.6.3, we will
further assume that x satisfies condition (2) of Definition 6.6.1. Write L = kx for the residue field at
x.

We now begin to use the language of deformation theory of Galois representations. Let Set be the
category of sets and ARL be the category of local Artinian L-algebras with residue field L. Recall
that a functor X : ARL → Set is called (pro-)representable if there exists a complete local noetherian
L-algebra R with residue field L such that X ∼= Hom(R,−). Recall also that a morphism X′ → X

of functors is called relatively representable if for any morphism Y → X, with Y representable, the
fibered product Y×X X′ is representable (see [66, Section 19]).

Write ρ = ρx for the global Galois representation and ρv for its restriction to a place v. Let
Xv : ARL → Set be the functor parameterizing deformations ρ̃v of ρv up to strict equivalence, i.e. for
A ∈ ARL, the set Xv(A) consists of lifts ρ̃v : GFv → GL2(A) of ρv along A → L and two lifts are
equivalent if they are conjugate by an invertible matrix congruent to the identity modulo mA. The
Zariski tangent space Xv(L[u]/u

2L[u]) to the functor Xv is canonically isomorphic to H1(GFv , ad ρv).
We will next describe relatively representable subfunctors of Xv, for each v, and use them to define a
global deformation functor.

First, suppose that v ∤ p and write Iv for the inertia group at v. Then, we define Xv,f as the subfunc-
tor of minimally ramified deformations of ρv, which means Xv,f(A) ⊆ Xv(A) are those deformations
such that ρ̃v ≃ ρv ⊗L A as Iv-representations. The relative representability of Xv,f ⊆ Xv follows from
Schlessinger’s criterion as in [66, Section 23] (see [12, Proposition 7.6.3] for a proof). The Zariski
tangent space Xv,f(L[u]/u

2L[u]) is canonically isomorphic to the local Bloch–Kato Selmer group

H1
f (GFv , ad ρv) = ker

(
H1(GFv , ad ρv)→ H1(Iv, ad ρv)

)
⊂ H1(GFv , ad ρv),

defined in [20, Section 3].
Now suppose that v | p. If σ ∈ Σv, part (1) of Theorem 6.5.1 implies that the Hodge–Tate weights

HTσ(ρv) are {w−κσ
2 , w+κσ

2 +1}, which in particular is a pair of distinct integers since κσ ≥ 0. Thus for
each ρ̃v, the Hodge–Tate–Sen weights of ρ̃v are also distinct. We can thus choose characters η̃i,v : O×

v →
A× (for i = 1, 2) such that the Hodge–Tate–Sen weights of ρ̃v are {HTσ(LT̟v (η̃1,v)),HTσ(LT̟v (η̃2,v))}
and

HTσ(LT̟v (η̃i,v)) ≡ HTσ(LT̟v (ηi,v(λ))) mod mA,

where mA is the maximal ideal of A (see [15, Section 2.3], for instance).
Recall that α♯v = ψx(Uv) is an eigenvalue for ϕfv acting onD+

crys(ρv⊗LT̟v (η1,v(λ))−1). The functor

of weakly-refined deformations XRef
v is defined by:

XRef
v (A) = {ρ̃v ∈ Xv(A) | D+

crys(ρ̃v ⊗ LT̟v (η̃1,v)
−1)ϕ

fv=Φ̃ is free of rank one for some lift Φ̃ of α♯v}.
Recall now that assumption 2(c) in Definition 6.6.1 implies α♯v is a simple eigenvalue of ϕf acting
on D+

crys(ρv ⊗ LT̟v (η1,v(λ))
−1). For this reason, the natural inclusion XRef

v ⊂ Xv is relatively repre-
sentable. This was first proven by Kisin ([57, Proposition 8.13]) when Fv = Qp and later generalized by
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Tan ([85, Section 5.2.2]). A third proof, using the language of (ϕ,Γ)-modules, is given in [15, Section
3.1].

Let tRef
v = XRef

v (L[u]/u2L[u]) be the Zariski tangent space to XRef
v . This is a subspace ofH1(GFv , ad ρv),

as is the local Bloch–Kato Selmer group

H1
f (GFv , ad ρv) = ker

(
H1(GFv , ad ρv)→ H1(GFv , ad ρv ⊗Qp Bcrys)

)

defined in [20]. If ρv is crystalline (i.e. πv is an unramified principal series; see Theorem 6.5.1) then
H1
f (GFv , ad ρv) parameterizes infinitesmial crystalline deformations.

The next proposition provides a crucial bound for the dimension of tRef
v . Note that everything

written thus far is stated in terms of Galois representations, but the proof of the next result genuinely
requires using (ϕ,Γ)-modules. When ρv is crystalline, the proposition is proven in [15] and when ρv
is semi-stable and non-crystalline, we provide a proof in Appendix A in order to (i) include a proof,
but (ii) limit mentioning (ϕ,Γ)-modules within this text. It is possible to avoid the language of (ϕ,Γ)-
modules when ρv = χ1⊕χ2 is a sum of characters. The reader interested in understanding this simpler
case prior to reading either [15] or Appendix A can examine the final two paragraphs of the proof of
[11, Proposition 2.16].

Proposition 6.6.5.

(1) H1
f (GFv , ad ρv) ⊂ tRef

v .

(2) dimL tRef
v /H1

f (GFv , ad ρv) ≤ 2[Fv : Qp].

Proof. If ρv is semi-stable but non-crystalline, see Lemma A.3.2 for part (1) and Corollary A.3.5 for
part (2). In the case ρv is crystalline, we just noted that H1

f (GFv , ad ρv) is the tangent space of

crystalline deformations, all of which are weakly-refined, and so (1) is clear. Part (2) follows from [15,
Corollary 3.19], except there are hypotheses in loc. cit. that need to be checked in the present context.

In Appendix A, we recall the definition of the Robba ring RFv ,L and give details on (ϕ,Γ)-modules,
triangulations, and their connection to Galois representations through the Drig functor in the two-
dimensional setting. The choice of p-refinement αv induces a choice of triangulation P• on Drig(ρv).
The functor of weakly-refined deformations of ρv as defined in the prior paragraphs is isomorphic, via
the Drig-functor, to the functor of weakly-refined deformations of Drig(ρv) with respect to P• that is
defined in [15, Section 3.2]. The hypotheses of [15, Corollary 3.19] are that P• is a regular and generic
triangulation whose critical type is a collection of distinct simple transposes. We now explain what
these terms means in terms of the refinement αv and, at the same time, establish that they hold.

• Regular. The triangulation P• is regular as in [15, Definition 3.4] if and only if αv is a simple
eigenvalue for ϕf acting on Dcrys(ρv). This holds by our assumption 2(c) of Definition 6.6.1.
• Generic. The triangulation P• is generic as in [15, Definition 3.4] if a certain second cohomology
group of a rank one (ϕ,Γ)-module vanishes. In our case, it is sufficient to check the eigenvalues
αv and βv of ϕfv acting on Dcrys(ρv) satisfy αvβ

−1
v 6= pfv . But this follows because αv and βv

are Weil numbers of the same weight (see Remark 6.5.2).

• Critical type. The critical type of P• is a collection of elements (πσ)σ ∈ SΣv
2 , where S2 is the

permutation group on two letters, that depends on α (see [15, Definition 1.1]). Regardless of
their definition, the πσ are products of distinct simple transpositions and so the hypothesis on
critical type in [15, Corollary 3.19] holds.

This completes the proof. �

Remark 6.6.6. The reality that the critical type in the prior proof is a collection of products of simple
transpositions is a tautology, yet a miracle, limited to two-dimensional Galois representations. In the
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n-dimensional case, a critical type is a permutation of n letters and thus not always products of distinct
simple transpositions. In particular, the bounds in [15, Corollary 3.19] only hold for some choices of
refinements and so the smoothness statement we are building towards can also only be established on
higher-dimensional eigenvarieties for some choices of refinement. Breuil, Hellmann, and Schraen, in
fact, established systematic singularities occur in higher dimensions [26, Theorem 5.4.2].

We also need a minor result on the variation of determinants over tRef
v . If χ : GFv → L× is a

character then its universal deformation functor Xχ is representable and its Zariski tangent space tχ
is H1(GFv , adχ)

∼= H1(GFv , L). Given v | p, the next lemma concerns the determinant morphism of
functors det : Xv → Xdetρv .

Lemma 6.6.7. If v | p then det : tRef
v → tdetρv is surjective.

Proof. Write d = det ρv : GFv → L× and suppose that d̃ : GFv → L[ε]× is an infinitesmial deformation.

Thus we can write d̃ = d · (1+ aε) where a : GFv → L is a continuous group morphism; the map d̃ 7→ a
is the isomorphism tdetρv

∼= H1(GFv , L).
We let χa = 1 + a

2 ε, which is now a character χa : GFv → L[ε]× deforming the trivial character on
GFv whose square equals the character 1+ aε. Let ρv,L[ε] = ρv ⊗L L[ε] be the constant deformation of

ρv to L[ε] and then set ρ̃ = ρv,L[ε]⊗χa ∈ tv. We have det(ρ̃) = d̃ and so to prove the lemma it suffices

to show that ρ̃ ∈ tRef
v .

For that, consider χa|O×
v

(via local class field theory). Since χa deforms the trivial character, the

characters η̃i,v above, for ρ̃, can be taken to be η̃i,v = χa|O×
v
· ηi,v(λ) and we have

ρ̃⊗ LT̟v (η̃i,v)
−1 = ρv,L[ε] ⊗ LT̟v (ηi,v(λ))

−1 ⊗
[
χa ⊗ LT̟v (χa|O×

v
)−1
]
.

The character χa ⊗ LT̟v (χa|O×
v
)−1 is trivial on O×

v , and in particular it is crystalline, and thus

(6.6.2) D+
crys(ρ̃⊗ LT̟v (η̃i,v)

−1) ∼= D+
crys(ρv,L[ε] ⊗ LT̟v (ηi,v(λ))

−1)

up to a twisting on the Frobenius operator ϕ whch is trivial modulo ε . Since the trivial deformation
ρv,L[ε] clearly lies in tRef

v , we deduce from (6.6.2) that D+
crys(ρ̃⊗LT̟v (η̃i,v)

−1) contains a free rank one

submodule on which ϕfv acts through an eigenvalue deforming α♯v and thus ρ̃ lies in tRef
v also. �

We now have the technical ingredients required to prove Theorem 6.6.3. Let Xρ denote the defor-
mation functor of the global Galois representation ρ. The functor Xρ is representable because ρ is
(absolutely) irreducible by Theorem 6.5.1. So, if we define XRef

ρ ⊆ Xρ to be the subfunctor of defor-
mations that are weakly-refined at v | p and minimally ramified at v ∤ p, then since each local functor
is relatively representable we deduce that XRef

ρ is representable as well. Write RRef
ρ for the universal

deformation ring representing XRef
ρ .

From now on, we use the notation H1
/f (∗, ∗) for the quotient H1(∗, ∗)/H1

f (∗, ∗). The tangent space

tRef
ρ to XRef

ρ sits in a an exact sequence

(6.6.3) 0→ tRef
ρ → H1(GF , ad ρ)→


∏

v|p

H1(GFv , ad ρv)/t
Ref
v


⊕


∏

v∤p

H1
/f (GFv , ad ρv)


 .

Let H1
f (GF , ad ρ) be the global adjoint Selmer group. Note that by part (a) of Proposition 6.6.5 we

have that H1
f (GF , ad ρ) ⊆ tRef

ρ and then by (6.6.3) we have a canonical short exact sequence

(6.6.4) 0→ H1
f (GF , ad ρ)→ tRef

ρ →
⊕

v|p

tRef
v /H1

f (GFv , ad ρv).
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We are now ready to prove Theorem 6.6.3.

Proof of Theorem 6.6.3 when x satisfies condition (2) in Definition 6.6.1. Let TxE (n)mid be the tan-
gent space to E (n)mid at x. Since E (n)mid is equidimensional of dimension 1 + d + δF,p (Proposition
6.4.7), we have a lower bound 1 + d + δF,p ≤ dimTxE (n)mid. To prove the theorem we need to show
the reverse inequality holds.

Lemma 6.5.6 defines a lift ρOx of ρ to Ox and Proposition 6.5.8 shows that ρOx satisfies the local

deformation conditions for XRef
ρ . So, by universality, we have a canonical map RRef

ρ → Ôx which is
surjective, by a standard argument (see [15, Proposition 4.3] for instance). Thus, there is an induced
inclusion TxE (n)mid ⊂ tRef

ρ on tangent spaces, sending a tangent vector to the attendant infinitesimal
deformation of ρ.

Here we have used part (c) of condition (2) in Definition 6.6.1 in order to use the deformation
functor XRef

ρ . Part (a) of condition (2) is implicit in the entire discussion as we have assumed that

x lies on E (n)mid. Finally, we use part (b) of condition (2), which states that H1
f (GF , ad ρ) = (0).

Combining the vanishing with (6.6.4) we have natural containments

TxE (n)mid ⊂ tRef
ρ ⊂

⊕

v|p

tRef
v /H1

f (GFv , ad ρv).

By part (2) of Proposition 6.6.5, the sum of the local spaces on the right of these containments has
dimension 2d. However, on tRef

ρ and its local avatars there is no restriction placed on a determinants
such as the restriction that exists over E (n)mid (compare Lemma 6.5.5. and Lemma 6.6.7). After
taking determinants into account, we see that TxE (n)mid has dimension at most 1 + d+ δF,p.

More precisely, recall that at v | p we write tdetρv
∼= H1(GFv , addet ρv) for the tangent space

for deformations of the character ρv. Restriction O×
v defines, via the local Artin map, a canonical

isomorphism tdet ρv/H
1
f (GFv , ad ρ detv)

∼= Tdetρv |
O

×
v

X (O×
v ). Recalling the notations of Lemma 6.5.5,

we then have a commuting diagram

TxE (n)mid
//

detp

��

⊕
v|p t

Ref
ρv /H

1
f (GFv , ad ρv)

(det v)v|p

��⊕
v|p tdetρv/H

1
f (GFv , addet ρv)

∼=

��

Tη(λx)X (O×
p /O×

F,+)
// Tη(λx)X (O×

p )

where the horizontal rows arrows are injections and, moreover, Lemma 6.6.7 implies the arrows in the
right column are surjections. Thus, TxE (n)mid ⊂ K where K is defined by the short exact sequence

0→ K →
⊕

v|p

tRef
ρv /H

1
f (GFv , ad ρv)→ Tη(λx)X (O×

p )/Tη(λx)X (O×
p /O×

F,+)→ 0.

Combining this with part (2) of Proposition 6.6.5, we have

dimL TxE (n)mid ≤ 2d− (d− 1− δF,p) = d+ 1 + δF,p.

This completes the proof. �
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7. Period maps

Recall that we write ΓF for the maximal abelian extension of F unramified away from p and
∞. This is a CPA group and hence we have R-valued distributions D(ΓF , R) for any affinoid point
Sp(R) = Ω→ W . The goal of this section is to define, and study, canonical morphisms

PΩ : Hd
c (n,DΩ)→ D(ΓF , R)

which we call period maps. Amice’s theorem then links the period maps to p-adic L-functions.

7.1. Analytic distributions on ΓF . Consider the canonical exact sequence

(7.1.1) 1→ O×
F,+ → O×

p

jp−→ ΓF → Cl+F → 1

where Cl+F is the narrow class group, and the map jp is induced by the natural inclusion O×
p →֒ A×

F .
We will need to make explicit some presentations of rings of analytic functions as limits of Banach
algebras (LB-structures).

We begin with O×
p . In Section 5.3 we defined, for f ∈ A (O×

p ,Qp), the “extension by zero” function
f! : Op → Qp

f!(a) =

{
f(a) if a ∈ O×

p ,

0 otherwise.

The map f 7→ f! defines a closed embedding A (O×
p ,Qp) →֒ A (Op,Qp). For s ∈ Z

{v|p}
≥0 we set

As,◦(O×
p ,Qp) := A (O×

p ,Qp) ∩As,◦(Op,Qp) and

As(O×
p ,Qp) := As,◦(O×

p ,Qp)[1/p] = A (O×
p ,Qp) ∩As(Op,Qp),

all the intersections happening within A (O×
p ,Qp). By (5.2.1), and because A (O×

p ,Qp) is closed inside
A (Op,Qp), we deduce from [39, Proposition 1.1.41] that there is a natural topological identification

(7.1.2) A (O×
p ,Qp) ≃ lim−→

|s|→+∞

As(O×
p ,Qp).

Now consider ΓF . If γ ∈ ΓF write rγ : ΓF → ΓF for multiplication by γ. Then, if γ ∈ ΓF and
f ∈ A (ΓF ,Qp) we define

f |γO×
p
:= f ◦ rγ ◦ jp

which is an element of A (O×
p ,Qp). For each s ∈ Z

{v|p}
≥0 we define

(7.1.3) As,◦(ΓF ,Qp) := {f ∈ A (ΓF ,Qp) | f |γO×
p
∈ As,◦(O×

p ,Qp) for each γ ∈ ΓF },

and

As(ΓF ,Qp) := As,◦(ΓF ,Qp)[1/p] = {f ∈ A (ΓF ,Qp) | f |γO×
p
∈ As(O×

p ,Qp) for each γ ∈ ΓF }.

Lemma 7.1.1. The natural map

(7.1.4) lim−→
|s|→+∞

As(ΓF ,Qp)→ A (ΓF ,Qp)

is a topological isomorphism.

Proof. Note that H = im(jp) is a CPA group and the natural map A (H,Qp)→ A (O×
p ,Qp) is closed

embedding. By the same argument above (especially (7.1.2) and [39, Proposition 1.1.41]) we deduce
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that As(H,Qp) := A (H,Qp) ∩ As(O×
p ,Qp) presents A (H,Qp) topologically as a locally convex

inductive limit

(7.1.5) A (H,Qp) ≃ lim−→
|s|→+∞

As(H,Qp).

Choose coset representatives γ1, . . . , γh for ΓF /H . Then, the natural topological isomorphism

A (ΓF ,Qp)
≃−→

h⊕

i=1

A (H,Qp)

f 7→ (h 7→ f(γih))

identifies the subspace As(ΓF ,Qp) defined above with the direct sum of the subspaces As(H,Qp) we
just defined. So the map (7.1.4) being a topological isomorphism is a consequence of the same fact for
(7.1.5) and the fact that locally convex inductive limits commute with finite products. This completes
the proof. �

Now suppose that R is a Qp-Banach algebra and R0 is a ring of definition. Then, for any of

the CPA groups G which appear above, we set As,◦(G,R) := As,◦(G,Qp)⊗̂ZpR0 and As(G,R) :=

As,◦(G,R)[1/p] = As(G,Qp)⊗̂QpR. We define distribution algebras Ds(G,R) = As(G,R)′ and
Ds,◦(G,R) = HomR0(A

s,◦(∗, R), R0), with the same caveat as in Remark 5.2.3.
We note the following analogue of Lemma 5.3.1, which illustrates the compatibility of our notations

of s-analytic.

Lemma 7.1.2. Suppose that χ : O×
p → R is a continuous character and R0 ⊂ R is a ring of definition

containing the image of χ. Then for s◦(χ) as in Lemma 5.3.1, we have χ ∈ As◦(χ)+1,◦(O×
p , R)

(similarly for s(χ)).

Proof. This follows immediately from the following observation whose proof we omit: if f : Op → R is
a function and z 7→ f(a+̟pz) defines an element of As,◦(Op, R) for each a ∈ Op, then f itself defines
an element of As+1,◦(Op, R). �

7.2. Definition of period maps. Recall (Section 2.3) that C∞ denotes the Shintani cone. If Ω =
Sp(R) → W is a Qp-affinoid with corresponding weight λΩ, then we write t∗As

Ω for the local system
on C∞ induced by the right action of O×

p

f
∣∣
up
(z) := f

∣∣
( up 1 )

(z) = λΩ,2(up)f(upz)

for each f ∈ As(Op, R), up ∈ O×
p , and z ∈ Op (here s ≥ s(Ω)). The action is compatible with changing

s ≥ s(Ω), and if R0 ⊂ R is a ring of definition for R containing the values of λΩ and s ≥ s◦(Ω) then it
preserves the R0-submodule t∗As,◦

Ω .

Lemma 7.2.1. Fix a ring of definition R0 ⊂ R and s ≥ s◦(Ω). For f ∈ As,◦(ΓF , R), x ∈ A×
F , and

z ∈ Op define

(7.2.1) Qs,◦
Ω (f)(x)(z) =

{
λ−1
Ω,2(z) · f(xz) if z ∈ O×

p ;

0 otherwise.

Then, f 7→ Qs,◦
Ω defines an R0-module morphism

Qs,◦
Ω : As,◦(ΓF , R)→ H0(C∞, t

∗As,◦
Ω ).
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Moreover, the induced map Qs
Ω : As(ΓF , R)→ H0(C∞, t

∗As) is independent of R0 and if s′ ≥ s then
fits naturally into a commuting diagram

As(ΓF , R)

��

Qs
Ω // H0(C∞, t

∗As
Ω)

��

As′(ΓF , R)
Qs′

Ω // H0(C∞, t
∗As′

Ω)

and these extend to a map
QΩ : A (ΓF , R)→ H0(C∞, t

∗
AΩ).

This map is natural in the weight Ω, in the sense that if Sp(R) = Ω → W factors through some
Sp(R′) = Ω′ → W then we have a commuting diagram

A (ΓF , R)
QΩ

// H0(C∞, t
∗AΩ)

A (ΓF , R
′)

QΩ′

//

OO

H0(C∞, t
∗AΩ′).

OO

Proof. All the claims after inverting p are clear, so we just prove the first statement.
Let f ∈ As,◦(ΓF , R) and set q = Qs,◦

Ω (f) defined in (7.2.1). It follows from Lemma 7.1.2 and the

precise definitions of the radii that q(x) ∈ As,◦
Ω for each x ∈ A×

F , giving us a continuous function

q : A×
F → As,◦

Ω which we want to show it is a section in H0(C∞, t
∗As,◦

Ω ).
First, q is locally constant on F×

∞ because the function f itself factors through (F×
∞)◦. It remains

to show that q(ξxu) = q(x)|up for all ξ ∈ F×, x ∈ A×
F and u ∈ Ô×

F . If z ∈ Op −O×
p then both q(ξxu)

and q(x)|up vanish on z. If z ∈ O×
p though, then

q(x)|up (z) = λΩ,2(up)q(x)(upz) = λ−1
Ω,2(z)f(xupz) = λ−1

Ω,2(z)f(ξxuz) = q(ξxu)(z).

For the second to last equality we used that f is a function on ΓF . This completes the proof. �

Throughout the rest of this subsection we consider an integral ideal m ⊂ OF and we assume that
m ⊂ p. Since K1(m) is t-good, we have a proper embedding t : C∞ →֒ Y1(m) as in (2.3.5).

For each Ω as above, t∗As,◦
Ω is the pullback of the local system As,◦

Ω on Y1(m) (which is well-posed
because m ⊂ p). There are similar obvious comments regarding As

Ω and AΩ. Thus, by Lemma 7.2.1,
we get a composition QΩ = t∗ ◦ PD ◦QΩ

(7.2.2) A (ΓF , R)

QΩ

33

QΩ
// H0(C∞, t

∗AΩ)
PD // HBM

d (C∞, t
∗AΩ)

t∗ // HBM
d (Y1(m),AΩ).

We also have natural analogs Qs
Ω and Q

s,◦
Ω .

Now recall that the natural pairing DΩ⊗RAΩ → R together with the cap product defines a canonical
R-bilinear pairing

〈−,−〉 : Hd
c (Y1(m),DΩ)⊗R HBM

d (Y1(m),AΩ)→ R.

Thus we define PΩ : Hd
c (Y1(m),DΩ)→ HomR(A (ΓF , R), R) to be given by

(7.2.3) PΩ(Ψ)(f) = 〈Ψ,QΩ(f)〉.
Replacing QΩ with Qs

Ω or Q
s,◦
Ω , we also get analogous morphisms Ps

Ω and P
s,◦
Ω . The rest of this

subsection is devoted to proving the following theorem.
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Theorem 7.2.2. The image of PΩ is contained in D(ΓF , R) ⊂ HomR(A (ΓF , R), R).

Omitting the proof, we record precisely the definition of the period map(s).

Definition 7.2.3. If Ω = Sp(R)→ W is a point, then the period map PΩ is the R-linear map

PΩ : Hd
c (Y1(m),DΩ)→ D(ΓF , R)

PΩ(Ψ)(f) = 〈Ψ,QΩ(f)〉

defined above.

To prove Theorem 7.2.2, we note the following lemma on recognizing when certain linear functions
are continuous.

Lemma 7.2.4. Suppose that R is a Qp-Banach algebra and R0 a ring of definition for R. If M
is a potentially orthonormalizable R-Banach module with R-Banach dual M ′, and M0 is any open
and bounded R0-submodule of M , then the natural map HomR0(M0, R0)[1/p]→ HomR(M,R) factors
through an isomorphism

HomR0(M0, R0)[1/p] ≃M ′,

and the topology on M ′ is the gauge topology defined by the R0-submodule HomR0(M0, R0) (i.e., the
submodules pnHomR0(M0, R0) define a neighborhood basis of 0).

Proof. We first set some notation. If I is a set we write c(I, R) for the set of sequences (ri)i∈I with
ri ∈ R and such that for each ε > 0, |ri| < ε for all but finitely many i (cf. [79, Section 1]). We
let c(I, R0) be those sequences with ri ∈ R0 for each i. Finally, we let b(I, R) but those sequences ri
which are bounded. Note that c(I, R)′ ≃ b(I, R).

By definition, we can choose a R-Banach module isomorphism f : c(I, R) ≃ M for some set I.
Then c(I, R0) ⊂ c(I, R) is open and bounded, and M0 = f(c(I, R0)) is then an open and bounded
R0-submodule of M (boundedness is clear, and openness follows from the open mapping theorem).
For this particular choice of M0, the lemma follows by direct inspection, since f induces compatible
isomorphisms HomR0(M0, R0) ≃

∏
I R0 and M ′ ≃ b(I, R) ≃ (

∏
I R0)[1/p]. The case of a general M0

then reduces to this special case upon noting that any two open bounded R0-submodules M0,1,M0,2

satisfy pNM0,1 ⊂M0,2 ⊂ p−NM0,1 for N ≫ 0. �

Proof of Theorem 7.2.2. By Lemma 7.1.1 we have

(7.2.4) HomR(A (ΓF , R), R) ∼= lim←−
|s|→∞

HomR(A
s(ΓF , R), R)

and

(7.2.5) D(ΓF , R) = lim←−
|s|→+∞

Ds(ΓF , R).

Choose now a ring of definition R0 ⊂ R containing the image of λΩ. By definition, R0 is open and
bounded in R and As,◦(ΓF , R) ⊂ As(ΓF , R) is also open and bounded. Furthermore, As(ΓF , R) is
potentially orthonormalizable for each s since it is the completed scalar extension of a Qp-Banach
space, which is always potentially orthornormalizable (see [79, Proposition 1] and [28, Lemma 2.8]).
Thus, Lemma 7.2.4, together with (7.2.4) and (7.2.5), implies that

(7.2.6) D(ΓF , R) ≃ lim←−
|s|→+∞

HomR0(A
s,◦(ΓF , R), R0)[1/p] ⊂ HomR(A (ΓF , R), R).
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Now consider the commuting diagram

A (ΓF , R)
QΩ // HBM

d (Y1(m),AΩ)

As(ΓF , R)
Q

s
Ω //

OO

HBM
d (Y1(m),As

Ω)

OO

As,◦(ΓF , R)
Q

s,◦
Ω //

OO

HBM
d (Y1(m),As,◦

Ω ).

OO

Since Ds
Ω is the R-Banach dual of As

Ω and Ds,◦
Ω ⊂ Ds

Ω is the R0-linear dual of A
s,◦
Ω (similarly for ΓF ),

the naturality of the pairings 〈−,−〉 implies that

(7.2.7) Hd
c (Y1(m),DΩ)

PΩ //

��

HomR(A (ΓF , R), R)

��

Hd
c (Y1(m),Ds

Ω)
P

s
Ω // HomR(A

s(ΓF , R), R)

Hd
c (Y1(m),Ds,◦

Ω )

OO

P
s,◦
Ω // HomR0

(As,◦(ΓF , R), R0)

OO

is also a commuting diagram.
Finally, consider Ψ ∈ Hd

c (Y1(m),DΩ) and write Ψs ∈ Hd
c (Y1(m),Ds

Ω) for its restriction to Ds
Ω.

Since sheaf cohomology commutes with flat scalar extension in the coefficients, and Ds,◦
Ω [1/p] = Ds

Ω,
the bottom left vertical arrow in (7.2.7) is an isomorphism after inverting p. Following the diagram
(7.2.7) around, we deduce that

P
s
Ω(Ψ

s) ∈ HomR0(A
s,◦(ΓF , R), R0)[1/p] ⊂ HomR(A

s(ΓF , R), R).

Since s is arbitrary, (7.2.6) shows that PΩ(Ψ) ∈ D(ΓF , R) by (7.2.6). �

7.3. Compatibilities. In this brief subsection we catalog some straightforward features of the period
maps. We let m ⊂ p be an integral ideal and we generally let Ω = Sp(R) → W be an affinoid point
of weight space. An example of a straightforward feature is, for instance: if Ω → W factors through
Sp(R′) = Ω′ then the natural diagram

Hd
c (Y1(m),DΩ)

PΩ // D(ΓF , R)

Hd
c (Y1(m),DΩ′)

PΩ′

//

OO

D(ΓF , R
′)

OO

commutes. Here is another compatibility.

Lemma 7.3.1. If m′ ⊂ m and pr : Y1(m
′)→ Y1(m) is the projection map, then PΩ(Ψ) = PΩ(pr

∗ Ψ)
for all Ψ ∈ Hd

c (Y1(m),DΩ).

Proof. Temporarily denote Pm
Ω and Qm

Ω for the maps defined above with the level specified. We want

to show Pm
Ω (Ψ) = Pm′

Ω (pr∗ Ψ) for all Ψ ∈ Hd
c (Y1(m),DΩ).
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What is clear is that pr is compatible with the two possible embeddings t. So, it follows from the
definition (7.2.2) that pr∗(Q

m′

Ω (f)) = Qm
Ω (f) for all f ∈ A (ΓF , R). And now if f ∈ A (ΓF , R) and

Ψ ∈ Hd
c (Y1(m),DΩ) then we see that

〈pr∗ Ψ,Qm′

Ω (f)〉 = 〈Ψ, pr∗(Qm′

Ω (f))〉 = 〈Ψ,Qm
Ω (f)〉.

This proves the lemma. �

We also note the following truly tautological relationship between the period map and the Amice
transform (Proposition 5.1.6).

Proposition 7.3.2. If χ : ΓF → R× is a continuous character and Ψ ∈ Hd
c (Y1(m),DΩ), then

(7.3.1) PΩ(Ψ)(χ) = APΩ(Ψ)(χ).

Finally, it will be helpful to note the interaction between the period map and the Archimedean
Hecke operators from Section 4.1, where the notations π0(F

×
∞), Tζ, and so on are defined. A more

involved calculation with the Uv-operators is the subject of Section 7.6 below.

Proposition 7.3.3. Let Ψ ∈ Hd
c (Y1(m),DΩ). Then,

(1) If χ : ΓF → R× is a continuous character and ζ ∈ π0(F×
∞), then PΩ(TζΨ)(χ) = χ(ζ)PΩ(Ψ)(χ).

(2) If ε ∈ {±1}ΣF and Ψ ∈ Hd
c (Y1(m),DΩ)

ǫ then PΩ(Ψ)(χ) = 0 unless χ(ζ) = ǫ(ζ) for all
ζ ∈ π0(F×

∞).

Proof. PΩ(Ψ) is linear in Ψ. In particular, part (2) clearly follows from part (1). To prove (1), we set
some notation. Write ρζ : Y1(m) → Y1(m) for right multiplication by

(
ζ
1

)
, so Tζ is the pullback ρ∗ζ .

On the other hand, write rζ : C∞ → C∞ for right multiplication by ζ.
It is trivial to check from the definition in Lemma 7.2.1 that r∗ζ (QΩ(χ)) = χ(ζ)QΩ(χ). Since

(rζ)∗ ◦ PD ◦r∗ζ = PD (see Proposition 2.3.1 and (2.1.7)) we deduce that

(7.3.2) ((rζ)∗ ◦ PD)(QΩ(χ)) = χ(ζ) PD(QΩ(χ)).

But QΩ = t∗ ◦ PD ◦QΩ, and (ρζ)∗ ◦ t∗ = t∗ ◦ (rζ)∗, so we get

PΩ(TζΨ)(χ) = 〈ρ∗ζΨ,QΩ(χ)〉 = 〈Ψ, (ρζ)∗QΩ(χ)〉 = χ(ζ)〈Ψ,QΩ(χ)〉,

as we promised in part (1). �

Remark 7.3.4. If ǫ ∈ {±1}ΣF then write X (ΓF )
ǫ for those characters χ on ΓF such that χ(ζ) = ǫ(ζ)

for all ζ ∈ π0(F×
∞). Then, X (ΓF ) is a disjoint union

X (ΓF ) =
⋃

ǫ

X (ΓF )
ǫ

and so O(X (ΓF )) =
⊕

ǫ O(X (ΓF )
ǫ). The previous two lemmas say that A ◦PΩ respects the direct

sum decompositions in the following diagram

Hd
c (Y1(m),DΩ)

PΩ // D(ΓF , R)
A // O(X (ΓF ))⊗̂QpR

⊕
ǫH

d
c (Y1(m),DΩ)

ǫ //
⊕

ǫO(X (ΓF )
ǫ)⊗̂QpR.
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7.4. Growth properties. In this subsection we analyze the growth properties of our period mor-
phisms Pλ (over a field). If L/Qp is a finite extension then we always take the ring of integers OL ⊂ L
to be a ring of definition. We also fix an integral ideal m ⊂ p as in the previous subsection.

Definition 7.4.1. Let L/Qp be a finite extension and h ≥ 0. If µ ∈ D(ΓF , L), then we say that µ
has growth of order ≤ h if

sup
s

(
sup

f∈As,◦(ΓF ,L)

p−|s|h|µ(f)|
)
< +∞.

Proposition 7.4.2. If Ψ ∈ Hd
c (Y1(m),Dλ⊗kλ L)≤h then Pλ(Ψ) is a distribution with growth of order

≤ h.

Proof. By Lemma 7.3.1 and Proposition 2.3.3 we may assume that Y1(m) is a manifold (compare with
the proof of Lemma 6.5.4).

With h fixed, this means that for some s0, the slope-≤ h part

Hd
c (Y1(m),Dλ ⊗kλ L)≤h ≃ Hd

c (Y1(m),Ds0
λ ⊗kλ L)≤h

is equal to the slope-≤ h part of the d-th cohomology of a Borel–Serre complex

C•
c (D

s0
λ ⊗kλ L) ≃ C•

c (D
s0
λ ⊗kλ L)≤h ⊕ C•

c (D
s0
λ ⊗kλ L)>h.

The terms which make up the complex C•
c (D

s0
λ ⊗kλ L) are finite direct sums of the Banach space

Ds0
λ ⊗kλ L. Thus, the family of operators {p|s|hU−|s|

p } on C•
c (D

s0
λ ⊗kλ L)≤h is a family whose operator

norms are bounded independent of s.
Now choose Ψ ∈ Hd

c (Y1(m),Dλ ⊗kλ L)≤h, s0 as in the previous paragraph and write Ψs0 in
Hd
c (Y1(m),Ds0

λ ⊗kλ L)≤h for the restriction of Ψ to radius s0. Given s, write

Ψs := (phU−1
p )|s|(Ψs0) ∈ Hd

c (Y1(m),Ds0
λ ⊗kλ L).

By the boundedness discussion in the previous paragraph, we may choose a single C > 0 such that
pCΨs ∈ Hd

c (Y1(m),Ds0,◦
λ ⊗k◦

λ
OL) for all s ≥ s0. Here we are using the reduction in the first sentence of

this proof so that Hd
c (Y1(m),Ds0,◦

λ ⊗OλOL) is the cohomology in degree d of the bounded sub-complex
C•
c (D

s0,◦
λ ⊗k◦

λ
OL) ⊂ C•

c (D
s0
λ ⊗kλ L).

Now let s ≥ s0 and f ∈ As,◦(ΓF , L). Then we compute

(7.4.1) Pλ(Ψ)(f) = P
s0
λ (Ψs0)(f) = p−Cp−|s|h

P
s0
λ (U |s|

p pCΨs)(f).

Now note that the Hecke operator Up is self-adjoint under 〈−,−〉, and so

(7.4.2) P
s0
λ (U |s|

p pCΨs)(f) = 〈U |s|
p pCΨs,Q

s,◦
λ (f)〉 = 〈pCΨs, U

|s|
p Q

s,◦
λ (f)〉.

Since (7.4.2) is the pairing between the element U
|s|
p Q

s,◦
λ (f) ∈ HBM

d (Y1(m),As,◦⊗k◦
λ
OL) and the image

of pCΨs in Hd
c (Y1(m),Ds,◦ ⊗k◦

λ
OL), it is necessarily an element of OL. And so (7.4.1) shows that

∣∣p−|s|h
Pλ(Ψ)(f)

∣∣ < pC ,

independent of s and f , completing the proof. �



ON p-ADIC L-FUNCTIONS FOR HILBERT MODULAR FORMS 77

7.5. The p-adic evaluation class. In this subsection we consider L ⊂ Qp finite over Qp and con-
taining the Galois closure of F . We also use λ = (κ,w) to denote a cohomological weight, which we
view as a p-adic weight as in Section 5.4.

Definition 7.5.1. If m is an integer critical with respect to λ, then we define δ⋆m,p ∈ Lλ(L)
∨ by

δ⋆m,p(X
j) =

{(
κ
j

)−1
if j = κ+w

2 −m,
0 otherwise.

Now write Np : A
×
F → L× for the p-adic realization of the adelic norm | · |AF via ι. That is, Np is

given by the following formula

(7.5.1) Np(x) = |xf |AF


∏

v|∞

sgn(xv)


 ·


∏

v|p

∏

σ∈Σv

σ(xv)


 .

The character Np is the adelic version of the cyclotomic character on ΓF , but we also write Np for the
induced element of X (ΓF ). We also consider the local system t∗Lλ(L)

∨ on C∞ corresponding to the

right O×
p -module structure on Lλ(L)

∨ gotten by restricting to
(

O×
p

1

)
→֒ GL2(Fp).

Lemma 7.5.2. If xp ∈ F×
p then δ⋆m,p|( xp 1 )

=
(∏

v|p

∏
σ∈Σv

σ(xv)
)m
· δ⋆m,p. Thus,

(1) If xp ∈ O×
p then δ⋆m,p|( xp 1 )

= Nm
p (xp)δ

⋆
m,p.

(2) The formula δm,p(x) = Nm
p (x)δ⋆m,p defines an element of H0(C∞, t

∗Lλ(L)
∨).

Proof. By definition,

δ⋆m,p|( xp 1 )
(Xj) =

∏

v|p

∏

σ∈Σv

σ(xv)
w−κσ

2 σ(xv)
κσδ⋆m,p

(
(Xσ/σ(xv))

jσ
)
.

The final term in the product is only non-zero if j = κ+w
2 −m, in which case what we get is δ⋆m,p(X

j)
times the coefficient

∏

v|p

∏

σ∈Σv

σ(xv)
w−κσ

2 σ(xv)
κσσ(xv)

m−κσ+w
2 =

∏

v|p

∏

σ∈Σv

σ(xv)
m.

This completes the proof point (1). To prove point (2) we first note that Np is locally constant on
F×
∞ and thus to check δm,p actually defines a section we need to check that δm,p(ξxu) = δm,p(x)|up if

ξ ∈ F×, x ∈ A×
F and u ∈ Ô×

F . But that follows immediately from point (1). �

Recall from Section 5.4 that we have the dual integration map I∨λ : Lλ(L)
∨ → Aλ ⊗kλ L, which is

equivariant for the O×
p -module structures on either side (Proposition 5.4.3(3)). The reader expecting

a ♯ in the notation can look ahead to Remark 7.6.5.

Lemma 7.5.3. If m is an integer critical with respect to λ, then

I∨λ (δ
⋆
m,p) =

∏

v|p

∏

σ∈Σv

σ(−)κσ−w
2 +m.

In particular, if z ∈ O×
p then I∨λ (δ

⋆
m,p)(z) = Nm

p (z)λ−1
2 (z).
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Proof. Recall that δ⋆m,p(X
j) is zero except if j = κ+w

2 − m, in which case it takes the value
(
κ
j

)−1
.

Thus, if µ ∈ Dλ(L), then

µ
(
I∨λ (δ

⋆
m,p)

)
= δ⋆m,p (Iλ(µ)) = δ⋆m,p


∑

j

(
κ

j

)
µ(zj)Xκ−j


 = µ

(
z
κ−w

2 +m
)

Since µ is arbitrary, we are finished. �

It is convenient here to calculate the interaction between δm,p and the map

Qλ : A (ΓF , kλ)→ H0(C∞, t
∗
Aλ)

defined in Section 7.2.

Lemma 7.5.4. Let m be an integer critical with respect to λ.

(1) If x ∈ A×
F , then Qλ(N

m
p )(x)|O×

p
= I∨λ (δm,p(x))|O×

p
.

(2) If f = (fv) ∈ Z
{v|p}
≥1 and a ∈ O×

p , then Qλ(N
m
p )(x)

∣∣
(
̟fp a

1

)
= I∨λ (δm,p(x))

∣∣
(
̟fp a

1

)
.

Proof. (2) follows from (1) because if a ∈ O×
p and fv ≥ 1 for all v | p, then a + ̟f

pz ∈ O×
p for all

z ∈ Op. It remains to prove (1). By definition, in Lemma 7.5.2, δm,p(x) = Nm
p (x)δ⋆m,p. Let u ∈ O×

p . By

Lemma 7.5.3, we have I∨λ (δ
⋆
m,p)(u) = Np(u)

mλ−1
2 (u). Thus, I∨λ (δm,p(x))(u) = Nm

p (x)Nm
p (u)λ−1

2 (u).

Since Np(−) is multiplicitive and u ∈ O×
p , this is also the value of Qλ(N

m
p )(x)(u) (see (7.2.1)). �

In analogy with Definition 4.4.6 we make the following definition.

Definition 7.5.5. If K ⊂ GL2(AF,f ) is a t-good subgroup, then we define clp(m) := t∗(PD(δm,p)) ∈
HBM
d (YK ,Lλ(L)

∨) where δm,p is as in Lemma 7.5.2.

The next proposition explains how the p-adic evaluation class is completely analogous to the
Archimedean one previously defined in Definition 4.4.6. (Note, that just as in Lemma 4.4.7 there
is no need to include the subgroup K in the notation.) Namely, suppose that E ⊂ C is a subfield
containing the Galois closure of F in C and let L = Qp(ι(E)). Then for any compact open subgroup

K ⊂ GL2(AF,f ) containing
(

Ô×
F

1

)
we have a natural commuting diagram

(7.5.2) HBM
d (YK ,Lλ(E)∨)

ι

≃
// HBM

d (YK ,Lλ(L)
∨)

HBM
d (C∞, t

∗Lλ(E)∨)
ι

≃
//

t∗

OO

HBM
d (C∞, t

∗Lλ(L)
∨)

t∗

OO

H0(C∞, t
∗Lλ(E)∨)

ι

≃
//

PD

OO

H0(C∞, t
∗Lλ(L)

∨)

PD

OO

The horizontal maps are all isomorphisms as indicated (Proposition 2.2.2).

Proposition 7.5.6. If m is an integral critical with respect to λ, then ι(cl∞(m)) = clp(m).

Proof. By (7.5.2) and the definitions it is enough to check that ι(δm) = δm,p (where δm is as in
Proposition 4.4.5 and δm,p is as in Lemma 7.5.2).
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To be clear, by the construction in Proposition 2.2.2, ι(δm) is the section x 7→ ι(δm(x))|xp where
the ι on the right-hand side is the natural way of turning an element of Lλ(E)∨ into an element of
Lλ(L)

∨ via scalar extension along ι. In particular, ι(δ⋆m) = δ⋆m,p. Thus we can compute

ι(δm(x)) = ι((|xf |AF

∏

v|∞

sgn(xv))
mδ⋆m) = (Np(x)

∏

v|p

∏

σ∈Σv

σ(xv)
−1)mδ⋆m,p

(compare with (7.5.1)). And now Lemma 7.5.2 tells us that ι(δm(x))|xp = Np(x)δ
⋆
m,p = δm,p(x). This

completes the proof. �

We will finally make a computation regarding the p-adic evaluation class that is used later in
Corollary 7.6.7. (One could also give an analogous Archimedean computation and use Proposition
7.5.6.)

Let v | p and denote V +
v = (̟v 1 ) ∈ GL2(AF,f ). Suppose that we fix a t-good subgroup K. Write

K̟v := K ∩ V +
v K(V +

v )−1 and similarly K̟−1
v

= K ∩ (V +
v )−1KV +

v . Then right multiplication by V +
v

induces a map V +
v : YK̟v → YK

̟
−1
v

that lifts to a map of local systems Lλ(L)
∨ → Lλ(L)

∨ given by

δ 7→ δ|V +
v
. More precisely we are considering the composition of two maps on the level of local systems.

The first is the map on the base given by V +
v and the identity map on the local system where K̟−1

v

acts on Lλ(L) by the twisted action Lλ(L)((V
+
v )−1) of (V +

v )−1KV +
v . The second map is the identity

on the base YK
̟

−1
v

and the right translation on the level of local systems. (Compare with (2.2.5).)

In any case, we thus have a pushforward map

(7.5.3) (V +
v )∗ : HBM

d (YK̟v ,L
∨
λ (L))→ HBM

d (YK
̟

−1
v

,L ∨
λ (L)).

Note that both K̟v and K̟−1
v

are still t-good because K is. Thus there is a p-adic evaluation class

clp(m) on either side of (7.5.3).

Lemma 7.5.7. (V +
v )∗ clp(m) = qmv clp(m).

Proof. Consider the diagram

(7.5.4) HBM
d (YK̟v ,Lλ(L)

∨)
(V +
v )∗

// HBM
d (YK

̟
−1
v

,Lλ(L)
∨)

HBM
d (C∞, t

∗Lλ(L)
∨)

t∗

OO

(r̟v )∗ // HBM
d (C∞, t

∗Lλ(L)
∨)

t∗

OO

H0(C∞, t
∗Lλ(L)

∨)

PD

OO

H0(C∞, t
∗Lλ(L)

∨).
r∗̟voo

PD

OO

Here we write r̟v for the map on C∞ which is right multiplication by ̟v and with a non-trivial
action to the level of local systems as above. The pullback map r∗̟v is the map given by (r∗̟vs)(x) =

s(x̟v)|(V +
v )−1 for all s ∈ H0(C∞, t

∗Lλ(L)
∨) and x ∈ A×

F . Taking s = δm,p we get

r∗̟v (δm,p)(x) = δm,p(x̟v)|(V +
v )−1 = Nm

p (x̟v)δ
⋆
m,p|(V +

v )−1 = |̟v|mAF
Nm
p (x)δ⋆m,p = q−mv δm,p(x).

(The third equality used (7.5.1) and Lemma 7.5.2.) Thus, r∗̟vδm,p = q−mv δm,p. The conclusion now
follows from Proposition 2.3.1 and (2.1.7). �
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7.6. Abstract interpolation. The main result in this subsection (Theorem 7.6.4 below) is an “ab-
stract” equality of functionals on a certain overconvergent cohomology group. It relates the Hecke
action at p to the p-adic evaluation classes via the period maps.

In the remainder of this section we fix a finite order Hecke character θ of conductor f =
∏
v p

fv
v

where fv = 0 if v ∤ p. We write θι for ι ◦ θ, which is thus a Qp-valued Hecke character. We also fix a

field L ⊂ Qp containing the Galois closure of F in Qp and the values of θι. Thus θι is an element of

A (ΓF , L). Set f+,v = max(fv, 1) and let f+ = (f+,v) ∈ Z
{v|p}
≥1 . We also fix a cohomological weight λ.

Recall the definition of
Qλ : A (ΓF , L)→ H0(C∞, t

∗
Aλ ⊗kλ L)

from Lemma 7.2.1. In particular, if g ∈ A (ΓF , L) and x ∈ A×
F then Qλ(g)(x) is an element of Aλ⊗kλL

and Aλ ⊗kλ L has a right action of ∆.

Lemma 7.6.1. If a ∈ Op, g ∈ A (ΓF , L) and x ∈ A×
F then

Qλ(gθ
ι)(x)

∣∣
(
̟
f+
p a

1

)
=

{
θι(ax) ·Qλ(g)(x)

∣∣
(
̟
f+
p a

1

)
if a ∈ O×

p ,

0 if a 6∈ O×
p .

Proof. If z ∈ Op, then a +̟
f+
p z ∈ O×

p if and only if a ∈ O×
p . Thus, by (5.3.1) and the definition of

Qλ we deduce

(7.6.1) Qλ(gθ
ι)(x)

∣∣
(
̟
f+
p a

1

)
(z)

= Qλ(gθ
ι)(x)(a + z̟f+

p ) =

{
(gθι)(x(a +̟

f+
p z))λ−1

2 (a+ z̟
f+
p ) if a ∈ O×

p ,

0 if a 6∈ O×
p .

This already proves the case a 6∈ O×
p . When a ∈ O×

p , θ
ι(a + ̟

f+
p z) = θι(a) by definition of the

conductor of θ and thus the case a ∈ O×
p follows from multiplicativity of θ. �

We now fix further notation. Set

S×
0 :=

∏

v|p
fv=0

(Ov/̟vOv)×

S×
1 :=

∏

v|p
fv>0

(Ov/̟fv
v Ov)×.

If b ∈ S×
0 and c ∈ S×

1 then we write b+c for the natural element of (Op/̟f+
p Op)× ≃ S×

0 ×S×
1 . Implicit

in the notation below is that any choices of lifts are irrelevant. For instance, θι(b + c) makes perfect
sense for b ∈ S×

0 and c ∈ S×
1 .

As before, let v | p and let V +
v be the matrix (̟v 1 ) ∈ GL2(AF,f ). In general, if K ⊂ GL2(AF,f )

is a compact open subgroup and m is an ideal then we have a natural map
(
̟
fv,+
v

1

)
= (V +

v )fv,+ : H∗
c (Y1(m),Lλ(L))→ H∗

c (Y
0
1 (m; p

f+
v
v ),Lλ(L))

where Y 0
1 (m; p

fv,+
v ) = Y

K0
1(m;p

fv,+
v )

and

K0
1 (m; pfv,+v ) = {g =

(
a b
c d

)
∈ K1(m) | b ∈ pfv,+v ÔF }.

It is clear that this morphism is independent of the choice of uniformizer ̟v. Furthermore, since

K1(m) ⊃ K0
1 (m; p

fv,+
v ) if pv | m then we can also take the endomorphism Uv of H∗

c (Y1(m),Lλ(L))
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and post-compose it with pullback along Y 0
1 (m; p

fv,+
v )→ Y1(m). This discussion gives meaning to the

following lemma.

Lemma 7.6.2. Let m ⊂ p. If ψ ∈ H∗
c (Y1(m),Lλ(L)) is represented by an adelic cochain ψ̃ and

W :=
∏
fv=0(Uv − V +

v )
∏
fv>0(V

+
v )fv , then W (ψ) ∈ H∗

c (Y
0
1 (m;pf+),Lλ(L)) is represented by the

adelic cochain

W (ψ̃)(σ) =
∑

b∈S×
0

(
̟
f+
p b

1

)
· ψ̃
(
σ
(
̟
f+
p b

1

))
.

Proof. According to the definitions (Section 2.2) we have

((V +
v )fv ψ̃)(σ) =

(
̟fvv

1

)
· ψ̃
(
σ
(
̟fvv

1

))

((Uv − V +
v )ψ̃)(σ) =

∑

bv∈(Ov/̟vOv)×

(
̟v bv

1

)
· ψ̃
(
σ
(
̟v bv

1

))
.

Here we are using m ⊂ p to use the given description of the Uv-operator (see Remark 3.2.3). In the

second formula, we are free to choose coset representatives in ÔF for (Ov/̟vOv)× that are supported
only on v. But then the matrices in the two formulas above, as one ranges over all v | p, necessarily
commute and the formula for W (ψ̃) is clear. �

We make a similar calculation for the next lemma. We do not specify the level at which the result
ends up, but this omission is harmless because we will apply Lemma 7.6.3 only through Lemma 7.6.2
at which point we know precisely the resulting level subgroup.

Lemma 7.6.3. Let m ⊂ p. If ψ ∈ H∗
c (Y1(m),Lλ(L)) is represented by an adelic cochain ψ̃ and

b ∈ S×
0 , then

(
̟
f+
p b

1

)
· twcl

θι(ψ) is represented by the adelic cochain

σ = σ∞ ⊗ [gf ] 7→ (
∏

v|p
fv=0

θι(̟v))θ
ι(det gf)

∑

c∈S×
1

θι(c+ b)
(
̟
f+
p b+c

1

)
· ψ̃
(
σ
(
̟
f+
p b+c

1

))
.

Proof. First, by definition we have

(7.6.2)
((

̟
f+
p b

1

)
· twcl

θι(ψ̃)
)
(σ) =

(
̟
f+
p b

1

)
· twcl

θι(ψ̃)
(
σ
(
̟
f+
p b

1

))
.

Set ̟(0) =
∏

v|p
fv=0

̟v and ̟(1) :=
∏

v|p
fv>0

̟fv
v , so that fÔF = ̟(1)ÔF . If c ∈ S×

1 then choose a lift ĉ

to Ô×
F so that ĉ 7→ c in S×

1 but ĉ 7→ b in S×
0 . Then, {ĉ/̟(1)}c∈S×

1
is a set of representatives for Υ×

f ,

so Proposition 5.5.6 implies that

(7.6.3) twcl
θι(ψ̃)

(
σ
(
̟
f+
p b

1

))

= θι(̟f+
p det gf )

∑

c∈S×
1

θι(ĉ/̟(1))
(

1 ĉ0/̟
(1)

1

)
ψ̃
(
σ
(
̟
f+
p b

1

)(
1 ĉ0/̟

(1)

1

))
,

where as before ĉ0 is zero at places v ∤ f. In particular, ̟
f+
p ĉ0/̟

(1) = ĉ0 and so
(
̟
f+
p ∗

1

)(
1 ĉ0/̟

(1)

1

)
=
(
̟
f+
p ∗+ĉ0

1

)
.

On the other hand, ̟
f+
p ĉ/̟(1) = ̟(0)ĉ, whence θι(̟

f+
p ĉ/̟(1)) = θι(̟(0))θι(ĉ). We finally remark

that θι(ĉ) = θι(c+ b) by construction of ĉ. Putting these observations into (7.6.2) and (7.6.3), we have
completed the proof. �
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In the statement of the next theorem, we write U̟p for the Hecke operator defined by the double
coset of (̟p 1 ). We could have also called it Up but we fear it looks too close to Up. In any case, the

point is that U
f+
̟p =

∏
v|p U

fv,+
v .

Theorem 7.6.4. Let m ⊂ p, Ψ ∈ Hd
c (Y1(m),Dλ ⊗kλ L), and let m be an integer which is critical with

respect to λ. Then,

(7.6.4) 〈Uf+̟pΨ,Qλ(N
m
p θ

ι)〉

= ̟
−f+

w−κ
2

p

〈


∏

v|p
fv=0

θι(̟v)
−1(Uv − V +

v )
∏

v|p
fv>0

(V +
v )fv


 twcl

θι Iλ(Ψ), clp(m)

〉

Before giving the proof, we want to clarify two points about the statement of the theorem.

Remark 7.6.5. On the right-hand side, the element Iλ(Ψ) is meant to be an Lλ(L)-valued cohomology

class, not an L
♯
λ(L)-valued one. (See Definition 5.4.2 for the definition of L

♯
λ(L).) The same remark

applies to its twist by θι. The only difference is the Hecke action at p, and if you want an L
♯
λ(L)-valued

class, which is arguably more a more natural choice, then of course you remove the ̟p-factor from the
front of the formula. See (7.6.9) below.

But for the sake of comparing to classical L-values, if we make the switch in the previous paragraph
then we also have to remember to view clp(m) as a (L ∨

λ )♯-valued homology class and take this into
account during computations. (Compare with Corollary 7.6.7 below).

Remark 7.6.6. In the proof below we are going to work at the level of adelic cochains (as indicated by
the previous lemmas). Since we elide the actual cohomology in the arguments, and thus omit making
precise the levels, let us clarify further the two sides of the formula (7.6.4).

We hope that the left-hand side of (7.6.4) is clear: we are taking the class U
f+
̟pΨ in Hd

c (Y1(m),Dλ⊗kλ
L) and pairing it with the class Qλ(N

m
p θ

ι) ∈ HBM
d (Y1(m),Aλ ⊗kλ L).

Let’s unwind the right-hand side of (7.6.4). First, twθι Iλ(Ψ) is a class in Hd
c (Y1(mf2),Lλ(L)). If we

write W for the operator acting on this class in (7.6.4) (and the proof below), then W twθι(Iλ(Ψ)) de-

fines a class in Hd
c (Y

0
1 (mf2; f2);Lλ(L)) by the discussion preceding Lemma 7.6.2. And since

(
Ô×
F

1

)
⊂

K0
1(mf2; f2), we can make sense of the evaluation class clp(m) ∈ HBM

d (Y 0
1 (mf2; f2),L ∨

λ (L)) which was
carefully and universally defined in Definition 7.5.5. We then pair these classes, and this is what we
mean by the right-hand side of (7.6.4).

Proof of Theorem 7.6.4. For the purposes of the proof, write

W :=
∏

v|p
fv=0

θι(̟v)
−1(Uv − V +

v )
∏

v|p
fv>0

(V +
v )fv

for the operator appearing on the right-hand side of (7.6.4), as in Remark 7.6.6. (It is a scaling of the
operator “W” in Lemma 7.6.2.)

Recall that Qλ = t∗ ◦ PD ◦Qλ. Thus, according to (2.1.8) we have

(7.6.5) 〈Uf+̟pΨ,Qλ(N
m
p θ

ι)〉 = 〈t∗(Uf+̟pΨ) ∪Qλ(Nm
p θ

ι), [C∞]〉,
where [C∞] is the Borel–Moore fundamental class for C∞. For the purposes of this equation, the

cup-product t∗(U
f+
̟pΨ) ∪ Qλ(Nm

p θ
ι) ∈ Hd

c (C∞, t
∗(Dλ ⊗L Aλ)) is implicitly its image in Hd

c (C∞, L)
under the natural map.
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Similarly, since clp(m) = t∗(PD(δm,p)) (Definition 7.5.5) we have

(7.6.6) ̟
−f+·w−κ

2
p 〈W twθι Iλ(Ψ), clp(m)〉 = ̟

−f+·w−κ
2

p 〈t∗ (W twθι Iλ(Ψ)) ∪ δm,p, [C∞]〉
(with the same caveat on the meaning of the cup product). Comparing (7.6.5) and (7.6.6), it is enough
to show that the cup products appearing define the same elements of Hd

c (C∞, L). For that, we will
explicitly compute using adelic cochains.

Fix a singular d-chain σ = σ∞ ⊗ [x] on (F×
∞)◦ ×A×

F,f , and a representative Ψ̃ for Ψ in the adelic

cochains C•
ad,c(K1(m),Dλ ⊗kλ L). To cut down on parentheses, let us write tσ := t(σ) for the image

of σ under t. Then, the definition of the cup product on the level of cochains means that we want to
show

(7.6.7) (Uf+̟pΨ̃)(tσ)︸ ︷︷ ︸
∈Dλ(L)

(
Qλ(N

m
p θ

ι)(x)
︸ ︷︷ ︸

∈Aλ(L)

)
= ̟

−f+·w−κ
2

p

(
W twθι Iλ(Ψ̃)

)
(tσ)

︸ ︷︷ ︸
∈Lλ(L)

(
δm,p(x)︸ ︷︷ ︸
∈Lλ(L)∨

)
.

(To aid the reader, we have indicated where each object lives with underbraces.)
We begin computing the left-hand side of (7.6.7). In general, if s ∈ H0(C∞, t

∗Aλ), then

(7.6.8) (Uf+̟pΨ̃)(tσ) (s(x)) =
∑

a∈Op/̟
f+
p Op

Ψ̃
(
tσ

(
̟
f+
p a

1

))(
s(x)|

(
̟
f+
p a

1

))
.

Consider s = Qλ(N
m
p θ

ι). By Lemma 7.6.1, the term in the sum on the right-hand side of (7.6.8) is

zero if a 6∈ (Op/̟f+
p Op)×, but otherwise we have

Qλ(N
m
p θ

ι)(x)|
(
̟
f+
p a

1

)
= θι(ax)I∨λ (δm,p(x))|

(
̟
f+
p a

1

)
(by Lemmas 7.5.4 & 7.6.1)

(7.6.9)

= ̟
−f+·w−κ

2
p θι(ax)I∨λ

(
δm,p(x)|

(
̟
f+
p a

1

))
(by (5.4.2)).

Combining this with (7.6.8), and transposing Iλ, we see that

(7.6.10) (Uf+̟pΨ̃)(tσ)
(
Qλ(N

m
p θ

ι)(x)
)

= ̟
−f+·w−κ

2
p

∑

a∈(Op/̟
f+
p Op)×

θι(ax)Iλ(Ψ̃)
(
tσ

(
̟
f+
p a

1

))(
δm,p(x)|

(
̟
f+
p a

1

))

= ̟
−f+·w−κ

2
p

∑

a∈(Op/̟
f+
p Op)×

θι(ax)
((

̟
f+
p a

1

)
· Iλ(Ψ̃)

)
(tσ)(δm,p(x)).

We want to see that this expression is the same as the right-hand side of (7.6.7). For that, let

ψ̃ = Iλ(Ψ̃) and then Lemma 7.6.2 and Lemma 7.6.3 combine to show that

W twθι ψ̃(tσ) =
( ∏

v|p
fv=0

θι(̟v)
−1
) ∑

b∈S×
0

(
̟
f+
p b

1

)
· ψ̃
(
tσ

(
̟
f+
p b

1

))
.(7.6.11)

= θι(x)
∑

c∈S×
1

∑

b∈S×
0

θι(c+ b)
(
̟
f+
p c+b

1

)
ψ̃
(
tσ

(
̟
f+
p c+b

1

))

= θι(x)
∑

a∈(Op/̟
f+
p Op)×

θι(a)
((

̟
f+
p a

1

)
· ψ̃
)
(tσ).
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Multiplying (7.6.11) by ̟
−f+·w−κ

2
p and evaluating at δm,p(x), we see exactly (7.6.10). This completes

the proof. �

Our interest is in eigenclasses, so we separate out the following corollary of Theorem 7.6.4.

Corollary 7.6.7. Suppose that Ψ ∈ Hd
c (Y1(m),Dλ ⊗kλ L) is an eigenvector for each operator Uv,with

eigenvalue α♯v. Set αv = ̟
w−κ

2
v α♯v. Then, for all integers m critical with respect to λ,

Pλ(Ψ)(Nm
p θ

ι) =
∏

v|p
fv>0

(α−1
v qmv )fv ·

∏

v|p
fv=0

(1− θι(̟v)
−1α−1

v qmv ) · 〈twcl
θι(Iλ(Ψ)), clp(m)〉.

Proof. To summarize our assumptions: we are assuming that U
f+
̟pΨ =

∏
v|p(α

♯
v)
fv,+Ψ and hence

Uv tw
cl
θι Iλ(Ψ) = θι(̟v)αv tw

cl
θι Iλ(Ψ) (see Remark 7.6.5). Then, by Theorem 7.6.4 we get that

Pλ(Ψ)(Nm
p θ

ι) =


∏

v|p

(α♯v)
−fv,+


 〈Uf+̟pΨ,Qλ(N

m
p θ

ι)〉

=


∏

v|p

α−fv,+
v



〈


∏

v|p
fv=0

αv − θι(̟v)
−1V +

v )
∏

v|p
fv>0

(V +
v )fv


 twcl

θι Iλ(Ψ), clp(m)

〉
.

But here V +
v is the pullback along (̟v 1 ) and so it is adjoint to the pushforward of the same matrix

under the pairing 〈−,−〉. By Lemma 7.5.7, we can thus replace each instance of V +
v with qmv . The

result follows. �

8. p-adic L-functions

8.1. Consequences of smoothness. We begin by proving a lemma in commutative algebra. If
(R,mR) is a Noetherian local ring and M is a module over R then we write pdR(M) for its projective
dimension over R and depthR(M) for its mR-depth. (These terms are defined in either [65] or [44,
Section 16-17], and we refer the reader to the citations in the proof for definitions.)

Lemma 8.1.1. Suppose that (R,mR) and (T,mT ) are Noetherian local rings with R regular and T
Cohen–Macaulay and R→ T is a finite injective local morphism. The following conclusions hold.

(1) T is flat over R.
(2) If T is regular then T/mRT is a local complete intersection.

Suppose that M is a finite T -module such that pdT (M) <∞.

(3) pdR(M) = pdT (M).
(4) M is projective over T if and only if M is projective over R, in which case the natural map

T/mRT → EndR/mRR(M/mRM) is injective.

Proof. Part (1) follows from [65, Theorem 23.1]. For (2), since R is regular and R → T is flat by (1),
the ideal mRT is generated by a T -regular sequence. Thus T/mRT is a local complete intersection by
[65, Theorem 21.2(iii)].

Now write n = dimR = dim T . Since R and T are both Cohen–Macaulay, n = depthR(R) =
depthT (T ). Since R is regular, pdR(M) < ∞ by [78]. So, if pdT (M) < ∞ as well, the Auslander–
Buchsbaum formula ([7, Theorem 3.7]) implies that

(8.1.1) depthR(M) + pdR(M) = n = depthT (M) + pdT (M).
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Since R→ T is a local morphism, [44, Proposition 16.4.8] implies that depthR(M) = depthT (M) and
thus (8.1.1) reduces to pdR(M) = pdT (M) as we claimed in (3).

For (4), the first clause immediately follows from (3). For the second clause, if M is projective over
R thenM/mRM is finite projective over T/mRT and so clearly T/mRT acts faithfully onM/mRM . �

Remark 8.1.2. If T is regular in Lemma 8.1.1 (which will always be the case below) then the
hypothesis on projective dimension before (3) is automatic by [78]. The Auslander–Buchsbaum formula
for regular local rings is also proven in [44, Proposition 17.3.4], in case the reader is interested.

We now return to the setting and notation of Section 6.4. Let x ∈ E (n)mid(Qp) be a point of weight
λ and h = vp(ψx(Up)). Choose an affinoid neighborhood Ω ⊂ W (1) containing λ so that (Ω, h) is slope
adapted. Thus, x defines a maximal ideal mx ⊂ TΩ,h. Now define Rx := O(Ω)mλ , Tx := (TΩ,h)mx , and
Mx :=

(
Hd
c (n,DΩ)≤h

)
mx

= Hd
c (n,DΩ)mx . Note that Tx is naturally a subring of EndRx(Mx). Recall

that since x ∈ E (n)mid(Qp), there is a natural isomorphism Mx/mλMx
∼= Hd

c (n,Dλ)mx by Remark

6.4.6. Finally, we also write Tx for the image of T(n) in Endkλ(Mx/mλMx) = Endkλ
(
Hd
c (n,Dλ)mx

)
.

Proposition 8.1.3. If E (n)mid is smooth at x, then Mx is finite projective over Tx, and the natural
surjection Tx/mλTx → Tx is an isomorphism.

Proof. Since E (n)mid is equidimensional of dimension equal to the dimension of W (1), the map Rx →
Tx is a finite injective map of local noetherian rings with Rx regular. Moreover,Mx is finite projective
over Rx (Proposition 6.4.5). So, given that Tx is also regular, Lemma 8.1.1(4) implies thatMx is finite
projective over Tx and the natural map Tx/mλTx → Endkλ(Mx/mλMx) is injective. Since this map
factors over the natural surjection Tx/mλTx → Tx, we deduce that the latter is an isomorphism, as
desired. �

If ǫ ∈ {±1}ΣF then write M ǫ
x = Hd

c (n,DΩ)
ǫ
mx

. In the next proposition we write socT (M) for the
socle of M as a T -module, i.e. the sum of the simple T -submodules.

Theorem 8.1.4. Suppose that (π, α) is a p-refined cuspidal automorphic representation of cohomologi-
cal weight λ and conductor n. If α is a decent refinement, x = x(π, α) ∈ E (n)mid(Qp), and ǫ ∈ {±1}ΣF ,
then

(1) socTx(H
d
c (n,Dλ ⊗kλ kx)ǫmx) is one-dimensional over kx.

If, further, condition 2(c) in Definition 6.6.1 holds, then

(2) The Tx-module M ǫ
x is free of rank one.

Proof. We will actually check the second claim first. Suppose that x is decent and satisfies condition
2(c) of Definition 6.6.1. Then, x is a smooth point on E (n)mid by Theorem 6.6.3. By Proposition 8.1.3,
Mx is projective over Tx, and hence so is its direct summand M ǫ

x, and furthermore its rank is equal
to the rank of M ǫ

x/mλM
ǫ
x over Tx. By (6.4.3), M ǫ

x/mλM
ǫ
x ≃ Hd

c (n,Dλ)
ǫ
mx

(as Tx-modules). Now, set

M ǫ = Hd
c (n,DΩ)

ǫ
≤h, which we regard as a coherent sheaf over X = SpTΩ,h. Since M ǫ

x is free over

(TΩ,h)mx , M
ǫ is free over some connected (Zariski-)open neighborhood U of x in X . In particular, to

calculate the rank of M ǫ
x, it suffices to calculate the rank of the fiber of M ǫ at any closed point y ∈ U ;

but by Proposition 6.4.7 we can assume that y is extremely non-critical classical, in which case the
rank is one. So this completes the proof of (2).

Now we check point (1) is true. If x is non-critical, this is a purely automorphic calculation. Other-
wise, since x is decent, point (2) applies to x. Thus we are reduced to showing that dimkx socTx(Tx) = 1.
But Tx ≃ Tx/mλTx by Proposition 8.1.3, so Tx is a local complete intersection ring by Lemma 8.1.1(2).
In particular, Tx is Gorenstein (and of dimension zero) and our result follows from [65, Theorem
18.1]. �
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8.2. p-adic L-functions. Throughout this subsection, we fix a cuspidal automorphic representation
π of weight λ and conductor n. We make the following choices:

(1) α is a decent p-refinement for π.
(2) For each ǫ ∈ {±1}ΣF we choose Ωǫπ ∈ C× as in Theorem 4.2.4, which by definition also fixes

the choice as in Theorem 4.5.7.

We write E for the subfield of C generated by Q(π), Q(α), and the Galois closure of F . Let L =
Qp(ι(E)). Recall that ι induces an isomorphism Hd

c (n,Lλ(E)) ≃ Hd
c (n,Lλ(L)).

Given (1) and (2) we define Φǫπ,α ∈ Hd
c (Y1(n),Lλ(L))

ǫ to be

Φǫπ,α = ι

(
prǫ ES(φπ,α)

Ωǫπ

)
,

where φπ,α is the p-refined eigenform associated to (π, α). In the notation of Section 6.3 we have
Φǫπ,α ∈ Hd

c (n,Lλ(L))
ǫ[mπ,α]. On the other hand, since α is a decent p-refinement for π, Theorem 8.1.4

above implies that dimHd
c (n,Dλ ⊗kλ L)ǫ[m♯π,α] = 1 and there is a natural integration map

(8.2.1) Iλ : Hd
c (n,Dλ ⊗kλ L)ǫ[m♯π,α]→ Hd

c (n,Lλ(L))
ǫ[mπ,α].

(Recall the ♯-notation from Definition 5.4.2.) We note the following lemma.

Lemma 8.2.1. Iλ(H
d
c (n,Dλ ⊗kλ L)ǫ[m♯π,α]) 6= (0) if and only if α is non-critical.

Proof. If α is non-critical then Iλ is an isomorphism, so one implication is clear.
Now suppose that α is not non-critical, but recall that α is decent. Thus condition 2(c) of Definition

6.6.1 holds. This implies that Hd
c (n,Lλ(L))

ǫ
mπ,α

≃ Hd
c (n,Lλ(L))

ǫ[mπ,α], and part (2) of Theorem 8.1.4

implies that M = Hd
c (n,Dλ ⊗kλ L)ǫm♯π,α is free of rank one over T , where T is the largest quotient of

T(n) acting faithfully onM . We note that T is a local complete intersection (by the above discussion).
Since α is not non-critical, the map

(8.2.2) Iλ :M → Hd
c (n,Lλ(L))

ǫ[mπ,α]

is not an isomorphism. If it is zero we are done. If it is non-zero, then the target is a simple T -module
and thus (8.2.2) is the surjection of M onto its largest T -simple quotient (the co-socle). In particular,
the socle M [m♯π,α] ⊂M maps to zero under Iλ, as claimed. �

Now recall that we defined a period map

Pλ : Hd
c (n,Dλ ⊗kλ L)→ D(ΓF , L)

in Definition 7.2.3 and we may post-compose it with the Amice transform A to get elements in
O(X (ΓF ))⊗Qp L (Proposition 5.1.6).

For the next definition and the results afterward, we assume that (π, α) is a decently p-refined
cohomological cuspidal automorphic representation of weight λ and conductor n.

Definition 8.2.2. Lǫp(π, α) = A
(
Pλ(Ψ

ǫ
π,α)

)
where Ψǫπ,α ∈ Hd

c (n,Dλ ⊗kλ L)ǫ[m♯π,α] is any choice of
non-zero vector that, if α is non-critical, we assume satisfies Iλ(Ψ

ǫ
π,α) = Φǫπ,α.

Note that, by Proposition 7.3.2, if χ is a continuous character on ΓF then it defines a locally analytic
function on ΓF and Lǫp(π, α)(χ) = Pλ(Ψ

ǫ
π,α)(χ) = 〈Ψǫπ,α,Qλ(χ)〉 as in Section 7.2.

With this definition, we can catalog the properties of these p-adic L-functions.

Proposition 8.2.3 (Canonicity). Lǫp(π, α) is naturally defined up to an element of L× in general, and

an element of ι(E×) if α is non-critical.
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Proof. Obviously there is a choice of L×-multiple in Definition 8.2.2 in general. But if α is non-critical
then the ambiguity is up to the construction of Φǫπ,α, which is only up to ι(E×) through the choice of
periods Ωǫπ as in Theorem 4.2.4 (see Remark 3.1.6). �

Given ǫ ∈ {±1}ΣF we write X (ΓF )
ǫ for the union of components of X (ΓF ) consisting of characters

χ for which χ(ζ) = ǫ(ζ) for all ζ ∈ π0(F×
∞) (see Remark 7.3.4).

Proposition 8.2.4 (Support). If ǫ 6= ǫ′, then Lǫp(π, α)
∣∣
X (ΓF )ǫ′

= 0.

Proof. See Proposition 7.3.3. �

If h ≥ 0 is a real number and f ∈ O(X (ΓF )) ⊗Qp L then we say f has order of growth ≤ h if
f = A(µ) for some (unique) distribution µ that has order of growth ≤ h as in Definition 7.4.1.

Proposition 8.2.5 (Growth). If hv = vp(ι(αv)) and h =
∑

v|p evhv +
∑
σ∈ΣF

κσ−w
2 , then Lǫp(π, α)

has order of growth ≤ h.

Proof. Proposition 7.4.2 implies Lǫp(π, α) has order of growth ≤ h where h =
∑
v|p evvp(α

♯
v). The

translation to the claimed statement is clear. �

Before the next proposition, we recall the notation:

Λ(π ⊗ θ,m+ 1)alg :=
sgn(θ∞)i1+m+κ−w

2 ∆m+1
F/QΛ(π ⊗ θ,m+ 1)

G(θ)Ωǫπ
.

Here θ is a finite order Hecke character, and ǫ is chosen so that θ(ζ)ζm = ǫ(ζ) for all ζ ∈ π0(F×
∞). We

have Λ(π⊗ θ,m+1)alg ∈ E(θ) (it is only off by the absolute norm of the conductor of θ from the value
in Theorem 4.5.7). We also recall that if pv ∤ n then αv is a root of a quadratic polynomial (Definition
3.4.2) and we write βv = av(π) − αv for the other root. To save notation, in what follows, we stress
that αv and βv are viewed as p-adic numbers under the isomorphism ι : C ≃ Qp.

Proposition 8.2.6 (Interpolation). Suppose that m is an integer that is critical with respect to λ, θ
is a finite order Hecke character of conductor

∏
v|p p

fv
v and ǫ(ζ) = θ(ζ)ζm for all ζ ∈ π0(F×

∞). Then,

(1) If α is critical, then Lǫp(π, α)(N
m
p θ

ι) = 0.
(2) If α is non-critical, then

Lǫp(π, α)(N
m
p θ

ι)

=
∏

fv>0

(
qm+1
v

αv

)fv ∏

fv=0

(1− θι(̟v)α
−1
v qmv )

∏

v|p
pv∤n
fv=0

(1 − βvθι(̟v)q
−(m+1)
v ) · ι

(
Λ(π ⊗ θ,m+ 1)alg

)
.

Proof. Choose Ψǫπ,α as in Definition 8.2.2. Then, by Proposition 7.3.2 we want to compute Pλ(Ψ
ǫ
π,α)(N

m
p θ

ι)

with the notations as in Section 7.2. For each v | p, Ψǫπ,α is a Uv-eigenform with eigenvalue α♯v =

̟
κ−w

2
v αv. Thus Corollary 7.6.7 implies that

(8.2.3) Pλ(Ψ
ǫ
π,α)(N

m
p θ

ι) =
∏

fv>0

(
qmv
αv

)fv ∏

fv=0

(1− θι(̟v)α
−1
v qmv ) · 〈twcl

θι(Iλ(Ψ
ǫ
π,α)), clp(m)〉.
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If α is critical, then the right-hand side vanishes by Lemma 8.2.1. This proves (1). If α is non-critical
though, we have Iλ(Ψ

ǫ
π,α) = Φǫπ,α, by definition. Thus

ι−1
(
〈twcl

θι(Iλ(Ψ
ǫ
π,α)), clp(m)〉

)
= ι−1

(
〈twcl

θι(Φ
ǫ
π,α), clp(m)〉

)

=
1

Ωǫπ
〈twθ prǫ ES(φπ,α), cl∞(m)〉 (by Proposition 7.5.6)

=
1

Ωǫπ
〈twθ(ES(φπ,α)), cl∞(m)〉 (by Lemma 4.5.5)

=
G(θ−1)

Ωǫπ
〈ES(φπ,α ⊗ θ), cl∞(m)〉.

Combining this calculation with (8.2.3), we are finished by Corollary 4.5.4. (The Gauss sum can be
moved to the denominator using (4.3.3); this is where the m’s in the qv exponents of (8.2.3) becomes
m+ 1’s.) �

Finally, we have a many-variable version of the above constructions. It follows easily from the
functorial nature of our construction of the period maps. The proof is directly inspired from [11,
Remark 4.16].

Proposition 8.2.7 (Variation). Let x = xπ,α be a smooth classical point on E (n)mid. Then, for
each sufficiently small good open neighborhood U of x in E (n)mid there exists an element Lǫ ∈
O(U)⊗̂QpO(X (ΓF )) specified up to O(U)×-multiple and such that for each decent point x′ ∈ U asso-
ciated with a p-refined cohomological cuspidal automorphic representation (π′, α′) we have

Lǫp|u=x′ = cx′Lǫp(π, α)

for some constant cx′ ∈ k×x′ .

Proof. Given x, every sufficiently small good open neighborhood U of x is regular (Theorem 6.6.3). Fix
such a neighborhood, and assume that it is belongs to a slope adapted pair (Ω, h). By Proposition 6.4.5
we may assume that O(U) acts faithfully on the finite projective O(Ω)-module M d

c (U) = eUH
d
c (n,DΩ).

By Lemma 8.1.1, M d
c (U) is finite projective over O(U). Furthermore, for each ǫ, M = M d

c (U)ǫ is free
of rank one over O(U) by the same argument as in Theorem 8.1.4.

On the other hand, in Section 7.2 we constructed a canonical period map

PΩ : Hd
c (n,DΩ)→ D(ΓF ,O(Ω)).

We can then specialize this to

PΩ|M ∈M∨⊗̂O(Ω)D(ΓF ,O(Ω)) ≃M∨⊗̂QpD(ΓF ,Qp)

where M∨ = HomO(Ω)(M,O(Ω)) is the dual O(U)-module.
We now combine the previous two paragraphs. Since U is smooth, O(U) is regular. In particular, it

is Gorenstein. Since M ≃ O(U) as an O(U)-module we deduce that M∨ is also free of rank one over
O(U). Choose an O(U)-linear isomorphism M∨ ≃ O(U) and then we get

PΩ|M ∈M∨⊗̂QpD(ΓF ,Qp) ≃ O(U)⊗̂QpD(ΓF ,Qp).

We finally define Lǫp := A(PΩ|M ) where A is the Amice transform, as usual.

From the construction, Lǫp was uniquely defined up to O(U)×-multiple and it is an exercise to see
that it specializes the construction(s) given above. �
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Appendix A. A deformation calculation

The goal of this appendix is to prove Proposition 6.6.5 in the cases not already available from [15,
Section 3]. Namely, we calcuate the dimension of the Zariski tangent space to a certain deformation
functor of certain two-dimensional semi-stable, but non-crystalline, Galois representations. The cal-
culations are made using the associated (ϕ,Γ)-module. We recommend the reader who is not familiar
with (ϕ,Γ)-modules over the Robba ring and their relationship to Galois representations also consult
[16], along with [56] for further details ([12, Chapter 2] also contains many details, in the case of
Gal(Qp/Qp)-representations).

The appendix is divided as follows. In Section A.1 we recall (ϕ,Γ)-modules and their connection to
Galois representations, and we describe general results. In Section A.2 we fix a rank two (ϕ,Γ)-module
that is semi-stable, but not crystalline, and we establish results specific to that situation. Finally,
In Section A.3 we recall the notion of weakly-refined (infinitesimal) deformations and calculate the
dimension of the corresponding Zariski tangent space.

We fix the following notations throughout Appendix A. Let K be a finite extension of Qp with ring
of integers OK and fix a uniformizer ̟K ∈ OK . Let K0 be maximal unramified subextension of K
and let f = (K0 : Qp) be the residue degree of K/Qp. Let L be a finite extension of Qp such that
#ΣK = (K : Qp), where ΣK := HomQp(K,L).

A.1. (ϕ,Γ)-modules and Galois representations. Let K∞ = lim−→K(ζpn) be the field extension of

K obtained by adjoining all p-th power roots of unity and ΓK = Gal(K∞/K). The Robba ring RK
is the ring of Laurent series f(T ) in a single variable whose coefficients lie in the maximal absolutely
unramified extension of K∞ and which converge on an annulus r < |T | < 1, with r depending on f(T ).
The ring RK is equipped with a continuous operator ϕ (the Frobenius) and a continuous action of the
group ΓK that commutes with ϕ. We write RK,L = RK ⊗Qp L for the Robba ring extended linearly
to L.

A (ϕ,ΓK)-module (over RK,L) is a finite free RK,L-module D equipped with a continuous operator
ϕ and a continuous action of the group ΓK that commutes with ϕ, and these actions are assumed to
be semi-linear with respect to the (ϕ,ΓK)-action on RK,L. There is a fully faithful functor

{continuous L-linear representations of GK} −→ {(ϕ,ΓK)-modules over RK,L}
r 7−→ Drig(r)

whose essential image is the full subcategory of étale (ϕ,ΓK)-modules. Even if r itself is irreducible,
the (ϕ,ΓK)-module Drig(r) may become reducible.

Galois representation-theoretic notions and constructions extend to the category of (ϕ,ΓK)-modules
over RK,L through the functor Drig. For instance, each (ϕ,ΓK)-module has a dual D∨, we may speak
of Hodge–Tate weights, and there are functors Dcrys and Dst that are used to define categories of (not
necessarily étale) crystalline and semi-stable (ϕ,ΓK)-modules. For instance, Dcrys(D) = D[1/t]ΓK

where t ∈ RK,L is Fontaine’s “p-adic 2πi” (and D+
crys(D) = DΓK ). In the ring RK,L, the element t fac-

tors into a product t =
∏
σ∈ΣK

tσ and tσRK,L is crystalline (ϕ,ΓK)-module with Hodge–Tate weights

are HTσ′ (tσRK,L)) = −1 if σ′ = σ and 0 otherwise. The Frobenius acts trivially Dcrys(tσRK,L).
Rank one (ϕ,ΓK)-modules are parametrized by continuous characters δ : K× → L×. We write

RK,L(δ) for the (ϕ,ΓK)-module corresponding to δ. It is étale exactly when δ(̟K) is a p-adic unit,
which is to say that δ extends via the local Artin map to a continuous L×-valued character on Gab

K .
Another class of characters is

zs :=

(
z 7→

∏

σ∈ΣK

τ(z)sσ

)
,
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where s = (sσ)σ∈ΣK is a collection of integers. The cyclotomic character χcycl corresponds to the
character on K× given by

χcycl(z) = |NK/Qp
(z)|pNK/Qp

(z) = |z1|pz1,
where 1 = (1σ)σ∈ΣK is the constant tuple. The (ϕ,ΓK)-module tσRK,L corresponds to the character
zs where sσ = 1 and sσ′ = 0 if σ′ 6= σ. As a final example, given a character δ0 : O×

K → L× we write
LT̟K (δ0) for the character δ0 extended to K× by taking the value 1 on ̟K (compare with the main
text prior to Proposition 6.5.8).

Given by (ϕ,ΓK)-module and any character δ we write D(δ) = D ⊗RK,L RK,L(δ). We note the
following lemma for later use. Note that D is specifically not assumed to be crystalline in the lemma.

Lemma A.1.1. If D is a (ϕ,ΓK)-module and δ : K× → L× is a crystalline character, the natural
map Dcrys(D)⊗Dcrys(RK,L(δ))→ Dcrys(D(δ)) is an isomorphism.

Proof. If E is any (ϕ,ΓK)-module, the natural map Dcrys(D)⊗Dcrys(E)→ Dcrys(D⊗E) is injective.
Thus, for any character δ, the composition

Dcrys(D)⊗Dcrys(RK,L(δ))⊗Dcrys(RK,L(δ−1))→ Dcrys(D(δ))⊗Dcrys(RK,L(δ−1))→ Dcrys(D)

is the injective at each step. Since δ is crystalline, the domain of the composition is canonically
isomorphic to Dcrys(D) and the resulting composition Dcrys(D) → Dcrys(D) is the identity map. It
follows that Dcrys(D) ⊗ Dcrys(RK,L(δ)) and Dcrys(D(δ)) have the same L-dimension and thus the
natural (injective) map Dcrys(D)⊗Dcrys(RK,L(δ))→ Dcrys(D(δ)) is an isomorphism. �

Every (ϕ,ΓK)-module has Galois cohomology, written H•(D), and Selmer groups, written H1
f (D)

and H1
g (D) (see [13, Section 1.4.1] and [72, Section 3A]). There is a canonical identification H0(D) =

Hom(RK,L, D). The cohomology of rank one (ϕ,ΓK)-modules is known (see [56, Proposition 6.4.8]).
For instance, H0(RK,L(δ)) = (0) unless δ = zs where s = (sσ)σ∈ΣK and sσ ≤ 0 for all σ ∈ ΣK .

Lemma A.1.2. If δ and δ′ are any two characters, then any non-zero morphism of (ϕ,ΓK)-modules
RK,L(δ)→RK,L(δ′) induces an isomorphism Dcrys(RK,L(δ)) ∼= Dcrys(RK,L(δ′)).
Proof. Let f : RK,L(δ)→ RK,L(δ′) be a non-zero morphism of (ϕ,ΓK)-module. By the previous two
paragraphs, f induces a (ϕ,ΓK)-equivariant isomorphism RK,L(δ)[1/t] ∼= RK,L(δ′)[1/t]. Thus f also
induces an isomorphism at the level of Dcrys(−). �

Example A.1.3. Suppose that D a (ϕ,ΓK)-module such that Dcrys(D)ϕ=1 6= (0). Choose a non-zero
v ∈ Dcrys(D)ϕ=1. By definition, we get an inclusion

(A.1.1) RK,L ∼= RK,L · v →֒ D[1/t]

that is equivariant for the action of ϕ and ΓK . After clearing powers of the tσ, the image of (A.1.1)
generates a rank one (ϕ,ΓK)-submodule of D. Specifically, there exists (unique) integers s = (sσ)σ∈ΣK

such that (A.1.1) induces an inclusion RK,L(zs) →֒ D of (ϕ,ΓK)-modules whose cokernel is also a
(ϕ,ΓK)-module (i.e. free over RK,L).

Cohomology classes in H1(D) may be interpreted as extensions 0 → D → E → RK,L → 0 in the
category of (ϕ,ΓK)-modules. For the Selmer groups, H1

f (D) parametrizes extensions E such that

0→ Dcrys(D)→ Dcrys(E)→ Dcrys(RK,L)→ 0

is exact, rather than only left exact. If D is crystalline, H1
f (D) parametrizes crystalline extensions.

The analogous definition and statement hold for H1
g after replacing “crystalline” with “de Rham” and

Dcrys with DdR. Berger proved that every de Rham (ϕ,Γ)-module is potentially semi-stable and that a
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potentially semi-stable extension of semi-stable (ϕ,ΓK)-modules is also semi-stable ([16], but compare
with [72, Theorem 3.1, Corollary 3.3]). Thus, if D is semi-stable, then H1

g (D) parametrizes semi-stable

extensions E. In particular, H1
g (D) = H1

st(D) in the notations of [13, Section 1.4.1]. We recall the
following proposition, limited to the setting in which we will need to reference it.

Proposition A.1.4 ([13, Proposition 1.4.4, Corollary 1.4.5, Corollary 1.4.6]).

(1) Suppose that D is a semi-stable (ϕ,ΓK)-module. Then,

dimLH
1
f (D) = dimLH

0(D) + h−(D),

where h−(D) is the number (with multiplicity) of negative Hodge–Tate weights of D, and

dimLH
1
g (D) = dimLH

1
f (D) + dimLDcrys(D

∨(χcycl)
ϕ=1.

(2) Suppose that 0→ E1 → E → E2 → 0 is an exact sequence of semi-stable (ϕ,ΓK)-modules and
the connecting map H0(E2)→ H1(E1) is zero. Then, the natural sequence

0→ H1
f (E1)→ H1

f (E)→ H1
f (E2)→ 0

is exact.

A.2. Triangulated, semi-stable, but non-crystalline, (ϕ,ΓK)-modules of rank two. We now
begin to limit the discussion to certain rank two (ϕ,ΓK)-modules. Suppose that D is a (ϕ,ΓK)-module
of rank two. A triangulation of D is an extension

(A.2.1) 0→ RK,L(δ1)→ D →RK,L(δ2)→ 0

where the δi are characters. For the rest of this appendix we fix a (ϕ,ΓK)-moduleD and a triangulation
(A.2.1). We also assume:

(st) D is semi-stable but non-crystalline.

and

(HT-reg) for σ ∈ ΣK , the σ-Hodge–Tate weights of D are distinct.

Following (HT-reg) we write h1,σ < h2,σ for the σ-Hodge–Tate weights of D in the direction σ ∈ ΣK .

Example A.2.1. Consider the global setting of Section 6.6, where a classical point x = (π, α) on
E (n)mid has been selected. For a p-adic place v of the number field F , let K = Fv and D = Drig(ρx,v).
The Hodge–Tate weights hi,τ are equal to h1,τ = w−κτ

2 and h2,τ = w+κτ
2 + 1, as in Theorem 6.5.1.

Thus D satisfies (HT-reg). The choice of refinement αv at v | p defines a character δ′1 by

δ′1 = z−h1 · nr(αv),

where nr(αv) is trivial on O×
K and maps ̟K to αv. Unwinding definitions (see Proposition 6.5.8,

for instance) we have Dcrys(D ⊗ RK,L(δ′−1
1 ))ϕ=1 is non-zero. Thus, by Example A.1.3, D has a

triangulation (A.2.1) with characters (δ1, δ2) where δ1 = zsδ′1 (and δ2 = det(D)·δ−1
1 ). In a triangulation

A.2.1, the Hodge–Tate weights of the δi together give the Hodge–Tate weights of D. Thus, the integers
s = (sσ)σ∈ΣK are necessarily either sσ = 0 or sσ = h1,σ − h2,σ. The condition (st) arises only if x is
associated with an unramified special representations (see part (2) of Theorem 6.5.1).

Since D is semi-stable, each δi in (A.2.1) is crystalline, and ϕf acts on Dcrys(RK,L(δ1 LT̟K (zh1))

by Φ := δ1(̟K)
∏
σ∈ΣK

σ(̟K)HTσ(δ1)−h1,σ . Since Dcrys(−) is left exact, we have

(A.2.2) Dcrys(D
(
LT̟K (z

h1)
)
)ϕ
f=Φ 6= 0.
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The rest of this section collects, in three lemmas, some basic facts about D that follow from the
hypothesis (st). In order, the detail properties of Dcrys, the adjoint (ϕ,ΓK)-module, and, results in
Galois cohomology.

Lemma A.2.2.

(1) The natural injective map Dcrys(RK,L(δ1))→ Dcrys(D) is an isomorphism.

(2) There exists a collection of integers s = (sσ)σ∈ΣK such that δ2δ
−1
1 = χ−1

cyclz
s. In particular, if

φi is the eigenvalue of ϕf acting on Dcrys(RK,L(δi)), then φ2φ−1
1 = pf 6= 1.

Proof. To prove (1), note that Dcrys(D) = Dst(D)N=0 is a K0⊗QpL-direct summand of Dst(D). Since
Dst(D) is free of rank two over K0 ⊗Qp L, but D is not crystalline, Dcrys(D) is free of rank one over
K0⊗Qp L. In particular, the domain and range of the injective map Dcrys(RK,L(δ1))→ Dcrys(D) both
have the same L-dimension, forcing the map to be an isomorphism.

To prove (2), note that (A.2.1) and (st) implies D defines a non-zero class in H1
g (RK,L(δ1δ−1

2 )) that

does not lie in H1
f (RK,L(δ1δ−1

2 )). By Proposition A.1.4, applied to RK,L(δ1δ−1
2 ), we have that ϕ acts

trivially on Dcrys(RK,L(δ2δ−1
1 χcycl)). The result then follows from Example A.1.3. �

Now we write ad(D) = D ⊗D∨ ∼= Hom(D,D) for the adjoint (ϕ,ΓK)-module associated with D.

Lemma A.2.3.

(1) The natural surjective map ad(D)→ RK,L(δ2δ−1
1 ) is not split.

(2) We have H1
g (ad(D)) = H1

f (ad(D)).

Proof. Label the maps in (A.2.1) as

0→RK,L(δ1) ι→ D
π→RK,L(δ2)→ 0.

The natural surjective map in (1) is π ⊗ ι∗, which factors as

ad(D)

π⊗ι∗
&&◆

◆
◆

◆
◆

◆

1⊗ι∗
// D ⊗RK,L(δ−1

1 )

π⊗1

��

RK,L(δ2δ−1
1 ).

If π⊗ ι∗ were to split, then π⊗ 1 would also. Twisting by δ1, π would have to split. But then D would
be a a sum of crystalline characters and thus crystalline itself, contradicting (st). This proves (1).

We now prove (2). Note that ad(D) is semi-stable and ad(D)∨ ∼= ad(D). Thus, Proposition A.1.4(1),
it suffices to show that Dcrys(ad(D) (χcycl))

ϕ=1 = (0). Suppose not, and we will contradict (1). On
the one hand, Example A.1.3 implies there is an inclusion

(A.2.3) RK,L(χ−1
cyclz

r) →֒ ad(D),

for some collection of integers r = (rσ)σ∈ΣK . On the other, ad(D) sits in an exact sequence

0→ P → ad(D)→RK,L(δ2δ−1
1 )→ 0

where P itself has a composition series of (ϕ,ΓK)-modules with rank one successive quotientsRK,L(δ1δ−1
2 )

and RK,L (with multiplicity two). Note that Hom(RK,L(χ−1
cyclz

r),RK,L) = (0) regardless of r. Note

also, by Lemma A.2.2(2), we have δ1δ
−1
2 = χcyclz

−s, for some integers s = (sσ)σ∈ΣK , and so

Hom(RK,L(χ−1
cyclz

r),RK,L(δ1δ−1
2 )) = Hom(RK,L(χ−2

cyclz
r+s),RK,L) = (0),
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regradless of s and r. So, our notes show (A.2.3) factors through ad(D)/P and defines an isomorphism
RK,L(χ−1

cyclz
r) ∼= RK,L(δ2δ−1

1 ) (since the cokernel of (A.2.3) must be torsion free). But then (A.2.3)

provides a splitting of ad(D)։ RK,L(δ2δ−1
1 ), which contradicts part (1). �

Finally we have a lemma on Galois cohomology.

Lemma A.2.4.

(1) We have H2(D
(
δ−1
2

)
) = (0).

(2) The natural map H0(ad(D))→ H0(D
(
(δ−1

1

)
) is an isomorphism.

(3) The natural diagram

(A.2.4) 0 // H1
f (D

(
δ−1
2

)
) //

��

H1
f (adD) //

��

// H1
f (D

(
δ−1
1

)
) //

��

0

0 // H1(D
(
δ−1
2

)
) // H1(adD) //// H1(D

(
δ−1
1

)
) // 0

has exact rows.

Proof. First we prove (1). By local Tate duality ([62, Theorem 1.2]), it is enough to show that
Hom(D,RK,L(δ2χcycl)) = (0). By way of contradiction, suppose that a non-zero (ϕ,ΓK)-module
morphism f : D → RK,L(δ2χcycl) exists. Note that Hom(RK,L(δ2),RK,L(δ2χcycl)) = (0) and thus f
induces a non-zero map RK,L(δ1) → RK,L(δ2χcycl). Applying Dcrys(−) and using Lemma A.1.2 and
part (1) of Lemma A.2.2 we have a diagram

Dcrys(RK,L(δ1))
f

//

��

Dcrys(RK,L(δ2χcycl))

Dcrys(D)

f

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

where every arrow is an isomorphism. This is a contradiction, though. Indeed, ker(f) is a rank one
(ϕ,ΓK)-submodule which is necessarily crystalline, since D is semi-stable and a semi-stable character
is also crystalline. Thus Dcrys(ker(f)) is non-zero and certainly lies in the kernel of the map f induces
on the level of Dcrys. Thus no such f exists.

Now we prove (2). We first note that H0(D
(
δ−1
2

)
) = (0). Indeed, a non-zero map RK,L(δ2) → D

would induce an inclusion Dcrys(RK,L(δ2)) ⊆ Dcrys(D), which contradicts parts (1) and (2) of Lemma

A.2.2. Thus we have H0(ad(D)) ⊆ H0(D
(
δ−1
1

)
). However, the same reasoning also explains that

H0(D
(
δ−1
1

)
) is one-dimensional, and since H0(ad(D)) is at least one-dimensional, claim (2) is settled.

The exactness of the bottom row of (A.2.4) is a consequence of parts (1) and (2) of this lemma.
For the top row, the hypothesis of Proposition A.1.4(2), for the sequence

0→ D
(
δ−1
2

)
→ ad(D)→ D

(
δ−1
1

)
→ 0,

applies by part (2) of this lemma. Part (3) follows immediately from that proposition. �

A.3. Weakly-refined deformations. The goal of this final section is to prove Corollary A.3.5. We
begin by recalling the setup. First, we assumed D is triangulated as in (A.2.1) and satisfies (HT-reg)
and (st). Next, recall that ARL denotes the category of local Artinian L-algebras with residue field
L. Given a (ϕ,ΓK)-module D we write XD : ARL → Set for its deformation functor (see [15, Section
2.2]). As above, we write ad(D) = D ⊗D∨ and

tD = XD(L[ε]) ∼= Ext1(ϕ,ΓK)(D,D) ∼= H1(ad(D))
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for the Zariski tangent space to XD.

Let D̃ ∈ tD. Since the Hodge–Tate weights of D are distinct, at each embedding σ ∈ ΣK , by

(HT-reg), we may write the Hodge–Sen–Tate weights of D̃ according to ηi,σ = hi,σ+ εdηi,σ ∈ L[ε] (see
[15, Section 2.4], for instance). Write log : O×

L → L for the logarithm defined on 1 + pOL as usual,
extended by zero on torsion elements, and homomorphically otherwise. If η = (ησ)σ∈ΣK ) ∈ L[ε]ΣK is

given by ησ = hσ + εdησ with hσ ∈ Z, then write zη for the character O×
L → L× given by

z
zη7−→

∏

τ∈ΣK

τ(z)hτ (1 + εdητ log(τ(z))).

The Hodge–Sen–Tate weights of zη is −η (meaning σ-by-σ). Recall that Φ̟K ∈ L× is the (only)
eigenvalue of ϕf acting on Dcrys(D

(
LT̟K (z

h1)
)
).

Definition A.3.1. Let D̃ ∈ tD.

(1) D̃ is called weakly-refined if D+
crys(D̃

(
LT̟K (z

η̃1)
)
)ϕ
f=Φ̃ is free of rank one over K0 ⊗Qp L[ε]

for some Φ̃ ∈ L[ε] with Φ̃ ≡ Φ̟K mod ε.

(2) D̃ is called Hodge–Tate if η̃i = hi for each i.

Since Φ̟K is a simple eigenvalue for ϕf acting on Dcrys(D
(
LT̟K (z

h1)
)
), the subset tRef

D ⊂ tD of
weakly refined deformations is an L-linear subspace, equal to the tangent space to the deformation

functor XφD as in [15, Section 3.2].26 Also write tHT
D for the subspace of Hodge–Tate deformations of D

and then the intersection of tRef
D and tHT

D is written t
Ref,HT
D . Note that D̃ is a Hodge–Tate deformation

if and only the underlying rank four (ϕ,ΓK)-module is Hodge–Tate in the usual sense (compare with
the proof of Lemma A.3.2 below).

The Selmer group H1
f (ad(D)), by definition, parametrizes those deformations D̃ ∈ tD such that the

extension
0→ D[1/t]→ D̃[1/t]→ D[1/t]→ 0

is split as ΓK-modules. In particular, if D̃ ∈ H1
f (adD), then the a priori left-exact sequence

(A.3.1) 0→ Dcrys(D)→ Dcrys(D̃)→ Dcrys(D)→ 0

is exact.27 On the other hand, since D is semi-stable by (st), the Selmer groupH1
g (ad(D)) parametrizes

semi-stable deformations.

Lemma A.3.2. We have H1
g (ad(D)) = H1

f (ad(D)) ⊂ t
Ref,HT
D .

Proof. The first equality is part (2) of Lemma A.2.3. It is clear that H1
g (ad(D)) ⊂ tHT

D because a

semi-stable (ϕ,ΓK)-module is also a Hodge–Tate one. Thus it suffices to prove H1
f (ad(D)) ⊂ tRef

D .

Consider D̃ ∈ H1
f (ad(D)). We will show that M = Dcrys(D̃

(
LT̟K (z

η̃1)
)
) is free of rank one over

K0 ⊗Qp L[ε], at which point the eigenvalue through which ϕf acts must deform Φ̟K by part (1) of

Lemma A.2.2). Since H1
f (ad(D)) = H1

g (ad(D)) ⊆ tHT
D , as already noted, we have η̃1 = h1 is constant,

so in fact M = Dcrys(D̃
(
LT̟k(z

h1)
)
). Since D̃ lies in H1

f (ad(D)), the sequence

0→ Dcrys(D
(
LT̟k(z

h1)
)
)→M → Dcrys(D

(
LT̟k(z

h1)
)
)→ 0

26An examination of the proof of Proposition 3.1 in loc. cit. shows that D is not required to be crystalline, despite
the context in which that result is proven, which means the reference is still valid without the crystalline hypothesis.
Further, φ here is δ1(̟K)

∏
σ∈ΣK

σ(̟K )HTσ(δ1), i.e. the eigenvalue of ϕf acting on D, not D
(
LT̟K (zh1 )

)
.

27Warning: the exactness follows from D̃ lying in H1
f
(ad(D)) in general, but the converse does not hold unless D is

crystalline.
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is exact, by (A.3.1) and Lemma A.1.1. Thus M is a K0 ⊗Qp L[ε]-module, and M/εM is free of
rank one over K0 ⊗Qp L. If m is the lift to M of any basis vector of M/εM , then the submodule
(K0 ⊗Qp L[ε]) ·m ⊂ M may be checked to be free of rank one over K0 ⊗Qp L[ε] (compare with the
proof of “(d) implies (b)” in [15, Lemma 3.3], which references [12, Footnote 18, p. 78]). Since M
and (K0 ⊗Qp L[ε]) ·m have the same length over K0 ⊗Qp L, they must be equal. This completes the
proof. �

By Lemma A.3.2 we now have an exact sequence of L-vector spaces

(A.3.2) 0→ t
Ref,HT
D /H1

f (ad(D))→ tRef
D /H1

f (ad(D))
dη̃−→

⊕

σ∈ΣK

L⊕2.

Let S2 be the permutations on the set {1, 2}. We define the critical type of the triangulation (A.2.1) as

the collection of permutations c = (cσ)σ∈ΣK ∈ SΣK
2 such that HTσ(δi) = hcσ(i),σ. (See [15, Definition

2.2].) The next lemma controls the image of dη̃ in the sequence (A.3.2).

Lemma A.3.3. If D̃ ∈ tRef
D then dη̃i,σ = dη̃cσ(i),σ for each i = 1, 2 and all σ ∈ ΣK . In particular,

dimL tRef
D /H1

f (adD) ≤ dimL t
Ref,HT
D /H1

f (adD) + 2(K : Qp)−#{σ ∈ ΣK | cσ 6= 1}.

Proof. The main claim of the lemma implies, for dη̃ as in (A.3.2), that

dimL im(dη̃) ≤
∑

cσ=1

2 +
∑

cσ 6=1

1 = 2(K : Qp)−#{σ ∈ ΣK | cσ 6= 1}.

Thus, the second claim follows from the first and (A.3.2). The main claim of the lemma is is proven
in [14, Theorem 7.1 and Lemma 7.2], with some unnecessary hypotheses. We give a proof here for
convenience.

By replacingD withD′ = D
(
LT̟K (z

h1
)
) (and δi by δi LT̟K (z

h1)) we may assume thatD+
crys(D)ϕ

f=Φ̃

is free of rank one over K0 ⊗Qp L[ε]. Write D1 for the image of D̃ ∈ H1(ad(D)) under the natural

map H1(adD)→ H1(D
(
δ−1
1

)
).

To prove the main claim, it is enough to show that D1 belongs to H1
f (D

(
δ1

−1
)
). To see this, first

note that H1
f (D

(
δ−1
1

)
) = H1

g (D
(
δ−1
1

)
) by the same logic as in part (2) of Lemma A.2.3. Thus D1 is

assumed to be a semi-stable (since D
(
δ−1
1

)
is) and, in particular, Hodge–Tate. Second, consider the

matrix of Sen’s operator on D̃ (viewed as a rank four (ϕ,ΓK)-module over RK,L) in the basis induced
from (A.2.1). It is given by




HTσ(δ1) dη̃cσ(1),σ − dη̃1,σ
HTσ(δ2) dη̃cσ(2),σ − dη̃1,σ

HTσ(δ1)
HTσ(δ2)


 ,

whereas the matrix of the Sen operator on D̃1 is the upper 3× 3-block


HTσ(δ1) dη̃cσ(1),σ − dη̃1,σ

HTσ(δ2)
HTσ(δ1)


 .

Since D1 is Hodge–Tate, Sen’s operator is semi-simple and thus dη̃cσ(1),σ = dη̃1,σ. This proves the
main claim for i = 1. For i = 2, either it is trivial because cσ = 1 or it is equivalent to the case of
i = 1. Regardless, it remains to prove that D1 ∈ H1

f (D
(
δ−1
1 )
)
).
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Explicitly, D1 is defined as

(A.3.3) D1 = ker
(
D̃ ։ D ։ RK,L(δ2)

)
,

and, since Dcrys is left-exact, we also have an exact sequence

(A.3.4) 0→ Dcrys(D)ϕ
f=Φ̟K → Dcrys(D1)

(ϕf=Φ̟K ) → Dcrys(RK,L(δ1))ϕ
f=Φ̟K .

Here (−)(∗) means the generalized eigenspace for (∗). (Taking generalized eigenspaces is exact.) By

(A.3.3) and part (2) of Lemma A.2.2, we see that Dcrys(D1)
(ϕf=Φ̟K ) = Dcrys(D̃)(ϕ

f=Φ̟K ), which has
L-dimension 2(K0 : Qp) because the right-hand side of free of rank one over K0 ⊗Qp L[ε]. On the
other hand, part (1) of Lemma A.2.2 implies the two outside terms of (A.3.4) each have L-dimension
(K0 : Qp). In particular, by counting dimensions we deduce that (A.3.4) is surjective on the right. In
particular, the natural sequence

0→ Dcrys(D)→ Dcrys(D1)→ Dcrys(RK,L(δ1))→ 0

is exact. Since δ1 is crystalline, Lemma A.1.1 implies that D̃1 ∈ H1
f (D

(
δ1

−1)
)
), which completes the

proof. �

Following Lemma A.3.3, we see that in order to control dimL tRef
D /H1

f (ad(D)), it suffices to control

dimL t
Ref,HT
D /H1

f (ad(D)) where the Hodge–Tate condition is added as well. Here is the the crucial

estimate for that dimension, the left-hand term in (A.3.2).

Proposition A.3.4. dimL t
Ref,HT
D /H1

f (ad(D)) ≤ #{σ ∈ ΣK | cσ 6= 1}.

Proof. In ths proof we use the notation H1
/f (E) for H1(E)/H1

f (E). With this notation, we note that

there is a natural inclusion t
Ref,HT
D /H1

f (adD) ⊂ H1
/f (D

(
δ−1
2

)
). To see this, consider the diagram

(A.3.5) t
Ref,HT
D /H1

f (ad(D))

��

0 // H1
/f (D

(
δ−1
2

)
) // H1

/f (ad(D)) // // H1
/f (D

(
δ−1
1

)
) // 0.

The bottom row is exact by part (3) of Lemma A.2.4, and then the proof of Lemma A.3.3 implies that
the composition from the top to the lower right is trivial. In fact, we make a stronger claim than just
noted:

Claim. We have

t
Ref,HT
D /H1

f (ad(D)) ⊆ ker
(
H1
/f (D

(
δ−1
2

)
)→ H1

/f (RK,L(δ2δ−1
2 ))

)
.

Moreover, the natural map

H1
/f (D

(
δ−1
2

)
)→ H1

/f (RK,L(δ2δ−1
2 ))

is surjective. Thus,

dimL t
Ref,HT
D /H1

f (ad(D)) ≤ dimH1
/f (D

(
δ−1
2

)
)− dimLH

1
/f (RK,L(δ2δ−1

2 )).

(We write δ2δ
−1
2 to emphasize that the maps on cohomology is induced from the natural quotient

D →RK,L(δ2).)
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The proof of the first portion of the claim follows from the technique in [15, Section 3.3]. Let

D̃ ∈ t
Ref,HT
D . By the first paragraph of this proof, after changing D̃ by an element in H1

f (ad(D)), we

may suppose that D̃ lies in the image of H1(D
(
δ−1
2

)
)→ H1(ad(D)). By [15, Lemma 3.8(a)] there is a

constant deformation RK,L(δ1)[ε] →֒ D̃ with saturated image. Let RK,L[ε](δ̃2) be the cokernel. By [15,

Lemma 3.8(b)] the image of D̃ in H1(RK,L(δ2δ−1
2 )) is the deformation δ̃2 of δ2. But δ̃2 is Hodge–Tate

because D̃ is, and a Hodge–Tate deformation of a crystalline character is a crystalline character, so D̃
has trivial image in H1

/f (RK,L(δ2δ−1
2 )).

We now prove the second portion of the claim. By local Tate duality and [13, Corollary 1.4.10]
(which describes how the Selmer groups H1

f behave under duality), it is equivalent to check that

H1
f (RK,L(δ2δ−1

2 χcycl))→ H1
f (D

(
δ−1
2 χcycl

)
) is injective. If ι ∈ H0(RK,L(δ1δ−1

2 χcycl)) = Hom(RK,L,RK,L(δ1δ−1
2 χcycl))

is a non-zero morphism, then its image in H1(RK,L(δ2δ−1
2 χcycl)) is the pullback Dι that into a diagram

(A.3.6) 0 // RK,L(δ2δ−1
2 χcycl) // Dι

��

// RK,L
ι

��

// 0

0 // RK,L(δ2δ−1
2 χcycl) // D∨ (δ2χcycl) // RK,L(δ2δ−1

1 χcycl) // 0.

The vertical arrows in (A.3.6) are all injections by construction. Since D is semi-stable, non-crystalline,
of rank two, the same is true for D∨ (δ2χcycl). By part (1) of Lemma A.2.2 the functor Dcrys induces
an isomorphism

Dcrys(RK,L(δ2δ−1
2 χcycl)) ∼= Dcrys(D

∨ (δ2χcycl)),

which must factor through an isomorphism

Dcrys(RK,L(δ2δ−1
2 χcycl)) ∼= Dcrys(Dι).

So, Dcrys(Dι)→ Dcrys(RK,L) is the zero map, which proves that Dι 6∈ H1
f (D

(
δ2δ

−1
2 χcycl

)
).

With the claim proven, we can finish the proof of the proposition. Recall that part (1) of Proposition
A.1.4 determines the L-dimension of theH1

f (E), when E is a semi-stable (ϕ,ΓK)-module. In particular,

by the Euler–Poincaré formula (see [62, Theorem 1.2(a)]) we have that if E has rank d, then

dimLH
1
/f (E) = d · (K : Qp)− h−(E)− dimLH

2(E),

where we recall that h−(E) is the number of negative Hodge–Tate weights. Taking E = RK,L ∼=
RK,L(δ2δ−1

2 ) we see that

dimLH
1
/f (RK,L(δ2δ−1

2 )) = (K : Qp).

Taking E = D
(
δ−1
2

)
we see, using part (1) of Lemma A.2.4 and the fact that cσ is non-trivial if and

only if HTσ(δ1) > HTσ(δ2), that

dimLH
1
/f (D

(
δ−1
2

)
) = 2(K : Qp)−#{σ | HTσ(δ1) < HTσ(δ2)}
= (K : Qp) + #{σ ∈ ΣK | cσ 6= 1}.

Putting these calculations together, we see that

dim t
Ref,HT
D ≤ dimLH

1
/f (D

(
δ−1
2

)
)− dimLH

1
/f (RK,L(δ2δ−1

2 ))

= (K : Qp) + #{σ ∈ ΣK | cσ 6= 1} − (K : Qp)

= #{σ ∈ ΣK | cσ 6= 1}.
The proposition has been proven. �

Finally, we have the following corollary on the dimension of tRef
D /H1

f (ad(D)).
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Corollary A.3.5. dimL tRef
D /H1

f (ad(D)) ≤ 2(K : Qp).

Proof. This follows from Lemma A.3.3 and Proposition A.3.4. �

Appendix B. Decency

The main goal of this appendix is the following theorem.

Theorem B.0.1. Assume that p ≥ 5. Let x ∈ E (n)(Qp) be any point lying over a given weight λ,

and let ρx : GF → GL2(Qp) be the associated Galois representation constructed in [55]. If the image

of the (semisimplified) mod-p reduction ρx : GF → GL2(Fp) contains SL2(Fp), then H∗(n,Dλ)mx is
concentrated in the middle degree d, and in particular x lies in E (n)mid.

To prove this, pick a sufficiently large ”radius” s for λ, and let Ds,◦
λ be the associated unit ball in

Ds
λ. Let m ⊂ TZp(n) be the maximal ideal in the integral Hecke algebra associated with ρx. Then

H∗(n,Dλ)mx is obtained from H∗(n,Ds,◦
λ )m by inverting p and taking a further localization, so it is

clearly enough to prove the following result.

Theorem B.0.2. Notation as above, the cohomology group H∗(n,Ds,◦
λ )m is concentrated in the middle

degree.

Proof. We deduce this from work in progress of Caraiani-Tamiozzo [29]. In the notation of the

present paper, their work implies that if p ≥ 5 and KpK
p ⊂ GL2(A

f
F ) is any level subgroup, then

H∗
c (YKpKp ,Z/pn)m is concentrated in degree d for any maximal ideal m whose residual Galois repre-

sentation contains SL2(Fp) in its image. By the Hochschild-Serre spectral sequence, we immediately
deduce that ifM is any set-theoretically finite Zp-module with a continuousKp-action, the cohomology
groups H∗

c (YKpKp ,M)m are concentrated in degrees ≥ d. Rerunning this argument with M replaced
by its Pontryagin dual and with m replaced by the “dual” maximal idea, Poincaré duality then shows
that H∗(YKpKp ,M)m is concentrated in degrees ≤ d. But H∗

c (YKpKp ,M)m = H∗(YKpKp ,M)m by [68,
Theorem 4.2], so we deduce that H∗

c (YKpKp ,M)m is concentrated in degree d.

We now apply these observations with Kp = K1(n), Kp = I, and M = Ds,◦
λ /Filj , and with m as

above, where Filj ⊂ Ds,◦
λ is the filtration constructed in [55]. This shows that H∗(n,Ds,◦

λ /Filj)m is
concentrated in degree d, so now we conclude upon taking the limit over j, using [55, Lemma 5.1.1].

�

Proof of Theorem 1.6.1. As in the theorem, assume p is a sufficiently large split prime. Then 2(c)
follows from the assumption that p splits completely, 2(b) follows from [69], and 2(a) follows from
Theorem B.0.1 by Serre’s open image theorem [81]. �
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[12] J. Belläıche and G. Chenevier. Families of Galois representations and Selmer groups. Astérisque, 324:xii+314, 2009.
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