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ABSTRACT. We prove a version of the weight part of Serre’s conjecture for mod p Galois repre-
sentations attached to automorphic forms on rank 2 unitary groups which are non-split at p. More
precisely, let F//Ft denote a CM extension of a totally real field such that every place of F'™ above
p is unramified and inert in F, and let 7 : Gal(F+/F") — “Us,(F,) be a Galois parameter valued
in the C-group of a rank 2 unitary group attached to F//FT*. We assume that 7 is semisimple and
sufficiently generic at all places above p. Using base change techniques and (a strengthened version
of) the Taylor—-Wiles—Kisin conditions, we prove that the set of Serre weights in which 7 is modular
agrees with the set of Serre weights predicted by Gee-Herzig—Savitt.
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1. INTRODUCTION

Let p be a prime number. The mod p local Langlands program (cf. [Brel0], [Berld], [BM02])
predicts a correspondence between continuous Galois representations p : Gal(@p /Qp) — GL,,(F))
and smooth admissible GL,,(Q,)-representations on F,-vector spaces. It is expected to be compati-
ble with the classical local Langlands correspondence over C, its geometric realization in the torsion
cohomology of Shimura varieties, and classical local/global compatibility.

The case when n = 2 has been most extensively studied, and such a correspondence has now been
established (see [Coll0], [CDP14], [Eme], and the above references). However, the picture for n > 2
(or more general p-adic fields) still remains highly conjectural, and evidence suggests that such a
correspondence will be much more intricate (see, for example, [BHI15]). Despite this deficiency,
there has been substantial progress on several expected consequences of this conjecture: the weight
part of Serre’s conjecture, the Breuil-Mézard conjecture, and Breuil’s lattice conjecture ([BDJ10],
[GLS14], [(BM02], [GK14], [Breld], [EGH13|, [EGS15]).

In a different direction, one is also interested in the possibility of enlarging the conjectural corre-
spondence to include more general groups. The works [Abd14] and [Kozl6] give some preliminary
indication that a Langlands-type correspondence might be expected to hold for the groups SL2(Q))
and U3(Q,), and reveal some new phenomena (e.g., the existence of L-packets in the mod p setting).
In general, the work of Buzzard—Gee [BGI14] lays out precise statements of Langlands-type conjec-
tures for general reductive groups by making use of an enhancement of the Langlands dual group
(this will figure prominently in our considerations below). This framework reconciles the classical
local Langlands correspondence with its geometric realization. These developments are also related
to recent work of Gee—Herzig—Savitt: the article [GHSIS§| gives a formulation of the weight part of
Serre’s modularity conjectures for a large class of non-classical reductive groups.

Classical Langlands correspondences (i.e., with C-coefficients) for various reductive groups, and
the relations among them, are at the core of the Langlands functoriality principle. In the specific
example of unitary groups, this principle predicts that a correspondence between (packets of) au-
tomorphic representations of unitary groups on the one side and L-group valued Galois parameters
on the other side is obtained from a correspondence on general linear groups. When the unitary
group has low rank, this is studied in [Rog90, §15.1].

The goal of the present work is to give evidence for a mod p Langlands correspondence for rank
2 unitary groups. Specifically, given a Galois parameter 7 with values in the C-dual of our unitary
group, we prove that the Serre weights for 7 predicted by |[GHS18] (which are representations of
finite unitary groups) are exactly equal to the Serre weights in which 7 is modular (we give a precise
statement below). In order to do this, we use known instances of functoriality (in the form of
classical base change results) and local/global compatibility. Thus, our methods hint at a mod p
principle of unitary base change.

We now introduce some notation and setup in order to state our main result. Let Ky/K/Q,
be unramified extensions, with K5/K quadratic. We let Uy denote the unramified unitary group
in two variables defined over the ring of integers O of K. Note that Uy splits over Ks. We
let “Us, denote the C-group of Uy, in the terminology of [BG14] (“Ujy is the usual Langlands
L-group of a canonical central extension of Uy). An L-parameter is a continuous homomorphism
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p: Gal(Q,/K) — “U,(F,), compatible with the projection “Us(F,) —» Gal(K2/K). The C-
group also comes equipped with a canonical map “Uy — G,,, and we assume that the composite

character Gal(Q,/K) L, CUL(F,) — ?; (called the multiplier of p) is equal to the mod p
cyclotomic character.

Inspired by the conjectures of [BGI14] and the prospect of a mod p Langlands program for unitary
groups, we would like to infer that the L-parameter p is associated to an L-packet of smooth rep-
resentations of Uy(K') over E). Unfortunately, such representations are poorly understood beyond
the case K = Q,, (cf. [Kozl6]). A possible first step in understanding such a correspondence would
be to study this question in a global context, that is, to study local/global compatibility for an L-
parameter 7 : Gal(Q/F*) — “Uy(F,), where F*/Q is a totally real field. We assume furthermore
that 7 is associated to a non-zero Hecke eigenclass in the mod p cohomology with infinite level at
p of a definite unitary group G /Ot which is non-split at places of F'T above p. We would like
to stress that our setting differs quite markedly from the body of work related to Serre weights
for unitary groups (e.g., [GLS14], [BLGG13]), wherein the group G is split at places above p. In
particular, our Serre weights are representations of finite unitary groups, not general linear groups.
We define W,04(F) to be the set consisting of the Hv|p Uy (0 p+)-representations appearing in the
socle of the Hecke isotypic component attached to 7 of the mod p cohomology of G.

According to the conjectures of [GHSIS], the set W,04(7) should be described in an explicit way

by (ﬂGal(@p / FJ))v\p using purely representation-theoretic constructions. Let us denote W' () &

Ry W’ (7l 2@,/ FJ))v where W7 (F|Gal(@p / FJ)) is the set described combinatorially in [GHS18]| (thus

W' (7) is again a set of representations of the group [ L U2(0,4)).
The main theorem of this paper is the following (we refer the reader to the bulk of the paper for
any unfamiliar terminology).

Theorem 1.1 (Corollary [TH). Let F/F* be a CM field extension of Ft* which is unramified at all
finite places, suppose that p is unramified in F+ and that every place of F* above p is inert in F.
Let 7 : Gal(Q/F*) — “Uy(F,) be an L-parameter with cyclotomic multiplier. Assume that:
“HOUS(Fy)) = Gal(Q/F);

18 modular;

18 unramified outside p;

18 semisimple and 4-generic at places above p;
_ (7
Qkor(ad ™) does not contain F(¢); and

BC(7)(Gal(Q/F)) 2 GLy(F') for some subfield F' C F,, with |F'| > 6.

O O O O
b | | |

e}

e}

Then
W (F) = Winod (7).

In the GL setting, the results of [BP12] and [EGSI5] imply that, for a GLg(F,)-valued Galois
representation 7', the set W’ (7') of modular Serre weights should be equal to the set of representa-
tions appearing in the GLy (O )-socle of the GLy (K )-representation associated to p’ via some sort
of mod p local Langlands correspondence. For Ujy, the supersingular representations of Us(Q))
constructed in [Koz16] all have simple Usg(Z,)-socle, while the set W (5) (for generic semisimple p)
has size 2K5°@]. Thus, in the K = Q) case, the global evidence provided by Theorem [[.T] suggests
that W’(p) (for appropriate p) takes into account the Ug(Z,)-socles of all Uy(Q),)-representations
in a supersingular L-packet.

We obtain Theorem [[I] by following the strategy of [GK14]. We first prove the containment
W’ (F) 2 Winoa(T) by using a global base change argument and applying results of [Geell]. The
opposite containment follows by using a modified version of the patching functor constructed in
[CEGT16] and the explicit description of ¢Us-valued local deformation rings. We explain these
arguments with more details presently.
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The main novelty in the unitary group setting is that for both inclusions we make use of the
analogous results for GLg/k,. Firstly, we establish a compatibility between classical local base
change of automorphic types (as may be deduced from work of Rogawski [Rog90]) and the set of
predicted Serre weights W’ (5) (for which we introduce a notion of base change of weights). In this
direction our results give the following proposition, which may be thought of as evidence towards
a notion of mod p base change. Recall that a tame Us(O)-type is the inflation of an irreducible
Uj(F,)-representation over @p, where IF, denotes the residue field of K.

Proposition 1.2 (Lemma [3.26, Theorem [.9). Let o denote a 1-generic tame type for Us(Of),
and let V' denote a Serre weight for Us(Of). Let BC(0) denote the base change of o (as defined in
Subsection [3.3). Then
V €JH(@) <= BC(V)e JH(BC(0)),

where BC(V) is the base change of the Serre weight V' (as defined in Subsection [3.3) and JH(W)
denotes the set of Jordan-Hdlder factors of the mod p reduction of a Z,-lattice in W.

In particular, if p : Gal(@p/K) — YUy(F,) is a 1-generic tame L-parameter with cyclotomic
multiplier, then the set of predicted local Serre weights W' (p) is of the form JH(T), and we obtain

VeW(p <<= BCV)eW (BC®).

Here BC(p) : Gal(Q,/K3) — GLy(F,) denotes the Galois representation obtained by restricting p
to the absolute Galois group of Ko and projecting onto the GLgy factor.

The tame GLy(O, )-type BC(o) of the proposition is characterized by the property that BC(0)®
C — BC(m), where 7 is any smooth irreducible complex representation of Uy (K) containing c ®C,
and where BC(7) denotes the stable base change of the L-packet containing 7 ([Rog90, §11]). Using
the above proposition, we prove in Theorem the inclusion W*(7) O Wpea(F) by base changing
to GLg, and using results of Gee ([Geell]) on the set W*(BC(7)).

In order to prove the inclusion W*(7) € W,0q(7), we would like to employ a patching argument,
which requires information regarding certain deformation rings. More precisely, let us suppose that

p: Gal(Q,/K) — “Uy(F) is an L-parameter with F a finite extension of Fj,, and let O denote the

ring of integers in some sufficiently large finite extension of Q, with residue field F. We let R(l 0.L).7

denote the deformation ring parametrizing potentially crystalline framed deformations of p to O-

algebras with (parallel) p-adic Hodge type (1,0,1), inertial type 7/, and cyclotomic multiplier.

1,7

In order to study the ring R£ , we introduce the notion of Frobenius twist self-dual Kisin

modules. Given this, we are able to describe the structure of R(—IOI) in terms of the “base

(1,0),7
BC(p) -
the analogous results of [GK14] for GL2, we obtain the following result, which may be viewed as a
“Breuil-Mézard-type” result for unitary groups.

changed” deformation ring R Combining these calculations with Proposition [[.2] along with

Proposition 1.3. Letp: Gal(@p/K) — CUL(F) be a 3-generic tame L-parameter with cyclotomic
multiplier. Let 7' be a “Us-valued, 2-generic inertial type for I and o(7') the tame Us(Of )-type
associated to 7' via the inertial local Langlands correspondence of Theorem[{.11. Then

W (3) N JH (a(7))| = e(RSOD™ 0 F),
where e(—) denotes the Hilbert-Samuel multiplicity.

To conclude, we employ a variant of the construction of [CEGT16| in order to produce a patching
functor M (—) on the category of O-modules with an action of [[,,, U2(Op+). Using the explicit
structure of the rings R(ﬁ1 1) (namely their integrality), the properties of the patching functor

Mo (=), and Proposition [[3, we obtain the inclusion W (7) € Wy,oq(7) in Theorem [l This is
enough to prove the main Theorem [Tl
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Our results on the geometry of Rl(jl’o’l)’T in §5.3] can also be used to deduce new cases of au-
tomorphy lifting phenomena for unitary groups which are non-split at p. Indeed, the integrality

of Rf(jl’o’l)’Tl (cf. §5.3.10 and Table B) together standard Taylor-Wiles—Kisin arguments give the
following Theorem (again, we refer the reader to the bulk of the paper for unfamiliar terminology):

Theorem 1.4. Let F/F* be a CM field extension of F* which is unramified at all finite places,
suppose that p is unramified in F T and that every place of F™ above p is inert in F. B
Let v’ : Gal(Q/F) — GL2(Z,) be a continuous Galois representation, and let 7 : Gal(Q/F) —

GLy(F,) denote the associated residual representation. Assume that

o 7' is unramified at all but finitely many places;

o we have r'® = 1V @ ¢, where ¢ € Gal(F/F*) is the complex conjugation;

o for all places v of F above p, the local representation 7J|Gal(@ JF) 1s potentially crystalline,
P v

with parallel Hodge type (—1,0) and 4-generic tame inertial type 7, ;

o for all places v of F above p, the local representation ?’|Gal(@p/Fu) 18 semisimple and 4-
generic;

o 7' is unramified outside places above p;

o 7 = F,(mw) where 7 is a cuspidal automorphic representation of G(Ap+), such that 7
is trivial and for all places v of F* above p, the local component m, contains the tame

Uy (0 FJ)—representation associated to T, by the inertial local Langlands correspondence (cf.

Theorem [{.11));
o @ker(ad(r ) does not contain F(¢); and
o 7(Gal(Q/F)) 2 GLa(F') for some subfield ' C F,, with [F'| > 6.

Then v’ is automorphic.

(Recall that r’ is automorphic if r/ ®z, Q, is isomorphic to r,(7’) for some cuspidal automorphic

representation 7' of G(Ap+), where r,(7’) is the continuous Galois representation associated to 7’
as in Theorem [6.11)

We conclude this introduction with a few remarks on natural questions which arise from the
results in this paper.

In Theorems [T and [[4], the assumption that 7 is unramified outside p is used to simplify our
arguments, and it should be possible to remove it. On the other hand removing the condition that
the L-parameter is residually tame at places above p requires further analysis of the possible set of

modular weights Wmod(ﬂgal(@ /) € W (F p 1@,/ F+)), and will depend in a subtle way on the
pl/tv al({p /L'

geometry of Rél’o’l)’T .
Gal@p/Fif)
_ . . . . . ?

In the case where T’Gal(@p JF) 18 semisimple, the combinatorics of the set W (T‘Gal(@p / Fj)) and
the set of Jordan-Holder consitutents of tame types for Us(Op+) suggest that tame Us(Op+)-
representations will play the role of Breuil-Paskiinas diagrams for non-split unitary groups. We
expect these representations to be useful in constructing, by a purely local procedure, some mod-p
representations of Ug(K') which naturally appear in the cohomology of Shimura curves with tame
level at p. We hope to come back to these questions in future work.

The paper is organized as follows. In Section 2] we discuss the unitary groups over Qg which
are relevant for this paper, namely the unramified unitary group in two variables Uy, . In fact,
in order to speak about Serre weight conjectures, we must work with a certain central extension
U, of Uy constructed by Buzzard-Gee in [BG14]. We also define the C-group “Us, which is the

“classical” Langlands L-group of Us. We give explicit descriptions of the Galois actions on these
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groups, their character groups, and their F,-structures. Since the groups appearing are slightly
non-standard, we have attempted to give a detailed account.

Section [3lis devoted to the theory of types, that is, absolutely irreducible Uy (F,)-representations
over Frac(O), and their reductions over F. In Subsection 3.3] we recall the notion of base change
for types and compare it with local automorphic base change of smooth Uy (K )-representations
over C. Then, in Subsections 34 and B.5], we analyze the Jordan—Holder constituents of the mod p
reductions of types vis-a-vis the constituents of the mod p reductions of their base changes. This
allows us to establish several useful properties of base change of Serre weights.

In Section B0l we study L-parameters of the form p : Gal(Q,/K) — “U,(F). We relate these
parameters to Us(O )-representations to produce the set of (local) predicted weights W’ (), as
defined in [GHSI18]. The core of this section is Subsection 3] which examines the compatibility
between Serre weights of L-parameters and their base changes. To conclude, we establish Theorem
M9 which figures in subsequent base change results.

Section [l deals with local deformation theory of C-group valued L-parameters. We introduce
the notion of Frobenius twist self-dual Kisin modules over &g = (O, ®z, R)[u] in Subsection [(.2]
which are Kisin modules equipped with an isomorphism between their Frobenius pullback and their
dual. Using this definition, we deduce the deformation theory of Frobenius twist self-dual Kisin
modules from that of Kisin modules over S by means of base change (as in [LLHLMIS|). The
precise relation between deformation theory of Frobenius twist self-dual Kisin modules and C-group
valued L-parameters is achieved in Subsection 5.3l In particular, we obtain an explicit presentation
for the deformation rings RUODT

Sections [6] and [ contain the main global applications, and the proof of the main theorem. In
Subsections [6.11—[6.3] we provide the background on algebraic automorphic forms on unitary groups
which are quasi-split (but not split) at p, and the Galois representations associated to them, by
generalizing the usual results in the literature for groups which are split at p (see Theorem [6.2]). We
remark that the compatibility of base change of types as recalled in and classical base change
are integral to these generalizations. The main result of Section [ is Theorem [6.7, which is the
“weight elimination” statement.

In Subsections [7.1] - [.3] we generalize the patching construction of [CEGT16] to our unitary
groups (cf. Proposition [7.3]). The modifications are largely formal, using as input the results from
Subsection The main result on “weight existence” is then obtained in Subsection [(.4], following
the patching techniques of [GK14]. The main result on automorphy lifting follows in Subsection
[(.0l

Acknowledgements: The authors would like to thank Patrick Allen, Raphaél Beuzart—Plessis,
John Enns, Florian Herzig, Tasho Kaletha, Bao Le Hung, and Sug-Woo Shin for numerous en-
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1.1. Notation. Let p denote an odd prime number, and fix an algebraic closure @p of Q,. We
denote its ring of integers by Z, and its residue field by F,, and we assume that all field extensions
of Q, are contained in @p. Given a p-adic field F' and an element z in its residue field, we define &
to be its Teichmiiller lift. Throughout we will work with a finite extension F of Q, which will serve
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as our field of coefficients. We let O denote the ring of integers of E, w its uniformizer, and F its
residue field. We will assume F and F are sufficiently large as necessary.

For any field F, we let T'p def Gal(F/F) denote the absolute Galois group of F, where F is a fixed
separable closure of F. If F'is a number field and v is a place of F', we let F;, denote the completion
of F at v, and use the notation Frob, to denote a geometric Frobenius element of I'r,. If F'is a
p-adic field, we let Ir denote the inertia subgroup of I'p.

For F either a number field or a p-adic field, we let € : I'r — Z; denote the p-adic cyclotomic
character, and let € or w denote its reduction mod p.

If F is a p-adic field, V a de Rham representation of I'r over F, and k : F' — E an embedding,
then we define HT (V') to be the multiset of Hodge-Tate weights with respect to x. Thus, HT (V)

contains 4 with multiplicity dimp(V ®p, F(i))'F. In particular, HT(¢) = {—1}. Further, we let
WD(V') denote the Weil-Deligne representation associated to V', normalized so that V +—— WD(V)
is a covariant functor.

Let F be a p-adic field. We let Artp : F* — F‘};b denote the Artin map, which sends uniformizers
to geometric Frobenius elements. Let recc denote the Local Langlands correspondence of [HTO01],
from isomorphism classes of smooth irreducible representations of GL,,(F') over C to isomorphism
classes of n-dimensional, Frobenius-semisimple Weil-Deligne representations of the Weil group of

F (normalized to agree Arty in dimension 1). For a choice of isomorphism 2 : E — C, we define

def _ =
recy = 1+~ orecc o1 to be the Local Langlands correspondence over .

All representations will live on vector spaces over E or F, or on O-modules, unless otherwise
indicated. By abuse of notation, we will generally not distinguish between a representation and its
isomorphism class. If GG is a group, H < G a normal subgroup, p an H-representation and g € G,
we write p? to denote the H-representation given by h — p(ghg™1t).

Given a finite length representation V' of some group, we let JH(V') denote its set of Jordan—Holder
factors. If V denotes a representation of a (pro)finite group G on a finite-dimensional E-vector space,
then we may choose a G-stable O-lattice V° inside V, and we write V° for its reduction mod w. By
[Ser77, Thm. 32], the set of Jordan-Hélder factors of V° is independent of the choice of lattice V°.
We write JH(V) for JH(V°). We denote by V — V'V the duality functor defined on the category
of finite dimensional E-vector spaces (resp. finite dimensional F-vector spaces).

We write matrix transposes on the right, so that AT denotes the transpose of a matrix A. Given
an (anti)automorphism @ of GL,(R) which commutes with the transpose, we write A?T for (49)T;
in particular, we write A~ for (A=1)T.

2. GROUP-THEORETIC CONSTRUCTIONS

Our first task will be to introduce the groups which will be relevant to arithmetic applications.
After defining unitary groups and certain central extensions in Subsections 2.1l and 2.2] we construct
the dual groups with which we will be working in Subsection 2.3l For the sake of thoroughness, we
also give explicit descriptions of the Galois actions and Fj-structures. We mostly follow [BG14] and
[GHS18, §9].

2.1. Unitary groups over p-adic fields.

2.1.1. Let f > 1, and let K denote the unramified extension of Q, of degree f. We let Ox denote
its ring of integers, with canonical uniformizer p, and identify its residue field with F, = F,;. We

let ¢ € I'g, denote a fixed lift of Artg,(p) € Fal;; in particular, ¢ is a geometric Frobenius element
and we have £(¢) = 1. The group 'y is topologically generated by ¢/ and I ( = Ig L)

We let K3 denote the unique unramified quadratic extension of K, and O, its ring of integers.
The group Uy (K) C O, is defined as the kernel of the norm map Ky — K*.
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Fix a choice of root 7 & (—p)l/(pzf_l) € Q,. We define a character @y : I'g, —> Ok, by

Y
N —.
™

We fix once and for all an embedding ¢y : Ko — E, and define
&V)2f d:efgo Oaﬂ : FKQ — OX.

~ 2f _ _
We denote by woy the mod p reduction of wyr. Note that wg} D/e=1) _ .

2.1.2. Let Uy denote the algebraic group over Qg given by

Uy(R) = {9 € GLy (O, ®o, R): g N T dog = <I>2}[1

where R is an Ox-algebra, and &5 & (%98

Recall that the field K5 is considered as a subfield of @p. The projection O, ®o, @p — @p
defined by x ® y — xy induces an isomorphism U, (@p) 5 GL, (@p), and via this isomorphism
GL,(Q,) obtains a I'g-action given by

g ityelk,,
T\ (@297 T05Y)T ify € T T,

2.1.3. Following [BG14], §5.3], we set H = 627 so that H is a canonical central extension
1—G,, —H—Uy; —1

of algebraic groups over Og. (To be precise, the construction of [BG14] which we outline below is
done over K. The integral model for Uy above gives rise to a hyperspecial point in the semisimple
Bruhat—Tits building of Uy(K), which is identified with the semisimple Bruhat—Tits building of
H(K), since the extension defining H is central. We therefore obtain a hyperspecial point and the
desired integral model for H.) We will often abuse notation and conflate algebraic groups over O
with their generic fibers. The group H possesses a twisting element, in the terminology of op. cit..
We now recall the explicit construction of H.
We proceed as follows. The group H is defined as a pushout followed by a pullback:

1 Mo SL2 E— PGL2 — 1

[ o] |

1 G, GL; — PGLy; —— 1
H [ o 1
1 G, '~ H U, 1

Concretely, H is the set of all pairs (h,h’), with h € Us, h’ € GLg, subject to the condition that h
and k' have the same image in PGLy. The maps H — Uy and H — GLy are the projections
onto the corresponding factors, and the map ¢ : G,,, — His A — (1, (6‘ 9\))

Note that the @p—poin‘cs of the top two rows of the diagram above carry the standard (i.e., split)
action of I'k. In particular, the action of I'k on the first factor of H(@p) is the one induced from
U, (@p), while the action on the second factor is the standard one.

IThis group is quasi-split, and is customarily denoted Uy ; in the literature.
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2.1.4. Let Ty denote the diagonal maximal torus of Us, and Ty its preimage in H. Furthermore,
let Tg, Ts, and Tp denote the diagonal maximal tori of GLo, SLo and PGLo, respectively. The
character groups of these tori fit into a diagram:

0 — 5 X*(Tp) NZ — 9220 4 X*(Tg)NZ — 5 X*(py) X Z2/22 ——— 0

(a,b)—>a—b O T

a—(a,—a) (a,b)—a+b
—

0 — X*(Tp)XZ X*(Tg) 272 X (Gp) 2L — 0

\[aH(a,—a) OJ

00— X*(Ty) 272 — & X*(Tg) ——— X (Gp)¥Z —— 0

The isomorphisms appearing are the canonical ones. (The notation X*(T,), fore € {P, S, U, G, H},
stands for the character group of the torus T over Q,.)

We describe the remaining character group. The group X*(Ty) is a pushout, so we may identify
it as

xra) = {(}) e xro o xowe) 221}/ ~

d
a a+tz
(2)~(%)
Cc c—=z
d d+z
for z € Z. The maps X*(Ty) — X*(Tu),X*(Tg) — X*(Tu) are the inclusions into the
corresponding factors, and the projection X*(Tg) — X*(Gy,) = Z is

<2> — c+d.
d

2.1.5.  'We now consider cocharacter groups. The bottom two rows of the diagram above give the
following commutative diagram:

where

0 X (Gp) =7 7 X (Tg) =72 X, (Tp) 27— 0

T . Tmabw_b/

00— X (Gp)2Z —— 5 X, (Tg) ———— X, (Ty) 2722 —— 0

(a’,b')—a’—b
—

The isomorphisms are again the canonical ones, and we again consider the cocharacter groups of
the tori over @p.
We describe the remaining cocharacter group. The group X.(Tg) is a pullback, so we may
identify it as
a/
X« (Ty) = {<lc’l,> € X (Ty)® X (Tg)=Z :d — bV = — d’} .
d/

The maps X, (Tu) — X.(Tu), X«(Ta) — X.(Tg) are the projections onto the corresponding
factors, and the map X.(G,,) 2 Z — X.(Tq) is

0
a/’—> (2/)
o
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2.1.6. The actions of I'r on X*(Ty) and X, (Tg) are the ones induced from X*(Ty) and X, (Ty):
they are both unramified, and we have

for <

) € X*(Th) and

QLo TR

a/
b/
for (Ccli) € X.(Tu).

The pairing (—, —) : X*(Th) X X.«(Tu) — Z between characters and cocharacters is given by

<<2>,<g;>> =aad' + bV +cd +dd';
d

d/
this is well-defined and Galois-invariant. The roots ®y C X*(Tg) are given by {fap}, where

def _11
g = 0 .
0

Likewise, the coroots ®f; C X, (Tw) are given by {£ay;} where

1
v odef [ 1
“H = ( 11>'

We define the set of simple roots as Ay = {an}, and let By denote the corresponding Borel
subgroup of H. We therefore have Af; = {ay}.

The group H has a twisting element, in the sense of [BG14]: tracing through the construction in
op. cit., we obtain

aef (0 "

0

This element is Galois-invariant, and (g, afy) = 1.
The Weyl group of H with respect to Ty is denoted Wyy; it is a cyclic group of order 2. We
denote by s the unique simple reflection, which generates Wy.

2.2. Unitary groups over Q,.
2.2.1.  We now consider unitary groups over Q,. We set

def

(G, B, T) = ReSOK/Zp (H, BH, TH),

all group schemes over Z,. We have

G(@Q,) = Ind.” (H(@,))

as I'g,-groups, and via the evaluation maps, we have

f-1
(evi,evy, ... ev 1) G(Q,) — HH(@p)
=0
fo—= (Fogics-
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Recall that ¢/ acts on H(Q,) by
T !
SDf (P, he) = (((I)2h1 T<I>2 1)¢f’ h§ ) :

Tracing through the isomorphisms above, the action of I'g, on the right-hand-side product is given
as follows:

© - ((h071,h072),h1, R ,hf_l) = (hl,. .. ,hf_1, (@2h0_7]—(132_1,h0,2)‘ﬁf)

with inertia acting in the standard, diagonal way. In particular,
evi : G(Q) = G(Q,)"» = H(Q,) * = H(K) = Uy(K).
2.2.2. The character and cocharacter groups of the torus T are given by
XH(T) = Indp (X*(Tw)),  Xu(T) = Indp > (X.(T))
(cf. [GHS18, §9.4]). Using the evaluation maps as above (with the same ordering), we identify

f—1 f-1
XH(T) =P X*(Tu), X.(T)=X.(Tn).
i=0 1=0

We will write elements of X*(T) as
a a a af-1
“(8) = ()G (5)
H=1c | =1 c L I N N
d do d1 df_1
(and similarly for X, (T)).

The perfect pairing (—, —) : X*(T

)

and the action of I'g, on X*(T) is given by

x X,(T) — Z is given by

/
/

/\
N
[SHYISIS]

I o Ioxle. ~—

f—1
) > = aia; + bzb; + cic; + did;,
=0

ag al af—1 al af—1 _b()
(@)G)-(52) -G (5D (E)
© - o 1 e i1 = 1 .o i1 o .
d() dy dffl dy df,1 do
An analogous action (i.e., with a “shift left”) holds for X, (T).

2.2.3.  We define the simple roots A as those functions f in Indg%’ (X*(Tq)) with image in {0}UAq,
and such that f(v) = 0 for all but a single coset. Explicitly, we have A = {a;}o<i<f—1, where

o d:“<(§)>...@... (%) € X*(T).

ith entry

We define AV analogously, and obtain AY = {¢} }o<i<f—1, where

w# () () (Perem
——

ith entry

The Weyl group W of G with respect to T is equal to WIJ; We shall write elements of W as
w = (wo, w1, ..., wf—1). The group W has a nontrivial Galois action given by

@ - (wo,wy, ... wp—1) = (Wi,... wWr_1,wWp).

Finally, we define 1 def (1,1,...,1) and s def (8,8,...,9).
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The map ev; induces a bijection X*(T)T% =5 X*(Tg)'®. In particular, the twisting element
na € X*(Tw)'X corresponds to the twisting element

() )- () veor-

2.3. Dual groups. We now define the relevant Langlands dual groups.

2.3.1.  The based root datum of Uy (with respect to the upper-triangular Borel subgroup) is given
by

(X*(Ty) = 7% {(1,-1)}, X(Tv) =2Z% {(1,-1)}).
Therefore, we may take ﬁg et GLs as the dual group, which we consider as a split group scheme

over Zjp, along with its diagonal maximal torus, upper-triangular Borel subgroup, and the fixed
isomorphism between G, and the unipotent radical of the Borel given by z — ({%). We equip

this data with the canonical isomorphism between the based root datum of Uy and the dual based

root datum of Us. In choosing this isomorphism, we obtain an induced action of I'x on Us given
by

g if’}/GFKQ,

VI= Tt _ [det@ 0 S
P o = ifyel I'k,-

2.3.2. Consider now the group H = U,. The based root datum of H is given by

def

Uy = (X*(Tn), Au, Xo(Tw), Af),
and therefore the dual based root datum is
Uy = (Xu(TH), Afp, X*(TH), AH).
We let H denote the dual group of H, with maximal torus ’f‘H and Borel ]§H which contains ’f‘H
By [BG14], Prop. 5.39], we have

H =~ (U, x Gm)/<<<_01 _01> ,—1>> = GLy x*2 G,,,

where the Galois action on H is the one induced from 62. We have an isomorphism

H=GLyx*G,, = GLyxG,,

h,a] — <<g 2)5,&)

and we will identify H with GLj x G, via this isomorphism. The Galois action is then given by

(ﬁ,a) it y e I'k,,

v - (/H, a) = a 0 ~ . adet(ﬁ)_1 0 ~ .
b~ Td5 0| = ]\, frelkr Tk,
((0 a> 2 204 0 adet(h)™! “ . KN 2K,

for (h,a) € GLy x Gy,
Thus, we obtain the based root datum for H

def

vy (X(Tw), A, X.(Tw), &)
— (2% {(1,-1,0)}, Z {(1,-1,0)}),
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equipped with an action of I'. Moreover, we obtain an isomorphism of based root data ¢ : U =
U
H

¢: X, (Ty) = X*(Tw)

(' b,c,d) —— (dV,d—d)
(¢)7': X" (Tw) > Xu(Tm)

(a,b,c,d) — (a+c,b+d,c+d)

where the last coordinate in the character (resp. cocharacter) group of 'f‘H corresponds to the G,,
factor of H. Note that this exchanges the roots and coroots. We use this isomorphism to identify
the Weyl group of Ty with Wiy.

2.3.3. Finally, we define
U, ©LH = H x Gal(K3/K) = (GLy x Gy,) x Gal(Ky/K),

with the Galois group acting on H as above. The injection ¢ : G,, — H induces a dual map
7:YH — G,,, which is given by (h,a) x vy +— a.
Remark 2.1. We will need to make use of the above construction in a global setting as follows.

Suppose F/F™T is a quadratic extension of global fields, and let v denote a place of FT which is
unramified and inert in F', and such that F,f = K and F, = Ky. We then identify CU, with

H x Gal(F/F*)
via the isomorphism Gal(F/FT) = Gal(F,/F,) = Gal(K/K).
2.3.4. We set .
(G B, T) “md.? (A, Bu, Tu).
all group schemes over Z,, equipped with the induced I'g,-action. Using the (induced versions of
the) isomorphisms above, we consider G as the dual group of G, and set

def N

LG = G x Gal(K,y/Q,).

2.4. An isomorphism. We briefly digress to recall a construction of “Usy from [CHTOS] (see also
[BG14l §8.3]).

Let G2 denote the group scheme over Z, which is a semidirect product of GLy x Gy, by
Gal(Ky/K), with ¢f € Gal(K,/K) acting by

o - (h,a) = <<g 2) ﬁ—m).

There is an isomorphism between our model Uy and G given as follows:

~

‘U, = G

~ -1 ~
(hya) x 1 +—> <<a0 a91> h, a_1> x 1
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The group G also possesses a map v : §o — Gy, given by (?L,a) 3 (pf)' — (=1)%a. Under the
isomorphism above, this corresponds to the map (=)' 07: “Uy — G,,,.
As in Remark 2.1 we will often identify Go with (GLg x G,,) x Gal(F/F ™).

2.5. [F)-structures.

2.5.1. Viewing G and G as group schemes over Z,, we can form the Fp—group schemes:

(G,B,T) = (G,B,T) xz,F,, (G,B",T")=

We denote by F the relative Frobenius on G, and denote by F* the composite Fr o ¢, where Fr is
the relative Frobenius on the split group G*. In particular, we have GF' = G(F,) = H(F,).

The action of F on X*(T) is defined by F(x) = x o F, so that F = pp on X*(T). Identifying

X*(T) = X*(T) with @Zf:_ol X*(Ta) as in Subsubsection 2.2.2] this action is explicitly given by

(G,B,T) xz, F),.

ag ai af-1 pay paf_1 —pbo
F<b0><b1>...<bf1>_<pb1>”'<pbfl><_pa0>
co c1 Cf—1 - pc1 pcf—1 pco
do dy dy_q pd1 pdy_4 pdo
Similarly, the action of F* on X, (T") is given by F*(\) = F* o ), so that F* = pp on X,.(T").

Therefore, after chasing through the isomorphisms of root data of Subsubsection [2.3.2] and using
the identification X, (T*) = X,(T) = @Zf:_ol X.«(Ty) similar to above, this map is explicitly given

by
ao a af—1 pai baf—1 p(co—bo)
i) () () = () - () (recom)-
co c1 cf_1 bc1 pCf—1 pco

3. REPRESENTATION THEORY

We now collect various results we will use regarding types and weights for the groups Uz (F,) and
GL3(F2). We give definitions of base change for both types and weights in Subsections [3.3] and 5.5
respectively, and relate the former to automorphic base change. Subsection B4 discusses various
compatibilities between types and weights, and contains useful combinatorial properties which will
be employed extensively in the applications which follow.

3.1. The group G.

3.1.1. Let X4 (T), X:(T) and X°(T) denote respectively the subsets of X*(T) consisting of dom-
inant, p-restricted, and inner-product-zero elements:

X4 (T) o {pe X*(T):0<(u,a)) forall0 <i < f—1}
X((T) &€ {peX*(T):0< (a)y<p—1forall0<i< f—1}
X%T) & {pe X*(T): (u,e)) =0forall 0 <i < f—1}.

3.1.2. Recall that a Serre weight of G(F,) is an irreducible representation of G(F,) on an F,-
vector space. Given p € X (T), we let F(u) denote the restriction to G(F,) of the algebraic
G-representation of highest weight p. We then have the following result.

Proposition 3.1 ([GHS1S8], Lemma 9.2.4). The map
__X(@

(F —1)X°(T)

po— F(p)

— {Serre weights of G(F})} /=

is a well-defined bijection.
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We will always assume that the coefficient field F is large enough so that the representations F'(u)
may be realized over F.

Definition 3.2. Given a character p € X*(T), we say u lies n-deep in the fundamental alcove if
we have

n<{u+mnao’)<p—-n
for all 0 <i < f — 1. We say a Serre weight F' is n-deep if we can write F' = F'(u) for some n-deep
character p. (Note that this notion is independent of the choice of p.)

3.1.3.  We likewise consider Deligne-Lusztig representations for the group G(F,), as in [GHS18|,
§9.2]. In particular, for w € W and p € X*(T) such that (T, 6, ,) is maximally split, we let R, (1)
denote the associated Deligne-Lusztig representation, a representation of G(IF,) over @p. Note that
if 4 —n is O-deep, then (T, 0, ;) is maximally split for any choice of w € W, cf. [LLHLI9, Lem.
2.2.3]. We again assume the coefficient field E is large enough so that R, (x) may be realized over E.
Using the surjection G(Z,) —» G(F,), we will occasionally view Serre weights and Deligne-Lusztig
representations as representations of the compact group G(Z,) = Uy (O).

By [Her09, §4.1], if (w,p) € W x X*(T) with p — n being 0-deep, and if (v,v) € X*(T) x W,
then we have an isomorphism

(3.1.1) Ruy(11) = Ryypy1 () + F(v) — vwF (o) (1)

Moreover, by [Her09, Lem. 4.2], if (w, u), (', ') € W x X*(T) are two pairs with p—n and p/' —n
being 0-deep, and we have an isomorphism R, (1) = Ry (1), then (w,u) and (w', ') lie in the
same X*(T) x W-orbit.

Definition 3.3. Let ¢ denote a Deligne-Lusztig representation. We say o is n-generic if there is
an isomorphism o = R, (1 + 1), where p lies n-deep in the fundamental alcove.

3.1.4. We shall also need to know how the representations R, (x) decompose upon reduction mod
p. To this end, we define the following elements of X*(T). Fix w = (wo,w1,...,ws_1) € W, and

set
0 1 0 0
def def
(D) () ez (D) (D)
0 0 0 0
—— ~—— ~—— ~——

wi;=1 wWi;=s w;=1 w;=S§
1
aef (1 0 aof (0
0 0 0
e =
wi;=1 wWi;=§

Suppose that ¢ € X*(T) is such that g —n is 1-deep. By the main theorem in the appendix of
[Her(09], we have

(3.1.2) JH (R (1)) = {Fur (Bw(1)) }yrew »
where
(3.1.3) Fur (R (1)) € F (prur + 0’ (11— wr(esu)) + ppur = 7(p))

and where m denotes the action of =1 on X*(T).

Definition 3.4. Let o be a 1-generic Deligne-Lusztig representation and fix a presentation o =
Ry(p) with w € W and pu — n being 1-deep. We define the Deligne-Lusztig representation 3(c) by

B(0) © R (s(u—n) + (p — 1)) .

By [LLHL19, Prop. 2.2.15] and equation (B.1.1]) one easily checks that 8(o) does not depend on the
choice of presentation o = Ry, (). Moreover, note that if n < (i, o) < p—n, then s(u—n)+(p—1)n
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will satisfy the same set of inequalities. Therefore if Ry, (u) is n-generic, then 5(R,, (1)) will also be
n-generic.

3.1.5. Finally, suppose u € X*(T) is a character of the form

ao al af_1
NOORCY
0 0 0

(that is, suppose j is in the image of X*(Resg,./z,(Tu)) = X*(T)). Then R, (1) is a representa-
tion of G(Z,) = U(Ok) on which 1(0%) acts trivially, and therefore we view it as a representation

of INJQ(OK)/Z(OIX{) = Uy(Ok). Conversely, if R, () is a representation of G(Zj,) on which +(O)
acts trivially, then p is a character of the form

ao a Zf*l
e (B () ()
0 0 0
with zzfz_ol cip' =0 (mod pf — 1). By applying the equivalence Ry, (1) = Ry (1 + (F — w)y/) for an
appropriately defined element p/ € X*(T) and using the equivalence relation on X*(Tg), we may

assume p is of the form
ap\ /% @
= <b6><b’1> <b>
0 0 0
0 0

0
(one can even take ' € X°(T)).

3.2. The group GLo,.

3.2.1. Set

def

(G',T') = Reso,, jz,(GLyjo,,  Ta/ox, )

so that G'(Fp) = GL3(F,2). We identify the maximal torus Tq o, of GLy/o,, with Ty xo, Ok,
This gives isomorphisms

2f—1
T' XZp QP = H (Tu X0k OKz) X Okt Qp
i=0
f-1 2f—1
= (H Tu X4 Qp) X < H Tu X0k i Qp)
=0 i=f

= (Resg,/z,(Tu) Xz, Qy) % (Resg,/z,(Tv) xz, Q,),

where we conflate Gal(K2/Q,) with the set of embeddings of Kj into Q,. In this way, we identify
X*(T') with two copies of X*(Resg,z,(Tu)). We write elements of X*(T') as (u, ') with p, p’ €
X*(Resg,/z,(Tu)). In particular, if 4 is an element of X*(T) of the form

ag al af—1
_ [ bo br ) ... br-1
0 0 0

(2)(5) - (52)) € X" (Reso sz, (Tu)),

and consider expressions such as (u, 1) or (u, —s(u)) in X*(T”).

we will identify it with
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Given some object (homomorphism, character, etc.) associated to G, we will denote by a prime
the analogous object associated to G’. For example, the notation F' will be used to denote the
Frobenius map on G’ xz, F,,, and on the character lattice X*(T'):

F/ ap ai azf—1 _ [ pa1 pazf—1 paog
bo by )T\ bapo1 ) T \pb1 ) "7\ pbay pbo
We identify the Weyl group W’ of T/ with two copies of W, and we will sometimes write elements

of W as (w,w’) where w,w’ € W.

3.2.2.  We define the subsets X (T’), X1(T’) and X°(T') as above, and denote by F’(u) the re-
striction to G'(Fp) = GLo(F2) of the algebraic G'-representation of highest weight p € X (T’).
In particular, we have the following classification result.
Proposition 3.5 (|[GHS1S8|, Lemma 9.2.4). The map
X1(T)
(F' —1)X9(T)
po— F'(p)

— {Serre weights of GLa(F2)} /=

is a well-defined bijection.

Once again, we will assume that F is large enough so that F’(u) may be realized over F.

3.2.3.  We define Deligne-Lusztig representations R!, (u) for w € W/, u € X*(T') analogously to the
above. We again assume that R! () may be realized over E. Furthermore, an analog of equation
(BLI) holds. We will often view F'(u) and R!, (u) as representations of G'(Z,) = GL2(Og,) by
inflation.

3.24. Given w = (wo, w1, ...,waef_1) € W', we define the following elements of X*(T"):

/o def 0 1 s def 0 0

A (8) (1) A (3) o (5)
N =~ N~ =~
wi=1 wi;=S$ wl-:l wW;=S8

()
—~—

wi=1 W;=S8

Suppose p € X*(T’) is such that u— p’ is 1-deep. The analog of ([B.1.2) takes the following form:

(3.2.1) JH (Ri, (1) = { Fopr (R (1)) } ey

where
def

Fo (R, (1) = F' <miuf +w' (1 — wr' (€(g o) + PPy — p’) ,
and where 7/ is the automorphism of X*(T") such that F’ = pr'~1L.

~

Definition 3.6. Let o’ be a 1-generic Deligne-Lusztig representation and fix a presentation o
R, (1) with w € W' and p — p' being 1-deep. We define the Deligne-Lusztig representation 3'(c”’)
by
def
B'(0") = Rig g, ((5,8) (10— ') + (0 = 1)p) .
As above for the map 3, the above expression is well-defined, and if R] (u) is n-generic, then
B'(R.,(p)) will also be n-generic.

3.3. Base change of types. Our next task will be to define a notion of base change for tame types
of Ua(O). We note that this is essentially the Shintani lifting considered in [Kaw'77].
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3.3.1.  We first recall the classification of irreducible representations of Uy(F,) in characteristic
zero (cf. [Enn63]).
Fix a character
P IF“;2 — 0%,

which we also view as a character of By (F,) via

o((5 %)) =vio

where z € quz,y € Fpe, and xy? = ya9. (Here By denotes the upper triangular Borel subgroup

of Uy.) We let Indgfj(g;’q)) (1)) denote the induced representation. If 1)~ # 1), then IndUQ(( )) (v) is

irreducible. On the other hand, if ¢)™% = 1), then 9 extends to a character of U3(F,), and we have
Indp*\(¥) 2 @ (p@pSt),

where St denotes the irreducible representatwn Ind 2(EFIF‘I(I))(I) /1.

Consider now the group Jeng %! U1 x Uy over Ok, which is the unique elliptic endoscopic group
of Usy. Fix a character

0=60,x0: Jend(Fq) = Ul(Fq) X Ul(Fq) — O
(x,y) — 6i(x)02(y).
We suppose that 01 # 6o, and let o(6) denote the associated irreducible cuspidal representation of
Usy(F,), as in [Blal0l §3.1(b)].
We have the following classification theorem.
Theorem 3.7 ([Enn63]). Any irreducible representation of Us(IF,) over E is isomorphic to one of
the following:

o 1), where 1 is a character of Ua(Fy);

o 1 ®p St, where 1 is a character of Ua(Fy);
o Indgfj(gfq)) (1), where v is a character of IE‘;2 which satisfies =1 # );
o 0(0), where 6 =6, ® b3 is a character of Ui (F,) x Uy (F,) with 6; # 5.

The only isomorphisms among these representations are IndUQ(g;q)) (v) = Indgz(g;q)) (¥™9) and o(6L ®
92) = 0'(92 [ 91)

Definition 3.8. We define a tame type o to be an irreducible U (O )-representation over E which
arises by inflation from an irreducible Us(F,)-representation over E. Likewise, we define a tame
type over O to be a representation o of Ug(Of) on a finite-free O-module, such that 0 ®¢ E is a
tame type over E. We make similar definitions for the group GL2(Ox,).

3.3.2. The principal series case. Consider again a character
Y IF'qXQ — 0%

which satisfies ¢~ # 1, and let IndUQ(éF q)) (1) denote the (irreducible) principal series representation.

We may extend the character ¢ to a character 1 ® ™9 of By (F2) as follows:
YY1 BU(Fq2) — 0O*

(5 4) — vwer

where z, z € F;z,y € F,2. We consider the (irreducible) induced representation IndB (F 2) (w P9
of Us(F,2) = GLa(F2), and view it as a tame type of GL2(Ok,) by inflation.
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Definition 3.9. Let v : F, — O* be a character such that ¢¥~% # 1. We define the base change
q

of Indgz(g;lq)) (1) to be the GL2(Ok, )-type given by

o GLo(F
BC (Tndp2 () () < Tndg o0 % (0 0 0 7).

There is a compatibility of this definition with automorphic base change, as follows. Let o =
In dg2(£?))(w), and suppose 7 is a smooth irreducible representation of Ug(K) over C such that

0 ®p C C 7|y,0g) (for some choice of morphism E < C). This implies that 7W1 2£ 0, where
Iw; denotes the upper-triangular pro-p-Iwahori subgroup of Uy(Og). Consequently, m cannot be
supercuspidal, and is therefore a subquotient of a principal series representation. Since the character
1 is regular, this subquotient must in fact be an irreducible principal series (see [Rog90l §11.1] for a
classification of nonsupercuspidal representations of Us(K')). We let BC(7) denote the stable base
change of 7 to a representation of GLa(K3) (cf. [Rog90l §11.4]). Then BC(w) contains a unique
tame type, which is isomorphic to BC(o) @ C.

3.3.3. We now wish to compute the base change map on Deligne-Lusztig representations. Let

€ X*(T) be such that
ag af—1
— bo br_q
() (%)
0 0

f-1 f-1 -1 f-1
> aip —p! > bip' £ bip' —p’ > aip’ (mod p* - 1).
i=0 i=0 i=0 i=0

By [DL76, Prop. 8.2] we have an isomorphism of Uy (O )-representations

~ U Fq
RL(N) = IndBf_,((Fq)) (eu)a

(5 2) - s

(recall that we identify representations of Us(O ) trivial on (05 ) and representations of U(Ok)).
Further, the assumption on g and Proposition 7.4 of op. cit. imply that Ri(u) is irreducible.
Consequently, the base change map becomes

BC (Ru(n) = Ry 1) (11 —s()) -

Now let w € W be an element in the F-conjugacy class of 1, and choose w’ € W such that
w'wF (w')~! = 1. Applying first the equivalence ([3.I.1]) for the element v = w’ (and v = 0), then
the above equation, then the equivalence induced by (w'~!,w'~!), we obtain

(3.3.1) BC (Ru (1)) = Ry ) (11, —5(1))

3.3.4. The cuspidal case. Consider again the character § = 01 ®63 of Jepq(F,) which satisfies 01 # 6.
By base change we obtain the character

0: Jena(Fpp) =Fy xFy — 0O
(z,y) — O1(z'79)0, (y'79).
By inflation, we view this as a character of upper triangular Borel subgroup By (Fy2) of Ua(F2)
GLy(F2), and view the (irreducible) induced representation IndGLigs)(H) as a tame type of
GL2(Ox,).

and suppose

where

~
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Definition 3.10. Let § = 6; ® 02 : Jena(Fy) — O™ be a character such that 6; # 6. We define
the base change of o(f) to be the GL2(Og,)-type given by

GLy(F,2)

BC (0(6)) & Indg, s 1) (6)-

We again have a compatibility of this definition with automorphic base change. Let o = o(f), and
suppose T is a smooth irreducible representation of Uz (/') over C such that 0 @ C C 7|y, (o, (for
some choice of morphism E <« C). This implies that 7 is a level 0 supercuspidal representation,
and we let BC(7) denote the stable base change of (the L-packet containing) w. Then BC(w)
contains a unique tame type, which is isomorphic to BC(0) ®g C (see [Blal(, Cor. 3.6]).

3.3.5.  We now wish to compute the base change map on cuspidal Deligne-Lusztig representations.
Let € X*(T) be such that
agp af—1
J— b() b -1
M B < > o ( ! > ’
§) U

and suppose that E{:_Ol a;p' # E{:_Ol bip' (mod pf 41). By [DL76, Thm. 8.3], this assumption guar-
antees that R(s; . 1)(i) is an irreducible, cuspidal Uz (O )-representation. Then a straighforward
character computation using [Enn63l, §6] and [DL76, Cor. 7.2] gives

R(8’17“'71) (M) = U(eﬂ)u
where
f=1 i ~f-1,
Hﬂ(x7y) = Q0 (Zﬁzi:o aip yZizo bip ) .
Consequently, the base change map becomes

BC (R(s,17...,1)(/$)) = E;,;) (e, —p1) -

Now let w € W be an element in the F-conjugacy class of (s,1,...,1), and choose v’ € W such
that w'wF (w')~' = (s,1,...,1). Applying first the equivalence B.1.1]) for the element v = w’ (and
v = 0), then the above equation, then the equivalence induced by (w'~!, sw'~!), we obtain

(3.3.2) BC (Ru(n)) = Ry, ) (1, —5(1)) -

3.3.6. We define a base change map on the remaining irreducible representations of Us(FF,). Given
a character ¢y : Uy (F;) — O, we let 1)y denote the character

Yo : F;é — O
x> ho(x'T).
Definition 3.11. Let vy : U;(F,;) — O* denote a character of U;(F,). We define
BC (3 o det) et Jg o det,
BC (¢ o det ®St) = 4y o det @ St/
where St” denotes the Steinberg representation of GLy(F,2), inflated to GL2(Ofs,).

Taken together, these definitions give a base change map on isomorphism classes of tame types.
One further checks that the association o — BC(0) is injective on isomorphism classes.
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3.3.7. We define an involution € on (isomorphism classes of)) representations of GLa(IF2) by twist-
ing a representation by the automorphism

N <q)2g_-|—<1>2_1>(q)

(note that the fixed points in GLa(F,2) of this automorphism are exactly Us(F;)). On Deligne-
Lusztig representations, this becomes

6<R'( wy (1 )) Rl (—s("), —5(1)) -

The above can be checked using the equivalences of Subsubsections [3.3.3] and B35l and character
tables for GLy(FF,2) (see, e.g., [Dia07, §1]). Note that by dimension reasons €( ’(w w,)(u,,u’)) is an

irreducible principal series, resp. an irreducible cuspidal representation, if and only if REW w,)(u, w')

is such a representation.
The following lemma is one of the main results of [Kaw77].

Lemma 3.12. Let o/ denote a tame GL2(Of,)-type over E. Then we have €(c’) = o’ if and only
if o’ is of the form BC(o) for a tame Uy(Ok)-type o

3.4. Combinatorics of types and weights. For future applications to weight elimination and
weight existence results, we now analyze the combinatorial properties of the set JH(7) for a tame

type o.

3.4.1. Before proceeding, we make some definitions to simplify the discussion below.

Definition 3.13. (i) We define W x *(T) x W to be the extended affine Weyl group. It

acts on X*(T) in the natural way, and we write elements of W as tyw, with p € X*(T),
w € W, to underscore this action.
(ii) An alcove is a connected component of

X*(T)®z R - (U{u—i—n, —np}).

We let C denote the dominant base alcove
{peX*(T)®zR:0< (u+no) <pforall0<i< f—1}

(iii) The group pX*(T) x W C W acts on the set of alcoves via the dot action e centered at
—n. We define

QYT e pX*(T) W : @ o Cy = Cp).
Remark 3.14. One easily checks that if w = wt_p, = (wit_p,); € Q, then we must have

(wi,v;) € {1} x X°(T) or (wi,v;) € {s} x (na + X°(Tw))
forall0<¢< f—1.

Lemma 3.15. Let R,,(11+n) denote a Deligne—Lusztig representation of G(Zy), and suppose ji is a

1-deep character. Let A € X1(T). Then F(X) € JH(Ry, (i + 1)) if and only if there exists zt_p, € Q
such that

2t_py o (+wn(v)) =5 e (A—pn).

Moreover, the element z € W is unique, and every choice of z arises. Consequently we have

|JJH(Ry (1 +n))| = 27. (Compare with (31.2).)
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Proof. First, note that by our depth assumption on u, we may apply [GHSIS8| Prop. 10.1.2] (which
is based on [Jan81l Satz 4.3]) and |[GHSIS8| Prop. 10.1.8].

Suppose F(A) € JH(R,(u+n)) for some A € X;(T). By [GHS18, Prop. 10.1.8], this holds if
and only if there exists v € X*(T) such that

2o (4 (wr —p)v) T s e (A—pn)

for all 2/ € W. (We refer to [Jan03, 11.6.4] for the definition of 1; since the root system is of type
Ay x -+ x Aj, the condition g/ 1 N is equivalent to g/ < N and p/ € (pAr x W) o X, where Ag
denotes the root lattice of G.) Select z € W such that

2(p+ (wr —p)v +n) € X4 (T).
Since z o ( + (wm — p)v) lies below s o (A — pn) in the 1 ordering, since z(u + (wm — p)v +n) is
dominant, and since s(A — (p — 1)n) is p-restricted, we must have
zeo (p+ (wr—p)v) =se (A—pn).

The proof of [LLHLI9, Prop. 4.1.3] shows that |(v,a))| < 1 for every i, from which we deduce
2t _p, € Q). Furthermore, we deduce a posteriori that the choice of z is unique.

Conversely, if z o (i + (wm —p)v) = s o (A —pn) for some zt_,, € Q, then z(p+ (wr —p)r+n) €
X+ (T), and [Jan03| 11.6.4(5)] implies

(2'2) o (n+ (wr —p)v) Tz o (n+ (wr —p)v) =5+ (A= pn)
for all 2/ € W, so that F(\) € JH(R, (1 +n)) by [GHSIS, Prop. 10.1.8].
To show that every choice of z arises, choose any v € X*(T) such that zt_,, € 2, and define

A Esz(p+ (wr —p)v+ 1)+ (p— ).

The depth assumption on p implies that A, € X;(T), and by definition we have
ztopy o (p+wr(v)) =s e (A; = pn),

so F(\,) € JH(Ry (1 + n)). Finally, we note that different choices of v will alter A, by an element
of (p — m)X°(T), which will give an isomorphic Serre weight. O

Proposition 3.16. Let 01 = Ry, (u1+1), 02 = Ry, (p2+1n) be two Deligne—Lusztig representation
of G(Zy). Suppose that py is 3-deep and pg is 1-deep.
(i) We have JH(o7) NJH(T2) # 0 if and only if there exists a pair (wh, ph) € W x X*(T) such
that Ru,(p2 +n) = Ry (15 +1) and

! ~
tuwy =ty wiw

n W, where w; € {1, s, tays} for all0 <i < f—1.
(ii) Suppose JH(77) N JH(G2) # 0, and let (wh,ph) and @ = (w;); be as in item [i)} Let
A € Xi(T). Then F(X) € JH(e7) N JH(52) if and only if

se(A=pn) =wx e (1 +wim(v)) = Wy o (uy + wym(v))

for an element wy = wt_p, € §) satisfying the following conditions:

(a) if w; = s then (wy);—1 = 1 mod X°(TH); and

(b) if W; = tags then (Wy)i—1 = st_ppy mod X°(TH).

In particular, since adding (p — 7)X°(T) to X does not affect the isomorphism class of a
Serre weight, we obtain

\JH(77) N JH(53)| = 2/F@=1},
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Proof. We begin with item
Assume JH(a7) N JH(73) # 0; by Lemma we have

(3.4.1) p2 + (wom — P+ = ()70 (g + (i = p)p + )
where Z(j)t_pu(j) € Q. This gives
Ry, (p2+1m) = Ry, <N2 + 0+ (wor — p)V(z))
= Ry ()70 a1+ (wrm = pp® 4)

1

R(zu))712(2)w2F((z(1))71Z(2))71 <N1 + ('lUlT(' — p)y(l) + T])

12

R(Zu))712(2)w2F((z(1))71Z(2))71 <,u1 + w17T(y(1)) - u)éﬂ'(y(l)) + 77>

where the first isomorphism comes from equation (.L1I) by adding (wem — p)r(?), the second from
(BZT), the third from equation (FII) by conjugation by (2(0)~12(2) and the fourth again from

equation (BII) by adding (p — w)m ). Here, we define wh & (z10)"12@ e F((2(0)~12())~1 and
1y iy + wir(v®) — whr (D).
We now proceed entrywise:
o if wy; = w1, then by definition we have iy ; = 115
o if wéﬂ- = w18, then “/271' = p1,; + wl,i(ﬂ(u(l))i — sm(vM),). Since 7(vM); € {0, nu} +
X%(Ty), we have 7(vM); — sw(vM); € {0, an}.
This means exactly that ¢, wy = t,,w1w in W, with @; € {1, s, tay S}
For the converse, suppose that (wy, ui5) satisfies o9 = Ry, (u2 + 1) = Ry (15 + 1) and

t

! _ ~
p, Wa = Ty wiw

with w; € {1, s, tays}. In particular, this implies i, is 1-deep. Let wy = wt_,, € Q be any element
which satisfies conditions @, @ in the statement of the lemma.

o If w; = s, then w’zﬂ- = wy ;s and
,ulz,i = p,i = pri +wii(Vicr — s(Vim1)) = prg +wiam(v); — wéﬂr(V)z‘-
o If w; = tpys, then wéﬂ- = wy ;s and
Ho; = p1i + wii(om) = i+ wii(vier — (V1)) = pay + wim(v); — wy m(v);.
o Finally, if w; = 1, then w’z’i = w;; and
fa; = pai = pi +wri(vic) — Wy (Vic1) = pa + wiim(v); — wy w(V)i
Collecting these, we obtain p; + win(v) = pbh + whn(v), ie.
Wy o (1 +wim(v)) =Wy o (ph + whT(V)).
By Lemma [B.15] we conclude that F(\) € JH(a7) N JH(73), where A is defined by
se(A=pn)=wy e (1 +uwrm(v)) =Wy o (ph + wym(v)).
This completes the proof of item |(i)| and of the “if” direction in item and shows that
[JH(7T) N JH(73)| > 2ltEm=1,
We now conclude the proof of item [(ii)
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Suppose there exists some F(\) € JH(a7) NJH(72), and let (wh, 45) be as in item By Lemma
there exist Z(j)t_p,/(j) € Q such that

(3.4.2) se(A—pn) = z(l)t_py(l) . (,u1 + wlﬂ(u(l))) = z(z)t_py(z) . <,u'2 + wéw(u@))) .
Pairing the middle expression with «;/ and reducing modulo 2 gives
<z(1)t_py(1) o (1 + win(wM)), a}/> = <z(l)(u1 + (wym — p)vD 4+ ), a}/> -1
o),

= ()" (o wir = pp 4 a) ) 1
<u1+ wim — p)vV +n,a >—1
g, )y 4 (—1) e <7T(V(1))7a;/>_p<y(l)7a2/>

(
= (m, o))+ < V(l)),aiv>+<l/(1),oziv>

= <u1, > +9 oy st (52(1) s (mod 2).

We have a similar calculation for the rightmost expression. Recalling how p}, and uy are related (cf.
item [(1)]), we see that (uh, @) = (u1, @) (mod 2). Consequently, the last equality in (3.42]) gives

5z£1),s + 5,22@),8 = 5,22@1,8 + 5Zg2) s (mod 2).

Suppose by contradiction that z() # 2@ so that z ;é z ) for some i. The above equation
implies that this inequality holds for all i, i.e., 2 = sz ) and 1/(1)—1—1/(2 = 1+ for some B € X°(T).
Substituting this into equation [Z2) and cancelling 2! yields

(3.4.3) i+ (wnr = p) ) = s (1 + (whr = p)n+ B —vV) 4 7).

Recalling how (1, w1) is related to (uh, wh) via w (cf. item[(i)), by pairing the above equation with

o) we see that
~1 o~
pT — Owy ;.1 if w; =1,
p_l i —
(3.4.4) {0y = {75 70y, ) if w; =s,
p—1 wiil  if s =
7 0y (-1)° if Wi = tays.

To proceed further, let us write w) = wiv and ph = p1 +wi(§), where v € W and £ = ZZ 0 @ity
with a; € {0,1} and a; = 1 only if v; = s. We wish to evaluate the expression
(3.4.5)

—swn (€)Y ((u1,0))+1) it (wir (D) =m(v D) )+ (—swrom(n)+sm(n) ) + (swivr (D) —se (M),

which lies in Ar. By working entrywise and considering all possibilities for wy ;, zi(i)l, v; and a;, and
using equation (B.4.4]), we see that (3.4.3]) is equal to

i=0
On the other hand, rearranging the expression ([B.4.3]) gives

(m = s(p1) = swi (&) + 1 — s(n) + wrr () — swiom(n) +§w1v7r(v(1))> — (W) +sm(n) - sm(vV),

and using equation ([B43]) to further simplify the parenthesized term above, we get
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(P +7(8) = ps(n) = pB +ps(v")) = w(v V) + sm(n) - sw(vV)

= (p—m) (v =B = s(n) + s0M)) .

Combining these two calculations, we see that sz:_ol p%lozi liesin AgN(p—m)X*(T) = (p—7)ARg,
which yields the desired contradiction.

The above argument shows we must have 2(2) = 2(1) and v® = v 4+ 8 for some g € X°(T).
Thus, equation ([B8.4.2]) reduces to

1 +wir(vW) = ph + whr (W) + (7 - p)B.
Writing ph = p1 + wi(§) and wh = wyv as above, this equation becomes
pa + wrr(h) = gy + wi () + wor (W) + (7 - p)B.
Cancelling ;11 and applying w; ! gives the equation
E+on(w) =) = (p—m)B;
since the intersection Ar N XY(T) is trivial, we conclude that 8 = 0 and
(W) —or(@W) = ¢.

This equation and the condition that z(¢ y € Q determines v up to an element in X o(T),

el
so that Z(l)t_p,/(l) must exactly be one of the wy of the statement of the lemma. This shows

\JH(Z7) N JH(53)| = 2HE@=1}, .

Remark 3.17. The above results hold mutatis mutandis for the group G’ = Resy Ko /2,(GLg/0 Kz).
More precisely:

(i) The statement of Lemma holds with G (and related objects, e.g., T, W, Ry,(p + 1),
etc.) replaced by G’ (resp., the relevant primed objects). Moreover, the quantity 27 is
replaced by 227, and the element n € X*(T) is replaced by the character p/ € X*(T')
(corresponding to (é) € (2%)%%F = X*(T)).

(ii) The statement of Proposition BIf(i)| holds with G (and related objects) replaced by G’
(resp., the relevant primed objects), and the element apg € X*(Ty) replaced by the char-

! > € 7Z? = X*(Tqg) (recall from Subsubsection Z.1.4] that

acter of GLo corresponding to <
T is the diagonal maximal torus of GLy).

3.4.2. We are now in a position to compare how intersection of Jordan—Holder factors behaves
under base change.

Proposition 3.18. Let 01, oy be two 3-generic Deligne-Lusztig representations of G(Z,) on which
1(O%) acts trivially. Then

| JH (BC(o1)) N JH (BC(o2))| = | JH(77) N JH(57)|*.

Proof. Let us write 0; = R, (u;) for j = 1,2, with p; — n being 3-deep. By the discussion in
Subsubsection B.1.5] we may assume that the last two entries of y; in each embedding are equal to
0.

Suppose first that JH(7) N JH(G2) # 0. Let w = tev € W be as in Proposition 316, so that

09 2 Ry (1 4+ w1 (€)) and | JH(a7) N JH(7z)| = 21#v=1}, Using B30 or B32), we get
BC(01) = Ry, ) (111, =5(111)),

and
BC(02) = Ry, puww (1 +wi(§), —s(u) — swi(§))
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= Riyvnw (11, —s(1m)) + (w1 (€), w1 (€)))

(note that & € {0, ag} for each 0 <i < f —1, so —s(§) = &). By the GLy analog of Proposition
BI4()] we may obtain BC(03) from BC(o1) via the element t(¢ ¢)(v,v) € W', and therefore

| JH (BC(01)) N JH (BC(02)) | = 2ltEwli=tl = 92ltevi=l = |JH(a7) N JH(53) [ .

(We write W' for the affine Weyl group of G’ = ResOK2 /2, (GLg /OKQ)’ and use similar primed
notation below for the automorphism 7’ acting on the character lattice of G’ (see Subsubsection
B.2.4).)

To conclude, it suffices to prove that JH(BC(o1)) N JH(BC(o2)) # 0 implies JH(z7) N JH(73) #
0. Assume the former. By Remark we may obtain BC(o2) from BC(oq) via an element

teen(v,0') € W’ with tevis tev; € {1, s, tays}. That is, we have
BC(J2) = Réwz,wz) (,UQ, _§(lu’2)) = Ewlv,wlv’) ((:ula _§(:u1)) + (’lUl, ZU1)(£, 5/))

By Lemma B.12] the isomorphism class of the representation on the right is invariant under €, which
implies

(wrvawrer) (11, =8(11)) + (w1, w1)(€,€))) = Ry, ) (01, =3(101)) + (w1, w1)(€,6)).
By [LLHL19, Prop. 2.2.15] (which can be used by the depth assumption on py — 7, pz — n and the
fact that &;, &, € {0,an} for all i) there exists zt_,, € W’ such that
if z; = 1, then v; € X%(Tqg);
if z; = s, then y; € (é) + X%(Tg);

we have (w10, wiv) = z(wiv, w0 )7 (2)
we have

(Mlv —§(M1)) + (wb wl)(é./v 5)
= 2(p1, —s(m)) + 2(wi, w1) (€, &) + (p — 2(wrv, w1 )7 (2) 1) (v).
Rearranging the equation in the last item, we obtain
(p = 2(wiv, w1 )7’ (2) ") 7' (v) = (1, —5(m1)) = 2(p1, —s(1)) + (w1, w1)(€',€) = 2(wr,w1) (€, €),

and the right-hand term lies in the root lattice of G’; consequently, the same is true for the element
v. Combining this with the first two items implies that v = 0, and thus z = 1. Finally, the third
and fourth items imply v = v and & = €.

The above argument shows

BC(02) = Ry 010) (11, =8(111)) + (w1, w1)(§,€)) = BC(Ryyo (1 + wi(§)))-
Since the base change map is injective on isomorphism classes of tame types, we get
o2 = Ryyo(pa +wi(§))
and consequently JH(a7) N JH(73) # () by Proposition O

e}

e}

-1

o

; and

o

3.4.3. We introduce a metric on the set of Serre weights contained in a sufficiently generic tame
type. This will turn out to be useful in the proof of Theorem [7.4]

Definition 3.19. Let R, () denote a Deligne-Lusztig representation of G(Z,), and suppose jt —n

is 1-deep. Let F(\) € JH(Ry(p)). By Lemma [BT5] there exists an element zt_,, € Q defined by

se(A—pn)=2ztp, o (L—n+wr(v))
We say z € W is the label of F(\) with respect to (w, ).
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Remark 3.20. Maintain the setting of Definition .19l If (w’, i’) is another pair such that R, (u) =
R,/ (1) with ' — n being 1-deep, then by equation (3.I.I]) we have

(w', 1) = (vwF (v) "1 v(p) + F(v) — vwF (v) "1 (v))
for some pair (v,v) € X*(T) x W. It is easily checked that if the label of F'(\) with respect to

(w, ) is z, then the label of F(\) with respect to (w’, i) is given by by zv~!.

Definition 3.21. Let o denote a 1-generic Deligne-Lusztig representation of G(Z,), and let F, F' €
JH(7). Choose an isomorphism o = R,, (1), with u —n being 1-deep, and suppose that the labels of
F and F’ with respect to (w, ) are z and 2/, respectively. We define the graph distance dgr(F, F")
as the number of i for which z; # 2/ (i.e., dgr(F, F’) is the length £(2’271) of 2/27!). By Remark
the graph distance is well-defined.

Remark 3.22. Suppose that o1 and o3 are two 3-generic Deligne-Lusztig representations of G(Z,),
and suppose F, F' € JH(a7) NJH(73). Then the graph distance between F and F’, computed using
o1, agrees with the graph distance between F and F’, computed using o5 (this follows from Lemma
and Proposition B.16]).

Lemma 3.23. Let o be a 4-generic Deligne—Lusztig representation of G(Zy), and let F, F' € JH(7).
Then there exists a tame type o' such that:
o F, F € JH(d'); and o
o for any F" € JH(T) N JH(o") satisfying F" # F’, we have
dgr(F, F") < dgr(F, F").
Specifically, o and o' can be written so that o = Ry,(n), o' = Ry (i) with p —n being 3-deep, and
ty—nqw' = ty_gwtay . F(z) for an element = € W which satisfies {(sz) = dgr(F, F'). (Forve W

we denote oy, & > «y.) In this case,
1IV;=8
|JH(3) N JH(o")| = 21(s2) = gder (I F),
Proof. Let us write 0 & Ry,(u) with g — n being 4-deep. By applying the equivalence B.I11]), we
may assume that the label of F' with respect to (w, ) is s at the cost of assuming p — 7 is only
3-deep. Suppose that the label of F’ with respect to (w, ) is z. By definition, we have

F = F(p+w(n) —n) =F(— o)
o F(§z(,u + (wr —p)v)+ (p— 1)77)7
where zt_,, € Q.

We define o’ < R, P(z) (1 + wr(a,)). We easily see that ' and F” are Jordan-Hélder factors of

o/, whose labels with respect to (wF(z),u + wn(a;)) are s and z, respectively. Moreover, by the
explicit description of JH(7) N JH(o’) of Proposition we see that any element F” # F’ of
the intersection satisfies dgr(F, F") < dgr(F, F'). The final part of the aforementioned proposition
gives the size of the intersection. O

3.5. Base change of weights. We now define a notion of base change for weights, and show that
it is compatible with the notion of base change of types defined above.

3.5.1.

Definition 3.24. Let 1 € X1(T) and let (1) denote a Serre weight of G(Z,) on which (O} ) acts
trivially. As in Subsection B.I.5] we may assume p is of the form

agp a1 af—1
/J:<b(§)><b01>...<bf01>'
0 0 0
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We define the base change of F(u) as
def

BC(F(n) = F'(n, —s(n)).

One easily checks that the map F' —— BC(F) is well-defined and injective on isomorphism classes
of Serre weights.

3.5.2. Recall the automorphism e of G'(F,) = GLy(F,2) defined in Subsection B.37 On Serre
weights, this automorphism gives

€ (F'(u,p)) = F'(— s(u'), —s(n).-
We have the following result:

Lemma 3.25. Let F' denote a Serre weight of GLy(F2). Then we have e(F') = F' if and only if
F’ is of the form BC(F) for a Serre weight F of Ug(Fy).

Proof. The backwards implication is clear. We prove the forward implication. Thus, suppose
w, 1’ € X1(T) are as in Definition B.24] and suppose we have an isomorphism

F'(p, p) = F'(=s(1), —5(n)-
By Proposition 3.5, there exists ' € X°(T’) such that
(3.5.1) (n+s('),p +s(p) = (F' = 15"
Since the right-hand side of ([B.5.0]) is fixed by (s, s), the same is true of the left-hand side. This
implies that the left-hand side is also fixed by 7'/, from which we obtain
(F' — ) (§) = (F' — 18"
Since F’ — 1 is injective on X°(T’), we see that ' lies in ker(7"/ — 1), which in turn is equal to

im(7'/ +1). Therefore, we can write §' = (3, 8) with 8 € X°(Resy, /z,(Tu)), and equation (3.5.1)
becomes

(3.5.2) (n+ (), 1+ 5(n) = (F' = 1)(8, B).

Applying Proposition again, we get an isomorphism

F'(p,p') 2 F' (1) + (F' = 1)(=5,0)).
The equation (B.5.2]) then implies that the term on the right-hand side above is of the form
F'(u”", —s(u")), and the result follows. O

3.5.3.  We now wish to relate base change of types with base change of weights. The relevant result
is the following.

Lemma 3.26. Let o denote a 1-generic Deligne—Lusztig representation of G(Zy) on which (O )
acts trivially, and let F' denote a Serre weight on which 1(O5%) acts trivially. We then have

F e€JH(e) <= BC(F)e JH(BC(0)).
Proof. Let us write 0 = R, (1) where p is of the form

ap a1 af_1
-6 C5)
0 0 0
and g —n is 1-deep. Thus BC(o) = R’(w ) (e, —s(p))-

Suppose first that F' € JH(7). By equation (B.1.2]), F' is of the form
F = Fy(Ry(p) = F(pyw +w'(p — wi(egw)) + ppur —7(p))

for some w’ € W. Note that the parenthesized character has its last two entries equal to 0 in each
embedding. Thus, we have
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BC(F) = F' (p(’wa, —Yur) + (W', w') (1, —s(1)) — (0, w) (7 (egw), =57 (€5ur)))

+p(pur, =3(pwr)) = (7(p), ~57(p)) ).
A straightforward calculation shows that adding (p — 7)(0, 27y + pu + 5(pw)) € (F' — 1) X°(T)
to the parenthesized character gives
BO(F) 2 F/ (9 r) + (00 (1 =5(1)) = (0, 0)7 (&l ) + PPty = #)-
Hence, we obtain
BC(F) 22 Fyr ) (Rl (18, —5(1))) € JH (Ry,,, (1, —5(1))) = JH (BC(0)).
To prove the converse we begin with an observation. Let F(’U U,)(BC(U)) be a Jordan-Holder
factor of BC(o) = R’(w ) (i, —s(p)) as in B2.1). (Note that F(’v v,)(BC(O')) depends on the pair

(w, ). For readability, we fix the presentation (w, ) and omit this dependence from the notation.)
Since €(BC(0)) = BC(o) by Lemma B.12] we obtain e(F} y(BC(0))) € JH(BC(0)). A similar

(/Ui/UI

argument to the one above shows that
€(Fly,) (BC(0))) = F ) (BC(@)).

Suppose now that BC(F) € JH(BC(c0)). Then there exists (v,v") € W’ such that BC(F)
F(’v ) (BC(0)). Since BC(F) is a base change, Lemma and the above equation imply

Fly (BC(0)) = €(F,,(BC(0)))
= ¢(BC(F))
~ BC(F)
= F(,U,UI)(BC(U))’

Since p — n is 1-deep, equation (BZI)) and Remark BI7(i)| implies that we have a bijection between

W' and the (all distinct) Jordan—Holder factors of BC(o). We obtain v" = v, and thus
BC(F) = I, ,)(BC(0)) = BC(Fy (Ru(1)))-

Since the base change map is injective on Serre weights, we conclude that

F = F,(Ry(p)) € JH (Ry (1)) = JH(7).

3.5.4. The following lemma will be useful in the proof of Theorem

Lemma 3.27. Let o be a 2-generic Deligne-Lusztig representation of G(Zy) on which 1(O)) acts
trivially, and let F denote a 3-deep Serre weight with trivial action of 1(O)) such that F ¢ JH(7).
Then there exists another Deligne-Lusztig representation o' of G(Z,) such that F € JH(o’) and
JH(Z) N JH(o") = 0.

Proof. If & and F have different central characters, then any o’ for which F' € JH(o’) works. We
may therefore assume that @ and F' have the same central character. The remainder of the proof
will be based on the combinatorics of the extension graph for Serre weights for GLg, as defined in
[LMS, §2]. We recall some of the definitions and constructions of op. cit. (and use similar notation
for convenience of comparison).

Define A}, to be the weight lattice for G'4°", the derived subgroup of G/, and let Ay denote
the root lattice, so that A%, C A},. Note that A}, = Z/ x Z/ and we fix such an identification
in what follows. Recall from Subsubsection B.2Z1] that X*(T') denotes the weight lattice for the

group G’; we have Ay € X*(T') and X*(T') — Aw. We further write W! (resp. W) for the
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affine (resp. extended affine) Weyl group of G’, which admits a factorization /VIV/C’L = W x Ay
(resp. W' = W' x X*(T')). The group W/ (resp. W') is canonically isomorphic to two copies of
W x Ag (resp. W x X*(Resg, /z,(Tu))) (compare with Subsubsection [3.2.T]).

We let ' denote the set of elements of W' which stabilize the fundamental alcove C of G’ under
the p-dilated dot action e :

’w,tx . ,U/ :wl(ul+pl+p)\/) _p/7

where w'ty € W and ' € X *(T'). Thus, € is the analog of  of Subsection B4 except that
translations have been scaled by a factor of p~!. (We apologize for this inconsistency of notation.)

Let ' € X*(T') satisfy 0 < (i, a’V) < p — 1 for every positive coroot o’V of T'. We call such
characters p-regular. We then define the map Tt;/ by

X*(T)
(F' — 1)X(T")

‘ItL/ . AQ/V —
N
W w o, (T =)

where &' € X*(T’) is a lift of w’ € A}y, and @ is the unique element in ' such that the class of
~/ Y o~ o~

—m'~1(@') corresponds to the class of w via the isomorphism X*(T’)/A — W’'/W/. Note that
this is well defined. Define furthermore
(3.5.3) A e Ny o+ — e Ol
(where we consider the image of p/ — p’ and Cj in Ay, ), and let Tt be the restriction of ‘Zt;M to
A}, Then, as in [LLHLM?20, §2.1], one checks that:

(i) The image of T, is contained in the set of p-regular characters. Further, the map w’ —

F'(%Tr,y(w')) defines a bijection between A’ ’;{, and the set of p-regular Serre weights with
the same central character as F'(u/ — p’) (see the discussion preceding [LMS|, Prop. 2.9]).

(ii) Suppose ¢/ € X*(T') is such that u' — p’ is 2-deep, and consider the Deligne-Lusztig
representation R! ,(1'). Applying the analog of equation BT for G'(Z,), we obtain an
isomorphism

R, (1) =R, ((s,8) (W) +pp —w'(p))),

where the character (s,s)(u') + pp’ — w'(p’) — p’ is 1-deep. Combining this isomorphism
with [LMS| Props. 2.5 and 2.11], Proposition and Remark .7 below, we obtain

IH W) = L (Tt (b (5,900 () )}

where 3’ C Aj;, is the subset consisting of (images of) elements of the form (é) or (8) in
each embedding. (That is, ¥’ is the image in Af;, of {p] , }urew.)

(iif) Let p € X*(Reso, z,(Tu)) € X*(T) satisfy 0 < (u + p,a”) < p — 1 for every positive
coroot " of T. We let Ay denote the weight lattice of GI°* (which is a quotient of
X*(Resg,/z,(Tu)) ), and define

AP € Ay w+ e CfT)

where C§ is the fundamental alcove of G4¢*. Consider the map

X1(T)
(F' —1)X9(T")

W = T (ugp—s(u)+p) (W5 —5(W))-

TG

. ABtP
qup.AW —
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Using Lemma [3.25] and item one checks that w — F’ (ch;:_p

between A’v“;r ? and p-regular Serre weights of G/(Z,) which are in the image of the base
change map and have the same central character as F’'(u, —s(u)).

(w)) defines a bijection

We now proceed with the proof. Let us write o0 = Ry, (1), with p chosen as in Lemma B.26] and
it — p being 2-deep. By assumption and Lemma [3.26] we have

BC(F) ¢ JH(BC0)) = JH (B, , (i —=(0).

Since the character (u, —s(u)) — p’ is 2-deep, item [(ii)| above implies

BC(F) ¢ {F’ (:ct(u,_wmp, (t—ay (520, §w)(2/))) } .

Therefore, since F' and 7 have the same central character, item|(iii)|implies that BC(F) = F ’(‘Zt/(f;r »(W))
for some w € Ab? N t_p, sw(X). (Here, ¥ is the image in Ay of {py }wew.) Since ¥’ is a funda-

mental domain for the translation action of A’; on Ay, there exists an element t(,, _s(,)) € Az C w’
such that
(354) (OJ, _§(w)) € t(l/,—§(l/))t—0l(w,w) (§w7 §w)(2/)

(Since the left-hand side of the above containment is fixed by €, the translation element of A%, must
be of the form t(, _,)).) Note that this implies v # 0 and consequently

(3.5.5) g (520, 50) (£) Nt ) <t_a(wyw) (§w,§w)(2’)) — 0.

Recall that we have assumed F is 3-deep. Therefore the same is true of BC(F). Using the relation
BC(F) = F' (ftf’+p(w)), and the fact that € preserves C under e, , we get that the character
i+ w is 3-deep. On the other hand, the relation ([B:5.4]) implies that we have

W=V —y + sw(py)
for some v € W. Since 0 < (o, — sw(py), @) <2 for all 0 <i < f — 1, the relation
A w+ ay — swipy) =p+v

implies that 2 < (u+v,af) < p—2forall 0 < i < f—1. That is, we have that (u, —s(u)) +
(v, —s(v)) — p' is 2-deep.

Now set o/ & R, (r + v). By the previous paragraph and item |(ii)|, we have

JH(BC(¢))) = JH (sz,w)(” +v,—s(p+)))
= {F (T s+ s (g (50, 50)(2) ) §

= {F (Feusmrir (i sont-agu (sw,50)(2)))
where the last equality follows from the definition of Tt and the fact that (v, —s(v)) € Al;. Thus,

the relation BC(F) = F'(%t%, (w)) and equation B.5.4] imply that BC(F) € JH(BC(¢”)), and the

)

ptp
injectivity of Tt,, and equation imply JH(BC(c)) N JH(BC(o’)) = (). We conclude by using
Lemma and Proposition 318l O

4. PREDICTED SERRE WEIGHTS

In this section we discuss the conjectural set of weights attached to Galois parameters and their
relation with base change. We give the relevant definitions in Subsection .1l along with a classi-
fication of mod p tamely ramified L-parameters. We then define the set W’ (7) in Subsection
The main result is Theorem 9, which relates the sets W’(5) and W*(BC(p)). Finally, we state
in Subsection [£.4] a version of the inertial local Langlands correspondence that we will require for
local/global compatibility. Our discussion is based on [GHS18, §9].
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4.1. L-parameters.

4.1.1. We first define the Galois representations we shall consider.

Definition 4.1. Let R be a topological Zy-algebra. An L-parameter (with R-coefficients) is a
continuous homomorphism I'g, — “G(R), which is compatible with the projection to Gal(K2/Q,).
Likewise, we define an inertial L-parameter (or an inertial type) to be a continuous homomorphism
Ig, — G(R) which admits an extension to an L-parameter Ig, — “G(R). We say two (inertial)

L-parameters are equivalent if they are é(R)-conjugate.
We make similar definitions for homomorphisms valued in Ga(R).

By [GHSI8, Lem. 9.4.1], the é(R)-conjugacy classes of L-parameters I'g, — LG(R) are in
bijection with H(R)-conjugacy classes of L-parameters I'yy — “H(R) = “Uy(R). A similar
statement holds for inertial L-parameters (cf. op. cit., Lemma 9.4.5).

We make similar definitions of L-parameters I'p+ — “Ug(R) if F'* is a global field with a place
v satisfying F,f = K (cf. Remark 2.).

4.1.2. The following lemma is easily checked.

Lemma 4.2. Let p : T'x — “Us(F) denote an L-parameter such that Plry, is semisimple (or,
equivalently, tamely ramified). Then, up to equivalence, p is of one of the following two forms:

(i)

_ wynryy -1 () 0 s
h = —qr s ’ h 17
p(h) (( 0 W2fq +(g+1) nras o (1) wfnr2f7,\2( )| x

ple™!) = <<é 2>,A>>w‘f,

where h € Tg,, 0<r<¢*—1,0<s<q—1, and \,v € F*.

s+(1—q)k
B w nror _x(h) 0 s
h) = 2f , WPNT h) | x1,
p(h) (( 0 w;}_(l_q)énrgf,_)\(h) fnror z2(h)

s = (1 3) ) me,

where h € I'g,, 0 <k, {<q+1,0<s<qg—1, and A € F*.

In both cases nraf, denotes the unramified character of I'k, sending 02 to .

(i)

4.1.3.

Definition 4.3. Let R denote a topological Z,-algebra.

(i) Let p : Ty — “Uy(R) denote an L-parameter, and write p[rK2 = po @ p1, where py :
'k, — GL2(R),p1 : ', — Gn(R) = R*. We define the base change of p to be
BC(p) < pa.
(ii) Let p : Tx —> G2(R) denote an L-parameter valued in Gy, and write ,o\pK2 = po D p1,
where po : ', — GLa(R), p1 : ', — G (R) = R*. We define the base change of p to
be

def

BC/(p) = po.
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We make similar definitions if F'* is a global field with a place v satisfying F,t = K (cf. Remark
210).

The two notions of base change are related as follows. Let p : 'y — “Ujy(R) denote an L-
parameter, and let § denote the continuous character 70 p: 'y — R*. Using the isomorphism of
Subsection 2.4] we get an isomorphism of GLg(R)-valued Galois representations

(4.1.1) BC'(p) = BC(p) @ 6L

4.1.4. Recall from Subsubsection that we have a map (¢¥)™! : X*(Tu) — X, (Tw), which
induces an isomorphism X*(T) — X,(T). Given p € X*(T) (viewed as an element of X,(T))
and w € W, we define a tamely ramified inertial L-parameter 7(w, ) : Ix — H(F) by

2f-1

r(w, 1) = J] (F* o w™) (u(way))

i=0
(compare with [GHSIS8, §9.2] and note that (F* o w™!)2f = p?f).

We define BC(¢) to be the canonical identification of the dual root datum of the split group
GLy/0 Ko with the root datum of its dual group. Given this, we make an analogous definition of

tamely ramified inertial L-parameters 7/((w,w’), (u, p’)) : Ix, — GL2(TF).

Lemma 4.4. Suppose 5 : I — CUy(F) is a tamely ramified L-parameter which satisfies 70p = w.
Via the identification of [GHS18, Lem. 9.4.5] we have

Pl = 7(w, p+m)
with w € W and pn € X*(T) of the form

ag af_1

— bo br_q
ILL_ < )”‘( ! >'

0 0

BC(D)|1, = 7' ((w,w), (1, —s(p)) +¢).

Proof. The proof is a straightforward exercise using the definitions. O

Furthermore, we have

4.1.5. We will also need a definition of genericity to study the relation between L-parameters, the
set of conjectural associated weights and local deformations.

Definition 4.5. Suppose p : Ty — Uy (F) is a tamely ramified L-parameter. We say p is
n-generic if, via the identification of [GHS18| Lem. 9.4.5], we can write

Pl = 7(w, p+n)
where w € W and p € X*(T) is n-deep.

4.2. The set W’. We now give a description of the set W’. We refer to [GHSIS, §9] for the
definition, and to op. cit., Proposition 9.2.1 for the definition of V.

Proposition 4.6. Let p: I'x — “Us(F) be a 1-generic tamely ramified L-parameter, and write
Dlie = 7(w, p+n) as in Definition[{.5], with p being 1-deep. Let Vy(p) = Ry, (p+n) be the associated
Deligne-Lusztig representation of G(F,) as in [GHSIS| Props. 9.2.1 and 9.2.2]. Then

W(p) = JH (B(Ruln+ 1))
Proof. By definition of W’ (), we must prove that

R (I (Rl +m) ) = I (BRu(u+ 1))
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where R is the reflection operator defined in [GHSI18, §9.2]. We use Equation [B.I.2]). We claim
that

(4.2.1) R (Fur (Ru(p+m))) = Fur (B(Rw (1 +n)))

for all w' € W. Note first that 7 and s commute as operators on X*(T), and the group W is
commutative. Therefore, in order to prove (£21), it suffices to show

Ps(Yur) + sw'(p +n) — sw'wn(egw) + ps(pwr) — 7(s(p)) +5(p) —ps(n) —p =
Py +w (s(p+n) —s(n) + (p— D)n — swn(eguw)) + ppuw — m(p),

the equivalence being taken modulo (F — 1)X%(T).
One easily checks that s(yy) = 7w and —7(s(p)) + s(p) — p = —7(p), and hence (L2T]) will be
satisfied if we show that

(42.2) ps(pur) — ps(n) = —w's(n) + (p — 1w’ (n) + ppur

modulo (F —1)X°(T).
Expanding the left-hand side gives

ps(puw) —ps(n) = -+ (_‘%}) <_§p>
——

while expanding the right-hand side gives

s o o= () ()

In particular, adding

—~
|
—_
N—
VR
i ()]

~~_
Il
N
hSHES
I‘I\olo
==
~

to the left-hand side of [£2.2]) gives

wi=1 wi=s wi=1 wi=s
where the equality follows form the equivalence relation on X*(T). This gives the claim. d

Remark 4.7. The above proposition and its proof carry over mutatis mutandis to the group
GL2(Ok,) and a tamely ramified Galois parameter ', — GL2(F) (cf. [Dia07]).

4.3. Base change and W’. This section contains the main result on compatibility between the
set W7 and base change of L-parameters (Theorem F9).

4.3.1.

Proposition 4.8. Let p : T'x — CUy(F) be a 1-generic tamely ramified L-parameter which
satisfies 1o p = w. Then the subgroup 1(O %) acts trivially on 5(Vy(p)), and

8" (Vo) (BC())) = BC (B(Vy(p)))-
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Proof. By Lemma [£.4], we may write

Pl = 7(w,pn+mn),

ag af—1
J— b() b -1
M_ < > o ( ! >‘
0 0

Applying the map 3 to Vy(p) = Ry(p + 1) gives
B(Ve(P)) = Rsw(s(p) + (p— 1)n).

Notice that z(O ) acts trivially on this representation. In order to apply the base change map, the
character appearing inside the Deligne-Lusztig representation must have its last two entries equal
to zero. Using the equivalence given by adding the element —(F — sw)(n), we get

BVo(P)) = Raw(s(1) =0 + sw(n) = Rew (s(0) = 3 @),

’Ll)i:1

with p being 1-deep and of the form

and by ([B.3.I) or ([8.3.2]), we obtain

BC (B(Ve(9))) = Rigp s ( -, —u-> a )

w;=1 w;=1

On the other hand, Lemma 4] gives

BC®)|1, = 7' ((w,w), (1, —s(w)) + p'),
and therefore

Vic(e) (BC(D)) = Riy ) (1, —s(1) + 0).
Applying the map 3’ gives

B (V) (BC())) = Ry suy ((s(1), —11) + (0 = 1)p").
Finally, using the equivalence given by adding —(F' — (sw, sw))(p’) we obtain
B (Vee)(BCD)) = Rigygu ((8(1), —p1) = o' + (sw, sw)(p"))

= (swsw( =D i i ZO‘Z)

w;=1 w;=1

4.3.2. The main result of this section concerns local functoriality of predicted Serre weights.

Theorem 4.9. Let p: T'x — “Uy(F) be a 1-generic tamely ramified L-parameter which satisfies
Top=w, and let F denote a Serre weight of G(Zy) on which (O%) acts trivially. Then

FeW'p) <= BC(F)e W BC()).

Proof. This follows by combining Lemma, and Propositions and (L8] O
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4.4. Inertial Local Langlands. In this subsection we discuss the inertial local Langlands cor-
respondence which will be used in the rest of the paper. Recall that a tame inertial type 7’ is a
homomorphism 7’ : I, — GL3(0O) with open kernel, which is tamely ramified, and such that 7/
extends to a representation of the Weil group of K.

We set L &' Kg((—p)l/(pzf_l)). As 7' is tame, it factors as
T’ IK2 — Gal(L/Kg) — GLQ(O)
This implies that 7 is of the form
Tl Was @ @gf.
If a # b (mod p2f — 1), we call such a type a principal series tame (inertial) type. By Henniart’s

appendix to [BM02], the inertial type 7’ is associated to the tame type

GLQ(F 2)

o' (') £ Indy o(E (60  6)

if @ # b (mod p*>/ — 1), and

o' (7)) 49, o det
if a = b (mod p*f — 1), where we use the notation 6, (z) = ¢ (#?). We view o’(7’) as a representation
of GLy(O,) by inflation. (According to the appendix of [BM02], the a = b (mod p?/ — 1) case
corresponds to a twist of the Bernstein component denoted sg in op. cit., and consequently we have

two options for ¢/(7'). We choose ¢/(7') to be one-dimensional in order to guarantee that we are in
the N = 0 case in Theorem [Z.11] below.)

Suppose now that (T’)“ff >~ 7V where 7V denotes the dual type, i.e. the type @2}“ o @2_}’ if
T2 Wi B 4 - (Note that the condition (7' )¢ 7 =~ 7'V means exactly that 7/ extends to a map

p: T — YUy(0O) such that BC(p)l1, = 7" and (70 p)|1, is the trivial character.) In this case 7/
is of the form
~(1 LN ~(1 q)b

(:Jgf ©® @;ch or s
so that o’(7’) is of the form
GLQ(F 2) GLQ(F 2)
In dB u(F, 2) (90 ® G_qc), In dBU(IF 2) (9(1_q)a ® 6(1—q)b)7 or 9(1_q)a odet.

In particular, these tame types come via base change from tame types of Us(Og). We therefore
make the following definition.

Definition 4.10. Let 7': Iy, — GL2(0O) denote a tame inertial type which factors through Gal(L/K3),
and suppose furthermore that (7/ )Wf >~ 7V,
(

(i) If 7/ _waGBwa with ¢ # —qc (mod p?/ — 1), we set

o(7') = Indg? () (60),

which we view as a representation of Uy(Of) via inflation.
(ii) If 7' = @% ¢ g &é}_q)b with @ # b (mod p?/ — 1), we set

o(7) L o(0, ® ),

where we view 6, and 6, as characters of U;(FF;) by restriction, and where we view o (1)
as a representation of Uy(Og) via inflation.

(iii) If 7' = &%_q)a @ ﬁé}_q)a, we set
a(t") 19, o det,

where we view 6, as a character of U;(F,) by restriction, and where we view o(7') as a
representation of U(Of) via inflation.
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Note that the representations o (7’) are all irreducible by Theorem [3.7] and by construction we have
BC(o(7")) 2 o'(7).

We may now state a version of the inertial Local Langlands correspondence.

Theorem 4.11. Let 7' : I, — GL2(0) be a tame inertial type as in Definition [{-.10, so that

in particular (T’)‘ff =~ V. Let ™ denote a smooth irreducible representation of Us(K) over E,

and let @ denote the direct sum of all representations appearing in the L-packet containing .
Let BC(7) denote the stable base change of the L-packet containing w. Then 7T€B|U2(OK) contains
o(r") if and only if recgx(BC(7))|r, = 7 and N = 0 on recy(BC(w)). In this case, we have

dlmE HomUz((’)K) (U(T/)a 7769 ’UQ(OK)) =1.

Proof. This follows from Henniart’s inertial local Langlands correspondence ([BM02]; see also
[CEG™16, 3.7 Thm.]) and the properties of the stable base change map ([Rog90, §11.4]).

To verify the claim about multiplicities, suppose that Homuy, o) (o ('), W®’U2(o <)) 7 0, so that
in particular 7% has an irreducible summand of depth zero. By the classification of depth zero L-
packets (see [Rog90], §11.1] and [Blal0), Prop. 2.1(ii)], or [ALO5, § 3.1]), the (semisimple) representa-

tion |y, (o) is either a subrepresentation of Indgfj((KK)) (O)]Us(0x)» or adirect sum (71 ©m2)|U,(0x)>

where y : By(K) — E” is a smooth tame character, and where 71, w9 are irreducible supercuspidal

representations of Uy(K) which are conjugate under the action of GU2(K).

K
fj(([{))(x)‘UQ(OK)7 and let Uy(Of)1 denote

the principal congruence subgroup of Uy(Og). Using the Mackey formula and the Iwasawa decom-
position, we have

Suppose that W®’U2(O «) is a subrepresentation of Ind]lgJ

Ua(K
HomUQ(OK)(U(T/)7WGB‘UQ(OK)) g HomUz(OK) (U(T/)7IndBIzJ((K'))(X)’Uz(OK))

Us(K
= HomUz(OK) (O-(T,)aIndij((I{))(X)U2(OK)1>

o~ H()InU2 (OK) (O’(T/)7 IndBIQJ((qu)) (X’BU(IFq))) .

Since o(7') is irreducible and Tnd Y2

Bo (Fq)(X‘BU(]Fq)) is multiplicity-free (cf. [Enn63l, § 6]), the result

follows in this case.
Suppose now that W@‘UQ(O K) = (7 @WQ)‘UQ(O x)- We may label the supercuspidal representations

such that W}JZ(OK)I # 0 and wSQ(OK)l = 0. This gives

Homu,(0,)(0(7), 7% u,0x)) = Homu,o,) (o(7'), (71 & 72)|us(04))
= Homuy, (o) <O’(T/),7T}J2(OK)1) .

As in [ALO5, § 3.1], we may write m = c—Indngg;)(U), where o denotes an irreducible cuspidal

representation of Uy(F,), inflated to Uy(Ok). Applying the Mackey formula and the Cartan de-

composition, and using cuspidality of o, we obtain WFQ(OK P Again using the irreducibility of

o(7"), we obtain the desired multiplicity result. O

5. LOCAL DEFORMATIONS

In this section we compute potentially crystalline deformation rings for certain L-parameters
7 : T — “Uy(F). The main result is Corollary which relates Hilbert-Samuel multiplicities
of such rings with the set W (). This will be used to prove the “weight existence” direction of
Corollary

We follow [LLHLMIS| §6], adapting the base change techniques to our setting (see also [CDMIS]).
Subsection 5.1 contains the background on Kisin modules for GLy, together with their classification



38 KAROL KOZIOL AND STEFANO MORRA

by shapes. In Subsection we introduce the notion of polarized (or Frobenius twist self-dual)
Kisin modules and use a base change technique to compute their deformations. We then relate
the deformation problems of polarized Kisin modules and of L-parameters to obtain the desired
description of the potentially crystalline deformations rings.

5.1. Kisin modules. Throughout this subsection, we let R denote a complete local Noetherian
O-algebra with residue field F. We start by defining the relevant categories of Kisin modules with
tame descent data Y#™ (R) C YIOU™(R) ([CLIS, §5], see also [Lel9, §3])

5.1.1. The ring G5 < (Ok, ®z, R)[u] is equipped with a Frobenius map @ : &g — Gg which is
the arithmetic Frobenius on O, (i.e., = ¢! on Of,), which is trivial on R, and which sends u
to uP.

Definition 5.1. A Kisin module with height in [0,1] over R is a finitely generated projective &p-
module M together with an G g-linear map ¢gy : P*M s R ®p.6p M — M such that

E(u)M C po (7"00) C M,
where E(u) denotes the Eisenstein polynomial of (—p)Y/® =1 over Ky, i.e. E(u) = u?™ 1 + p.
We often write 9t for a Kisin module, the Frobenius map ¢gy being implicit.

def

5.1.2. Recall that 7 = (—p)/®* -1 ¢ Q,, and set L = Kj(m). For g € Gal(L/K3), we have

defined
g

- ™
Wr(g) = — € Ok,
(Note that reducing &, mod p induces an isomorphism Gal(L/Kjy) — Fggf .) Given g € Gal(L/K>),
we let g denote the O, ®z, R-linear automorphism of & given by u —— (Wr(g9) ® 1)u. Note that
pog=gop.
Definition 5.2. Let 91 denote a Kisin module over R.
(i) A semilinear action of Gal(L/K3) on M is a collection {g}geqal(r/K,) Of g-semilinear ad-

ditive bijections § : 9 —s 90T such that Go h = 5}3 for all g,h € Gal(L/K>).
(ii) A Kisin module with descent datum over R is a Kisin module together with a semilinear
action of Gal(L/K3) given by {g}gccai(r/k,) Which commutes with ¢gy, i.e., we have

godm=odmop'y
for all g € Gal(L/K2).

5.1.3.  Any Kisin module 9t admits a decomposition

2f—1
m =P m,
=0
where M@ is the R[u]-submodule of 91t such that (z ® 1)m = (1 ® ¢ 0 ¢*(z))m for m € M and
S OK2.
We let

T IK2 —» Gal(L/KQ) — GLQ(O)

denote a tamely ramified inertial type which factors through Gal(L/K3). Recall that this implies
7' can be written 7' = wy, & &Sf.
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Definition 5.3. Suppose 9 is a Kisin module with descent datum over R. We say the descent
datum is of type 7' if we have M@ /ud® = 7'V ®¢ R as representations of Gal(L/K3) for every
0<i<2f—1, where 7"V denotes the dual typeE

5.1.4. We now define the categories of Kisin modules that will be relevant for us. Let pu oot (é)

denote the standard minuscule cocharacter of G’ = Resg Ko/ Tp GLy/0 Ky

Definition 5.4. Fix a principal series tame type 7’.

(i) We define Y%7 (R) to be the groupoid of Kisin modules over R of rank 2, with height in
[0,1], and descent datum of type 7.

(ii) We define Y7 (R) to be the (full) subgroupoid of Y%7 (R) consisting of Kisin modules
such that

(5.1.1) E(u)det M = don (7" (det M)).

Note that the definition of Y (R) above is consistent with the construction of [CLIS8, §5], thanks
to Theorem 5.13 and Corollary 5.12 of op. cit.. See also [LLHLMI18, Thm. 4.18].

5.1.5.  We fix some notation, following [LLHLMIS8| §2.1]. Let 7’ be a principal series tame type of
K, We may write

—771@772—wf22f ai; EBO.) Z?f()lCLzIJ’

with 0 < ay; < p—1 for all 7. By Remark [5.5] below, we may assume without loss of generality that
neither 7y nor 7y are trivial, i.e. (ar;)i ¢ {(p—1,...,p—1),(0...,0)} for k =1,2.

Remark 5.5. The goal of Section [{lis to compute the deformation rings R%/ (described in Subsub-
section [5.3.3] below), where 7 : ['x — “Uy(F) is a tamely ramified L-parameter. Given an integer

0<k<pl+1, Wedeﬁnep®w(1p) (1p)

B ot _ (1 pf)k(h) 0
(el ™0 = ph) - << T Wiy pf”“(h)>’1> "

the twist of p by w, , by the rules

Powl " e ) = pe?)

where h € I',. One checks that these rules give a well-defined tamely ramified L-parameter which

N _pf N . . .
satisfies 70 (p ® w% P )k) = 70 p. Using this twisting procedure, the proof of [GK14, Lem. 2.1.2]

shows that we have an isomorphism of deformation rings

~(1—pHyk
’ 7' Q.
RI =R ¥
P __ (-pHHKk -
pRwy; "

Consequently, we may assume that 7" does not contain the trivial character.

Set a; et (a1,)i, a2 et (a2)i, and given 0 < j < 2f — 1, define the shifted sums

2f—1 2f—1
(]) def i (J) def i
ai’ = Y a ', ay = agi
=0 =0

© _a©

so that, in particular, 7 = @, fa1 JT2 = Wop 2

2We impose the condition DJT(i)/uDJT(Z) ~ 7"V ®¢ R because our functors to Galois representations in later sectlons
are contravariant. In particular, if 9 is a Kisin module over O with height in [0, 1] and descent datum of type 7’ (as
defined in Definition[5.3)), then the I'k,-representation T4 (90)[1/p] will have inertial type 7'. (See below for undefined
notation and terminology.)
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Definition 5.6. Let n > 0. We say the pair (a;,as) is n-generic if
n<lai;—azi <p—n

for every 0 < < 2f — 1. If 7/ is associated to (aj,as) as above, we say 7’ is n-generic if the pair
(al, a2) is.

This agrees with the notion of genericity given in Definition

5.1.6.

Definition 5.7. Let 7/ denote a principal series tame type of Ig,, and let (a;,as) denote the

associated pair. Suppose 7’ is 2-generic. An orientation of 7' is an element w = (w;); € ng such
that

(i) (i)
(1) 2 Buy(2)

forall 0 <i<2f—1.

(We view Sy as a subgroup of GLy(Z) via the standard embedding as permutation matrices.

Since 522f =~ W', we also view orientations as elements of W/ when convenient.) We note that an
orientation depends on the ordering of the characters 71,72. Since we take 7’ to be 2-generic, the
orientation is unique, and w; depends only on the pair (aLgf_l_Z-, a.2f—1—i)-

5.1.7. In what follows, we use the notation v Lot w1,

Definition 5.8. Let 7/ denote a 2-generic principal series tame type, and write 7'V = 1, @ ny. Let
M e YOUT(R), and let M = @?io_l M@ be the decomposition of 9t as in Subsection [F.1.3l

(i) We let Emgi) (resp. img)) denote the R[v]-submodule of 9M® on which Gal(L/K>) acts by
m (resp. m2). '
(ii) We define @mﬁ” (resp. @mé”) to be the R[v]-submodule of F*(M®) = (F*9M)(+1) on
which Gal(L/K>) acts by n1 (resp. 12).
(iii) We define an eigenbasis 3 ‘d:ef {B (i)‘}i of M to be a collection of ordered bases 8 @ = ( 1(2), f2(l))
of each MO such that fll) € 9315” and le) € mtg”.

Now let 7" be a 2-generic principal series tame type, with orientation w = (w;);. We have a

commutative diagram

p2f —1-@®

i

i

—a(l) a —a

Fop(i-1) wi (1) wi<2>’> Fam(i—1) W @ (o)

wi(2) wi(1) wi(2)
(i-1) (i-1) (i—1)
J‘f’m,wi(z) Jd’fm,wi(l) Jd’fm,wi(m
2 @ M 0

@ i (1) " w; (2) o WP () "R (2) ot

w;(2) wi(1) T wi(2)

Here, ¢§j;j ) denotes the restriction of day to Eml(j—l)_

5.1.8.

Fix a principal series 2-generic tame type 7’ and M € Y

[0,1},7’(3)' Let w = (w;); denote the

orientation of 7/, and let 8 = {ﬁ(i)}i denote an eigenbasis for 991. We define

(@)
/Bwi(2)

aﬁ(i—l)) def

w; (2

def

(1) (1) .
a ’ a ’ (%)
<U w; (1) w; (2) f i(1)7 f

)

a(i) —a(i) i— i—
(U v @ @ f;i(ll))’ l® figi(;))> !
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the first is an R[v]-basis for fmgf@),

matrix A®) € Matgyxa(R[v]) by the condition

(i) _ ali+1) i
(512) ¢m,wi+1(2 ( ’8w1+1 2 > - Bwi+1(2)A( )

We say that A® is the matriz of the partial Frobenius of 9 (at embedding i, with respect to f3).

the second is an R[v]-basis for @)ﬁgl—(;; We then define the

5.1.9. We now find a more convenient expression for the data of the matrices (A®),.
We define the extended affine Weyl group of GL9 as

def

W = Ner,(Ta)(F(v)/Ta(F[]),

where T‘G denotes the torus dual to Tq /o Ky We have an exact sequence

0— X,(Tg) — W — S5 — 0,

where the first nontrivial map sends a cocharacter to its value on v. Furthermore, we have a Bruhat
decomposition

GLy(F |_| Ja,
wEW

where J denotes the standard Iwahori subgroup of GLy(F[v]), that is, the set of matrices which are
upper triangular mod v. N
Using the canonical identification X,(Tq) = X*(Tg/o,,), we identify W2/ with the extended

affine Weyl group W' of G'.
Definition 5.9. Let w = (w;); € /WV/,, let 7/ be a principal series 2-generic tame type, and let
w = (w;); € W' denote the orientation of 7. Let M e Y17 ().

(i) We say 9 has shape w if for some eigenbasis B, the matrices (A®); (defined by (G.1.2),
with respect to (3) have the property that AW e 35,9
(ii) As in the discussion following [LLHLMIS| Def. 2.17], the notion of shape does not depend

on the choice of eigenbasis. We define YLiUL’T/(F) to be the full subcategory of Y7 (F)
consisting of Kisin modules of shape w.

5.1.10.  Upon choosing the dominant chamber correspondmg to J in X, (Tc,) ®z R, we obtain a
Bruhat order < on W. Given a cocharacter A € X, (T(;,) we define the A-admissible set as

def

Adm(\) = @GW:@gtw)\ for some w € Sy ¢ .
)

aam(i)={(5 7). (0 2) (o)}

We denote these elements by t,t and to, respectively. Given u = (1) we define

In particular, we have

2f—1

Adm(p dCt H Adm( ( )

which we call the p-admissible set. As in [LLHLMIS| Cor. 2.19], we have that Y ™ (F) is nonempty
if and only if w € Adm(p).
We now have the analog of [LLHLMIS&| Thm. 2.21], using op. cit., Lemma 2.20.
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Lemma/Definition 5.10. Suppose w = (w;); € W' is w-admissible and 7' is a 2-generic principal
series tame type. Let M € Yg’T (F). Then there is an eigenbasis B for M such that the matriz of
partial Frobenius AW has the form given in Table[d. We call such an eigenbasis a gauge basis.

Here we have ¢;x € F and €} ;, € F*.

TABLE 1. Shapes of Kisin modules over F
ZEZ' t t 1o
0 ET,I C1,2 0
0

— —%
A®) Ve C1,2
UC21 Cyo UG5 o vy, 0

5.1.11. Now fix M € Yg’T/ (F), and fix a gauge basis 3 for M. We denote by Y%’TI(R) the category
of pairs (9, 7), where M € Y™ (R) and j is an isomorphism j: M @z F — IN.

Definition 5.11. Let (9,)) € Y%’T,(R). A gauge basis of (9, 7) is an eigenbasis B lifting 3 via j

such that the matrix of partial Frobenius A®) satisfies the degree conditions given in Table 21

Note that a gauge basis for (9, ) € Y%’T/(R) exists by the analog of [LLHLMI18, Thm 4.1], and

the set of gauge bases for (91, ) is in bijection with the set of eigenbases of o /udN lifting B mod u
by the analog of [LLHLMIS8, Thm. 4.16]. (See also the cases Ay, Ag of [Lel9, Thm. 3.3], where a
detailed proof of the cases t and w above is given.)

TABLE 2. Deforming Kisin modules by shape

Here, deg(A(i)) denotes the degree of the polynomial in each entry. We write n* to denote a
polynomial entry of degree n whose leading coefficient is a unit. We have ¢;, € R and ¢, € R*.
Row 3 is deduced from row 2 by imposing condition (1.1

@ t v v
) 1* —00 0* <0 <0 0
(i) 3 ((
* * €11 a
A <(U +p)ein 0 > <6171 oL,2 > <’UC§ | Cii)
ve2,1 9 0 ca(v+p) €1,1C2,2 = —péik 2051

5.2. Duality. We introduce the notion of Frobenius twist self-dual Kisin modules over K and study
their relation with usual Kisin modules over Ky via the theory of base change (as in [LLHLMIS|
§6]). The main result of this section (Lemma [5.I8]) describes the matrix of partial Frobenius on
Frobenius twist self-dual Kisin modules.

5.2.1. We now collect the relevant properties of Cartier duality which we will need.

Definition 5.12. (cf. [Bro0O8| § 3.4.1]) Suppose 7’ is a tame principal series type, R is a local
Artinian O-algebra with residue field F, and let 9% € Y*7' (R). We define the Cartier dual of 9 to
be

MY < Home , (M, &),

which we equip with a Frobenius map by

1@ fr— depo (1@ f)ody o B(u),
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where 1 ® f € *Homg, (M, Sr) = Home,(P*M, P*SR). (Note that the map ¢oy is injective by
[Kis09, Lem. 1.2.2(1)].) We also equip 9V with a descent datum, given by
g:m — mv
f — Gofog!
(the right-hand 3—\1 denotes the semilinear action of Gal(L/K>) on 9, while the left-hand g denotes

the semilinear action on &g). With this definition, one easily checks that the descent datum of 9tV
is of type 7'V, where 7'V is the type dual to 7/, so that MY € Y»7'(R).

Before proceeding with the proof of the proposition below, we introduce some notation. We
define {p, }n>0 to be a sequence of elements of Q,, which satisfy e 4+1 = Pn and pg = —p, and define

Koo © U, 20 K (pn) and Koo ™ Uy 2 Ka(pn). Note that Gal(Ka oo/ Koc) = Gal(Ko /).

Proposition 5.13. Suppose R is a local Artinian O-algebra with residue field F. Let 7' : I, —
GL3(0) be a principal series tame type. Then M —s MY defines an involutive functor Y™ (R) —s
Y’“N(R), which enjoys the following properties:
o We have Tj;(MY) = T3 (M)Y @ € as Tk, . -representations, where the functor T5, is as
defined in [LLHLMIS| §2.3].
o Let B = {B®}; be an eigenbasis of M as in Definition [5.8. Let C¥) & Mat5(¢gt)) €
Matoxo(R[u]) denote the matriz of the Frobenius on B* (M), defined by

o (1o 70, 10 7)) = (#7), f*0) 0.

Then the matriz of Frobenius on 9Y"0) with respect to the dual basis B is given by

(5.2.1) Matgv (¢4,) = E(u)(C@)~T.
Proof. The first point follows from [Bro0O8, Prop. 3.4.1.7], while the second point follows from an
explicit calculation. O

5.2.2.  We explain how orientations and shapes change under duality. Suppose 7’ is a 2-generic
principal series tame type, and write 7V = 7y @ 12. We then have the associated pair (a;,as) and
orientation w = (w;); € S37. We fix an ordering on the characters of 7/ so that 7/ = n; ' @ n; ! is
associated to the pair (p —1 —a;,p — 1 — az) and orientation (s, s)w (recall that we view elements

of S;f >~ TV’ as pairs of elements of Sg =~ W as in §3.2.0)). Note that 7/ is n-generic if and only if
7'V is m-generic.

Assume that R is a local Artinian O-algebra with residue field F, 9t € Y“’T/(R), and let 8 denote
an eigenbasis of M. The matrix C¥) of Frobenius on 7* (M) (as in the above proposition) and
the matrix A® of the partial Frobenius (as in Subsubsection [5.1.8) are related by the equation

(i+1) ENCEY)

a

i uw wit1(1) 0 o [u wit1(1) 0 _1

0 =y, O Jaw o | wih
0 u w;11(2) 0 U w;11(2)

(for the proof, see [LLHLMIS, Prop 2.13]). Using this relation for the dual Kisin module 9" and
dual type 7"V (ordered as in the previous paragraph), along with Proposition [5.13] we conclude that
the matrix of partial Frobenius on 9V, with respect to 3V at embedding i, is equal to
\-T._ (v+tp O (i)\-T
E(u)s(A%Y)" s < 0 wip s(AW)™ s,
Now suppose I € ymr (F). The above relation shows that 9t has shape w; at embedding i if

and only if M’ has shape (59)sw; Ts at embedding 7. In particular this involution on W' fixes
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Adm(p) pointwise, and thus Cartier duality induces an involutive functor
' "
Yo (F) — Y2 (F).

Furthermore, equation (5.2.1) shows that 3 is a gauge basis for 91 if and only if Ev is a gauge basis
for M. Similarly, if (M, ) € Y%’T/(R), then f is a gauge basis for (9,) if and only if 8Y is a
gauge basis for (MY, (4¥)71).

5.2.3. In the following, we use the notation o to denote the automorphism of Gr which is the

arithmetic Frobenius on Og, and which acts trivially on R and the variable u. Thus, given a Kisin

module 9, we may form the pullback o*9 e R Qocp M along o, equipped with Frobenius

Dorm = o*¢an. One easily checks that (a*zm)@ =o* (Dﬁ(i_l)). If 91 comes equipped with a descent

datum, o*9 obtains a descent datum via the canonical identification
" (™M) — o™ (g*Mm)
(here §*M denotes the pullback of M along the automorphism § of Sp, and similarly for gP). We
note that if 9 has type 7/ and 7"V = 1y & 12, then o*9M has type (7/)¥, where (7/)?V = (7/)V¥
-1 —1
ny  @mnb . Thus, Frobenius twisting gives a functor

ot YPT(R) — YUY (R).

We make similar definitions for iterates of o.

We briefly describe how the Frobenius twist transforms certain objects associated to Kisin mod-
ules. Twisting changes the principal series tame type 7 into (7/)?. Thus, it also transforms the
associated pair

(a1, a2) = ((a1,0,a1,1,...,a127-1), (a20,021,-..,a227-1))
into
((ar,1,a1,2, ... a127—1,a10), (ag,1,a22,...,a227-1,020)),
and transforms the orientation w = (wo,w1,...,wef_1) into (waf—1,wo,..., war—2). Further,

def

given an eigenbasis = {(fl(l),fél))}Z for M, the elements o8 = {(1 ® fl(i), 1® fél))}, form an

eigenbasis of o*9. Therefore, by their definition, the Frobenius twist transforms the matrices

(A© A ACS=DY of partial Frobenius (with respect to 3) into (AGF=1) A0 ACf=2))

and if M € Y7 (F) has shape @ = (@o, W1, ..., Was—1), then o*M € YH()7(F) will have shape

(Waf—1,Wo,...,Was—2). Finally, we obtain an isomorphism on the associated I'r, . -representation
Tia(o™ M) = T4(M)?,

where we recall that the superscript ¢ denotes the twist of the representation by (.

A%

1

5.2.4. Suppose now that 7’ is a 2-generic principal series tame type which satisfies (7/ )Vf
(and note that (/)¢ = (#)?"). As in Subsection B4} this implies that 7/ is of the form
- ~pf ~(—14pf (—14pf
7= w2—fc @wgfc or 7 = w§f1+p Ja ©® w§f1+p )b.
If 7/ is 2-generic, the orientation on 7 has the form (2, z) for z € W in the first case, while in the
second case the orientation has the form (z, zs) for z € W.
The discussion above gives the following:

Lemma 5.14. Assume 7’ is a 2-generic principal series tame type, write 7'V = 01 @© 19, and let

w = (w;); € W' denote its orientation. Suppose that (7')?"" = 7'V Then

S o1
Moy 1(2) = Ths(2)

for every 0 < <2f — 1.

Proof. This may be proved casewise, using the possible orientations on 7’. O
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5.2.5. As in [LLHLMI18| §6.1], we define Kisin modules which are Frobenius-twist self-dual:

Definition 5.15. Let R denote a local Artinian O-algebra with residue field F, and let 7/ denote a
principal series tame type which satisfies (7/ )Vf =~ V. We define

YA (R) =

pol

{(zm, D MeYPT(R), o (of)om zmv} ,
where ¢ is a map of Kisin modules with descent data, such that the composite morphism

V (L\/)fl

@ Gy ) < (o)) 0 o

m 2 (o)) ((af)*im)
is —1 on M. We call ¢ a polarization of M. A morphism (My,11) — (Ma,2) in Yp’f)’f,(R) is a
morphism « : MMy — My in Y7 (R) such that the following diagram commutes:

oMH*a
(oo S (o f)om,

bk

v o v
%
My mm;

Definition 5.16. Let R be a local Artinian O-algebra with residue field F, suppose 7’ is a 2-generic
principal series tame type, and let (9, ¢) € Yp’i)’f (R) . A gauge basis of (M, 1) is a gauge basis ( of

M € Y™ (R) which is compatible with ¢, meaning ¢((c/)*8) = (1, —1)8".
We now discuss the effect of adding a gauge basis.

Proposition 5.17. Let R be a local Artinian O-algebra with residue field F, and let 7' be a 2-generic

principal series tame type. Let (M, 1) € Yp‘gf/(R). Then the set of gauge bases of (MM, 1) is a torsor

for ’Tg(OK2 ®z, R)"f:inv, where inv denotes the homomorphism t — t—1.

Proof. The proof follows the argument of [LLHLMIS, Prop. 6.12]. Let  be a gauge basis of
M € YA (R). Then «((cf)*B) is a gauge basis of MY and by [LLHLMIS, Thm. 4.16], the set
of gauge bases of MY are uniquely determined up to scaling and are exactly ’I‘G(o K> 9z, R)BY.
Thus ((cf)*B8) = ¢BY for a unique ¢ € Tg(O K, ®z, R), and the cocycle condition satisfied by
¢ is equivalent to ¢ 'o/(c) = —1. Further, given t € ’i‘g(OK2 ®z, R), we have «((c/)*(tB)) =
ol (t)((07)*B) = of(t)cBY. Since the basis on MY dual to t3 is t~13Y, we conclude that the
set of gauge bases of (,:) is exactly the set of solutions ¢ & Tg(o K, @z, R) to the equation
(1,—1)t=" = o/ (t)c. The conclusion follows as in [LLHLMIS, Prop. 6.12]: using that Reso,, /2,

splits over O, we have that the equation has a solution, and the solution set is a Tg(O K2®1z, R)"f:in"—
torsor. ([l

5.2.6.

Lemma 5.18. Let R be a local Artinian O-algebra with residue field F, and 7' a 2-generic principal
series tame type which satisfies (/)¢ = 7/V. Let w = (w;); € W' denote the orientation of 7.

(i) Let (M,e) € Yp‘g’fl(R) and let B denote a gauge basis for (M, ). Let A® be the matriz of

partial Frobenius of 9 € Y“’T/(R) with respect to 3. We then have

A6 _ {E(u)s(A@'))—Ts if i f—1,2f — 1,

(5.2.2) —E(u)s(AD)~"Ts ifi=f—1,2f —1.
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In particular, if R =T, (9, 7) € Yp‘g’f/ (F), and 9 has shape w = (w;); € W', then
Wi—f = Wj.
(ii) Conversely if M € Y“’T/(R) and the matrices AW of partial Frobenius satisfy the condition

B22) for a gauge basis 5 of M, then there exists a polarization v on M such that (M, ) €
Y!"" (R), and such that § is a gauge basis for (M, ).

pol

Proof. (i) We follow [LLHLMIS, §2.1, 6.1]. Let 5 : (¢f)*MM — M denote the o f-semilinear
bijection sending s ® m to o~/ (s)m. We have a commutative diagram of R[v]-modules:

Zopi—f) ) st (8) ? wor) (8) [N (@)
%)T%FHIQ) —~— () i ) — () m)ﬁ;.l+1s(z) T GD(SJJTV)U_LI (2)
Wi f41 7 wy 3
(i—f) i (@) i
l n l(ﬁéa)f)*fm l¢(af)*9ﬂ J@m)v
S)ﬁ?(?i—‘f""l) . i ((O'f)*i)ﬁ) (H}l) _ ((O'f)*f)ﬁ) (1jrll) L (?D’(V)(ij_ll)
wsz+1(2) le f+1<2) nwi+1s(2) Uwi“s(g)

(here the subscripts denote isotypic components). The left square commutes by [LLHLMIS, Lem.
6.2], the center square commutes by Lemma [5.14] and the right square commutes by definition
of polarization. By Subsubsection [5.2.2, we see that the matrix of partial Frobenius on 9V at
embedding 7 is E(u)s(A®)~Ts. Since § is a gauge basis which is compatible with the polarization,
the above commutative diagram implies that A(#~/) is of the form stated above.

(ii) We may define ¢ : (¢/)*0 = 9 by the condition

(k)

foly if<i<ef-l,

. DY o <i< fo1,
(1® fl(ui)(k)) = — )\

where k = 1,2, and where fi;l_,]; )S(vk) denotes the basis vector of MY dual to fi;l_,]; )S(k). The relation
(52.2)) guarantees that ¢ is a morphism of Kisin modules. O

5.3. Deformations. In this subsection we describe deformations of Frobenius twist self-dual Kisin
modules and relate them to deformations of local L-parameters. The main result is Corollary [(5.25]
giving a description of the special fiber of the Galois deformation ring in terms of Serre weights.

Throughout the discussion, we fix a tamely ramified L-parameter 5 : T'xx — “Usy(F) such that
7Top=¢, and let 7' : I, — GL3(0) be a principal series tame type satisfying (/)¢ = 7V,
5.3.1. We begin with Kisin modules. Fix (9,7) € Yp‘g’f,(F) and let @ = (@;); € W’ denote the
shape of 9. We also fix a compatible gauge basis /3, and assume that 7/ is 2-generic. Given a local
Artinian O-algebra R with residue field F, we let

S o (Mp,ir) € Y4 (R)
Y%,;Ol(R) = (MR, tr,JR) : © IR Mp@pF M
o (9h) o (tr®rF) =70 () sp
and )
Do (R)Y {(sz, g ) & Ot ) € Yo (), _ } .
;pol © PR is a gauge basis of (Mg, ) lifting 5
Using [LLHLMI8, Thms. 4.16, 4.17] along with Lemma [5.I8 and Proposition BI7, we see that

) ’ ~
D%i s Y%’;Ol isa G%{-torsor, and in particular is representable by a formal Artin stack, since
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YA s, As DT has no nontrivial automorphisms we conclude that DT s representable by a

I, pol I, pol _ I, pol
complete local Noetherian O-algebra Rﬁ%li o The act of deforming a polarized Kisin module (97,7)

with 9 € Yg ™ (F) and a gauge basis on it is equivalent to deforming the collection of associated
matrices (A®))g<i<ar_1 subject to the degree conditions of Table @land (5.2.2). We conclude that:

™V, and

12

Theorem 5.19. Let 7/ be a 2-generic principal series tame type which satisfies (T’)‘ff
let M, w, T, and B be as above. Then

76 ~® expl
fmpol i€{0,....f~1} Bz,

where R%Xipl is as in Tableld, and the completed tensor product is taken over O. In particular R%iol

s an integral domain.

TABLE 3. Deformation rings by shape

The variables «; ; appearing in the power series rings below correspond to the coefficients ¢} ; — [¢; ;]
of the universal matrices appearing in Tables [T}

152- t t o
REP' | Olean, o5y, ab,] | Olera, iy, @50) | Olwia, yo2, @io. @540/ (w1132 +p)

5.3.2.  We now discuss deformations of L-parameters.
We recall a result from [CHTO08] in a language more suited for our purposes. Let R be a topological
Zy,-algebra. By Lemma 2.1.1 of op. cit., there is a bijection between
o L-parameters p : ['x — “Uy(R); and
o triples (p/, 8, a), where p’ : ', — GL2(R) is a continuous homomorphism, 6 : I'y — R*
is a continuous character, and « is a compatible polarization, that is, « : (p )“ff = V@
such that the composite map
reo—2f _ -f B Vy—1
p/ v—p (o™ v (p,)@ 2f ¥ ( /\/®9)4p ! can ( 0 )50 fv (a¥) P/
is equal to multiplication by —6(¢~/).
The correspondence is given by sending p : T — “Usy(R) to (BC(p),7 0 p,a), where p(p~7T) =
(A,0(0F)) x ¢=F and a(v) = &, A 1w,

In what follows, we will usually fix # = ¢ (hence —f(¢~f) = —1), so that L-parameters p :
'y — “Uy(R) with 70 p = ¢ correspond bijectively to pairs (o', a) where p’ : T, — GL2(R)
is a continuous homomorphism and « is a compatible polarization. In particular, our fixed 7 is
associated to (BC(p),@).

5.3.3. We introduce several deformation problems for Galois representations. Let R% denote the
universal framed deformation ring of 5. By [BG19, §§3.2-3.3], there exists a unique O-flat quotient
R%, of R% with the property that if B is a finite local E-algebra, then a morphism x : RpD — B
factors through R%, if and only if the corresponding L-parameter p, : I'xy — ¢ Us(B) is potentially
crystalline with p-adic Hodge type (1,0,1) € X*('f‘), inertial type 7' and cyclotomic multiplier
70 py = . We recall the terminology used above:

o An L-parameter 'y — “Usy(B) is potentially crystalline if and only if it is so after
composition with any faithful algebraic representation © Uy —— GL,,.
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o Suppose the L-parameter p : 'y — “Usy(B) has cyclotomic multiplier 70 p = €. Then p
has p-adic Hodge type (1,0, 1) if and only if BC(p) has p-adic Hodge type pu = (%), that
is, if BC(p) has Hodge—Tate weights {—1,0}.

o An L-parameter p : ['x — “Uy(B) has inertial type 7/ if WD(p)|;, = (7' @ 11,.) @ E (by
WD(p) we mean the E-points of the ©“Us-torsor whose construction is contained in [BG19],
Section 2.8, Lemma 2.6.6, and Definition 2.1.1). Assuming p has cyclotomic multiplier, this
is equivalent to WD(BC(p))|r,, = 7.

(In this section, we will always be working with framed deformations with p-adic Hodge type (1,0, 1)
and cyclotomic multiplier, so we omit (1,0,1), £ and [J from the notation.) We write D%’ = Spf R%’.
Similarly, we let RTB,C( ) be the framed potentially crystalline deformation ring parametrizing lifts

1
of BC(p) with p-adic Hodge type u and inertial type 7. We write D}glc( = Spf Rgc(p)'

p)
5.3.4. Let R denote a local Artinian O-algebra with residue field F. We define
o pR € Dgc(p) (R)

(Pr,@R) : © ap is a compatible polarization
of ply lifting @

def

Dio) pol(R) =

We have natural maps
D5 — Dic) pol — Dhep)
where the first isomorphism follows from Subsubsection [5.3.2]

5.3.5. Our next task will be to relate deformations of L-parameters to deformations of Kisin
modules. Before considering further deformation problems we record the following result.

Lemma 5.20. Let 5 : T — CUs(F) be a tamely ramified L-parameter satisfying70p =& and 7'

o o~

a 2-generic principal series tame type satisfying (7') 7'V Then there exists at most one Kisin

module M € YH™' (F) such that T7,(0n) = BC(p) . If such an 9 exists, then there is a unique

|FK2,oo
polarization T on M such that (IM,7) € Yp‘g’f l (F), and such that T is compatible with the polarization
@ on BC(p) via T3y

’FKQ,(X,

Proof. The first part of the Lemma is [LLHLMIS, Thm. 3.2]. Assume that 9% € Y7 (F) satisfies
T, () = BC(P)Ir, . and let M T ®eg, O denote the associated étale p-module (where

O¢r o ®z, F and Og is the p-adic completion of O, [u][1/u]). Since the category of I', -

representations is equivalent to the category of étale p-modules, and since BC(p) is essentially
conjugate self dual, we have an isomorphism

v (o) M oY
(see [Bro08, §3] for the definition and properties of MY). By [LLHLMIR, Thm. 3.2] the Kisin
varieties of both (¢/)* M and MY are trivial. Since (¢/)* M and M’ are Sp-lattices in (e)y* M
and MV, respectively, we conclude that the map 7 ot L‘(O_f)*ﬁ factors through an isomorphism

(o) = ﬁv, giving a polarization on 9. o
We now claim that if 7;, 7o are polarizations on 9 which are compatible with the polarization
@ on BC(p)|ry,  then 73 = 7. Since T, (t1) = Tj,(22) we deduce that (71 —72) ®e, Ogr = 0 and

hence im(7; — 72) is a u-torsion Sp-submodule of M. Since M is a projective Gp-submodule we
conclude that 71 — 7o = 0. O

We may now introduce the following definition:
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Definition 5.21. Let p : 'y — “Uy(F) be a tamely ramified L-parameter such that 70p = &
and let 7" be a 2-generic principal series tame type satisfying (7' )Wf >~ 7V Assume that there
exists (M, 7) € Yp’g’f (F) together with an isomorphism T} (9) — BC(ﬁ)|pK2m compatible with
the polarizations on both sides. We define the shape of p with respect to 7' to be the shape of 9,
and denote it by w(p, 7).

Whenever we invoke the shape of an L-parameter with respect to a 2-generic type 7/ (with p and
7' as above), we implicity assume that there exists a (necessarily unique) polarized Kisin module
(M,7) € Vio (F) such that T:,(0M) — BC(p)
sides.

compatibly with the polarizations on both

|FK2’OO

5.3.6. In what follows, we fix a polarized Kisin module (9,7) € Yp’f)’f / (F) and an isomorphism
6 Tr (M) = BC(p)|r K50, Which is compatible with the polarizations on both sides (with p and
7’ as above). (The existence of such a (901,7) is a necessary condition for the ring R%/ to be non-zero,
since a non-zero morphism z : R%, — O gives rise to an element of Yp’i)’f I(O) which reduces to (9, 7)

modulo w, by the analogue of [Kis06l, Theorem (0.1)] with coefficients and descent data.)
Let R denote a local Artinian O-algebra with residue field F. We define

o (M, gr) € YT (R)

(MR, IR, PRy OR) : © Plg € DE,C(E)(R) B
o 0R : Tjd(mR) - le‘pK2 oolifts )

.0 def
Dﬁ,BC(ﬁ) (R) =

o (Mp, iR, JR) € Y%’;;)I(R)
DS (R) < L (Mg, ig, gk pri0r) PR E DS (R) ~ -
m,pol;p( ) ( ) o dg : Tj3(MR) — BC(PR)’FKQ,(X, lifts ¢,
compatibly with the polarizations
The forgetful functor (Mg, tr) —> Mp along with the base change map pr — BC(pr) induces a

. 7"7|:| 7'/7D . . . . *
morphism Dﬁ,pol;p — Dﬁ,B ) which is compatible with T7;.

—f

12

Lemma 5.22. Let p and 7' be as above, so that in particular 7' is 2-generic and satisfies (77)%
7,0

/
— DT is an isomorphism.
9, pol;p P P

7'V, Then the natural map D

Proof. Let R be a local Artinian O-algebra with residue field F, and let pr € D%/(R). Recall that
the data of pg is equivalent to the data of (BC(pr),ar), with ag a compatible polarization. By

[LLHLMI8|, Cor. 3.6], the representing rings R;_R:DB ) and RTB/C@) are isomorphic, and hence there

exists a unique pair (Mg, dr), where Mg € Y%’TI(R) and dp : T3 (Mp) — BC(pr)|r, _ lifts
6. It remains to construct a unique polarization on Mgz compatible with ag. By the equivalence
of categories between étale p-modules and I'k, . -representations, the polarization ag induces a
polarization tg : (of)*Mp — MY,, where Mp denotes the étale p-module associated to Mp. The

uniqueness of Mz implies that ¢ carries (o )*Mp to 9Y,. Finally, the fact that ¢ is unique follows
exactly as in the proof of Lemma [5.20] O

5.3.7.  We now fix a gauge basis 8 on (9M,7). For a local Artinian O-algebra R with residue field
F, we define

3 . o (Mg, tr, 17, pr,OR) € D2 (R
Dﬁ767?7(R) d:f (mRa LRL]R7BR7pR7 6R) : ( R R R, PR R) Em,pol;p( ) . — .
polip o PR is a gauge basis for (Mg, tr) lifting S
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We see by Proposition 5.17] that the forgetful map D—’B U pTP iga representable formal

pol;p M, pol;p
torus torsor of relative dimension 2f. We denote by Réfol - R pDI - the corresponding map

of deformation rings. It is a formally smooth morphism of relative dlmensmn 2f between complete
local Noetherian O-algebras.
Finally, we define the deformation problem

o (Mg, tr, IR, BR) € ng pol(R)
DB Ry <) on roam Broer) : O CR is a basis for Tdd(sz)_
m’p"l( ) BNz, er, 35 Prs er) lifting the (pullback via § of the)
standard basis on BC(p)|r Koo

In particular, if (Mg, tr, IR, Br,€R) € D;—;’BP;T(R), then (T5,(9Mg),er) is a framed deformation of

BC(p)|r Kpoo WWE let R%f) ’ODI denote the deformation ring corresponding to the above deformation

problem.

5.3.8. The relationships between the various deformation problems are summarized in the following
diagram, where “f.s.” stands for formally smooth.

(5.3.1)  SpfRY «~— Spt R%’Eol; I gp fRJf L, — SptRT: ﬁ ] spr
The maps which are formally smooth correspond to forgetting either a gauge basis on the (po-
larized) Kisin module or a framing on the Galois representation. The former is formally smooth of
relative dimension 2f while the latter is formally smooth of relative dimension 4. The isomorphism
follows from Lemma [5.221
Our next goal will be to show that the remaining map Spf R ’B D _ — Spf R 7.5, OD is an isomor-

phism. This will follow from some calculations with Galois cohomology

5.3.9. Given the tamely ramified L-parameter p: I'y — “Us(F) with 707 = &, we set ad’(p) &

gly(F). Tt is a direct summand of the Lie algebra of “Usy endowed with the adjoint action of I'x via
p. Explicitly the action of I'y on the direct summand ado(ﬁ) is given as follows: I'k, acts by the
adjoint action (via BC()), and p(¢™f) = (A,1) x ¢~/ acts by

X r— —AGX o AL
Lemma 5.23. Suppose p is 1-generic. Then the restriction map on cocycles
Z'(Tx,ad’(p)) — Z' (k... ad"(p))
1S injective.
Proof. Lemma A2 implies that ad®(p )Irk, is a direct sum of four characters, and the condition

of 1-genericity implies that none are equal to the mod p cyclotomic character. Thus, ado( ) is
cyclotomic free, in the terminology of [LLHLMIS8, Def. 3.8]. The result now follows from op. cit.,
Proposition 3.12. O

Proposition 5.24. Suppose p is 1-generic. Then the natural map Spf R;—T;Bpizll'ﬁ — Spf R%’Bpﬁ 18

an isomorphism.

Proof. By considering tangent spaces and using the above lemma, the map in question is a closed
immersion (compare [LLHLMIS8| Prop. 5.11]). Therefore it suffices to prove it is surjective on R-
points. This is obtained following the argument of the proof of [LLHLMI1S8, Theorem 5.12], noting
that in our situation, the monodromy condition in op. cit. is empty and the p-adic Hodge type is
(1,0) in all embeddings. (Alternatively, one can invoke [CDMIS8| Thm. 2.1.12]: the cited theorem
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implies that if (Mg,tr,Ir,Br,€R) € D%’E’S(R), then we may extend the framed deformation
(T34(Mg), er) of BC(p)|ry,  to a framed deformation of BC(p); the claim about functoriality in
op. cit. implies that the polarlzation T34(tr) also extends.) O

5.3.10. By Theorem [5.19, Proposition and (0.3.0]), we finally conclude that:
T/ ~ 7—,7575 ~ ~ N CXpl
(5:3.2)  Rp[Si,.... S = Ry = Rm pol[[Tl, = (@ZE{Q e, > [T1,....T4]

where @ = (@;); = w(p,7') € W is the shape of p with respect to 7’.
5.3.11.  The following corollary is the main result on the local Galois side.

Corollary 5.25. Let 5 : ' — “Uy(F) be a 3-generic tamely ramified L-parameter which satisfies
20p =©¢. Let 7' denote a 3-generic principal series tame type which satisfies (T’)“ff >~ 7V and let
o(7') denote the tame type associated to 7' via Theorem [{.11. We view o(7’) as a Deligne Lusztig
representation of G(Z,) on which W(O%) acts trivially. Assume that there exists (IN,7) € Yp’f)’l (IF)
together with an isomorphism T3y (M) — BC(ﬁ)\pKMO compatible with the polarizations on both

sides.
We then have

(W’ (p) N JH (o(r))| = e(RS @0 F),

where e(—) denotes the Hilbert-Samuel multiplicity.
Proof. Let (M,7) € Yp’gl
(W;); = W(p, ') € W' denote the shape of p with respect to 7/. The isomorphism (5.32) above
implies that

(F) correspond to 7, let 3 denote a gauge basis for (9M,7), and let w =

e(R%l ®Ro F) = ¢( %’iol R0 F) = gHosi<f—l:wi=w}|

where the last equality follows from Table [Bl
By the GLs-analog of the discussion in [LLHLMIS, §5.2], we see that RBC( ) is a formally smooth

modification of R;T;’B, where the latter ring represents the functor sending a local Artinian O-algebra
R with residue field F to the set of triples (Mg, jr, Br), where (Mg, r) € Y%’T/(R) and (g is a

gauge basis of (Mg, ) lifting B. Further, the structure of R%’B is obtained by removing the
restriction “¢ € {0,...,f — 1}” in the right-hand side of Theorem (this is the GLg-analog of
[LLHLMI8, Thm. 4.17]). Thus, Lemma G.I§(i)| implies

e(Rpom) ®oF) = E(R;T{B ®o F)
2|{z@2:m}\
_ o2l{osi<f-1ai=n)]

= (RS @0 )%
After unwinding definitions and conventions regarding duals and Hodge-Tate weights, [GK14, Thm.
A] gives
W (BC(p)) N JH (BC(o(7)))| = e RBC(p) ®0 F).
Hence, it is enough to prove that
IW/(BC(p)) N JH (BC(o(7)))| = [W’(p) N JH (a(r)) |*.
This follows from Propositions B.I8] (applied to 8(V,(p)) and o (7)), L6l and .8 O
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6. GLOBAL APPLICATIONS I

In this section we apply the results of Sections [3l and M in a global context. Our main references
will be [CHTO08] and [CEG™16]; as such, we will be considering Galois representations valued in the
group Go. (We will translate these results back to the group “Us at the end of Section 1) After
preliminaries on automorphic forms on unitary groups and their associated Galois representations
(Theorem [6.2)), we give the main result on weight elimination in Theorem [6.7] building on the
compatibility of base change of tame types and L-parameters.

We caution the reader that some of the notation below differs from previous sections.

6.1. Unitary groups.

6.1.1. Let F be an imaginary CM field with maximal totally real subfield F*. We suppose:

o F*/Q is unramified at p;

o F/F* is unramified at all finite places; and

o every place of F' above p is inert in F.
This implies that [F'T : Q] is even (cf. [GKI14, §3.1]), and there exists a reductive group G /Ot
which is a totally definite unitary group, quasi-split at all finite places. More precisely we take

G(R) = {g € GL3(OF ®o,, R) : ge@DTg = 1,1,

where R is an Op+-algebra, and where we write ¢ € Gal(F/F ™) for the complex conjugation.
Note that this group is different from the group G from Subsubsection [2.2]]
The group G is equipped with an isomorphism

t: G XOF+ OF ;GLQ/OF

which satisfies t o (1® ¢) 0171 (g) = ¢g~¢T. For all places v of F* which split in F as v = ww®, we
obtain an induced isomorphism

tw : G(Op+) 5 GLy(Op,)

such that ¢, 0 L;.} (9) = g~ ¢". If vis a place of F'* which is inert in F, then we have an isomorphism

by : G(OFJ) — UQ(OFJ) C GL2(Op,),
where Uy is the quasi-split unitary group over O P defined Subsection 2.1l This isomorphism is
given by g — (1 %) g (} _bl)_l, where b € Op, is an element which satisfies bb® = —1 and b & O}er'
Finally, for an embedding ™ : F'* «—— R, the group G(F,:Q) is compact, and isomorphic to the
compact unitary group Uz(R).

(We note that the running hypothesis in [GK14] that v splits in F for v a place of F'* above p is
irrelevant for the construction and the basic properties of the group G.)

6.1.2. Set FpJr & pt ®@qQp and Op+ & Op+ ®zZy. Recall that E is our coefficient field, with ring

of integers O, uniformizer @, and residue field F. We assume E is sufficiently large; in particular,
we will assume that the image of every embedding F' — @Q, is contained in F.

We write X7 (resp. ¥,) for the set of places of F* (resp. F) lying above p. Restriction from F
to F* gives a bijection between %, and Zl‘f , and we will often identify these two sets. Similarly,
we let T (resp. I,) denote the set of embeddings k™ : F* —— E (resp. k : F < E). We fix a

subset T,, C I, such that I, = T,, U fg. Then restriction from F to FT gives a bijection between E,

and I;r . Further, composing k™ € I;r (resp. k € E,) with the valuation on E gives an element of
%5 (resp. Xp), and we let v(x™) (resp. v(x)) denote the place induced from the embedding x* € I.f
(resp. k € jfp) This gives the following diagram:
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]b j; kv (k) Ep

(6.1.1) I I
+ K —o(kt) +
Ip Ep

For a finite place v of F'™ (resp. F), we let F;l (resp. F,) denote the residue field of v. We have
G(F}) = Uy(F,)) for all v € X by construction.

6.2. Algebraic automorphic forms on unitary groups.
6.2.1. Let K =[], K, be a compact open subgroup of G(A%,). We set
K2 1 Kee K7 = ]] Ko
vGEZ,L v€2;

and if k € K, we write k, for the projection of k to K,,. We say that the level K is sufficiently small
if for all ¢ € G(A%,), the finite group ¢ *G(F*)t N K does not contain an element of order p.

6.2.2. Let K =[], K, C G(A?ip) X G(OF+J,) be a compact open subgroup, and suppose W is
an O-module endowed with an action of G(Op+ ,). The space of algebraic automorphic forms on
G(A%,) of level K and coefficients in W is defined as the O-module

{F: GUENGAR) — W : f(gk) =k, ' f(g) Vg € G(AF. ).k € K}

Given a compact open subgroup K as above, we have

GAR) =| |GFNLE

def

Sc(K,W) =

for some finite set {¢;};. This induces an isomorphism of O-modules

Sa(K,W) = guinietmn

o= (f(t:):

In particular we have inclusions Sg(K,W) C Sg(K',W) for K/ C K. If we assume that K is
sufficiently small or A is a flat O-algebra, we further have

(6.2.1) Sc(K,W)®9 A= Sa(K,W ®¢ A).
6.2.3. Suppose that J =[], J, € G(A}") x G(Op+ ) is a compact subgroup. We define
S (J,W) = lim Sa(K, W),
K2J

where K runs over compact open subgroups containing J, for which K}, € G(Op+ ;). If g € G(A%,)
is such that g, € G(Op+ ,) then

(9-f)(h) = gp-f (hg)
defines an element g.f of Sg(gJg~!,W). Hence, we obtain an action of g on Sg(.J, W) as soon the
relation J C gJg~! is satisfied. In particular, if J =[], J, € G(AZ}") X G(Op+ ) is any compact
subgroup, then J acts on Sg ({1}, W), and we have

(6.2.2) Sa({1}, W) = Sa(J,W).
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6.2.4. Recall the map I, —» %, defined by  — v(r). This gives a bijection I, — |_|v62p Hom(F,, E)
and we identify embeddings F;, — E with elements in I, without further comment. Let v € ¥,,.

We define ﬁ?)_H/l(Fv, E) C Hom(Fy, F) by the condition
I, =+ | | Hom(F,, E)
vEXy
where the map is given as restriction of the map I, — Llyes, Hom(Fy, E). Note that x — Ko c

defines a non-trivial involution on Hom(F,, E') and hence |ﬁ?)_r;1(FU, E)| = i|Hom(F,, E)|.

6.2.5. Let Z%r denote the set of all pairs of integers (A1, A2) such that Ay > Ag. (Thus, for v € E;,
we may identify (Zi)Hom(FjvE) with X, (ReS@F+ /7,(Tu)), where Ty denotes the torus of the group
U, defined in Subsubsection 2.4l with K = F. Note that the discussion in Subsection Bl works

equally well for the group Usg and its restriction of scalars.) Given A\, = (A\;)x € (Zi)ﬁ&/n(p v B) | we
let W), denote the free O-module

v

W def ® det A2 ®OFu Sym)"‘“l_)"“?(o%u) ®OFWH O,
weHom(Fy,E)
which, by restriction and using the isomorphism ¢,, has an action of G(O FJ)‘ Given an element
A= (Ao € (Z2) = @By, (Z2)FmEAE), e set

def
Wa = Q) Wa,,
vEXp

which is a free O-module with an action of HueZ; G(OFJ) = G(Op+,).

Since F\ is unramified over Q) for every v € E;’ , restriction and reduction mod p give bijections

Hom(F,, E) > Hom(F}, E) — Hom(F; ,F).

For an element A = (A )vex, € (Zi)fp =@.es, (Zi)ﬁg‘;(Fv’E), we let A = (\y)vey, denote its image
in @vezp (Z?F)HO‘““(F’)+ ) Let 73, denote the subset of Z? consisting of elements (A1, A2) satisfying
A1 — A2 < p— 1. Then the image of (Z?hp)fp in P,ex, (Zi)Hom(w’F) gives rise to the irreducible
mod p representations of G(Op+ ,), in a manner similar to Proposition 3.1l (More precisely, under
the identification of (Zi)Hom(FJ’E) with X+(Reson+/Zp (Tu)), the set (Z?hp)Hom(Fj’E) is identified

with Xl(Reson/Zp (Ty)).) In particular, if A = (A\y)ves, € (Zim)fp = D,es, (Zi’p)ﬁggl(F”’E), we
have

Wy ®oF = Q) F(X)
vEXp

as mod p representations of G(Op+ ;).
6.2.6. We now relate the spaces Sg(K, W) to spaces of classical automorphic forms.

We let A denote the space of automorphic forms on G(Ap+) (see, e.g., [GS11, §§1.5 - 1.8]). Since
G is totally definite, A decomposes as a G(Ap+ )-representation as

(6.2.3) A = @m(ﬂ')ﬂ'

where 7 runs through the isomorphism classes of irreducible admissible representations of G(A g+ )
and m(7) is the (finite) multiplicity of 7 in A ([Guelll, §2.2], [BC09, §6.2.3]).
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Fix an isomorphism ¢ : £ -~ C. This gives an identification

o (Zi)'fp -~y (Zi)Hom(F+,R)

defined by (24\)x = /\F;O/K for k : FT — R (here 1! o k denotes the unique element of Tp lying
over 1t ok € LF).

The set (Z2)Hom(*" TR) parametrizes irreducible complex representations of G(Fi); given p €
(72 )Hom(F TR we let W,, denote the associated irreducible complex G(F5;)-representation.

For A € (Zi)lp, the space W) ®p, C is a complex representation of G(Fp+). We let

0: Wy ®0,C— W,

denote a G(F)-equivariant isomorphism.

6.2.7. From now onwards we let 0° = ®U€E; oy denote a smooth G(Op+ ,)-representation on a

finite free O-module such that ¢° ®g E is a tame G(Op+ ,)-type. (By abuse of language, we say
that 0° is a tame G(Op+ ,)-type over O.)

Fix A € (Zi)fp. By letting G(F) act trivially on the second tensor factor of W) , ®c (0°®o,,C)"
we define an isomorphism

(6.2.4) Sa ({1}, (Wx ®0, C) ®c (0° ®o, C)) — Homgpt) (W, ®@c (0° ®0, C)", A)

as follows. Let f: G(FT)\G(AY,) — (W) ®o, C) @c (¢° ®p, C) be an element of the left hand
side. We send this element to a homomorphism f : WX 5 ®c (0° ®g, C)¥ — A defined by

Fw")(9) = w’ ((ésclg) ®1) 0 (0@ 1) 0 (§(gp) @ 1)-F(9™)) .
where g € G(Ap+), w" € (W,,\ ®c (0° ®0, C))¥ = W/, @&c (6° ®p, C), & denotes the action
of G(F,f) on W) ®o, C, and & denotes the action of G(F5) on W,,y. One easily checks that
this isomorphism is well defined and G(AZY") x G(Op+ ,)-equivariant. Therefore if J = [], J, C
G(AZY) x G(OF+ ) is a compact subgroup we have

Sa (J, Wy Qo UO) X0, C Sc (J, (W X0, (C) ®c (UO X0, (C))

Sa ({1}, (W @9, C) @c (0° ®0, C))”

Homg ) (W) 5 ®c (¢° ®o, (C)V,A)J

Homg ot s (W ®c (0° ®0, C)Y, A)

IIZE 12 IIZE IIZE IIZE

@ m(r) Homg 1), 5 (W) ®c (¢° ®0, C)¥, )

1%

(6.2.5) B m(x)Hom,, ((0° @0, C)",m) @c (xF)7".

v
7roo%WZ*A

In particular, this implies that Sq(G(Op+ ,), W) ®0 0°) ®¢ E is a semisimple admissible G(A7")-
representation.

6.3. Galois representations associated to automorphic representations and Hecke alge-
bras.
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6.3.1. We define (Zi)é” to be the subset of (Z2)!» consisting of all A = (\,), for which
)\n,i = _)\noc,?)—i

for i = 1,2. Note that the restriction map induces a bijection

~

fues a D
@y = @b,

We use the following notation in the theorem below. Throughout, we fix an isomorphism 2 : E —
C, and recall that recz denotes the Local Langlands correspondence over E. We define | det |=1/2
to be the E-valued character whose composition with 1 is the square root of |det |~! which takes
positive values.

Theorem 6.1. Fiz A € (Zi)fp, and for every v € E;’, let ), denote a tame inertial type of I,
_irt .
which factors as in Definition[{.10 and satisfies (T,)? e V. Leto o ®vez$ o(7)) and let
2 be an irreducible G(AY")-subrepresentation of Sq(G(Op+ ), (W ®o E) @p 0¥) @p E.  Then
there exists a cuspidal automorphic representation © of G(Ap+) such that m, = E, ®%, C for all
finite places v ¢ ZIJ;, Moo = WZV*A, and ﬂp](;(oF+ ) contains 0 @, C. Furthermore, there exists a
unique continuous semisimple representation
r(7) : Tp — GLo(FE)
satisfying the following properties:
(i) We have an isomorphism
r(m) 2 (m)Y @t
(i) If v is a finite place of F* which splits as v = ww® in F, then
F-ss . - _ _
WD (r,(m)rp, ) 2 recg((Ey 0 tyt) @ | det |71/2).
(iit) If v & XF is a finite place of F* which is inert in F', then

WD (7, (m)[p,,, ) = recg(BCp, /gt (S0) @ | det|71/7),

where BCF,,/FJ denotes the stable local base change.
(iv) Letv € XF. Then r,(r) is potentially crystalline at v (viewed as a place of F), and we have

WD(TZ(w)|FFv)|IFU = 7—1/)'
If k € I, satisfies v(k) = v, then
HTH(TZ(W)’FFU) = {)‘n,l +1, )\n,2}

(where we view \ as an element of (Zi)ép via the bijection preceding the theorem). In
particular, v,(m)|r, is Hodge—Tate reqular.

Proof. Firstly, we note that the existence of the representation 7 follows from Subsubsection
(specifically, equation (G.2.5])). Additionally, the set of primes of F' which are split over a place of
F7 has Dirichlet density 1. Therefore, if we have two semisimple continuous Galois representations
satisfying (ii), they must be isomorphic.

Let G* denote the quasi-split unitary group in two variables over F'*, defined as in [Rog90}, §1.9].
There exists a Jacquet-Langlands transfer from L-packets on G(Ap+) to L-packets on G*(Ap+),
which induces isomorphisms at all finite places of the constituents of the L-packets. (In order to
see this, we may appeal to any of the following methods: (1) noting that G = SL;(D) and
G*der > SL,, (where D denotes the quaternion algebra over F* which is ramified exactly at the
infinite places of F'T), we proceed in a similar fashion as [LL79] §7, p. 781]; (2) we may embed G and
G* into their respective similitude groups, which are isomorphic to GL1 (D) xGm Res r/r+Gm and
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GLy xG™ Res r/F+Gm, and apply the results of [LS19] along with the classical Jacquet—Langlands
correspondence between GLj(D) and GLsg; (3) use [KMSW, Thm. 1.7.1], which nevertheless is

conditional on forthcoming work of the cited authors.)

Let BCp/p+ denote the global stable base change map (cf. [Rog90, §11.5]), and put II dof

BCp/p+(JL([7])), where [r] denotes the L-packet containing w. Then II is an automorphic repre-
sentation of GLo(Ar) which enjoys the following properties:

o II is conjugate self-dual;

. . . . 9 \Hom(F,C)
II is cohomological of weight v, A (viewed as an element of (Z7), )
If w is a place of F' which is split over a place v of F'T, then

1

I

e}

o

IL, = BCFw/Fj(Wv) = Ty O Ly,
where BCp, -+ denotes the local base change (cf. [Guelll, §2.4]);
If v is a place of F lying over an inert place v of FT, then
I, = BCp, /pt (),

o

where BC Fu/Ff denotes the local base change (described explicitly in [Rog90}, Prop. 11.4.1],

and in further detail in [Blal0, Cor. 3.6 and Thm. 4.4]);
If v € 3, then we have an injection

e}

/ /
o'(r,) ®g, C ’ Hv|GL2(OFv)-
Hence, if 7] is a principal series tame type, II, is a principal series representation.

The construction of r,(m) now follows just as in [Guelll Thm. 2.3], appealing to [Rog90, Thm.
11.5.1] instead of [Lablll Cor. 5.3] in order to control what happens above p. All the properties
listed follow from [Guelll Thm. 0.1], [Carl2, Thm. 1.1}, [Carl4, Thm. 1.1], and Theorem LTIl O

6.3.2. Fix a sufficiently small compact open subgroup K =[], K, € G(A%, ), and let 7" denote a

finite set of finite places of F'*, which contains all inert places v for which K, is not hyperspecial
and all split places v for which K, # G(O FJ)‘ We define the abstract Hecke algebra T” to be the
)

commutative polynomial O-algebra generated by formal variables Tz(,f for i = 1,2, and w a place of

F split over a place of F™ such that w|p+ & T.

Fix A € (Z%F)TP and let 7/ &' {7} }ves, and ¢"° denote a G(Op+ ,)-stable O-lattice in the dual of
o= ®U€E; (7). Given K as above, with K, C G(Op+) for all v € X, the Hecke operator T
acts on the space Sq(K, W) ®p /°) via the characteristic function of double coset

K L_l wwli
1o

vow

)KU-K”

)

(here @, denotes a choice of an uniformizer of Fy,, and v = w|p+). The image of TT in Endy(Sq (K, Wx®0
a"/°)) will be denoted ']T:*\F’T,(K ). The algebra ']I':)CT,(K ) is reduced, finite free over O, and thus a
semi-local ring. Furthermore, note that we have Tgc) =13 (TQ(UZ))_1 in TL ,(K).

Recall that we have
(6.3.1) Sa(K, Wy 0 0"°) 80 B = (P Mz 0 2",

where the direct sum runs over all irreducible constituents Z of Sg(G(Op+ ), Wy ®p 0¥°) ®¢ E
for which 25" £ 0, and where Mz is a multiplicity space. The Hecke algebra ']Tg: ~(K) acts on each
=K by scalars, and we obtain a homomorphism

Az : TS (K) — E.

The ideal ker(Az) is a minimal prime ideal, and every minimal prime of ']I':)CT,(K ) arises in this way.
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Fix a maximal ideal m C ']I':)CT,(K ). Then we have

Sa(K, W) ®90")m @9 E #0,

and this localization annihilates all the direct summands of (6.3.1)) for which ker(Az) € m. Let
p € m denote a minimal prime ideal, corresponding to an irreducible constituent = of ([G.3.I]). We
choose an invariant lattice in r,(w) (for 7 associated to = as in Theorem [6.1]), reduce modulo p,
and semisimplify to obtain a representation 7y; by the density argument of Theorem [6.1] this is
independent of the choice of p and =.

Theorem 6.2. Fiz \ € (Zi)fp and let 7" = {7 }vex, be as in Theorem [6.1. Suppose that m is a
mazimal ideal of T{T,(K) such that that the residue field T{T,(K)/m is equal to F. Suppose further
that T is absolutely irreducible. Then T has an extension to a continuous homomorphism

Tm : PF+ — 92(F)
Choose such an extension. There exists a continuous lifting

Tm : T — Go(T5 o (K)m)

satisfying the following properties. Note that properties (i) and (iii) characterize BC'(ry) up to
isomorphism.

(i) The representation 1y is unramified at all but finitely many places.
(ii) We have vory =& 1.
(i) If v € T is a finite place of F* which splits as v = ww® in F, then ry is unramified at w
and BC'(ry ) (Froby,) has characteristic polynomial

X2 - TV X + N(w)T?.
(iv) If v & E;’ is an inert place, then ry is unramified at v.
(v) Givenv € Z;; and a homomorphism x : T{T,(K)m — E, the representation x o Tt is

potentially crystalline, and we have
WD(m OT“"FFJ)’IFJ =y e 1IFJ'
If k € I} satisfies v(k) = v, then
HTR(BC,(QS o rm)|va) ={Ae1+1, N2}

Proof. This follows exactly as in [CHTOS|, Prop. 3.4.4], using Theorem 6.1l The fact that vory, = ¢~
in (ii) (instead of 5_15;‘7F+) follows from the main result of [BC11]. O
6.3.3.  We recall one more well known lemma on the space of algebraic automorphic forms.

Lemma 6.3. Let K = [[, K, € G(AY;) be a sufficiently small compact open subgroup as above,
and let W be a finite, p-torsion free O-module endowed with an action of G(Op+ ,,). Fiz a marimal
ideal m of TT. Then

Sg(K,W®@ F)m #£0 <= Sg(K,W®o E)m #0.

Proof. This is standard (see, for example, the proof of [CHTO0S, Lem. 3.4.1]). More precisely, the
fact that K is sufficiently small gives the isomorphism (6.2.1]), and implies Sg (K, W), is p-torsion
free. We therefore obtain

SG (K, W ©0 F)n = Sa(K, W) ©0 F # 0 <= Sa(K, W ®9 E)n = Sa (K, W)n @o E # 0.

6.4. Weight elimination.
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6.4.1.

Definition 6.4. A Serre weight for G is an isomorphism class of smooth, absolutely irreducible
representations of Hvezg G(F}) over F, inflated to G(Op+ ). If v € XF, a Serre weight at v is
an isomorphism class of smooth, absolutely irreducible representations of G(F;") over F, inflated to

G(O,1).

Note that any Serre weight V for G is of the form V = ®v62; V, where V,, are Serre weights at
v.

Definition 6.5. Let 7 : I'p+ — G2(IF) be a continuous representation such that

ovoT =81

o T7HGLy(F) x G (F)) = 'p;

o BC'(F) : T'p — GLy(F) is absolutely irreducible.
Let K =[[, K, C G(A%ﬂ) be a compact open subgroup, 7" a finite set of places as in Subsubsection
[6.3.2, and suppose T is unramified at all finite places v of F'™ which split in F' and for which v & T'.
We define a maximal ideal my of T” by

my & <w, T — tr(BC/(7)(Froby,)), T — N(w)~" det (BC’(F)(Frobw))> o
w| g+

where w|p+ = v € T splits as v = ww® in F.
Definition 6.6. Let 7 be as in Definition [6.5] and let V' be a Serre weight for G. Let K =
I, K, C G(A%ﬂ) be a sufficiently small compact open subgroup with K, hyperspecial for v inert
in F'and Ky = G(Op+) for v € ¥¥, and let T be a finite subset as in Subsubsection [6.3.2 such that
7 is unramified at each split place not in 7. We say that 7 is modular of weight V' and level K (or
that V' is a Serre weight of T at level K) if

Sc (K, Vv)mF #0.

We say that 7 is modular of weight V' (or that V' is a Serre weight of 7) if T is modular of weight
V and level K, for some sufficiently small compact open subgroup K C G(A%,) as above. We
denote by Wy,0q(T) for the set of all Serre weights of 7. We say that 7 is modular if Wi,0q(T) # 0.

6.4.2. Fix T as in Definition [6.5], and for v € E;’ define 7, =4 F]pF+. By Proposition 4.6l we have

a set of conjectural Serre weights W’(p,) at v for every v € El‘f . (Here we use the isomorphism
“U, = Gy of Subsection 24l Moreover, the condition v o 7 = 7! implies that the Usy(F})-

representations appearing in W (5,) descend to Uy (F}) = G(F), see for instance Proposition
E8) Thus, we can attach to 7 a set W’ () of predicted Serre weights for G defined as

W) = Q) Ve: Ve € W(p,) forall ve S
vESF
In a similar fashion we define the set W?(BC(F)) of conjectural weights attached to BC(7). (Note

that, under the isomorphism in Subsection 2.4 we have BC(7) = BC'(T) ® £.)
Ifo= ®U€E; oy is a tame G(Op+ ,)-type, we define the base change of o as

BC(0) = (X) BCy(0w),
v62$

where BC,, denotes the local base change of types.

Theorem 6.7. Let 7 : T'pr — Go(F) be a continuous representation such that

ovoT=%1;
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( 2(F) X G (F)) = T'r;
o BC (7) : T'r — GLo(F) is absolutely irreducible;
o Flp ot is tamely ramified and 3-generic for every v € Z+
Then
Wmod( ) - W ( )

Proof. Assume W,0q(T) # 0, otherwise there is nothing to prove. Let V' € Wy,04(T), and assume by
contradiction that V ¢ W’ (7). By Proposition @6l and Lemma 327, there exists a tame Us (O p+ )"
type o = ®veE; o, such that

(i) V € JH(?);

(i) JH(7) N W (F) = 0.
(Note that if 5, is n-generic, so is B(V4(p,)).) We define 7), to be the tame principal series type
such that o, = o(7) (so that, in particular, (TL)W[M;FP] ~ V),

By definition of modularity, there exists a sufficiently small compact open subgroup K =[], K,
such that K, is hyperspecial for v inert in F' and K, = G(Op ) for v € ¥F, and a finite set of
places T such that

SG(K7 Vv)m? 7é 0.

Since K is sufficiently small, the functor of algebraic automorphic forms is exact, so item|(i)|implies
SG(K7 O-V’O)mF 7é 07
and Lemma [6.3] gives
Sa(K,0"° ®9 E)n. # 0.
By the discussion preceding Theorem and upon choosing an isomorphism ¢ : £ — C, there
exists a cuspidal automorphic representation m of G(Ap+) such that
0 T is the trivial representation of G(F);
o Hopr(a ®p, C,mp) # 0;
o for each place v of '™ which is split in ' and not contained in 7', the local constituent
is an unramified principal series with Satake parameters determined by a minimal prime
of TaT/(K)mr via 1.
As in the proof of Theorem [6.I], we obtain a continuous representation
r(7) : Tp — GLo(FE)
such that
o 1,(m) lifts BC'(7);
o for each v € ¥, 7,(7)|r,, is potentially crystalline, and
WD(TZ(wNFFv)th = 7—1/);

o for each x € I, we have
HTH(TZ(W)’FFU(K)) = {17 0}

Consequently, the representation r,(m) ® ¢ has the following properties:

o r,(m) ® e lifts BC'(T) ® € = BC(7);
o for each v € ¥, (r,(7) ® €)|ry, is potentially crystalline, and

WD((TZ(W) ® E)‘FFH)’IFH = Tl/);

o for each x € I,, we have

HT, ((r,(m) ® E)‘FFU(N)) = {0, —1}.
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By the above, we see that BC(p,,) has a potentially Barsotti-Tate lift of type 7;, for every v € X,
namely (7,(7) ® )|y, (with notation as in [Geelll, Def. 2.3]). Therefore, Proposition 3.12 of op.
cit. implies that

JH (BC(o(r}))) N W (BC(7,)) # 0
for all v € 3,. By Propositions B.18] and [£.8 we obtain

JH (o(r))) N W(p,) # 0
for all v € .. However, this contradicts item [(ii), which concludes the proof. O

7. GLOBAL APPLICATIONS II

In this section we use patching techniques to prove the existence of Serre weights for L-parameters,
using the results on local deformation theory obtained in Section Bl We first adapt the patching
construction of [CEG™16] to the case of unitary groups which are not split at places above p, and
state the necessary properties in Proposition [.3l This allows us to deduce the main results on
weight existence in Theorem [7.4] and automorphy lifting in Theorem [7.71

7.1. Setup.

7.1.1.  Suppose that 7 : I'p+ — Go(F) is a fixed Galois representation such that
T H(GLy(F) x Gy (F)) = T

vor =g 1

7 is modular;

7 is unramified outside %f;

F\pF . is tamely ramified and 4-generic for all v € Zl‘f ;

—ker(ad® (7
Frelm) 4oes not contain F((p); and

o BC'(F)(T'r) 2 GLy(F’) for some subfield F’ C F with [F/| > 6.
The last condition implies that BC'(7)(T'p(c,)) is adequate (cf. [BLGGI3| Prop. 6.5]), and that

BC'(7) is absolutely irreducible. Furthermore, the argument in [CEG™16| shows that this condition
also guarantees the existence of a place v of F' such that

O O O O O

o}

(a) vp splits as 017 in F
(b) v; does not split completely in F((p);
(c) BC'(F)(Frobg, ) has distinct F-rational eigenvalues, whose ratio is not equal to N(vq)*!.

7.1.2. Let A € (Zi)fp and for every v € E;’ , let 7/ denote a tame inertial type which satisfies

.
e v Qe P et Y and T XY, U {5, ). We consider a slight generalization of
v v P P g g
the global deformation problems of [CHTO0S, §2.3]:

def

s & (F/F T T,07, e (] ows ULRDY)

def

Sne & (F/FFTT, 0,767 (ROMT s ULRD ).

The difference here is that we allow places in T' to be inert in F. In this notation, EE denotes the
maximal reduced and p-torsion free quotient of the universal framed deformation ring parametrizing
such that v o p = ¢~!. Further, the ring RE AT denotes the unique quotient of RY

with the property that if B is a finite local FE-algebra, then x : EE — B factors through Ry ATy

if and only if the corresponding representation r, : I’ i Go(B) is potentially crystalline, and
satisfies v o r, = 71, HT.(BC'(r5)) = {Ae1 + 1, A2}, and WD(BC'(rp))|r,, = 7). (Again,
the existence of such a quotient follows from [BG19, §§3.2 — 3.3].) In particular, if A = 0, then

lifts p of T|FF+

v
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by applying the isomorphism of Subsection 2.4, we obtain an isomorphism of deformation rings
0T o R%“, where the second ring is as in Subsubsection [£.3.3]

We note also that EEI is formally smooth over O of relative dimension 4, and all of the corre-

sponding Galois representations lifting ?|pF . are unramified (see [CEGT16, Lem. 2.5]).
. ’Ul
We let Rg™" be the complete local Noetherian O-algebra representing the functor of deformations
of 7 of type S, and let RSDT denote the O-algebra representing T-framed deformations of 7 of type
8. (We define a framing at places in E;’ just as in [CHTOS8, Def. 2.2.1], i.e., as an element of
1y + Mataxa(mp) C ker(G2(R) — G2(FF)).) We have similar notation for the deformation problem
S)\,T’ .

7.1.3. Set
TEO[Xyj:veT,1<ij<2|

Choose a lift rgniv representing the universal deformation of type 8, and form the tuple

,r,univ 1+ Xv,l,l Xv,l,2
5 0 Xoon1 1+ Xo22)f 0/

This gives a representative of the universal T-framed deformation of type 8, and we obtain
Ry = RY™®0T = RY™[X,]

(and similarly for 8y ).
We set

1 def oy S50\ o 50
R ocC — <®UEE; R’U > ®RU1 3

loc  def [ N O\ 5 B0
RYS = <®veE+R” i > Ry,
4
where all completed tensor products are taken over O.

Proposition 7.1. Assume that RE’A“’T“, has a non-zero O-point for all v € X7, Then Rlﬁ‘;/[l/p]

is reqular. If moreover (\,,7,) = (0,7,) with 7, being 2-generic and ?|FFU+ being 1-generic and
semisimple, then R%)‘?ﬁ,[l /p] is formally smooth, and Rlofﬁ, is equidimensional of dimension 1+4|T'|+
[FT:Q).

Proof. The fact that RI’¢,[1/p] is regular follows from [BGI9, Thm. 3.3.7], formal smoothness of
RD | and [CEGT16, Cor’. A.2]. When A = 0, formal smoothness of Rl)tf‘;,[l/p] follows from the

V10
results of Subsubsection 310, formal smoothness of Ry, and [Kis09, Lem. (3.4.12)]. The claim
about dimensions then follows from [BGI19, Thm. 3.3.7], the fact that R} is of relative dimension

4 over O, and [BLGHT11 Lem. 3.3]. O

7.1.4. We now relate the above constructions to spaces of automorphic forms. We fix a compact
open subgroup Ky, =[], Kmv € G(AY,) satisfying the following properties:
o if v is a place of F'* which is inert in F and v & E; , then K, , is a hyperspecial subgroup
of G(Fy);
o if v is a place of F™ which is split in F and v # vy, then K, , = G(0p+);
o if v € X7, then Ky, = ker(G(Op+) — G(Op+ /@7"));
o if v = v1 and v is the fixed place of F' above vy, then K, ,, is the preimage under ¢z, of
the upper-triangular Iwahori subgroup of GL2(O Fy, ).

These assumptions guarantee that K, is sufficiently small. We define K et K.
Before proceeding, we will need the following level-lowering result.
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Proposition 7.2. Suppose T satisfies the hypotheses from the beginning of Subsection[7.1], so that
i particular T is modular, unramified outside p, and F|1~F+ is tamely ramified and 4-generic for all

v E E;{. Then 7 is modular of level K.

Proof. Suppose T is modular of weight V = ) ves V. Thus, there exists a finite set of finite places

T" and a sufficiently small level K" =[], K, € G(A¥,) (with K hyperspecial for all inert v and
K}, = G(0py) for v € X and for split v ¢ T") satisfying

SG(K,7 Vv)m; ?é 0

ELSFpl oy

For each v € E; , we choose a principal series tame type 7, such that (/)% = 7/V and such

that V € JH(7), where o := ®U€2; o(7)). By the genericity hypotheses and Theorem [6.7] V, is

3-deep for every v € Z , and consequently 7/ is 2-generic. Since K’ is sufficiently small, Lemma
6.3 implies

SG(K/7 O'V)mF ;é 0.

As in the proof of Theorem [6.7], there exists an automorphic representation m of G(A g+ ), and (after
choosing an isomorphism 2 : E — C) an associated Galois representation

Tz(ﬂ') I'p — GLQ(E)

which lifts BC'(F) ®p F,,.

Let II denote the automorphic representation of GLo(Ap) obtained from 7 by base change (as
in the proof of Theorem [6.1]), and let X = denote the set of prime-to-p places of F* at which 7
is ramified (note that every place of X is split in F, and if II is ramified at some place w, then
w|p+ € Xi,,). Adjusting the place vy if necessary, we may assume vy € XF . We choose a totally
real extension L™ of F* such that the following conditions hold:

o 4 divides [LT : Q];
o L*T/F* is Galois and solvable;
LY I+Fis linearly disjoint from e (Cp) over F;
p is unramified in L;
vy splits completely in L;
if w is a place of L™ 1y1ng over a place in 3 | then N(w) =1 (mod p);
if IT;, denotes the base change of II to an automorphic representations of GLo(Ar) and w
is a place of L lying over a place in Xt | then HILW;‘UJ # 0, where Iw,, € GL2(Op,, ) denotes
the standard upper-triangular Iwahori subgroup. 7

O O O O O

(Note that L/L* is everywhere unramified.) We use the following notation in what follows: if L/ F
is a finite extension of number fields and T is a finite set of finite places of F, we let BC> i F(T ) (or
BC(T') when the context is clear) denote the set of places of L lying above T.
Let 77+ denote a descent of II;, to an automorphic representation of G(A;+). We analyze the
local behavior of 7y +:
(a) If w is a place of L* which splits as ww® in L, then Trt+w = Hp g o tg, where (g is an
isomorphism G (L) — GLy(Lg) which identifies groups of integral points. In particular,
if Il & is unramified, so is 7+ .
(b) Next, we consider the situation above p. Define

def
oL+ = ® U(ﬂ)‘-’,ﬁ)a
w

’LUEBCL+/F+ (2;)
U:w‘FJr
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def
L EBCo) = @ ),
’LUEBCL+/F+ (2;)
v=w|py

which are representations of G(Op+ ;) and GL2(Op ;), respectively (see Subsection d.4land
Definition [Z.I0lfor the definitions of o (7} | 1,.); o' (7] 1,.)). We claim that we can choose 7+

so that we have a G(O+ ,,)-equivariant injection o7+ ®g,C — 7+ ,,. Indeed, note that by
construction we have a GL2(Op, ,)-equivariant injection 07 @, C < Il ,, which implies
that Iz, ,, is a tamely ramified principal series representation for every place w of L above
p (this uses the genericity hypothesis). By the explicit description of the local base change
map given in [Rog90, § 11.4] and [Blal0], we see that if w is a place of Lt above p, then 7+ ,,
is either a tamely ramified principal series, or a supercuspidal representation contained in a
local L-packet of size 2. In the first case, we have a G(O Lt )-equivariant injection o+ ., ®E,
C < mp+ - In the second case, it may happen that the supercuspidal representation
T+ 4 Das no invariants under the principal congruence subgroup of G(Op+ ,,), and therefore
does not admit a G(Op+ ,)-equivariant injection o+, ®g, C — 7+ ,; however, if we
let Fi o denote the other element of the local L-packet containing 7+ ,,, then Wi o will
admit such an injection (see, e.g., the explicit description of depth 0 L-packets in [ALO5]
§ 3.1]). Let us define 7Ti+ = wi+7w®®;,¢w 7L+ > Which lies in the same global L-packet as
mr+. Since the Galois representation associated to my+ via Theorem is irreducible, w7+

1L+ will be automorphic and cuspidal (this uses

[Rog90, Prop. 11.2.1(a), Thm. 11.5.1]). Therefore, by replacing 77+ by 7T1L+ (for several
w € BCpr+ p+ (X)) if necessary), we can guarantee that we have a G(Op+ ,)-equivariant
injection op+ ®p, C — 7+ ).

Finally, suppose that w is a place of L™ which is inert in L and such that IIy, ,, is unramified
(in particular, this means that w ¢ BCp+,p+(X))). By the explicit description of local
base change found in [Rog90, § 11.4] and [BlalQ], we see that 7+ ,, is unramified relative
to a hyperspecial subgroup of G(L), which is equal to G(O r+) for all but finitely many
inert primes w.

defines a stable L-packet, and in particular 7

Thus, we define K+ =[], Kp+, € G(AT) to be the compact open subgroup satisfying the
following conditions:

o

if we BCp+/p+ (X, U{vi}), then Kyt is the preimage under ¢ of Iwg, where w is a
fixed choice of place of L lying over w;

if wis a place of LT which is split in L and w & BCp+/p+ (S, U {v1}), then Kyt ,, =
G(OL$);

ifwe BCL+/F+(E;’,—), then K+, = G(OL$);

if w is a place of LT which is inert in L and w ¢ BCp+/p+ (X)), then Ky ,, denotes a
hyperspecial subgroup of G(L}) relative to which Tr+ 4 18 unramified, chosen to be equal
to G(O+) for all but finitely many such w.

Note that K+ is sufficiently small. The representation 7+ then contributes to the space

where m5

{1}

Y
SGOL+ (KLJr; O'L+)m;‘FL+ )

v, 1S the maximal ideal of TBC(T™) defined as in Definition Here 7" &' Yruxh,u
L
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For every place w € BCp+/p+ (X)), we fix two distinct tame characters ¢u,1, w2 1 0 —> 0%
of p-power order, and define ¢y, : K+ ,, — O™ by

v (15 (& 1)) = poat@riata)
ab

where ( a d) € Iwgz. (Note that such a choice of characters is possible by the choice of L*.)
We define v 2ef ®weBC(E$m)¢w’ so that the reduction mod w of % is the trivial character of
HweBC(Eﬁ;m) KL+,w' Let

Sao,  (Kp+,¥ ®@p0py)

denote the space of algebraic automorphic forms with nebentypus @ above X = (defined as in
Subsection [6.2] except that the component HweBC(ELm) K+ 4 acts by 9).

We claim SGOL+ (Kp+,% ®p UZ+)mﬂF
L

extension, the representation m;+ gives a morphism

BC(T”
0 Typo (Koe) — 0O,

# 0. Indeed, after possibly replacing F by a finite
+

(where BC(7') denotes the collection {7}|7,  }w|s—vex,) and by reduction modulo @ we obtain

00T ngg';z)<KL+> ®oF — F.
Let ngg{;?)(K 1+, F) denote the image of the universal Hecke algebra TBC(T") in

Endo (SGOL+ (KL+,O'Xf)> s

where J\L/f denotes a choice of K+ ,-stable O-lattice in o), . Since the kernel of TIOB’E(CT(Q)(K L+) ®o

F— T(]ig(g(:g) (Kp+,F) is nilpotent, # ® F factors through a map
BC(T")

0 Ty e (Kr+,F) — F.

BC(T")

Now let TO’BC(T,)(K 1+,v) denote the image of the universal Hecke algebra TBC(T")

m

End(‘) <SGOL+ (KINL?TZJ X0 sz)) )
and define T2S") (Kp+,%,F) analogously. Since v is of p-power order, we have ng(&:?) (Kp+,0,F) =

0,BC(7)
C 1 . _
T(]iB(CT(T?)(KL+,F), and by pulling  back we get

- o o 0
0 ToB,B(CT(Tz)(Kuﬂ/J) — T(]JB,B(CC?F(T% (Kp+,¢) @ F — TOB,B(CT(T?)(K“’w’F) —F

We view ker(#’) as a prime ideal lying over the ideal () relative to the finite flat extension O —
T(]ig(CT(T?)(K 1+,v). By the going-down theorem, there exists a prime p C ker(6’) lying over (0) C O.

The minimal prime p constructed above corresponds to an automorphic representation 7T/L+ con-
tributing to SGOL+ (Kp+,¢ ®@p o)y) . Let II;, denote the base change of 7/, to GLa(AL).

Ralls
L+

Then for every place w of L™ which is inert in L and for which w ¢ BC + / F+(E;' ), the represent-

ation H,L,w is unramified. For every place w of L™ which splits as w = ww® in L and for which

w & BCr+/p+ (Cfhm

in L and w € BCp+, p+(Ehy,), then (II} w)lwﬁ’ww‘“;l # 0. By choice of the characters ¢, the
latter condition implies that IT} - must be a principal series representation.

U{v1}), the representation IT}, - ==, o L;Ul is unramified. Finally, if w splits
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Associated to 7, (or II) we have a Galois representation
TZ(W,L+) 'y — GLQ(E)

lifting BC'(7)|r, ®r Fp. By the discussion in the previous paragraph and local/global compati-
bility, the representation r,(7} ) is unramified outside BCp p+(X,f U Xf,,) (recall that all defor-
mations at places above vi are unramified), and tamely ramified at BCp p+ (X},,,). Further, if
w € BCp p+ (X)), then r(n} 1 )[r,, is potentially crystalline with (parallel) Hodge-Tate weights
{1,0} and inertial type 7,7, ~(where v = w|F).

We now choose another totally real extension M /L* satisfying the first five conditions imposed
on LT above, along with the following further condition: letting I, denote the base change of I}

to GLy(Ay) (where M & M*F), we have (H’M@)GM(OMUJ) # 0 for every w € BCy/p+ (Xhn)-
Thus, if we let

r,(ITy,) : Ty — GLo(E)

denote the Galois representation associated to IT,;, then we see that r,(IT},) is a lift of BC'(F)|r,, ®F
F,. Moreover, r,(Il);) is unramified outside BC g+ (X)) and if w € BC g p+ (5;), then r,(I1) ) |r,,.
is potentially crystalline with (parallel) Hodge-Tate weights {1,0} and inertial type 7,|7,, ~(where
v=w|p).

Recall that we have defined a deformation problem 8 /. We define 8ys to be the “base changed”
deformation problem, so that

def

S]\4 = <M/M+7 BCM+/F+(2;)—U{7}1})7 BCM/F(ng{{)Vl})? O7 F‘F 5_17

M+’

0,0,7 |1 » ~0
{Rw M }wEBCM+/F+ (Z;r) U {Rw}weBCM+/F+ ({Ul})> °

Thus, we see that the extension of r,(I;) to I'j;+ corresponds to an E-point of REEV. A variant
of the patching construction of [Guelll Thm. 3.4] with potentially Barsotti-Tate deformation rings
(see also the argument which follows in subsequent sections) shows that (R‘gi}")red is isomorphic to

an appropriate localized Hecke algebra, and consequently Rg}r\‘li" is finite over O. Just as in the proof
of [BLGGT14, Lem. 1.2.3(1)], we have that Rg:ivl is finite over REEV. Combining these facts with

’

the dimension calculation in [CHTO0S8, Cor. 2.3.5], we see that Rgé‘i"/ is a finite O-module of positive

rank.
Now, let 7 : T'py — Go(F) correspond to an E-point of R‘Slg*i:’,, so that in particular r is a lift

of T Qp Fp which is unramified outside of E; . The restriction ’f’|1"M . corresponds to an E-point of
REEV, which necessarily factors through the reduced ring. Thus, BC'(r)|r,, is automorphic, and
by [BLGGT14, Lem. 2.2.2] applied successively to M/L and L/F, we conclude that BC'(r) is also
automorphic (more appropriately, the pair (BC/(r),e~!) is automorphic in the sense of [BLGGT14,
§ 2.1]). Therefore, using [Rog90, Thm. 11.5.1] and the Jacquet-Langlands correspondence (the
latter in the “opposite direction” as compared to the proof of Theorem [6.1]), we can find an au-
tomorphic representation 7’ of G(Ap+) which contributes to the space Sg(Ko,o")m. (perhaps

after replacing 7 by another element in its L-packet, as in item @ above). This implies that
Sc (Ko, 0" )m- # 0, and by Lemma [6.3] we have Sg (Ko, V'Y )m. # 0 for some V' € JH(7). a

Recall that we have defined a maximal ideal m myz C TT associated to 7 (Definition [6.5).
Proposition [Z.2shows that Sg(Ky,,0"°)m # 0 for m > 1, where 0¥° is a G(Op+ ,)-stable O-lattice
in the dual of a tame type. Since the p-component of K, acts trivially on ¢"+° for m > 1, we have
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Sc (K, 0V %)m = Sa (K, O)m ®¢ 0¥°. Thus, the image of m in ']TOT’I(Km) (which will be denoted
by the same symbol m) is a maximal ideal. By Theorem [6.2] we have a continuous lift of 7 given by
Tm @ O/ : T+ — Go (T§ 1 (K )m ®0 /")

which is of type 8. Therefore, we obtain a surjection
(7.1.1) R — T 1 (K ®0 O/
In particular, Sg(Km, O/@" ) is a finite RE™Y-module.

7.2. Auxiliary primes.

7.2.1. Let q denote the maximum of [F* : Q] and dimp H} | T(FF+,T,adO(F)(1)) (defined as in

[CHTO08, §2.3]; note that the latter cohomology group is the usual H'(T g+ 7, ad’(7)(1)) since “S =
T” in the notation of op. cit.). The proof of [CHT08, Prop. 2.5.9] (see also [Thol2, Prop. 4.4])
remains valid, and thus for each N > 1 we can find a tuple (Qy, Qw, {EU,E;}UEQ ~) such that

o Qu is a finite set of places of F'" which split in F;

°o |Qn| =g

o @Qn is disjoint from 77

o @ N~ consists of a single place v of F' above each place v of Qp;

o if v € Qn then N(v) =1 (mod pY); and

o if v € Qu, then BC/(T)|r Py = ¥, GBE; where 1), and E; are distinct unramified characters.

For v € Qn, We let Rg” denote the quotient of EE corresponding to lifts I'r, — GLa(R) of
BC'(7)|r,, which are 15 + Mataxa(mp)-conjugate to a lift of the form ¢ & 1’, where ¢ lifts Vs, Y
lifts E%, and 1)’ is unramified. We then obtain a deformation problem

(F/F+7TUQN)TUQV]\UO)Fve_l’{ﬁE}UGE; U {Ea} U {RfU}UEQN> .

def
SQN =

From this data we obtain the associated universal (resp. T-framed) deformation ring Rggi" (resp. RSDC;F )
N N
of type 8¢,. By [Thol2, Prop. 4.4], the ring RSDC; can be topologically generated over R°¢ by
N
q— [FT : Q] elements.

7.2.2.  We now shrink the subgroup K at places in Qx. For w a place of F', denote by Ky(w) and
K (w) the following subgroups:
def

Ko(w) = Iwy = {g€ GL2(O0p,):9g=(5%) (mod w)}
Kq(w) 2 Ker (Ko(w) —>F$(p))

where F)5(p) denotes the maximal p-power order quotient of F
(2%) to the image of d (mod w) in F(p). For i = 0,1, define

Ki(Qn)m = K3V [ ' (5:(D).
vEQN

X

=, and the map in question sends

7.2.3. Let TTY9~ C TT denote the universal Hecke algebra away from T'UQy, and define mo def

m; N TTYON . As in [CEGT16) §2.6] (which is based on [Thol2, Prop. 5.9]), we have a projection
operator

pr € Endg (SG (K (QN)m, O/wr)mQN)

for ¢ = 0,1. This operator induces an isomorphism

s S e 0/), (S K@) 0/, ).
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which commutes with the action of G(Op+ ).

7.2.4. Define
def

H G(Op+/wy")

UGE+
and

Agy = Ko(QN)m/K1(Qn)m = [ Ko®)/E1 (),
veEQN
a finite p-group.
The space pr(Sa(K1(Qn)m,0/@" )mg, ) has commuting actions of I'y, and Ag,, under which

it becomes a projective (0/w")[Ag,][I'm]-module (this follows from |[CHTOS8, Lem. 3.3.1]). From
this, we obtain I',,-equivariant isomorphisms

pr <SG(K1(QN)m,O/wT)m )AQN

12

pr (SG (Ko(QN)m, O/wr)mQN>
Sa (K, 0/@")

where the last isomorphism follows from the previous subsection.

QN

1

7.2.5. Let ']I'gLIJQN( i(QN)m, O/@" )mg,, denote the image of TTYQN in Endy (pr(Sa (K: (QN )m, 0/@" mq, ))-
(This is the mod @" reduction of the image of ’]I‘TUQN( Ki(QN)m) in Endo (pr(Sa (Ki(@N)m: O)mg,,))-)
We let
i i Dre = 52 (T02% (Ka(Qu)m, 0/ g, )
denote the Galois representation obtained by pushing forward the representation of Theorem
to ']T(j;’LIJQN (Ki(@N)m, O/@" )mg, - Using the construction of rm, , the local/global compatibility

statements of Theorem [6.1] and the properties of the auxiliary primes (along with [Thol2, Prop.
5.12]), we see that r,ﬂrQN is a lift of type 8¢, . In particular, pr(Sc (K;(QN)m., O/wr)mQN) is a finite

R™V_module.
SQN

7.2.6. We identify the group Ag, with the image of []
order quotient of []

vEQN Iz, in the maximal abelian p-power

I'r,. This gives rise to a homomorphism Ag, — Rumv %

vEQN as follows: let

7“812“’ denote any choice of universal deformation, and consider the map
N

llIllV

SQy un1v dOt univ, x
IT 77 = I GLa(mEY) =5 Ry
UGQN UGQN
Thus, we obtain morphisms O[Ag, ] — Rggiv — RSDS . This gives an induced O[Ag, |]-module
N N
structure on pr(Sa(K1(QN)m, 0/@" )mg ), Which agrees with the action of Ag, via diamond op-

erators. These morphisms also lead to natural isomorphisms
iv ~ iv ] ~ pU
Rg, . /agy = R$™ and - Rgj Jagy = Rg™,
where ag, denotes the augmentation ideal of O[Ag, ] (cf. |[GK14] §4.3.7]).

7.2.7. For each N, we choose a lift Tum" representing the universal deformation of type 8¢, , with

,,,.llan
SQN
reduces modulo ag, to the isomorphism RSDT o Rgmv®o‘J'.

(mod ag,) = v,

univ

The ch01ce of g glves an isomorphism R = Rumv ®oT, which

7.3. Patching.
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7.3.1. Let ¢ be as in Section [7.2] and define

Ao = Z§
S, ¥ T[Ax] = Of21, .-, 2447, Y15 - -+ Yl
Reo & RC[qy,... s Tq_[F+:0]]

Raroe & RESIon o2y ro]

We let a C S, denote the augmentation ideal of So. For each N > 1, fix a surjection Ay, —» Agy;
passing to completed group algebras, we get a surjective map Sy = T[As] — T[Ag,]. We view
RSDQTN as an Seo-algebra via Soo —» T[Ag,] — RSD’QTN, which gives RSDQTN Ja & RUIY,
Recall that RSDQT can be topologically generated over R'°¢ by ¢ — [FT : Q] variables. Therefore,
N

we can chooose a surjection of R'°°-algebras

O
Ry — R .
00 SQN

7.3.2.  We may now proceed exactly as in [CEGT16l §2.8] and patch together (certain quotients
of) the spaces

\Y
(7.3.1) pr (sG (Ki(Qn ) O/wN)mQN) @y RO
N

where V denotes here the Pontryagin dual. (In our setup, we are omitting the Hecke operators at
vy, and we ignore the maps ay of op. cit..) Thus, we obtain a profinite topological Sec [G(Op+ ,)]-
module M, with a commuting action of R.,. Furthermore, M., enjoys the following properties:
o Se acts on (T3.I) via the map S —» T[Ag,y] — RSDQT of Subsubsection [7.3.1] and
N

this action factors through an O-algebra morphism S,, — R.,. Since the image of S
in Endg_ (M) is closed, this implies we may factor the action of Sy on My, through an
O-algebra morphism Sy, — Reo.

o The argument at the bottom of p. 29 of [CEG™16] implies that M is a finite Soo [G(O p+ )]
module, and thus it is a finite Roo[G(Op+ ,,)]-module.

o Asin [CEGT16, 2.10 Prop.], My is projective over Soo[G(Op+ ;)]

7.3.3. Using the patched module M., we define a patching functor M. (—) from the category of
finitely generated O-modules with an action of G(Op+ ;) to the category of R.-modules by
def

Mo (W) = Hom‘és(oﬁ,p) (W, MQ/O)V

By projectivity of My (in the category of pseudocompact O[G(Op+ ,)]-modules), the functor
M (—) is exact. Moreover, if W is p-torsion free, then we have

~ cts d
Moo(W) = Homct.(oﬁ’p)(Wv MS)",
where “d” denotes the Schikhof dual (cf. [CEG™16, §1.8] for the definition).

Proposition 7.3.

(i) We have a G(Op+ ,)-equivariant isomorphism

d
Moo /a = <I'£ISG(KP,O/WH)m> :
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which is compatible with the action of ®vezg EE on both sides (the action on the right-hand
side is given by the maps

Q) B — rg— @T&(Km)m> .

UEE;F v

If W is a free O-module of finite type (resp. a free F-module of finite type) with a continuous
G(Op+ p)-action, then My (W) is a free Soo-module of finite type (resp. a free Soo @0 F-
module of finite type).

Let \ € (Zi)lp and let 7' = {Tz’)}%z; be a collection of tame inertial types satisfying

(o

PV o get 0 W@ o(rh) and W Wi @o 0°. Then we b '
) =7 Seto = Quext 0 7)) an = WY ®o0 0°. Then we have an isomor-

phism
Moo(W)/a 2 Sg (K, WS

univ

compatible with the surjection Rog/a —» R{™ (note that RY™ acts on the right hand side
via R — 1T (K)w ).
Suppose V' is a Serre weight. Then we have an isomorphism

Mu(V)/a =2 S (K, V),

compatible with the surjection Rog/a —» R (and the action on the right hand side is
obtained as in item |(iii)]).
Let \ € (Zi)lp and let 7' = {Tz’)}%z; be a collection of tame inertial types satisfying

(T[))W[M;Fp] ~ N Seto ™ Ryest o(7}). Then the Rog-action on Moo(W{ ®¢ 0°) factors
through Ry 7/ o. Further, if MOO(I/V/(\i ®o 0°) # 0, then it is maximal Cohen-Macaulay over
Ry 11 o, and the support of Moo(VVii ®p 0°) is a union of components of SpecRy /.

Let E)\,T’,oo denote the quotient of Ry .~ which acts faithfully on ]\4OQ(T/V§\1 ®o0°). Then
Moo(VVii ®o 0°)[1/p] is locally free of rank 2 over Ry oo[1/p].
Let V' be a Serre weight with highest weight \ € (Z?H,)Ip C (z2)». Then My (V) # 0
if and only if T is modular of weight V. In this case, the Roo-action on My (V) factors

through Rx1.00 ®0 F and Mo (V') is maximal Cohen-Macaulay over Ry 1. Qo F.

Proof. (i) This follows from the patching construction (see [CEG™16, §2.8]). The argument of 2.11
Corollary of op. cit. shows ®U€2;RE—equivariance.

(ii) The module M is a finite projective S [G(Op+ ,,)]-module. If W is p-torsion free, then the
proof of [CEG™16} 4.18 Lem.] implies that M., (W) is a finite free So-module. The same argument
applies when W is a free F-module of finite type.

(iii) Using part we have

(Moo(W)/a)" = Hom (W, ML) [a]

G((’)F+7p)
=~ Homgs(on) (W, (Moo /a)?)
=~ Sa(K,W)n.

The statement about the action of the deformation ring follows in a manner analogous to the proof
of [HLMI7, Thm. 5.2.1(iii)].

(iv) This follows by applying the previous point to a free O-module whose reduction mod p is V,
and reducing mod p.
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(v) The claims regarding the R..-action, the support of the module MOO(W)C\1 ®o 0°), and its local
freeness follow exactly as the proof of [CEGT16, 4.18 Lem.], using [BG19, Thm. 3.3.7] instead of
[Kis08, Thm. 3.3.8].

In order to calculate the precise value of the rank, we proceed as follows. We first claim that
every irreducible component of RA,Tr,OO[l /p| has nonempty intersection with the locus a = 0. Indeed,
since R,/ acts faithfully on ]\JOQ(VV)‘f1 ®o 0°), the localized ring R ./.~0[1/p] acts faithfully on
Mo (W{ ®9 0°)[1/p]. The latter module is free of finite rank over So[1/p] (by item [(ii)), so the
ring Seo[1/p] acts faithfully on it, and the ring Ry, »[1/p] injects into a matrix ring over Seo[1/p].
As the action of Sx[1/p] factors through the action of Ry, ~[1/p], we conclude that we have an
injection Sxo[1/p] = Rx+.00[1/p], and that Ry ./ «[1/p] is finite as an Se[1/p]-module.

Now let q denote a minimal prime of Ry + «[1/p], and consider the composite map 7 : Seo[1/p] —
R+ .00[1/p) — Rx+00[1/p]/q. Using the fact that v is a finite map between integral domains of
the same Krull dimension (the latter because R ./ o[1/p] is equidimensional; see [BG19, Thm.
3.3.7] and note that SpecRj [1/p] is a union of irreducible components of SpecR) + ~o[1/p]),
standard commutative algebra arguments imply that v must be injective (indeed, one sees that
ker(y) is a prime ideal of height 0). Thus, by applying the Lying Over Theorem to the integral
extension v : Sxo[1/p] = Rxr 0[1/p]/q, We see that there exists a prime ideal lying over the
augmentation ideal a. This verifies the claim.

Since the rank of Mo (W ®¢ 0°)[1/p] is constant on the irreducible components of Ry ;. o0[1/p],
the paragraphs above imply that it suffices to compute the rank at prime ideals p containing a.
In particular, we may compute the rank after modding out by a. Since My (W{ ®¢ 0°)[1/p]/a is
locally free of positive rank over Ry ;v «[1/p]/a, the localized ring (R) .,/ «[1/p]/a)p acts faithfully
on (Ms (W ®¢ 0°)[1/p]/a)p, and since this action factors through (TZ ,(K)w[1/p])y we obtain an
isomorphism 7

(BarroelL/81/8), =5 (TL (K )ml1/5]),.

(The surjectivity of this map follows from item [(iii)]) It therefore suffices to compute the rank of
Mo(Wi®g 0°)[1/p]/a = Sa (K, W) ®¢ " °)4[1/p] as a module over T{T,(K)m[l/p]. Finally, since
’]T{T,(K Jm[1/p] is a product of fields (being a reduced Artinian E-algebra), this is equivalent to
computing the rank of the linear dual Sg (K, Wy ®¢ 0¥°)n([1/p] over ’]T{T,(K)m[l/p].

Up to enlarging E if necessary, we can assume that all prime ideals of ']I‘{T,(K Jm[1/p] have
residue field E. Hence a prime ideal p of ']T:*\F’T,(K Jm[1/p] corresponds to a Hecke eigensystem
Ap ']I&F’T,(K)m[l/p] — E, and therefore we obtain

(Sa(K, Wy ®o Uv’o)m[l/p])p Rp,C= EB m(m)Homgo,, )(0° @ C,mp) @c (mooP)KY

where A : T2 (K)w[l/p] — C "% T denotes the Hecke eigensystem corresponding to m. Since
the base chan7ge map is injective on L-packets, strong multiplicity one for GLy implies that there
is at most one L-packet contributing to the direct sum above. Further, the base change map is
determined by local base changes of local L-packets. We have that the condition 7/ # 0 for
v ¢ E;’ inert in I determines a unique member of the local L-packet at v, and the condition
Homg(o,. +Yp)(ao ®o C,m,) # 0 along with the multiplicity one property of Theorem E.II] also

determine a unique member of the local L-packet at v € E;; . Therefore, there is exactly one
automorphic representation 7 contributing to the direct sum above. For this 7, we know that r, ()
is irreducible (being a lift of BC'(T)), and therefore the base change of m to GLa(AF) is cuspidal.
This implies that the L-packet JL([r]) on G*(Ap+) is stable, and therefore m(7*) = 1 for any
m* € JL([r]) by [Rog90, Thm. 11.5.1(c)]. Using an analog of the relation “n(w) = n(7)[], c(my)”
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in [LL79, p. 781], we obtain m(m) =1 (see also [KMSWJ), Thm. 1.7.1]). To conclude, we note that
dim¢ Homg(o,., p)(go ®0 C,mp) = 1 by Theorem 1T and dimc((7°°?)%") = 2 by [Tay06, Lem.
1.6(2)] (since we have omitted Hecke operators at vy).

(vi) Let V' be a Serre weight. By point (iv) and Nakayama’s lemma, My (V') # 0 if and only if 7
is modular of weight V' and level K. Therefore, in order to conclude it suffices to show that if 7 is
modular of weight V', then 7 is modular of weight V' and level K. This follows from Proposition
: in that proof, if we choose o so that JH(z) N W*(7) = {V}, then Theorem [6.7 and exactness
of the functor of algebraic automorphic forms guarantees that the V'’ appearing at the end of the
proof is equal to V.

The claim about My (V) being maximal Cohen-Macaulay follows exactly as in the previous
point. ]

7.4. Weight Existence.

Theorem 7.4. Let 7 : I'p+ — Ga(F) be a continuous representation such that
ovoT=%1;
o F_l(GLQ(F) X Gm(F)) =Ip;
o BC'(F)(T'r) 2 GLo(F') for some subfield 7' C F with |F'| > 6;
o T is modular;
o F\pﬁ is tamely ramified and 4-generic for all v € Z;;;
o T is unramified outside E;{ ;

o err(adO(F))

Then

does not contain F((p).

W? (F) C Winod (F)
Proof. Let V.€ W*(F) and V' € Wpod(T). We will prove that e(My(V)) = 2 by induction on

d < dgr(V, V') = ZUEZ;{ dgr(Vy, Vi)). (We write e(Mx(V)) to denote d! times the coefficient of
degree d of the Hilbert—Samuel polynomial of M, (V') as a module over Ry, /Anng, (M (V)), where
d denotes the Krull dimension of Ry /Anng_ (M (V)).)
By Lemma [3.23] there exists a tame U(Op+ ,)-type 0 = ®UGE; o such that:
(i) V.V’ € JH(D);

(i) |JH(@@) nW(F)| = 24,

(iit) for any V" € JH(7) N W' (7) satisfying V" # V one has dgr(V", V') < dgr(V,V").
We define 7] to be the tame principal series type such that o, = o (7). We note that in this case,
we have isomorphisms

(20 s B ) o1 5010 > B =

(The last equality follows from Proposition [[.3(v)| and the fact that each R[i—)’,’ is integral, cf. Table

Bl
We thus have

2027 — 1) +e(Mw(V)) = > e(Moo (V"))
V" eJH(@)NW’ (7)
= e(Mx(0°))

_ 2e<<®veE$Rg ) ®0 IF)

= 2.2%
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The first equality follows from the inductive hypothesis and item For the second, we note
that Mo (—) is exact, and if V" is a Serre weight such that V" ¢ W'(T), then Theorem and
Proposition imply My (V") = 0. For the third we use Proposition above, and the
fourth follows by Corollary Hence, we obtain e(Mu(V')) = 2, and in particular M (V') # 0.
Thus V € W,04(T) by Proposition O

Combining Theorems [6.7] and [(4], along with the isomorphism in Subsection 2.4] we obtain the
following.

Corollary 7.5. Let 7 : T py — CUy(F) be a continuous L-parameter such that
0710T =¢E;
o 7 YGLy(F) x G,(F)) =T'p;
o BC(T)(I'r) 2 GLo(F") for some subfield F' C F with |F'| > 6;
o T is modular;
o ?|1~F+ is tamely ramified and 4-generic for all v € E;;;
o T is unramified outside E;{ ;
o err(adO(F))

Then

does not contain F((p).

W? (F) = Wod (F)
7.5. Automorphy lifting. We now discuss our other main global application.

Definition 7.6. Let F'//FT and G be as in Subsection 6.1 and suppose r’ : I'r — GLo(FE) is a
continuous Galois representation. We say r’_is automorphic if there exists a cuspidal automorphic
representation m of G(Ap+) such that ¥’®@pFE = r,(7), where r,(7) is as in Theorem

Theorem 7.7. Let F/F* and G be as in Subsection [61. Let r' : Tr — GL2(0) be a Galois
representation and let 7 : T'p — GLo(IF) denote the associated residual representation. Assume
that

o 1’ is unramified at all but finitely many places;

o we have r'¢ =2’V @ e71;

o forallk € E,, the local representation 7"|va® is potentially crystalline, with HTH(T’/|FFU(K)) =
{1, 0} and 4-generic tame inertial type 7'1’)(&) ;

o T is unramified outside L,;

o for allv € ¥,, the local representation F’|FFU s tamely ramified and 4-generic;

o 7 2 r,(m) where 7 is a cuspidal automorphic representation of G(Ap+) with Ts trivial and
such that for all v € ¥f, 7TU|G(OF+) contains the tame G(Op+) = Uz (Op+)-representation

associated to T, by the inertial Local Langlands correspondence (cf. Theorems[]-11] and[6.1);

o F) goes not contain F (¢p);

o () 2 GLy(F') for some subfield F' C F with |F'| > 6.
Then '@ FE is automorphic.

Proof. We outline the proof, which is based on [Tay08|, §§ 4, 5].

We begin with several reductions. Let X, denote the set of prime-to-p places of F' at which 7’
is ramified, and ¥ the set of places of F'* which are the restriction to F'™ of places in ¥;ap,. For
every v € Xt we let ¥ denote a fixed choice of place of F' lying above v. We moreover fix a finite
place v; of F'T satisfying the hypotheses [(a)l(b)| and of Subsubsection [.T.1] By [BLGGT14,
Lem. 2.2.2], we may replace ' by r’|p, (for L = LTF and an appropriately chosen LT furnished
by [CHTO08, Lem. 4.1.2]) and assume without loss of generality that the following conditions are

satisfied: for every w € ¥,m, we have
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w is split over w|p+;

N(w) =1 (mod p);

7|rp, is trivial;

the representation 7’/ ]pFw is, up to an unramified twist, a nonsplit extension of the trivial
character by the cyclotomic character.

O O O O

By the proof of Proposition we can assume further that r,(m) is unramified outside ¥, (in
particular it is unramified outside X, U {v1,0{} U X1am).

We first discuss Galois representations. Enlarging O if necessary, we view r,(7) as being valued
in GL2(0). Let 7 : T+ — G2(0) and 7,(7) : Ip+ — G2(O) denote respectively the extensions
of ' and 7,(7) to T'p+ which satisfy v o7 = e~! = v o7,(7). We also let 7 denote the reduction
mod @ of 7 or (7).

For v € X%, we let Xv,1,Xv2 ¢ I';;, — 14+ w0 denote two distinct continuous characters.

We denote by Rz(,xv’l’xv’z) denote the quotient of RY parametrizing lifts p of 7\% . which satisfy

vop=c~!and

Chach'(p)(y) (X) = (X = xo,1 (X = x0,2(7))

for all v € Ir,. We define Rz(,l’l) similarly, with the characters x, 1, X»,2 replaced by the trivial
character. (Note that these quotients exist and are non-zero, by the discussion in [Tay08|, § 3].)

Since the characters x,,. 1, Xv,2 are trivial modulo w, we have R(X“ 1X0,2) [ = RS,I’1 /@
We now consider two global deformation problem 8y, ~ and 85, given by

def

Ssamr L (F/FF, 5 U{o1} Uiy, B U B} USE,, 0, 7, a7l
0,0, (1,1)
(RS} ey VLR ULR Y e ).
S = (F/F*, S U1} U S, B U (e} US e, 0, 7, 27,

DOT v 'Xv,
(RP™™Y, o U} U (RO D) Y,

We let R“mv . (resp., umV ) denote the complete local Noetherian O-algebra representing the

Sram,T Sram,7T

functor of deformations of 7 of type 8, (resp., of type 8%, ). We note that by the conditions
at X

T, We have

Ruan ~ Ruan .

/w 2ram T/ /w
By the assumptions on r’ and 7,(), both 7 and 7,(r) are deformations of 7 of type Sy . -,
and therefore the ker(G2(0) —» G2(FF))-conjugacy classes of 77 and 7,(7) give rise to morphisms
¢ RumV — O and ¢ : RumV , — O, respectively.

Eram 7—

Next, we construct the Spaces Of algebraic automorphic forms that we will patch. Recall from
Subsubsectlonm the compact open Ko C G(A%,). Let K’ =[], K, C Ky denote the compact
open subgroup satisfying the following conditions:

o if v is a place of F* which is inert in F' and v ¢ ¥.F, then Kj, is a hyperspecial subgroup of
G(E));

o if v is a place of F* which is split in F' and v & {v1} U X,

o if v € X7, then K, = G(0p+);

oifwve {vl} U X, then K/ is the preimage under 5 of Iwg, the upper-triangular Iwahori
subgroup of GLy(OF,).

then K} = G(0+);

ram?
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With these choices, we have that K’ is sufficiently small. Let o & ®U€2; o(7]) denote the tame
type associated to the collection 7 = {Té}vezg by Theorem EIT] and let ° (resp., ¢*>°) denote
a fixed choice G(Op+ ,)-stable O-lattice in o (resp., ¢"). For v € ¥, |, we also define a character
v K — 0% by

_1{a b
Xv <L'ﬁl <c d>> = (Xv1 © Artp;)(a) (xv,2 © Artp, ) (d),
where (‘C’ Z) € Iwg. We then set y oot ®v€2£m Xo- We will examine the spaces of algebraic
automorphic forms
Sa(K’,0¥°)  and  Sg(K',0"° ®¢x ")
(the latter is defined as in Subsection [6.2] except that the component Hveram K] acts by x).

Let my C T U{v1}USim denote the maximal ideal associated to 7 as in Definition Since
the representation 7 contributes to the space Sg(Kj, O'V’O)m?, (recall that Ky D K’ with Ky defined
in Subsubsection [.T.4]), we obtain Sg (K’ ,av"’)mF, # 0. Using the fact that x is congruent to the
trivial character modulo w, repeated application of Lemma gives

Sa(K',0")m, #0 <= Sa(K',0"°®9F)m, #0
<= Sg(K/, (O‘v’O (S90) X_l) ®Rp F)mw 75 0
— Sg(K',0"° ®0 X_l)m?, £ 0.

We now outline the patching argument which uses the above spaces. Let

loc def P 0,07, \ S p0 35 e (1,1)
RO,TGZram - <®U€E;RU ”> ®Rv1® <®v€2£mRv 5

1007/ d_cf —_ D,O,T{} ~ =0 @ (XU,LXU,Z)
ROKF’,Eram - <®v€2; Rv ®Rv1 ® UEE;;m RU .

A variant of the patching construction in Subsections and [Z3 with ¥ U {v1} replaced by
Y5 U{v} UEE, provides us with the following data (see [Tay08), § 4]):
(i) A ring Ry 5,.m,00 Which a formal power series ring in ¢ — [FT : Q] variables over R%)?i’,ﬁram’
together with a surjection Rg ;7 5., 00 — Rgo
(ii) an Ry 5,.m,00-module My (0°) whose support is a union of irreducible components of
SpeCRO,T’,Eram,oo;
(iii) the mod a reduction of My, (c°) is isomorphic to Sg(K’, (ao)d)%w, compatibly with the
hi univ TE;LU{UI}UE;Lam K’ .
morphism Ry s o/a —> R — T2, (K mes

/
ram,T

(iv) we have analogous “primed” versions of the above constructions corresponding to the de-
: / / univ ! o ~
formation problem 8y . (e.g., Ry /v o —» RY K M! (0°)/a =

/
0,7",3ram,00
ram,T

Sa(K', (c° ®¢ X)d)%w etc.). Furthermore, the primed data may be chosen so that it is
compatible with the previous data modulo @ (e.g., under the isomorphism My, (0°)/w =
M! (0°)/w, the action of R/ ,.m.00/@ on the left-hand side intertwines with the action

of Ry .15, /@ on the right-hand side).
By the primed version of item and irreducibility of Spec Ré,T’,Eram,oov we conclude that

, 7/, Sram,00 (M(;O(O-O)) - SpeCRE)leeramyOO'
is irreducible, we use the primed version of item (i)l and [BLGHT11],

loc,’
0,7",3ram
irreducible spectrum: for v € ¥.f, this follows from Table Bl and equation (5.3.2)); for v = vy,

SUPPR6

(TO see that Spec R{)J",Eramv

o0

Lem. 3.3(5)], and observe that each of the local deformation rings comprising R, has an
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this follows from [CEGT16, Lem. 2.5]; for v € X}

Fm, this follows from [TayO8, Prop. 3.1(1)].) In
particular, we get

SuppR/

’
0,7/, 3ram,

@ (ML, (0°)/w) = SpecRy 11 5., o0/ @

By item |(iv)| we obtain the analogous statement for the deformation problem 8, -

(7.5.1) SuppRO’T
Likewise, item implies that SuppRoyT,’Zramyoo(Moo(ao)) is a union of irreducible components

o/ @ (Moo (0°) /@) = SpecRo,+/,5,m,00/ @

lyzramy

of SpecRy 1/ 5,.m.00- Since the irreducible components of Ry ... oo/w are in bijection with the
irreducible components of Ry ;5. « by [Tay08, Prop. 3.1(3)], equation (Z5.1]) implies

SuppRoyT (MOO (UO)) = SpeCROleyzramvoo'

!
,Zram,00

Consequently, we get
SuppRO’T /Cl (MOO(UO)/a) = SpeCROlevzramyoo/a7

which implies by item that

/
,Zram ;00

SuppRgniv <Sc,(K/, (ao)d)iﬂ) = SpecRggiV -
2ramﬂ'l " ram,T
+ +
Since Sg (K, (Jo)d)ﬂw is a faithful T?Z,U{Ul}uzram (K')m_,-module and the latter ring is reduced, the

surjection
Runiv TE;U{Ul }UE;gm (K/)m,,

!
Szramﬂ'l 077— T

induces an isomorphism

. red ~ E+U{v1}UE;Lam ,
(R, )" =T (I -
) , ; 2 Sham
Thus, the homomorphism ¢’ : Rg;i:mﬁ/ — O factors through (R‘SJQZHMI yred =~ T, ’;,U{vl}u (K )m s
which implies that r’ is automorphic. O
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