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Abstract

The study of isolated molecules in a superfluid matrix has attracted
tremendous attention in recent decades thanks to advances in experimen-
tal techniques. The angulon, a quasiparticle formed by a quantum rotor
immersed in a many-body bath, can effectively and efficiently characterize
this rotating impurity problem.

We provide a comprehensive theoretical description of angulons, using a
coherent state ansatz in the co-rotating frame. Employing a saddle point
analysis and a time-dependent variational method, we calculate quasipar-
ticle properties such as the effective rotational constants, the quasiparticle
renormalization factor, and the quasiparticle spectral function. We compare
the predictions of this ansatz to those of a single-excitation ansatz to gain
a better understanding of the angulon in the intermediate-density regime.
In the second part, we then discuss rotational spectroscopy, which focuses
on the response of rotating molecules to a laser perturbation in the linear
response regime. Importantly, we take into account initial-state interactions,
which have been neglected in the prior research. Using a single-excitation
ansatz to examine the angulon instability regime, we obtain consistent results
with experiments, where the broadening of the spectral line is observed while
phonon wings remain highly suppressed. Our findings confirm the validity of
the single-excitation ansatz for describing excited states and suggest that a
non-equilibrium initial state might recover the phonon wings in experiments.
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Chapter 1

Introduction

Studying molecules in helium nanodroplets has attracted great interest
in molecular physics and chemistry in recent decades [1, 2]. Here the nan-
odroplets act as a stable and efficient refrigerator, cooling molecules to an
ultralow temperature, ∼ 0.37 Kelvin. They also provide a clean environ-
ment to manipulate and investigate molecules by performing for instance the
spectroscopy and observing their chemical reactions [3–6]. While helium’s
superfluidity prevents the collisional and Doppler broadening of molecular
spectral lines, the interaction between the molecule and helium causes a red-
shift and an anomalous broadening of spectral lines in rotational spectroscopy
[7]. As a result, it is critical to understand how the molecule interacts with
the droplet environment.

A molecule immersed in superfluid nanodroplets is an instance of quan-
tum impurity problems that provide efficient descriptions to this intrinsic
quantum many-body physics. The polaron problem is a well-known exam-
ple. The idea was first proposed by Landau [8] and Pekar [9], and later
developed by Fröhlich [10]. It describes a moving electron in a crystal en-
vironment. The electron dressed by phonons excited from the lattice forms
a quasiparticle, the polaron. Likewise, the molecule-superfluid system can
be theoretically described by an impurity with rotational degrees of freedom
- a quantum rotor - embedded in a many-body bath. The rotor exchanges
orbital angular momentum with bath, similar to polaron problems where the
impurity exchanges momentum, but it is more challenging to solve due to
the rotor’s internal structure and non-Abelian SO(3) algebra.

Several attempts have been made to investigate the rotor problems based
on the first principle calculations with quantum Monte Carlo simulations [11–
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13]. A microscopy theory has recently been proposed to effectively character-
ize such systems, in which the quantum rotor dressed by phonon excitations
forms a quasiparticle known as the angulon [14–16]. With the good agree-
ment with experiments, this theory provides a new theoretical understanding
of the problem.

It characterizes, for example, the renormalization of rotational constants
in a variety of molecules [17] using phenomenological approaches. Another
example is the study of rotational spectroscopy based on a single-excitation
ansatz [14]. The angulon picture offers a relatively simple approach to com-
plex molecule physics, while experimental evidence backs up the validity of
the picture [18].

Despite its elegance, the angulon model is still difficult to solve due to the
infinite dimension of Hilbert space of phonons and the non-Abelian SO(3) al-
gebra of quantum rotor and previous variational theories are incomplete. On
the one hand, they are unable to describe the renormalization of rotational
constants in a general way. On the other hand, angulon theory predicts
significant phonon wings, which emerge from the sharp spectral lines and
dominate the spectrum in instability regimes. However, phonon wings are
hardly seen in experiments.

The goal of this thesis is to resolve the two issues mentioned above. Con-
cerning the first, we propose a coherent state ansatz in the co-rotating frame
and conduct a variational study of angulons. This method provides a simple
picture that can be used to access both static and dynamic properties. Re-
markably, the ground state can be described by a macroscopic wavefunction
that is a product state of a bosonic and anomalous spin coherent state. It
further provides reasonable predictions for the renormalization of the rota-
tional constant. Moreover, we study the quasiparticle spectrum, where an
intermediate instability regime exists. Concerning the second challenge, we
study the rotational spectroscopy of L = 0 → 1 transition using the single-
excitation ansatz within the linear response theory, in which the initial state
is taken to be the angulon ground state rather than the vacuum state. We
show that there exists an instability regime in the spectrum but no phonon
wings which is consistent with experiments. This emphasizes the significant
role of the molecule-bath initial-state interaction. We also consider the coher-
ent state ansatz. However, regardless of density, it always predicts a shape
spectral line, which implies the coherent state is insufficient to accurately
describe excited states.

The thesis is structured as follows. In Chapter 2, the Fröhlich polaron
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is introduced, which is one of the most well-known impurity models. We
then go through two common methods, the perturbation theory and Lee-
Low-Pines theory, which pave the way to the two methods we use to solve
the angulon model. In Chapter 3, the angulon model is revisited and the
single-excitation ansatz is briefly introduced. Beyond the prior studies, we
derive the real-time evolution equations for the single-excitation ansatz. Af-
terward, in Chapter 4, we present the coherent state ansatz in the rotor’s
co-rotating frame. We use an iterative imaginary-time evolution and exact
diagonalization method to examine the static properties, such as the renor-
malization of the rotational constant. In addition, real-time evolution is
employed to study the quasiparticle spectrum. In Chapter 5, we investigate
rotational spectroscopy in detail. We find that numerical predictions based
on the single-excitation ansatz are compatible with experiments, exhibiting
an instability regime but no phonon wings if one considers an equilibrium
initial-state within linear response theory. Finally, the work is summarized
and potential generalizations are discussed in Chapter 6.
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Chapter 2

Paradigm of Quantum Impurity
problems: Fröhlich Polarons

The concept of polaron originates from Landau [8] and Pekar [9] in study-
ing moving electrons in a solid-state crystal. The electrons cause a vibration
of atoms in the lattice, which generates a collective excitation, the phonon.
The electron dressed by phonons forms a quasiparticle, known as a polaron.
The polaron, which plays a key role in electron transport, is different from
the bare electron in the effective mass and the response to external fields.
But the polaron problem is usually hard to solve analytically and remains
one of the most significant quantum many-body problems despite the long
history of studies.

With the development of experimental techniques, such as ultracold quan-
tum gases [19], polaron physics attracts tremendous attention again. Experi-
mentalists are interested in continuous media, such as immersing the impurity
in Bose or Fermi gases [20–25], in addition to studies of impurities in lattices
[26–28]. The concept of polarons can help to understand the formation of
few-body bound states [29, 30] and even Bose-Fermi mixtures [31, 32].

In this chapter, we will introduce the Fröhlich polaron based on Ref. [33,
34]. Two archetypes for exploring the impurity problem will be shown: per-
turbation theory and a variational approach. These will provide hints for
solving the Angulon problem in the following chapters.
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Figure 2.1: Schematic illustration of polaron, which is formed by a moving
impurity immersed in a phonon bath. Adapted from Ref. [35].

2.1 Fröhlich polaron
The Fröhlich polaron is one of the most well-known polaron models [10].

It is also referred to as the large polaron. Because the size of the polaron is
large in comparison to the lattice parameters of a solid, the medium can be
treated continuously. The Hamiltonian is given by

Ĥ =
p̂2

2m
+
∑
q

ωLOâ
†
qâq +

∑
q

(Vqâqe
iq·r̂ + h.c.), (2.1)

where ~ is set to be one and
∑

q =
∫

V d3p
(2π)3

. p̂ and r̂ are the momentum
and position operators of the moving impurity, respectively. The first term
of Hamiltonian describes the kinetic energy of impurity. The second term
describes the kinetic energy of excited phonons with the longitudinal optical
dispersion ωLO. The third term describes the electron-phonon interaction,
where the interaction strength is given by

Vq = −iωLO

q
(
4πα

V
)1/2(

1

2mωLO
)1/4, (2.2)

and the dimensionless coupling constant is given by

α =
e2

~

√
m

2ωLO
(

1

ε∞
− 1

ε0

). (2.3)
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Here q = |q| and ε is the dielectric constant.

2.2 Perturbation theory

Fröhlich solved the model Eq. (2.1) using a weak-coupling perturbation
theory which will be briefly introduced in this section.

The non-interacting Hamiltonian consists of kinetic energy terms for the
impurity and phonons. Then the zero-order approximation state is given by

|k; 0〉 ≡ |k〉 ⊗ |0〉, (2.4)

which is a product state between the momentum eigenstate of impurity |k〉
and the vacuum state for phonons |0〉. And the corresponding energy is given
by

E
(0)
k =

k2

2m
. (2.5)

Before considering the perturbation, we can rewrite the impurity’s coor-
dinate operators in the interaction Hamiltonian into momentum basis:

eiq·r̂ =
∑
x

∑
p,k

|p〉〈p|x〉eiq·x〈x|k〉〈k|

=
∑
k

|k + q〉〈k|

=
∑
k

ĉ†k+q ĉk.

(2.6)

Here we introduced the single-particle annihilation (creation) operators ĉ(†)
k

for convenience, which only show up in pairs and describe the impurity-bath
momentum transfer. Then the interaction term can be written as

Ĥi =
∑
q

∑
k

(Vqâq ĉ
†
k+q ĉk + h.c.), (2.7)

which explicitly exhibits the total momentum conservation between the im-
purity and phonons.
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We then consider the second-order perturbation of the ground state,
whose wavefunction is given by

|ψ〉 =|k; 0〉+
∑
q

〈k − q; q|Ĥi|k; 0〉
k2

2m
− (k−q)2

2m
− ωLO

|k − q; q〉,

=|k; 0〉+
∑
q

V ∗q
k2

2m
− (k−q)2

2m
− ωLO

|k − q; q〉,
(2.8)

where |k; q〉 = |k〉 ⊗ |q〉 is the one-phonon excitation basis since the inter-
action only annihilates or excites one phonon and the transition matrix is
given by

〈k − q; q|Ĥi|k; 0〉
=〈k − q; q|

∑
q

∑
k

(Vqâq ĉ
†
k+q ĉk + h.c.)|k; 0〉

=V ∗q .

(2.9)

The perturbative energy is given by

Ek =
k2

2m
+
∑
q

|〈k − q; q|Ĥi|k; 0〉|2
k2

2m
− (k−q)2

2m
− ωLO

=
k2

2m
+
∑
q

|Vq|2
k2

2m
− (k−q)2

2m
− ωLO

=
k2

2m
+ 2mω2

LO(
4πα

V
)(

1

2mωLO
)1/2

∑
q

1

q2

1

2k · q − q2 − 2mωLO

≈− αωLO +
k2

2m
(1− α

6
).

(2.10)

The energy of the quasiparticle can be written as Ek ≈ E0 + k2

2m∗
, which

defines the effective mass. By comparing the two formulas, one can obtain
the effective mass

m∗ =
m

1− α/6 ≈ m(1 +
α

6
). (2.11)

Here α > 0 indicates that the polaron is heavier than the bare electron, which
means the dressing by the phonon cloud reduces the mobility of electron.



2.3 Variational method 9

It is worth mentioning that the perturbation wavefunction can be gen-
eralized to a variational ansatz. One can propose a single-excitation trial
wavefuntion, which is given by

|ψ〉 = φ0|k; 0〉+
∑
q

φq|k − q; q〉, (2.12)

which is similar to the so-called Chevy ansatz [36]. A similar result to the
perturbation theory can be obtained by minimizing the variational energy.
The variational method has two benefits: the self-consistent normalization
condition improves the accuracy of the variational study [16], and it is easy
to extend to the study of real-time evolution.

2.3 Variational method
The variational method is an approach commonly used for impurity prob-

lems. Even though not providing exact solutions, it gives an upper bound
estimate for the ground-state energy; and if the trial wavefunction is good
enough, one can gain deep insight into the physics, such as the famous Laugh-
lin wavefunctions [37]. Understanding the way that the impurity and bath
couple together is the main challenge for guessing the trial wavefunction.
The simplest way is the exchange of momentum up to the single-excitation
discussed above. In this section, we will introduce the coherent state ansatz
in the co-moving frame of the impurity, in which the Lee-Low-Pines trans-
formation is employed to entangle the impurity and bath.

2.3.1 Lee, Low and Pines (LLP) Transformation

Before discussing the transformation, we first introduce the total momen-
tum operator:

P̂ = p̂+
∑
q

qâ†qâq. (2.13)

One can easily check that it commutes with the Hamiltonian:

[P̂ , Ĥ], (2.14)

which implies the total momentum is conserved. This implies that we can
further introduce a canonical transformation to reduce the degrees of freedom
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of the system. This is the so-called Lee, Low and Pines (LLP) transformation
[38]:

ÛLLP = e−ir̂·
∑

q qâ†q âq , (2.15)

which is generated by the momentum of phonons and is a translational trans-
formation to the co-moving frame of the electron.

Here we lists some typical transformation of operators:

Û †LLPâqÛLLP = âqe
−ir̂·q;

Û †LLPp̂ÛLLP = p̂−
∑
q

qâ†qâq;

Û †LLPP̂ ÛLLP = p̂.

(2.16)

The last equation indicates that the impurity momentum operator in the
transferred frame represents the total momentum of the system in the original
frame. The Hamiltonian in the co-moving frame reads:

Ĥ =Û †LLPĤÛLLP

=
1

2m
(p̂−

∑
q

qâ†qâq)2 +
∑
q

ωLOâ
†
qâq +

∑
q

(Vqâq + h.c.).
(2.17)

The interaction term dose not contain impurity coordinates, and it commutes
with the total momentum operator, [p̂, Ĥ]. Hence we can replace the mo-
mentum operators by a c-number p̂ → p, and solve the model in each total
momentum sector. The impurity is now fully decoupled and the model is
purely bosonic. In this case, many methods can be employed, and as an
example, we will next show a coherent state ansatz.
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2.3.2 Coherent state ansatz

We first consider the ground state, for which we set p = 0. The Hamil-
tonian then reduces to

Ĥ(0) =
1

2m
(
∑
q

qâ†qâq)2 +
∑
q

ωLOâ
†
qâq +

∑
q

(Vqâq + h.c.)

=
∑
q,q′

q · q′
2m

â†qâ
†
q′ âqâq′ +

∑
q

(ωLO +
q2

2m
)â†qâq +

∑
q

(Vqâq + h.c.)

≈
∑
q

(ωLO +
q2

2m
)â†qâq +

∑
q

(Vqâq + h.c.),

(2.18)

where the quartic term of phonon interaction is ignored in the last line since
the ground state is assumed to be isotropic.

This Hamiltonian can be diagonalized by a displacement transformation:

Ûc = exp(
∑
q

â†qβq − β∗qâq), (2.19)

where the displacement is given by

βq = − V ∗q

ωLO + q2

2m

. (2.20)

And the Hamiltonian after transformation is given by

Û †c Ĥ(0)Ûc

=
∑
q

(ωLO +
q2

2m
)(â†q + β∗q)(âq + βq) +

∑
q

(Vq(âq + βq) + h.c.)

=(ωLO +
q2

2m
)â†qâq −

∑
q

|Vq|2
ωLO + q2

2m

.

(2.21)

Explicitly, the ground state is the vacuum state for phonons in the transferred
frame, and in the original frame the overall ground state is given by

|ψ0〉 = ÛLLP(|0〉m ⊗ Ûc|0〉b), (2.22)
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where |0〉b represents the vacuum state for phonons and |0〉i represents zero
total momentum state such that p̂|0〉m = 0 and P̂ |ψ0〉 = 0. The correspond-
ing ground state energy can be written as

E(0) =−
∑
q

|Vq|2
ωLO + q2

2m

=−
∑
q

(ωLO
q

)2 4πα
V

( 1
2mωLO

)1/2

~ωLO + q2

2m

=− αωLO
2

π

∫ ∞
0

dξ

1 + ξ2

=− αωLO,

(2.23)

where
∑

q → V
∫∞

0
q2dq/(2π2). The ground-state energy is consistent with

the perturbation theory result.
Our next goal is to study the effective mass of the polaron, and we thus

consider a general p. It is natural to generalize the ground-state wavefunction
into a variational ansatz:

|ψp〉 = ÛLLP(|p〉m ⊗ Ûc|0〉b), (2.24)

where the parameters β(∗)
q in the displacement transformation Ûc are treated

as variationally, and |p〉m represent the total momentum state.
For the general case, we can first expand the Hamiltonian in normal order:

Ĥ(p) =
1

2m
(p−

∑
q

qâ†qâq)2 +
∑
q

ωLOâ
†
qâq +

∑
q

(Vqâq + h.c.)

=
p2

2m
+
∑
q

(Vqâq + h.c.)

+
∑
q

(ωLO −
1

m
p · q +

q2

2m
)â†qâq +

∑
q,q′

q · q′
2m

â†qâ
†
q′ âqâq′ ,

(2.25)

And we can easily write down the variational energy for the coherent state
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ansatz:

Ep =〈ψp|Ĥ|ψp〉

=
p2

2m
+
∑
q

(Vqβq + h.c.)

+
∑
q

(ωLO −
p · q
m

+
q2

2m
)|βq|2 +

1

2m
(
∑
q

q|βq|2)2.

(2.26)

To minimize the variational energy, we employ the variational principle:

∂Ep

∂βq
=
∂Ep

∂β∗q
= 0. (2.27)

This gives rise to self-consistent equations. Here we skip the lengthy deriva-
tion and point out the results directly. The energy for general p is given
by:

Ep = −αωLO +
p2

2m[1 + α/6)]
, (2.28)

and the effective mass:
m∗ = m(1 +

α

6
), (2.29)

which is again consistent with the perturbation theory.
However, despite the consistency, the coherent state ansatz is more gen-

eral since it does not require the interaction strength α� 1. And physically
speaking the coherent state includes an infinite number of phonon excitation
terms, and is the exact solution in the large mass limit.
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Chapter 3

Quantum Rotor in Bosonic Bath:
Angulon

Even for a single molecule, a complete theoretical description is difficult
because it has many degrees of freedom [39, 40]: the translation of the cen-
ter of mass, the rotation and vibration between nuclei, and the motion of
electrons. And the many-body bath must be considered when studying an
isolated molecule in a superfluid. As a result, an effective comprehensible
model is necessary.

Fortunately, one can only consider the molecule’s rotational degrees of
freedom when focusing on rotational spectroscopy. And the quantum rigid
rotor is a reasonable approximation for it. For such a rotor-bath model,
many first-principle calculations have been performed [11–13]. To avoid the
expensive calculations, the Bogoliubov phonon can be used to approximate
the superfluid bath. Similar to the polaron, a quantum rotor dressed by
the phonon cloud forms a quasiparticle, angulon. The angulon model, which
can be solved variationally, provides an effective and efficient description of
experiments. For example, one can describe the effective rotational constants
by phenomenological theories [17], and explain the anomalous broadening of
spectral lines by variational theories [18].

In this chapter, we will introduce the setup of the Angulon Hamiltonian
first, followed by a variational study based on a single-excitation ansatz [14,
16]. Furthermore, we will derive the equations of motion for the single-
excitation ansatz, which is more convenient for numerical calculations and
will be useful in calculating the rotational spectroscopy.
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Figure 3.1: Schematic illustration of angulon, which is formed by a quantum
rigid rotor dressed by phonons. Adapted from Ref. [41].

3.1 Angulon model
We consider a linear molecule in a superfluid nanodroplet at zero tem-

perature. The system can be described by a quantum rotor dressed by the
Bogoliubov phonons excited from a weakly interacting bosonic bath. The
Hamiltonian is given by [14]:

Ĥ =BĴ2 +
∑
kλµ

ωkb̂
†
kλµb̂kλµ +

∑
kλµ

Uλ(k)[Y ∗λµ(θ̂, φ̂)b̂†kλµ + Yλµ(θ̂, φ̂)b̂kλµ], (3.1)

where ~ ≡ 1 and
∑

k ≡
∫
dk. The Hamiltonian consists of three terms. The

first term represents the rotational kinetic energy of a rotor where B is the
rotational constant, and Ĵ are the angular momentum operators in the lab
frame. The second term represents the kinetic energy of excited phonons.
The bosonic operators, b̂(†)

kλµ, are in angular momentum representation,

b̂†kλµ =
k

(2π)3/2

∫
sin θkdθkdφki

−λYλµ(θk, φk)b̂
†
k, (3.2)

where k = |k| indicates the momentum amplitude; λ and µ label the angular
momentum quantum number and its projection to z axis in the lab frame.
More details are shown in appendix. Here we consider a superfluid bath with
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dispersion relation ωk =
√
εk(εk + 2gbbn), where gbb = 4πabb/m, and we set

abb = 3.3(mB)−1/2 for the scattering length of 4He. The last term represents
the interaction between the rotor and the phonon bath, which couples the
angles of the rotor, θ̂ and φ̂, with the phonon fluctuation; jλ(kr) is the spher-
ical Bessel function and Yλµ(θ̂, φ̂) is the spherical harmonics. The interaction
strength is given by Uλ(k) = uλ[

8nk2εk
ωk(2λ+1)

]1/2
∫
drr2fλ(r)jλ(kr), where we con-

sider Gaussian form factors, fλ(r) = (2π)−3/2e−r
2/(2r2λ), and the interaction

amplitudes and ranges are u0 = 1.75u1 = 218B and r0 = r1 = 1.5(mB)−1/2.
Apart from the rotor, we introduce the angular momentum of the phonon
bath Λ̂α =

∑
kλµν b̂

†
kλµσ

λ,α
µν b̂kλν , and further introduce the total angular mo-

mentum L̂ = Ĵ + Λ̂. It is easy to check that the Angulon Hamiltonian
commutes with L̂ and its square L̂2, which indicates that the eigenstates are
labeled by two quantum numbers, L and M , correspondingly

L̂z|L,M〉 = M |L,M〉,
L̂2|L,M〉 = L(L+ 1)|L,M〉.

(3.3)

The Angulon Hamiltonian is similar to Fröhlich polaron:

Fröhlich polaron Angulon
Momentum: p̂ Angular Momentum: Ĵ
Coordinate: r̂ Polar Angle: θ̂, φ̂

Mass: m Rotational Constant: B
eik·r̂ Yλµ(θ̂, φ̂)

[Ĥ, P̂ ] = 0 [Ĥ, L̂2] = [Ĥ, L̂z] = 0

Table 3.1: Comparison between Fröhlich polaron and Angulon.

This implies one can use a similar method to solve the Angulon problem.
In this chapter, we will introduce a variational study based on a single-
excitation ansatz method. In the next chapter, we will propose a coherent
state ansatz in the co-rotating frame to study the Angulon problem.

3.1.1 Derivation of Angulon Hamiltonian

Here we will derive the Angulon Hamiltonian from a general form:

Ĥ = Ĥr + Ĥb + Ĥi. (3.4)
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The three terms respectively correspond to the rotational energy of the rotor,
energy of the interacting bosonic bath, and rotor-boson interaction energy.

Rotor Hamiltonian

Usually, molecules are more complex than atoms. Molecules are compos-
ite particle systems. Apart from the usual electronic structures and external
motion of nuclei, like translation and rotation of the center of mass, poly-
atomic molecules also contain additional internal structures, like the vibra-
tion and rotation. Fortunately, the electronic and vibrational transitions lie
in energy regime (1013−1014Hz and 109−1011Hz) higher than the rotational
transitions (109 − 1011Hz). Also, the low temperature and zero-viscosity of
superfluid allow us to neglect the external motion of the molecule to high
approximation. In rotational spectroscopy, we can assume molecules occupy
the lowest electronic and vibrational state and only focus on the internal
rotational degrees of freedom.

In this case, the rotating molecule can be modeled by a quantum rigid
rotor [40, 42]:

Ĥr =
∑

α=x,y,z

Bα(Ĵ ′α)2. (3.5)

Here Ĵ ′α is the angular momentum operator in the molecular (body-fixed)
frame, which satisfies the anomalous commutation relations (More details
are shown in the appendix). Ĵ ′α transfers to the normal angular momentum
(in lab-frame) Ĵα by the rotational transformation, and the square is the
same, Ĵ2 = Ĵ ′2. Bα are the (bare) rotational constants, proportional to the
inverse of moments of inertia, which characterize the molecular geometry.
For example, A = B = C corresponds to spherical tops (CCl4); A = B 6= C
corresponds to symmetric tops (NH3); A = B;C = 0 corresponds to linear
molecules (CO2). In this thesis, we will focus on the latter case, and the
Hamiltonian is given by

Ĥr = B(Ĵ ′x)2 +B(Ĵ ′y)2 = BĴ2. (3.6)

Boson Hamiltonian

The superfluidity of 4He originates from the gapless low-energy excita-
tion, the phonon, in the interacting bosonic gas. The second-quantization
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Hamiltonian is given by [43]

Ĥb =
∑
k

εkâ
†
kâk +

1

2

∑
k,k′,q

Vbb(q)â†k′−qâ
†
k+qâk′ âk, (3.7)

where
∑

k ≡
∫
d3k/(2π)3. The first term represents the kinetic energy of

bosons, where εk = k2/2m and the bosonic operators in momentum space
satisfy the commutation relation [âk, â

†
k′ ] = (2π)3δ(k−k′). The second term

represents the boson-boson interaction, and with the first-order Born approx-
imation the interaction strength Vbb(q) reduces a constant gbb = 4πabb/m.

The many-body Hamiltonian is hard to solve analytically. A standard
way to simplify the Hamiltonian in the weakly-interacting and dilute limit
is the Bogoliubov approximation and the Bogoliubov transformation [44].
After that the Hamiltonian reduces to a diagonal form:

Ĥb =
∑
kλµ

ωkb̂
†
kλµb̂kλµ, (3.8)

where b̂(†)
kλµ are bosonic operators for the phonon excitation in the angular

momentum basis, and the dispersion is given by

ωk =
√
εk(εk + 2gbbn). (3.9)

In the following, we will explain the derivation in detail. In a BEC, most
of the atoms occupy the zero-momentum state. Therefore, one can interpret
the bosonic operators as a macroscopic condensate at zero-momentum with
addition to the finite-momentum fluctuations. Then, it is natural to split the
sum over the full momentum space into two parts:

n̂ =
∑
k

â†kâk = â†0â0 +
∑
k 6=0

â†kâk. (3.10)

Then the Hamiltonian turns into

Ĥb =
∑
k

εkâ
†
kâk +

1

2
gbb

∑
k,k′,q

â†k′−qâ
†
k+qâk′ âk

≈gbbn
2
0

2
+
∑
k 6=0

(εk + 2gbbn0)â†kâk +
gbbn0

2

∑
k 6=0

(â†−kâ
†
k + â−kâk)

≈gn
2

2
+
∑
k 6=0

(εk + gbbn)â†kâk +
gn

2

∑
k 6=0

(â†−kâ
†
k + â−kâk)

(3.11)
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Here we only keep quadratic terms that are proportional to n, and neglect
the higher interacting terms. And we assume the fluctuation to be small and
the particle number in the zero-momentum condensate is close to the total
particle number. Hence we can replace â(†)

0 by the square root of total particle
number

√
n0 and n0 ≈ n, and use the trick that n̂2

0 ≈ n̂2 − 2n̂
∑

k 6=0 â
†
kâk.

We further drop the constant term, then the Hamiltonian reduces to

Ĥb =
∑
k 6=0

[εk + gbbn]â†kâk +
gbbn

2

∑
k 6=0

[â†kâ
†
−k + âkâ−k]. (3.12)

To diagonalize the Hamiltonian, we apply the Bogoliubov transformation:

âk = ukb̂k + v∗−kb̂
†
−k,

â†k = u∗kb̂
†
k + v−kb̂−k,

(3.13)

where b̂(†)
k are creation and annihilation operators for phonon excitations, and

the coefficients satisfy the constraint, |uk|2 − |v−k|2 = 1.
Then the Hamiltonian becomes

Ĥb =
∑
k 6=0

[(εk + gbbn)(|uk|2 + |vk|2) + gbbn(u∗kvk + ukv
∗
k)]b̂

†
kb̂k

+
∑
k 6=0

[
gbbn

2
(u∗ku

∗
−k + v∗−kv

∗
k) + (εk + gbbn)u∗kv

∗
−k]b̂

†
kb̂
†
−k + h.c.

!
=
∑
k 6=0

ωkb̂
†
kb̂k

(3.14)

Here one can parameterize the coefficients by hyperbolic functions:

uk = cosh θk,

v−k = sinh θk.
(3.15)

We require the off-diagonal term to vanish, which leads to

gbbn

2
(v−kvk + uku−k) + (εk + gbbn)(ukv−k)

!
= 0. (3.16)

We thus obtain
tanh 2θk = − gbbn

εk + gbbn
, (3.17)



3.1 Angulon model 21

and correspondingly,

sinh 2θk = − gbbn√
(εk + gbbn)2 − (gbbn)2

,

cosh 2θk =
εk + gbbn√

(εk + gbbn)2 − (gbbn)2
.

(3.18)

Then, the Bogoliubov dispersion relation is given by

ωk = cosh 2θk[(εk + gbbn) + gbbn tanh 2θ],

=
√
εk(εk + 2gbbn).

(3.19)

Furthermore, since we will deal with the angular momentum exchange
between the rotor and the bath, it is more convenient to work in the angular
momentum basis, whose transformation is given by

b̂†k =
(2π)3/2

k

∑
λµ

b̂†kλµi
λY ∗λµ(Θk,Φk). (3.20)

And the Hamiltonian turns to

Ĥb =
∑
λµ

∑
λ′µ′

∫
dkωk(−1)λ

′
iλ+λ′ b̂†kλµb̂kλ′µ′ [

∫
dΩkY

∗
λµ(Θk,Φk)Yλ′µ′(Θk,Φk)]

≡
∑
kλµ

ωkb̂
†
kλµb̂kλµ

(3.21)

where
∑

k ≡
∫
dk.

Rotor-Boson interaction

We consider a general form of rotor-boson interaction, given by:

Ĥi =
∑
kq

Vrb(q, φ̂, θ̂, γ̂)ρ(q)â†k+qâk, (3.22)

where ρ(q) = e−iq·r is the Fourier transformation of the density of the im-
purity. Here we ignore the rotor’s translational motion and assume that it is
placed at r = 0. (φ̂, θ̂, γ̂) are polar angle operators for the rotor.
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We start deriving the interaction potential from a general form in the
molecular frame, and expand in spherical harmonics:

Vrb(r) =
∑
λ

Vλ(r)Yλ0(θr, φr). (3.23)

Here we consider a linear rotor, thus only the µ = 0 channel contributes. The
z-axis is selected as the symmetry axis of the linear rotor, and the interaction
strength only depends on the coordinates of bosons. Using the Wigner D-
matrix, one can transfer the spherical harmonics to the lab frame:

Yλ0(θr, φr) =
∑
µ

Dλ
µ0(θ̂, φ̂, γ̂)Yλµ(ΘR,ΦR), (3.24)

where Dλ
µ0(θ̂, φ̂, γ̂) =

√
4π

2λ+1
Y ∗λµ(θ̂, φ̂). Then, we reach the interaction poten-

tial in the lab frame:

Vrb(R, θ̂, φ̂) =
∑
λµ

√
4π

2λ+ 1
Y ∗λµ(θ̂, φ̂)Yλµ(ΘR,ΦR)Vλ(R), (3.25)

where the distance between the rotor and bosons is independent of the frame,
i.e. R = r. One can move to Fourier space:

Vrb(k, θ̂, φ̂)

=

∫
d3RVrb(R, θ̂, φ̂)eik·R

=
∑
λµ

∑
lm

Ṽλ(k)Y ∗λµ(θ̂, φ̂)Ylm(Θk,Φk)[

∫
dΩRYλµ(ΘR,ΦR)Y ∗lm(ΘR,ΦR)]

=
∑
λµ

Ṽλ(k)Yλµ(Θk,Φk)Ŷ
∗
λµ(θ̂, φ̂),

(3.26)

where Ṽλ(k) ≡
√

4π
2λ+1

(4π)i−λ
∫
drr2Vλ(r)jλ(kr) and we expand the exponen-

tial function as

eik·R =
∑
lm

(4π)i−ljl(kR)Y ∗lm(ΘR,ΦR)Ylm(Θk,Φk). (3.27)
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Our next goal is to effectively describe the interaction Hamiltonian within
the phonon picture. With the Bogoliubov approximation and transformation,
we replace boson operators in the interaction Hamiltonian by the phonon
operators:

Ĥi =
∑
kq

Vrb(q, θ̂, φ̂)â†k+qâk

≈nVrb(0, θ̂, φ̂) +
√
n
∑
k 6=0

Vrb(k, θ̂, φ̂)[â†k + â−k]

=nVrb(0, θ̂, φ̂) +
√
n
∑
k 6=0

Vrb(k, θ̂, φ̂)[(u∗k + v∗k)b̂
†
k + (u−k + v−k)b̂−k]

→√n
∑
k 6=0

Vrb(k, θ̂, φ̂)

√
εk
ωk

(b̂†k + b̂−k)

=
∑
kλµ

Uλ(k)[Y ∗λµ(θ̂, φ̂)b̂†kλµ + Yλµ(θ̂, φ̂)b̂kλµ]

(3.28)

Here we kke only terms to linear order.
∑

k ≡
∫
dk is the sum over the radial

momentum k = |k|, and the interaction strength is given by

Uλ(k) = [
8nk2εk

ωk(2λ+ 1)
]1/2
∫
drr2Vλ(r)jλ(kr), (3.29)

where Vλ(r) ≡ uλf(r) is usually obtained from approximate models or ex-
perimental data. Here we neglect the constant and quadratic terms.

3.2 Single-excitation ansatz
Several studies of the Angulon problems are based on a single-excitation

ansatz [14, 17, 18, 45, 46], which is given by

|ψLM〉 =Z1/2|0〉|LM〉+
∑
kλµ

∑
jn

βkλjC
LM
jn,λµb̂

†
kλµ|0〉|jn〉. (3.30)

Here |0〉 labels the bosonic vacuum, and Z is the quasiparticle renormaliza-
tion factor satisfying the normalization condition, |Z| + ∑

kλj |βkλj|2 = 1.
The first term indicates the non-interacting vacuum state. The second term



24 3. Quantum Rotor in Bosonic Bath: Angulon

indicates the single-excitation state in which the Clebsch-Gordan coefficients
CLM
jn,λµ incorporate the total angular momentum conservation of the rotor and

excited phonons. The wavefunction is labeled by two quantum numbers, the
total angular momentum quantum number L and its projection to the z axis
M . It is easy to check that

L̂2|ψLM〉 = L(L+ 1)|ψLM〉,
L̂z|ψLM〉 = M |ψLM〉.

(3.31)

This ansatz, which reduces to the second-order perturbation theory at weak
coupling, successfully explains the anomalous broadening of spectral lines
in spectroscopy experiments [18], and the renormalization of rotational con-
stants at weak coupling [17]. However, it fails to describe the renormalization
of rotational constants in the intermediate-density regime.

In this section, we will reproduce some analytical results with the single-
excitation ansatz. In the next chapter, we will propose a coherent state
ansatz in the co-rotating frame and compare it with the single-excitation
ansatz.

3.2.1 Variational methods

Based on the single-excitation ansatz, the variational energy is given by

E =
〈ψLM |Ĥ|ψLM〉
〈ψLM |ψLM〉

, (3.32)

which provides an estimate of the upper bound of ground state energy. There-
fore, the goal is to minimize it and find the corresponding variational parame-
ters, which is equivalent to minimize the functional, F = 〈ψLM |(Ĥ−E)|ψLM〉.

First, one can calculate the expectation values term by term:

〈ψLM |Ĥr + Ĥb|ψLM〉
=BL(L+ 1)|Z|+

∑
kλj

[ωk +Bj(j + 1)]|βkλj|2
∑
µm

(CLM
jm,λµ)2

=BL(L+ 1)|Z|+
∑
kλj

Wkj|βkλj|2,
(3.33)



3.2 Single-excitation ansatz 25

and

〈ψLM |Ĥi|ψLM〉
=
∑
kλµ

∑
jm

Uλ(k)CLM
jm,λµ[Z1/2β∗kλj〈jm|Y ∗λµ(θ̂, φ̂)|LM〉+ c.c.]

=
∑
kλj

(−1)λVλ(k)Cj0
L0,λ0[Z1/2(βkλj)

∗ + c.c.]

(3.34)

where we introduce Vλ(k) =
√

2λ+1
4π

Uλ(k) and Wkλ = ωk + Bλ(λ + 1) for
compactness, and the spherical harmonics can be expanded in the angular
momentum basis:

Yλµ(θ̂, φ̂) =
∑

jm,j′m′

aj
′m′

jm,λµ|j′m′〉〈jm|, (3.35)

with

aj
′m′

jm,λµ =

√
(2j + 1)(2λ+ 1)

(2j′ + 1)4π
Cj′m′

jm,λµC
j′0
j0,λ0. (3.36)

The Clebsch-Gordan coefficients satisfy the normalization condition
∑

µm(CLM
jm,λµ)2 =

1 and the permutation rule

Cjm
LM,λ−µ = (−1)λ−µ

√
2j + 1

2L+ 1
CLM
λµ,jm = (−1)j−L−µ

√
2j + 1

2L+ 1
CLM
jm,λµ. (3.37)

We conclude the variational functional:

F =[BL(L+ 1)− E]|Z|+
∑
kλj

(Wkj − E)|βkλj|2

+
∑
kλj

(−1)λVλ(k)Cj0
L0,λ0[Z1/2(βkλj)

∗ + (Z1/2)∗βkλj].
(3.38)

One can find its minimum by determining the saddle point with respect to
the variational parameters:

δF

δ(βkλj)∗
= (Wkj − E)βkλj + (−1)λVλ(k)Cj0

L0,λ0Z
1/2 !

= 0; (3.39)

δF

δ(Z1/2)∗
= [BL(L+ 1)− E]Z1/2 +

∑
kλj

(−1)λVλ(k)Cj0
L0,λ0βkλj

!
= 0. (3.40)
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The first equation provide a connection between the two variational param-
eters:

βkλj
Z1/2

= −
(−1)λVλ(k)Cj0

L0,λ0

Wkj − E
, (3.41)

and the second results in a self-consistent equation for the variational energy:

E =BL(L+ 1) +
∑
kλj

(−1)λVλ(k)Cj0
L0,λ0

βLMkλj

Z
1/2
LM

=BL(L+ 1)− ΣL(E),

(3.42)

where one can introduce the ’self-energy’:

ΣL(E) =
∑
kλj

V 2
λ (k)(Cj0

L0,λ0)2

Wkj − E
. (3.43)

As one can notice, after introducing the self-energy, one can rewrite the self-
consistent equation in the Green’s function language:

[G0
L(E)]−1 − ΣL(E) = 0, (3.44)

where the free-particle Green’s function of the rotor is defined as:

G0
L(E) ≡ 1

BL(L+ 1)− E , (3.45)

whose pole corresponds to the free rotor energy.
The variational energy appears on the both sides of Eq. (3.44), then

one can find its root numerically. After that, based on the normalization
condiction and Eq. (3.41), one can derive the quasiparticle weight and the
single-phonon wavefunction:

Z = [1 +
∑
kλj

V 2
λ (k)(Cj0

L0,λ0)2

(Wkj − E)2
]−1, (3.46)

and

βkλj = −
(−1)λVλ(k)Cj0

L0,λ0

[(Wkj − E)2 +
∑

kλj V
2
λ (k)(Cj0

L0,λ0)2]1/2
, (3.47)

which can be obtained by inserting the variational energy.
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Figure 3.2: (a) Saddle point energy for L = 0, 1 sectors, which corresponds to
the singular point of the Green’s function, Eq. (3.48). (b) Effective rotational
constants, as defined in Eq. (4.27).
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Figure 3.3: Quasiparticle weight for for L = 0, 1 sectors, which describe how
well-defined the quasiparticle is.



28 3. Quantum Rotor in Bosonic Bath: Angulon

In Fig. 3.2, we show the saddle point energy for L = 0, 1 sectors and
the effective rotational constant. The single-excitation ansatz can describe
well the rotational constants in the weak-coupling regime [17]. However, in
the density-intermediate regime we shown, it yields an effective rotational
constant exceeding one, implying that the bath causes the rotor to rotate
faster, which is never observed in experiments. In Fig. 3.3, we show the
quasiparticle weight for L = 0, 1 sectors, which decrease in the density-
intermediate regime.

Next one can further introduce the Angulon Green’s function:

GL(E) =
1

BL(L+ 1)− E − ΣL(E)
, (3.48)

whose pole corresponds to the eigenenergy of the full Angulon Hamiltonian.
It satisfies the Dyson equation:

GL(E) = G0
L(E) +G0

L(E)ΣL(E)GL(E). (3.49)

With the Green’s function, one can access the excitation properties by
calculating the spectral function, which is given by the imaginary part of the
retarded Green’s function:

A(ω) = −ImGr
L(ω) = −ImGL(ω + i0+). (3.50)

The ground-state energy, excited-state energy, and quasiparticle properties
can all be captured using the spectral function.

In Fig. 3.4, we show the spectral function obtained by the Green’s func-
tion. Here the spectrum exhibits an instability regime, where the ground-
state energy jumps, and a phonon wing, which is an excited-state branch
splitting from the ground state. The instability regime, where ground-state
energy jumps, accounts for the anomalous broadening of spectral lines. Ex-
periments confirm the power of the single-excitation ansatz in describing the
excited-state properties. However, the phonon wing has never been observed.
We will propose an explanation in Chapter 5.
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Figure 3.4: (a) Spectral function calculated from the Green’s function for
L = 1, 2, 3 sectors. (b) Zoom-in illustration of the spectral function for the
L = 1 sector.

3.2.2 Real-time evolution of single-excitation ansatz

The spectral function, which is the imaginary part of the retarded Green’s
function, can be represented by the time evolution:

A(ω) =− ImGr
L(ω)

=2Re
∫ +∞

0

dtGL(t)eiωt|ω→ω+i0+

=2Re
∫ +∞

0

dt〈ψ(0)|ψ(t)〉eiωt|ω→ω+i0+

(3.51)

where the time-dependent Green’s function is defined as overlap between the
vacuum state and the time-dependent wavefunction and |ψ(t)〉 ≡ e−iĤt|ψ(0)〉.
Then one can also access the spectral function by real-time evolution of
the single-excitation ansatz. Next, we explain the derivation of the real-
time evolution equations of motion, which will be useful in Chapter 5, when
considering rotational spectroscopy.

We start from the Schrödinger equation for the single-excitation ansatz,
i∂t|ψLM〉 = Ĥ|ψLM〉. The two sides are respectively written as:

i∂t|ψLM〉 = i(∂tZ
1/2|0, LM〉+

∑
kλµ

∑
jm

(∂tβkλj)C
LM
jm,λµ|kλµ, jm〉); (3.52)
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Ĥ|ψLM〉 = Z1/2Ĥ|0, LM〉+
∑
kλµ

∑
jm

βkλjC
LM
jm,λµĤ|kλµ, jm〉. (3.53)

Utilizing the orthogonality of the basis and projecting them out, one can
determine the equation of motion for variational parameters.

For the quasiparticle weight, one can project the Schrödinger equation
onto |0, LM〉. The two sides read:

l.h.s = 〈0, LM |i∂t|ψLM〉 = i∂tZ
1/2
LM , (3.54)

and

r.h.s =Z1/2〈0, LM |Ĥ|0, LM〉+
∑
kλµ

∑
jm

βkλjC
LM
jm,λµ〈0, LM |Ĥ|kλµ, jm〉

=BL(L+ 1)Z
1/2
LM +

∑
kλj

(−1)λVλ(k)Cj0
L0,λ0β

LM
kλj ,

(3.55)

where we use the fact that

〈0, LM |Ĥ|0, LM〉 = BL(L+ 1) (3.56)

and

〈0, LM |Ĥ|kλµ, jm〉 = Uλ(k)

√
(2j + 1)(2λ+ 1)

4π(2L+ 1)
CL0
j0,λ0C

LM
jm,λµ. (3.57)

For the single-excitation wavefunction, one can project the Schrödinger
equation using

∑
µmC

LM
jm,λµ〈kλµ, jm|. The two sides read:

l.h.s =
∑
µm

CLM
jm,λµ〈kλµ, jm|i∂t|ψLM〉 = i∂tβ

LM
kλj , (3.58)

and

r.h.s =
∑
µm

CLM
jm,λµ[Z1/2〈kλµ, jm|Ĥ|0, LM〉

+
∑
k′λ′µ′

∑
j′m′

βk′λ′j′C
LM
j′m′,λ′µ′〈kλµ, jm|Ĥ|k′λ′µ′, j′m′〉]

=Wkjβ
LM
kλj + (−1)λVλ(k)Cj0

L0,λ0Z
1/2
LM ,

(3.59)
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Ã(ω)

0 20 40 60 80 100

0.00

1.00

R
e
G

(t
)

(b)

0 20 40 60 80 100
t

−0.5

0.0

0.5

Im
G

(t
)

(c)

Figure 3.5: (a) Spectral function calculated by the real-time evolution. (b)
The real and (c) the imaginary parts of the Green’s function for L = 0 and
ln ñ = −4.5.

where we use the fact that

〈kλµ, jm|Ĥ|0, LM〉 = Uλ(k)

√
(2j + 1)(2λ+ 1)

4π(2L+ 1)
CL0
j0,λ0C

LM
jm,λµ, (3.60)

and

〈kλµ, jm|Ĥ|k′λ′µ′, j′m′〉 = [ωk +Bj(j + 1)]δkλµ,k′λ′µ′δjm,j′m′ . (3.61)

Therefore, we obtain the equations of motion for the variational param-
eters:

i∂tZ
1/2 = BL(L+ 1)Z1/2 +

∑
kλj

(−1)λVλ(k)Cj0
L0,λ0βkλj,

i∂tβkλj = Wkjβkλj + (−1)λVλ(k)Cj0
L0,λ0Z

1/2.

(3.62)

To study the spectral function, one needs the initial condition as input,

Z1/2(t = 0) = 1; βkλj(t = 0) = 0, (3.63)

and solve the ordinary differential equations.
As shown in Fig. 3.5, the numerical result agrees with the one calculated

by Green’s function. The advantage of real-time evolution is that numerical
calculations are much easier and more efficient.
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Chapter 4

Coherent State Ansatz

In the Fröhlich polaron, the Lee-Low-Pines (LLP) transformation can
be used to decouple the impurity from the many-body bath. Then the re-
maining bosonic or fermionic model can be approximatively solved with a
coherent state or Gaussian state ansatz. This method can be considered as
a generalized mean-field theory. The overall variational wavefunction can be
represented as a product state ansatz between the impurity and the bath
with a canonical transformation, where the transformation entangles the two
parts. This method thereby goes beyond the mean-field framework and re-
sults in the recently-developed non-Gaussian state methods [47]. As a result,
even if one cannot always find the canonical transformation to decouple the
impurity for more general impurity problems, one can still approximately
use a canonical transformation to partially decouple it and then employ a
variational ansatz.

In this chapter, we partially decouple the rotor using a rotational trans-
formation. Then we introduce a product-state ansatz between a total angular
momentum state for the whole system and a coherent state for the bosonic
bath. One can optimize the variational parameters for one part by keeping
the other fixed. We first examine the ground-state properties, such as the
energy, effective rotational constants, and quasiparticle weights. Then we
derive equations of motion for the real-time evolution, by which we compute
the spectral function. This variational theory allows gaining insight into the
system with a comprehensive wavefunction and a low computational cost.
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Figure 4.1: Schematic illustration for transforming to the molecular frame.
Adapted from Ref. [15].

4.1 Variational ansatz

The LLP transformation is a translational transformation to the co-
moving rame of the impurity that results from the total momentum con-
servation of the whole system. The Hamiltonian commutes with the total
momentum operator, reducing the problems to purely bosonic or fermionic
by considering given total momentum sectors, which is similar to block di-
agonalization of the Hamiltonian.

In the angulon system, similarly, the total angular momentum L̂z and
its squares L̂2 are conserved. Analogous with the LLP transformation, the
problem can be simplified by a rotation transformation (for an illustration
see Fig. 4.1)) to the co-rotating frame, as shown in Ref. [15]:

Ŝ = e−iφ̂⊗Λ̂ze−iθ̂⊗Λ̂ye−iγ̂⊗Λ̂z . (4.1)

Here we list some useful transformations:

Ŝ−1b̂kλµŜ =
∑
ν

Dλ
µν(φ̂, θ̂, γ̂)b̂kλµ,

Ŝ−1(
∑
µ

b̂†kλµb̂kλµ)Ŝ =
∑
µ

b̂†kλµb̂kλµ,

Ŝ−1Ĵ2Ŝ = (Ĵ ′ − Λ̂)2,

(4.2)
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where Ĵ ′ denotes the anomalous angular momentum operator, with the com-
mutation relations:

[Ĵ ′α, Ĵ ′β] = −iεαβγ Ĵ ′γ. (4.3)

Here the indices α, β, γ refer to the x, y, z components and εαβγ is the Levi-
Civita symbol. The anomalous angular momentum in the co-rotating frame
represents the total angular momentum of the system.

The Hamiltonian in the rotating frame reads

Ĥ =Ŝ−1ĤŜ = B(Ĵ ′ − Λ̂)2

+
∑
kλµ

ωkb̂
†
kλµb̂kλµ +

∑
kλ

Vλ(k)[b̂†kλ0 + b̂kλ0], (4.4)

where Vλ(k) =
√

(2λ+ 1)/4πUλ(k).
The angular state is characterized by three quantum numbers, L, M and

n, corresponding to the eigenvalues of operators, Ĵ2, Ĵz, and Ĵ ′
z
, respectively,

such that

Ĵ2|LMn〉 =L(L+ 1)|LMn〉,
Ĵz|LMn〉 =M |LMn〉,
Ĵ ′
z|LMn〉 =n|LMn〉,

(4.5)

where Ĵ ′
2

= Ĵ2. Note that the system conserves the square of the angular
momentum and the angular momentum projection to the lab frame, but not
to the rotating frame.

In the slowly rotating limit, B → 0, the Hamiltonian reduces to

ĤB=0 =
∑
kλµ

ωkb̂
†
kλµb̂kλµ +

∑
kλ

Vλ(k)[b̂†kλ0 + b̂kλ0], (4.6)

which can be diagonalized exactly by a displacement operator,

Û †ĤB=0Û =
∑
kλµ

ωkb̂
†
kλµb̂kλµ −

∑
kλ

V 2
λ (k)

ωk
(4.7)

where Û = exp[−∑kλµ
Vλ(k)
ωk

(b̂†kλ0 − b̂kλ0)]. The ground state is a coherent
state which contains an infinite number of phonon excitations. The ground
state energy reads E0 = −∑kλ V

2
λ (k)/ωk.
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Based on the above discussion, we propose a variational ansatz in the
co-rotating frame:

|ψ〉 =
∑
n

gn|LMn〉 ⊗ |C〉, (4.8)

which is a product state between the angular state describing the total an-
gular momentum, and bosonic coherent state describing the superfluid bath:

|C〉 = exp(
∑
kλµ

b̂†kλµβkλµ − b̂kλµβ∗kλµ)|0〉, (4.9)

where |0〉 stands for the vacuum state for bosons. Within a given L sector,
one can substitute the operator Ĵ ′

2
with its eigenvalue L(L+ 1). Due to the

non-commutation of Ĵ ′
α
, we consider a superposition in the n channel repre-

sented by the variational parameters gn. As for the coherent bath, the βkλµ
are the variational parameters, which are optimized by minimizing the varia-
tional energy. In dynamical problems, they are promoted to time-dependent
variables. The ansatz is a mean-field theory in the transferred frame, while
the overall ansatz in the lab frame, Ŝ|ψ〉, includes the entanglement between
the rotor and the bath through the canonical transformation Ŝ. Hence our
ansatz is beyond the mean-field framework.

While the coherent state ansatz has been discussed in Ref. [15, 17], it
has not been considered as a variational state. In Ref. [17], is was shown
to yield a phenomenological prediction to the renormalization of rotational
constants in the strong-coupling regime, while in Ref. [15], one considers a
single-excitation ansatz on top of a coherent bath, which exhibits a critical
point where the impurity acquires one quantum of angular momentum from
the many-particle bath. In these two papers, the displacement vector β is set
as the exact solution for the L = 0 sector, where the rotor and phonon cloud
do not rotate. In this thesis, the displacement is generalized to be variational
parameters. As a result, we can take into account fully the phonon cloud’s
deformation caused by the rotor’s rotation. Moreover, it is straightforward
to extend the study the real-time evolution and dynamical problems.

Using Eq. (4.8), the variational energy reads:

E =〈ψ|Ĥ|ψ〉 = BL(L+ 1)− 2BJ ′ ·Λ +BΛ ·Λ
+
∑
kλµ

Wkλβ
∗
kλµβkλµ +

∑
kλ

Vλ(k)(β∗kλ0 + βkλ0) (4.10)
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where Wkλ ≡ ωk +Bλ(λ+ 1), and the average quantities of angular momen-
tum are given by

Λα ≡
∑
kλµν

β∗kλµσ
λ,α
µν βkλν ,

J ′α ≡
∑
nn′

g∗ngn′〈LMn|Ĵ ′α|LMn′〉.
(4.11)

Here we use the properties of coherent state that

b̂kλµ|C〉 = βkλµ|C〉, (4.12)

and
〈C|Λ̂2|C〉

=
∑
α

(
∑
kλµn

∑
m

β∗kλµσ
λ,α
µmσ

λ,α
mnβkλn +

∑
kλµν

∑
pjmn

β∗kλµσ
λ,α
µν βkλνβ

∗
pjmσ

j,α
mnβpjn)

=
∑
kλµ

λ(λ+ 1)β∗kλµβkλµ + Λ ·Λ.

(4.13)

The next goal is minimizing the variational energy and obtaining the corre-
sponding variational parameters.

4.2 Ground state
We employ a combined exact diagonalization and coherent state ansatz

method to minimize the energy, similar to Ref. [48]. Within the product state
structure, the angular and coherent states can be optimized iteratively. The
scheme is to iteratively obtain ground states of the total angular momentum
or the coherent bath with variational parameters of the other fixed. In the
following, we will illustrate the optimization scheme in detail.

For the angular state, the effective Hamiltonian is obtained by tracing
out the bosonic bath:

Ĥr =〈C|Ĥ|C〉 = −2BΛ · Ĵ ′ + f(β, β∗), (4.14)

with
f(β, β∗) = BL(L+ 1) +BΛ ·Λ
+
∑
kλµ

Wkλβ
∗
kλµβkλµ +

∑
kλ

Vλ(k)(β∗kλ0 + βkλ0). (4.15)
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Remarkably, the effective model reduces to a single anomalous high-dimensional
spin in an effective magnetic field Beff = 2BΛ. The anomalous spin sat-
isfies the anomalous commutation relations. The effective field, which is
real, can be parameterized by its amplitude and two polar angles, Beff =
2B(Λx,Λy,Λz) = |Beff|(sin θ cosφ, sin θ sinφ, cos θ). Here the effective field
emerges from the rotation of the phonon bath and modifies the rotation of
the rotor.

The Hamiltonian Eq. (4.14) can be represented in a matrix form and di-
agonalized numerically. We find that because the energy is minimized when
the spin aligns with the effective field, one can diagonalize the Hamiltonian
by a rotational transformation and obtain an expression for the ground state,
which turns out to be the spin coherent state. Since we are, however, con-
sidering an anomalous spin, Ĵ ′, the textbook results cannot be straightfor-
wardly applied. However, similar techniques can still be employed. Here we
introduce the rotational transformation for anomalous angular momentum:

D̂′(α, β, γ) = e−iαĴ
′z
e−iβĴ

′y
e−iγĴ

′z
, (4.16)

by which the Hamiltonian can be diagonalized, D̂′†(−φ,−θ, 0)ĤrD̂
′†(−φ,−θ, 0) =

−Ĵ ′z. The corresponding ground state is

D̂′(−φ,−θ, 0)|LML〉
=
∑
n

|LMn〉〈LMn|D̂′(−φ,−θ, 0)|LML〉

=
∑
n

|LMn〉D′nL(−φ,−θ, 0)

≡
∑
n

gn|LMn〉,

(4.17)

where D′nm is the Wigner D matrix. To avoid confusion with the normal
spin coherent state, we refer to it the anomalous spin coherent state, whose
superposition coefficients are given by

gn =

(
2L

L+ n

)1/2

(cos
θ

2
)L+n(sin

θ

2
)L−ne−iφ(L−n), (4.18)

which is similar to the normal spin coherent state up to a phase. The detailed
derivation is shown in Appendix B. The anomalous spin coherent states can
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Figure 4.2: (a) Variational energy on the surface of Bloch sphere. The Bloch
sphere is constructed by the vector field J ′ parameterized by the polar angles
(θ, φ). (b) Projection of the variational energy into the J ′x − J ′y plane. The
energy is independent of φ and rotationally invariant about the J ′y axis. (c)
Variational energy as a function of θ, which is minimized at the θ = π/2.

be characterized by a vector, J ′(θ, φ) = L(sin θ cosφ, sin θ sinφ, cos θ), point-
ing at the surface of the Bloch sphere as shown in Fig. 4.2(a). These states
are macroscopic quantum states which minimize the variance of the angular
momentum. Remarkably, it thus turns out that the ground state is described
by a product state of the anomalous spin coherent state and the bosonic co-
herent states.

For the coherent bath, one can optimize the variational parameters by
imaginary-time evolution:

∂τ |C〉 = −(Ĥb − E)|C〉 (4.19)

where Ĥb =
∑

nn′ g
∗
ngn′〈LMn|Ĥ|LMn′〉 is the effective Hamiltonian for bosons

derived by tracing out the angular states. Correspondingly, one can derive
the equation of motion for the variational parameters,

∂τβkλµ = −ηkλµ, (4.20)

with a mean-field Hamiltonian

ηkλµ =Wkλβkλµ + δµ0Vλ(k)

+ 2B(Λ− J ′) ·
∑
ν

σλµνβkλν .
(4.21)

For the sufficiently long evolution time, the variational energy converges to
a local minimum, which is a saddle point of the mean-field Hamiltonian, i.e.
ηkλµ

!
= 0.
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Above, we described the method to approach the local energy minimum
for both angular and bosonic states by iteratively fixing the other. In this
scheme, the angular momentum of bosons, Λ, will evolve continuously in
imaginary-time evolution, while the exact diagonalization of angular states
can induce J ′ to have a sudden jump on the Bloch sphere. Finally, a global
minimum will be reached when we perform the two processes iteratively.

An alternative approach is to find the saddle point in a self-consistent
way. In Fig. 4.2, we first consider the angular states, and show the static
energies obtained by fixing the angular momentum or the polar angles (θ, φ),
and performing imaginary-time evolution for bosonic states. It indicates that
energies are always minimized when J ′z = 0, correspondingly, θ = π/2. This
is because we consider a linear rotor, so that the rotation against the z axis
should not have a favored direction. By symmetry, φ is irrelevant for the
static problem. Hence without loss of generality, we set θ = π/2 and φ = 0
in the following ground-state calculation.

We next consider the bosonic states. In addition to solving the ordinary
differential equations for imaginary-time evolution, the saddle point can be
found in a self-consistent manner. For the ground state of the L = 0 sector,
the total angular momentum vanishes, J ′ = 0. Then a simple solution of the
bosonic states follows:

β
(0)
kλµ = −δµ0

Vλ(k)

Wkλ

, (4.22)

with corresponding ground-state energy:

E0 = −
∑
kλ

V 2
λ (k)

Wkλ

. (4.23)

which is also referred to as deformation energy [15].
Also for general L sectors, the λ = 0 channel has a simple solution:

βk00 = −V0(k)

ωk
. (4.24)

For the λ = 1 channel, one can write the mean-field Hamiltonian in a matrix
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form:  Wk1

√
2B(Λx − J ′x) 0√

2B(Λx − J ′x) Wk1

√
2B(Λx − J ′x)

0
√

2B(Λx − J ′x) Wk1


⊗

 βk11

βk10

βk1−1

 = −

 0
V1(k)

0

 ,

(4.25)

where we have taken Λy = Λz = 0 since θ = π/2 and φ = 0. From this one
can derive the self-consistent equations:

Λx =
∑
k

4BV 2
1 (k)Wk1(J ′x − Λx)

(W 2
k1 − 4B2(J ′x − Λx)2)2

. (4.26)

This equation can be solved numerically and one can then get the variational
parameters βk1µ by inserting Λx back to Eq. (4.25).

The renormalization of rotational constants is one of the most intriguing
phenomena described by the angulon theory. It is similar to how a phonon
cloud leads to the renormalization of the electron’s mass in the Fröhlich model
that describes the translational motion of a particle in a bosonic medium. In
the angulon problem, the rotor excites a rotating phonon cloud and forms
a quasiparticle. This deformation leads to a decreased effective rotational
constant defined by

B∗ =
EL − E0

L(L+ 1)
. (4.27)

As a benchmark, we show the energy of the angulon for L = 0, 1 sectors
in Fig. 4.3(a), and compared the effective rotational constants obtained by
coherent state ansatz and single-excitation ansatz in Fig. 4.3(b). In the limit
of both small and large densities, the results from the two approaches are
consistent. However, in the intermediate regime, the single-excitation ansatz
predicts an increasing effective rotational constant. This would indicate the
surprising result of a ’speeding up’ of the rotor which is both inconsistent
with the physics of translational impuirities as well as experimental obser-
vations of molecules in superfluid Helium nanodroplets. On the contrary,
the coherent state ansatz always predicts a decreasing rotational constant,
indicating a consistent dressing of a polaron cloud that hinders the rotation
of the composite state of the rotor and its local environment.
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0.900

0.925

0.950

0.975

1.000

1.025

1.050

B
∗ /
B

(b)

Coherent

Single-excitation

Figure 4.3: (a) Static energies E for L = 0, 1 sectors obtained by the co-
herent state ansatz, and (b) Effective rotational constants B∗ obtained by
the coherent state ansatz and single-excitation ansatz as a function of the
dimensionless superfluid density ñ = n(mB)−3/2. The results from the two
ansatz are consistent at both small- and large-density regimes, but the single-
excitation ansatz predicts an increasing effective rotational constant in the
intermediate regime while the coherent state ansatz always predicts a de-
creasing one.

The quasiparticle weight Z is an important quasiparticle property, char-
acterizing how well-defined the quasiparticle is. It is defined as the absolute
square of the overlap between the vacuum state and the ground state, given
by

Z = |〈0|C〉|2 = e−Nph , (4.28)

where Nph =
∑

kλµ |βkλµ|2 indicates particle number of phonons. The weight
Z determines how well-defined the quasiparticle is: when Z > 0, the quasi-
particle is well-defined, whereas Z = 0 indicates the breakdown of the
quasiparticle pictures akin to the ’orthogonality catastrophe’ described in
fermionic systems [49]. In Fig. 4.4, we show the quasiparticle weight and ef-
fective rotational constants as function of the rotor-boson interaction strength
and superfluid density.

We note that for the coherent state ansatz, our theory breaks in the
weakly-interacting regime for the L ≥ 2 sectors. Technically speaking, this
originates from the denominator of Eq. (4.26), which can reach a singular
point, implying that the self-consistent equation does not guarantee a solu-
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Figure 4.4: (a) and (c) are the effective rotational constants, and (b) and (d)
are quasiparticle weights, obtained by the coherent state ansatz (top) and
single-excitation ansatz (bottom) as a function of the superfluid density and
the dimensionless rotor-boson interaction strength ũ0 = u0/B.

tion. This can be seen from the expression

W 2
k1 − 4B2(L− Λx)2

=(ω2
k + 2Bωk)− 4B2[(L− Λx)2 − 1].

(4.29)

When (ω2
k + 2Bωk) ≥ 0 and [(L − Λx)2 − 1] > 0, Eq. (4.29) could be equal

to zero as a function of k. Since Λx ≤ L, it is always negative for L = 0, 1.
For L ≥ 2, however, it is only negative when Λx is large enough, which
necessitates a strong interaction. Similar situation occurs when numerically
conducting the imaginary-time evolution Eq. (4.20), in which the static varia-
tional parameter β turn out to be unphysical in the weakly-interacting regime
for the L ≥ 2. On the other hand, the Bogoliubov approximation is employed
to derive the angulon model, then the model only involves the linear term
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of rotor-phonon interaction. This approximation only works well when the
interaction is weak. In addition, our approach considers an approximated
product state structure between the angular state and the coherent state.
For L = 0, the ansatz coincides with the exact ground state wavefunction
since the dimension of angular state’s Hilbert state is one. However, as L
grows larger, the approximation becomes less accurate because more entan-
glement is required. In appendix C, we generalize our ansatz to a multimode
coherent state, which further includes the entanglement between the angular
momentum state and the bath.

4.3 Real-time evolution
We next consider the angulon spectral function obtained within the co-

herent state framework. The angulon Green’s function is defined as G(t) =
〈ψ(0)|ψ(t)〉, where |ψ(0)〉 ≡ |LM0〉⊗ |0〉 represents the unperturbed vacuum
state, and |ψ(t)〉 = e−iĤt|ψ(0)〉 indicates its time-evolution. The analytical
structure of its Fourier transformation G(ω) in the complex frequency plane
gives direct access to the angulon energy, lifetime, and quasi-particle weight.
The quasiparticle spectral function is given by [50],

A(ω) =2Re
∫ ∞

0

dteiωt〈ψ(0)|ψ(t)〉

=2Re
∫ ∞

0

dteiωtg0(t)e−
1
2

∑
kλµ |βkλµ(t)|2 .

(4.30)

Here we approximates the wavefunction |ψ(t)〉 with Eq. (4.8), and treat the
variational parameters as time-dependent. The real-time evolution of |ψ(t)〉
is governed by the Schrödinger equation, i∂t|ψ〉 = Ĥ|ψ〉, from which one can
derive the equations of motion for the variational parameters:

i∂tβkλµ =δµ0Vλ(k) +Wkλβkλµ

+ 2B(Λ− J ′) ·
∑
ν

σλµνβkλν ,
(4.31)

and

i∂tgn =gn[BL(L+ 1) + 2BJ ′ ·Λ−BΛ ·Λ
+
∑
kλ

Vλ(k)Reβkλ0]− 2B
∑
n′

gn′J
′
nn′ ·Λ, (4.32)
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1Ã

(c) ln ñ = −4.5

Figure 4.5: (a) Quasiparticle spectrum for L = 1, 2, 3 sectors against the su-
perfluid density with coherent state ansatz. (b) and (c) are cuts of the spec-
trum function for L = 0 sector in small- and intermediate-density regimes.

where J ′nn′ ≡ 〈LMn|Ĵ ′|LMn′〉.
Importantly, as the initial state |ψ(0)〉 is a zero-angular momentum state

of the bosons, in the coherent state evolution the boson angular momentum
Λ as well as J ′ remain zero in the evolution (unlike for the ground state
which acquires finite expectation values of these quantities). As a result, the
equation of motion reduce to a simple form:

i∂tβkλµ = δµ0Vλ(k) +Wkλβkλµ,

i∂tgn = gn[BL(L+ 1) +
∑
kλ

Vλ(k)Reβkλ0]. (4.33)

Due to this simplicity, the time evolution can be solved analytically and one
obtains the analytical expressions for the variational parameters:

βkλµ(t) = −δ0µVλ(k)

Wkλ

(1− e−iWkλt), (4.34)

and
gn(t) = δ0,ne

−iBL(L+1)te
i
∑
kλ V

2
λ (k)

1−sincWkλt
Wkλ

t
. (4.35)

Fig. 4.5 (a) shows the spectral function as a function of the superfluid
density. Compared to the single-excitation ansatz, the coherent state ansatz
predicts a similar behavior at the small- and large-density regimes. However,
the spectral function is dramaticallry broadened in the intermediate regime
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Figure 4.6: Real-time evolution of the average number of phonon excitations.
The long-time oscillation originates from the discretion of radial momentum
k.

Figure 4.7: Quasiparticle spectrum against rotor-boson interaction strength
corresponding to three density regimes.

even for the L = 0 sector, which is in agreement with the calculation of
quasiparticle weights in 4.4 (b). In Fig. 4.5 (b) and (c), we show cuts of the
spectral function in the small- and intermediate-density regimes, respectively.
The angulon spectral line is sharp and high in the former case and is red-
shifted and broadened for intermediate densities.

In Fig. 4.6 we compare the average number of phonon excitations ob-
tained in evolution with the single-excitation ansatz for two density regimes.
In the single-excitation ansatz the excitation number is limited to one by
construction, while the coherent state does not impose such a limit and it
indeed shows a growth of the phonon number to values significantly above 1.

In Fig. 4.7, we show the spectral function as function of the rotor-boson
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interaction strength in three density regimes. In all cases, the spectral peaks
are sharp at weak interaction and become unstable when increasing the in-
teraction strength. Particularly, at large superfluid density and interaction
strength, the spectral lines are significantly broadened.
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Chapter 5

Rotational Spectroscopy

The transition energy between molecule’s rotational states is experimen-
tally studied using rotational spectroscopy, which involves applying a laser
pulse to a molecule trapped in a superfluid nanodroplet. Often, the spectral
function is used to interpret it theoretically:

A(ω) =2π
∑
f

|〈f |0〉|2δ(ω − Ef )

=

∫ ∞
−∞

dt〈0|e−iĤt|0〉eiωt,
(5.1)

where |0〉 represents the non-interacting vacuum state. Here the impurity
itself is treated as the perturbation, and the spectral function describes the
response of the sudden switching on of the impurity-bath interaction. The
spectral function provides a direct estimate of how well-defined the quasi-
particle is, thereby we will refer to it as quasiparticle spectrum to avoid
misunderstanding.

The spectral function can be numerically calculated using the single-
excitation ansatz, as described in Chapter 3. The angulon instability region
in the spectral function explains the anomalous broadening of the spectral
lines in experiments. However, the phonon wings, which dominate in the
instability regime, have never been observed in rotational spectroscopy. This
casts question on the validity of the single-excitation approach.

In this chapter, we will use Fermi’s golden rule to examine the rotational
spectroscopy more carefully. We consider both the coherent state ansatz and
the single-excitation ansatz, taking into account the laser perturbation and
the equilibrium initial states.
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Figure 5.1: (a) Spectral function for L = 1 obtained by the single-excitation
ansatz. (b) Cuts of the spectral lines.

5.1 Absorption spectrum

In actual chemistry experiments, instead of a rapid injection, the molecule
is prepared in equilibrium with the nanodroplet. The molecule will then be
excited to higher angular momentum channels by a laser pulse. Therefore,
the considerable way is to apply Fermi’s golden rule, which is given by

Aa(ω) =2π
∑
f

|〈f |V̂ |i〉|2δ(ω − Ef + Ei)

=
∑
f

〈i|V̂ |f〉〈f |V̂ |i〉
∫ ∞
−∞

dtei(ω−Ef+Ei)t

=

∫ ∞
−∞

dt〈i|V̂ e−iĤtV̂ |i〉ei(ω+Ei)t.

(5.2)

Here the "initial" state, |i〉, represents the ground state of Angulon instead
of the vacuum state in the quasiparticle spectrum in Eq. (4.30), and Ei
denotes the ground state energy. V̂ is the amplitude of harmonic perturbation
V̂(t) = V̂ (eiωt + e−iωt). We assume a dipole-field interaction between the
molecule and the electric field. The first-order effect dominates for dipolar
molecules, and the interaction is given by −d̂ · E(t) ≈ −µ0E0 cosωt cos θ̂.
Here µ0 is the dipole moment of the molecule and E0 is the amplitude of the
electric field. Then the laser perturbation reads V̂ = −µ0E0 cos θ̂, resulting
in L = 0→ 1 transitions.
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This perturbation only excites the rotor state and does not modify the
variational manifolds for both the two ansatzes, which will be illustrated in
detail in the following two sections. In brief, we label the ground state in the
L = 0 channel as |ψ00〉, where the second index indicates M for the single-
excitation ansatz and n for the coherent state ansatz. The perturbation can
be written as

V̂ ∼ cos θ̂ =

√
4π

3
Y10(θ̂), (5.3)

which can be expanded in the angular momentum basis. It excites the ground
state to the L = 1 sector, such that cos θ̂|ψ00〉 ≡

√
1
3
|ψ′10〉, where |ψ′10〉 labels

an unnormalized state for both the single-excitation ansatz and coherent
state ansatz with the quantum number L = 1. For convenience, we can get
rid of the amplitude of perturbation by introducing

Ãa(ω) ≡ 3

(µ0E0)2
Aa(ω)

=

∫ ∞
−∞

dt〈ψ′10(0)|ψ′10(t)〉ei(ω+E0)t,

(5.4)

where E0 indicates the ground state energy. Therefore, since the equations
of motions still hold, one can numerically calculate the absorption spectrum
by real-time evolution. We will next illustrate the calculation for both the
coherent state ansatz and single-excitation ansatz.

5.2 Coherent states
We first focus on the coherent states ansatz. The ground-state ansatz in

the laboratory frame is given by

Ŝ(|000〉 ⊗ |C0〉) ≡ Ŝ|ψ00〉. (5.5)

It is worth mentioning that the cos θ̂ perturbation is invariant under the
rotational transformation, [Ŝ, V̂ ] = 0. Then the spectrum can be written as

Aa(ω) =

∫ ∞
−∞

dt〈ψ00|Ŝ†V̂ e−iĤtV̂ Ŝ|ψ00〉ei(ω+E0)t

=

∫ ∞
−∞

dt〈ψ00|V̂ Ŝ†e−iĤtŜV̂ |ψ00〉ei(ω+E0)t

=

∫ ∞
−∞

dt〈ψ00|V̂ e−iĤtV̂ |ψ00〉ei(ω+E0)t.

(5.6)
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Figure 5.2: Rotational spectroscopy obtained by the coherent state ansatz.

In the last line, the Hamiltonian is replaced by the one in the transferred
frame, Eq. (4.4). Next one can apply the perturbation to the ground state:

V̂ |ψ00〉
∼ cos θ̂(|000〉|C0〉)

=
∑
jmn

√
1

2j + 1
Cjn

00,10C
jm
00,10|jmn〉|C0〉

=

√
1

3
|100〉|C0〉,

(5.7)

where Cj′m′

00,20 = δj′2δm′0. One can label |ψ′10(t = 0)〉 = |100〉|C0〉, which has
the same form as the variational ansatz with L = 1.

The ground-state wavefunction and energy have been shown in Eq. (4.22)
and Eq. (4.23). We then calculate the rotational spectroscopy in Fig. 5.2.
Surprisingly, even though the coherent state predicts a rich spectral function
in the intermediate-density regime as shown in Fig. 4.5, the corresponding
rotational spectroscopy is trivial.

Technically speaking, this is caused by the fact that the mean values of
the angular momentum operators Λ̂ and Ĵ ′ for the initial state |100〉|C0〉 are
equal to zero in the evolution, rendering the time evolution trivial. For the
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coherent state, the time evolution reduce to

i∂tβkλµ(t = 0) = δµ0Vλ(k) +Wkλβkλµ(t = 0) = 0, (5.8)

where βkλµ(t = 0) = −δµ0
Vλ(k)
Wkλ

. Therefore, it does not evolve. As for the
angular state, with the constraint of Λ = 0, the equation of motion reduces
to a linear ordinary differential equation:

i∂tgn = gn[BL(L+ 1) +
∑
kλ

Vλ(k)Reβkλ0]. (5.9)

Hence, only the n = 0 channel survives and evolves up to a phase. Thus the
energy in the time-evolution does not change:

E =
〈ψ′10|Ĥ|ψ′10〉
〈ψ′10|ψ′10〉

=E0 +BL(L+ 1)

(5.10)

and the spectral function,

Ãa(ω) =

∫ ∞
−∞

dtei(ω−BL(L+1))t, (5.11)

has a trivial structure with the coherent state approach, which is thus clearly
insufficient to capture the physics of rotational spectroscopy experiments.

5.3 Single-excitation ansatz

We next examine the single-excitation ansatz. The self-consistent calcu-
lations in Chapter 3 yields the following ground-state variational parameters:

Z
1/2
(0) =[1 +

∑
kλ

V 2
λ (k)

(Wkλ − E0)2
]−1,

β
(0)
kλλ =(−1)λ+1 Vλ(k)

Wkλ − E0

Z
1/2
(0) ,

(5.12)
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which can be numerically obtained by inserting the ground state energy E0.
Then, one can calculate the laser perturbation acting on this state:

V̂ |ψ00〉

∼ cos θ̂(Z
1/2
(0) |0〉|00〉+

∑
kλµ

β
(0)
kλλ

(−1)λ+µ

√
2λ+ 1

|kλµ〉|λ,−µ〉)

=
∑
jm

(Z
1/2
(0)

√
1

2j + 1
Cj0

00,10C
jm
00,10|0〉|jm〉+

∑
kλµ

β
(0)
kλλ

(−1)λ+µ

√
2j + 1

Cj0
λ0,10C

jm
λ−µ,10|kλµ〉|jm〉)

=
∑
jm

(Z
1/2
(0)

√
1

2j + 1
δjm,10|0〉|jm〉+

∑
kλµ

β
(0)
kλλ

(−1)λ+µ

√
2j + 1

Cj0
λ0,10C

jm
λ−µ,10|kλµ〉|jm〉)

=

√
1

3
(Z

1/2
(0) |0〉|10〉+

∑
kλµ

∑
jm

(−1)λ
√

2j + 1

3
β

(0)
kλλC

10
j0,λ0C

10
jm,λµ|kλµ〉|jm〉)

=

√
1

3
(Z

1/2
(0) |0〉|10〉+

∑
kλµ

∑
jm

β′kλjC
10
jm,λµ|kλµ〉|jm〉)

=

√
1

3
|ψ′10〉.

(5.13)

Here we introduced

|ψ′10〉 ≡ Z
1/2
(0) |0〉|10〉+

∑
kλµ

∑
jm

β′kλjC
10
jm,λµ|kλµ〉|jm〉, (5.14)

where the single-excitation wavefunction is defined as

β′kλj = (−1)λ
√

2j + 1

3
β

(0)
kλλC

10
j0,λ0. (5.15)

The wavefunction |ψ′10〉 respects the form of the single-excitation ansatz,
hence the equations of motions also obey:

i∂tZ
1/2 = BL(L+ 1)Z1/2 +

∑
kλj

(−1)λVλ(k)Cj0
L0,λ0βkλj,

i∂tβkλj = Wkjβkλj + (−1)λVλ(k)Cj0
L0,λ0Z

1/2,

(5.16)
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Figure 5.3: Rotational spectroscopy obtained by (a) the single-excitation
ansatz. (b) and (c) are cuts of spectral lines from the single-excitation ansatz
in the small- and intermediate-density regimes.

with initial conditions given by

Z1/2(0) =Z
1/2
(0) ,

βkλj(0) =β′kλj ≡ (−1)λ
√

2j + 1

3
β

(0)
kλλC

10
j0,λ0.

(5.17)

In Fig. 5.3 (a), the rotational spectroscopy still reproduces an instabil-
ity regime, while remarkably the phonon wing is not observed. Fig. 5.3 (c)
shows the spectral line at the intermediate-density regime. In the instability
regime, the quasiparticle is unstable and the spectral lines are significantly
broadened, as observed in experiments [7, 18]. The spectral line in the small-
density regime is sharp as shown in Fig. 5.3 (b), in contrast to the quasipar-
ticle spectral function shown in Fig 5.1, where the spectral line splits into
two.

The phonon wing is understood as an excited-state branch. Here the laser,
which only interacts with the rotor, excites the ground state to the lower
branch of the L = 1 sector. The redistribution of the angular momentum
between rotor and bath is not strong enough to jump to the upper branch.
In other word, the wavefunction for the upper branch has no overlap with
the state |ψ′10〉.
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Initial States

As mentioned above, if the laser perturbation and the equilibrium initial-
state are correctly taken into account, the spectral function exhibits an in-
stability regime but no phonon wings, which is consistent with rotational
spectroscopy experiments. The importance of the perturbation is obvious
since different types of perturbations correspond to different experimental se-
tups. For example, in electronic spectroscopy experiments, both the molecule
and bath are excited, and both the instability regime and phonon wings are
observed [3].

The equilibrium initial-state also plays a key role in compressing the
phonon wings. This can be demonstrated by performing the calculation
for a vacuum initial state:

V̂ |0〉|00〉
∼ cos θ̂(|0〉|00〉)

=
∑
jm

√
1

2j + 1
Cj0

00,10C
jm
00,10|0〉|jm〉

=

√
1

3
|0〉|10〉.

(5.18)

Here |ψ(0)
10 〉 = |0〉|10〉 is the vacuum state at L = 1 up to a constant coefficient.

In this case, the absorption spectrum is given by

Ãa(ω) ≡ =

∫ ∞
−∞

dt〈ψ(0)
10 |e−iĤt|ψ(0)

10 〉ei(ω+E0)t, (5.19)

which is the same as the quasiparticle spectrum for L = 1 sector up to a
shift. Hence the phonon wings will still appear.

This discussion points out the importance of equilibrium initial state,
and also suggests a way to observe a phonon wing in rotational spectroscopy.
For rotational spectroscopy, the type of perturbation is fixed, but one can
consider a non-equilibrium initial state. For example, one can turn on the
laser pulse before the molecule reaches equilibrium with the bath.



Chapter 6

Conclusion and Outlook

Conclusion

In this thesis, we variationally studied the angulon model, which is an
effective description for an isolated molecule immersed in a superfluid matrix.
We intended to resolve the two issues raised in previous research: (1) a
proper interpretation for the effective rotational constants and (2) finding
an explanation for the unobservable phonon wings in rotational spectroscopy
experiments.

We began the discussion by introducing the Fröhlich polaron model in
Chapter 2. The Fröhlich polaron, formed by a moving electron dressed by
phonons, is a paradigm for quasiparticles and also quantum impurity prob-
lems. Historically, many methods have been proposed for its solution. In this
thesis, we revisited perturbation theory and the Lee-Low-Pines method. Per-
turbation theory provides a good approximation in the weak-coupling regime
for a wide range of fields. The second-order perturbation wavefunction, a su-
perposition of a vacuum state and a single-phonon excitation state, can be
generalized into a variational ansatz. As for the Lee-Low-Pines method, it
first decouples the impurity with a canonical transformation and then solves
the pure bosonic model with a coherent state ansatz. These two methods
construct toolboxes for solving the angulon model.

The angulon model was introduced in Chapter 3. The molecule is approx-
imated as a quantum rigid rotor, as only its rotational degrees of freedom
are involved in rotational spectroscopy. One can subsequently construct a
generic first-principle model for a quantum rotor immersed in an interacting
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boson gas. By Bogoliubov approximation and transformation, one can inter-
pret the weakly-interacting boson as a macroscopic state, the Bose-Einstein
condensate plus a collective excitation, the phonon. The rotor is dressed
by phonons, forming a quasiparticle, which is angulon. Next, we introduced
a single-excitation ansatz, which is a generalized second-order perturbation
theory. We calculate the variational energy, effective rotational constants,
and spectral function. In addition to repeating the calculations of prior re-
search, we derived the real-time evolution equations of motion for the single-
excitation ansatz, allowing for an easier numerical calculation of rotational
spectroscopy.

In Chapter 4, we proposed a coherent state ansatz in the co-rotating frame
as means of describing the effective rotational constants effectively and effi-
ciently. It first uses a rotational transformation to transfer to the molecular
frame, similar to the Lee-Low-Pines approach. The canonical transforma-
tion is used to decouple the impurity. Vice versa it can also be interpreted
as a transformation to entangle the impurity and bath. The rotor is thus
entangled with the bath, even though it is only partially decoupled due to
the non-Abelian SO(3) algebra. Next, we considered a product state ansatz
between the angular and bosonic coherent states. For such a product state
structure, an effective model can be obtained by tracing out the angular or
bosonic state. We are able to optimize the variational parameters in an iter-
ative way. Using this technique, we discovered that the ground state can be
described by a product state between an anomalous spin coherent state and a
bosonic coherent state. Importantly, this ansatz always predicts a decreased
effective rotational constant, consistent with experimental findings. We also
studied the spectral function by the real-time evolution of the coherent state
ansatz. It shows that the quasiparticles are unstable in the intermediate-
density regime and the spectral lines are significantly broadened.

In Chapter 5, we used Fermi’s golden rule to examine the rotational spec-
troscopy for the L = 0→ 1 transition with both the single-excitation ansatz
and coherent state ansatz. We took into account the laser perturbation and
the equilibrium initial-state, which are neglected in previous research. The
coherent state predicts a trivial sharp spectral line, which indicates that the
coherent state ansatz is not sufficient for describing excited states. Mean-
while, the single-excitation ansatz predicts an instability regime, where the
spectral lines are broadened. The phonon wing, which is observed in the
spectral function, cannot be observed in this case, because the equilibrium
initial-state has no overlaps with the excited states. This resolves the con-
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flict between the theory and experiment of having no phonon wings being
observed despite their presence in simple angulon theory.

Outlook
In this thesis, we employed both the single-excitation and the coherent

state ansatz. However, both could only explain a part of the experimental
results. The coherent state, which is the exact solution in the slowly-rotating
limit, works well in describing the ground-state properties, such as the effec-
tive rotational constants, but performs badly in describing the excited-state
properties, such as rotational spectroscopy. On the contrary, the single-
excitation ansatz works well for the excited-state properties, but is insuffi-
cient in describing the ground state. Therefore, it is necessary to generalize
the ansatz. In Appendix C, we proposed a multimode coherent state ansatz,
which further lowers the static energy. Another possible way is considering
a single-excitation over a coherent state. This is similar to Ref. [15], but the
coherent state should be treated variationally.

What’s more, the Bogoliubov approximation in deriving the angulon
model restricts us to treat the boson-boson interaction within a mean-field
framework, which is only valid when the interaction is weak and the Bogoli-
ubov phonons are stable. With the coherent state method, it is possible to
directly deal with the first-principle model, the quantum rotor immersed in
the interacting boson gas. In this way, one can expect to gain a deeper insight
into the quasiparticle instability regime as well as higher angular momentum
sectors.
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Appendix A

Notations

A.1 Angular momentum representation of bosonic
operators

In this thesis, the Fourier transformation and inverse transformation of
bosonic operators is defined as

b̂†k =

∫
d3rb̂†re

ik·r,

b̂†r =

∫
d3k

(2π)3
b̂†ke
−ik·r.

(A.1)

In the Angulon problem, we mainly focus on the angular momentum ex-
change between rotor and bosons. Hence it is more convenient to work in
the angular momentum basis.

b̂†kλµ =
k

(2π)3/2

∫
dΦkdΘk sin Θkb̂

†
ki
−λYλµ(Θk,Φk),

b̂†k =
(2π)3/2

k

∑
λµ

b̂†kλµi
λY ∗λµ(Θk,Φk).

(A.2)

Here the spherical harmonic, Yλµ(Θk,Φk), is the eigenfunction of angular
momentum operators, L̂2 and L̂z.

The corresponding commutation relation in the momentum basis is given
by

[b̂k, b̂
†
k] = (2π)3δ3(k − k′). (A.3)
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Then we can derive the commutation relation in the angular momentum
basis:

[b̂kλµ, b̂
†
k′λ′µ′ ]

=
kk′

(2π)3

∫
dΩk

∫
dΩk′(−1)−λi−λ−λ

′
Y ∗λµ(Θk,Φk)Yλ′µ′(Θk′ ,Φk′)[b̂k, b̂

†
k′ ]

=(−1)−λi−λ−λ
′
δ(k − k′)

∫
dΩkY

∗
λµ(Θk,Φk)Yλ′µ′(Θk,Φk)

=δ(k − k′)δλλ′δµµ′ ,

(A.4)

where dΩk ≡ dΦkdΘk sin Θk and δ3(k − k′) = 1
kk′ sin Θ′

k′
δ(k − k′)δ(Θk −

Θ′k)δ(Φk − Φ′k′).

A.2 Angular momentum operators

The definition of ladder operators is not unique. One convenient definition
for calculations, especially for the anomalous angular momentum, is given by
[51]

Ĵ±|j,m, n〉 =
√
j(j + 1)Cj,m±1

j,m;1,±1|j,m± 1, n〉, (A.5)

Ĵ ′±|j,m, n〉 = −
√
j(j + 1)Cj,n∓1

j,n;1,∓1|j,m, n∓ 1〉, (A.6)

where k = 0,±1, and
√
j(j + 1)Cj,m±1

j,m;1,±1 = ∓
√

(j ∓m)(j ±m+ 1)/
√

2 =

∓
√
j(j + 1)−m(m± 1)/

√
2. And the (anomalous) angular momentum op-

erators are given by

Ĵ (′)
x =

1√
2

(Ĵ
(′)
− − Ĵ (′)

+ ),

Ĵ (′)
y =

i√
2

(Ĵ
(′)
− + Ĵ

(′)
+ ),

Ĵ (′)
z =Ĵ

(′)
0 .

(A.7)

Another more common definition is given by [52]

Ĵ±|j,m, n〉 =
√

(j ∓m)(j ±m+ 1)|j,m± 1, n〉 (A.8)
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and

Ĵx =
1

2
(Ĵ− + Ĵ+),

Ĵy =
i

2
(Ĵ− − Ĵ+).

(A.9)

The two definitions have the same matrix elements for Ĵx,y,z.
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Appendix B

Derivation of the anomalous spin
coherent state

Here we will derive the ground state of the single anomalous spin model,
whose Hamiltonian is given by

Ĥ = −n · Ĵ ′, (B.1)

where n = (sin θ cosφ, sin θ sinφ, cos θ). Next we introduce the anomalous
rotation operators:

D̂′(α, β, γ) = e−iαĴ
′z
e−iβĴ

′y
e−iγĴ

′z
. (B.2)

Unlike the normal rotation operator, the anomalous one indicates left-hand
rotation [53, 54]. The Hamiltonian can be diagonalized, given by

Ĥ = −n · Ĵ ′ = −D̂′(−φ,−θ, 0)Ĵ ′zD̂′†(−φ,−θ, 0). (B.3)

Then the corresponding ground state is given by

|ψ0〉 = D̂′(−φ,−θ, 0)|LML〉 =
∑
n

gn|LMn〉, (B.4)

where the superposition coefficients are given by gn = D′LnL(−φ,−θ, 0). Here
D′Lnm is the anomalous Wigner D matrix, defined as

D′Lnm(α, β, γ) =〈LMn|e−iαĴ ′ze−iβĴ ′ye−iγĴ ′z |LMm〉,
=e−iαn−iγm〈LMn|e−iβĴ ′y |LMm〉,
=e−iαn−iγmd′Lnm.

(B.5)
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The small Wigner d-operator and -matrix are defined as d̂′(β) ≡ e−iβĴ
′y and

d′Lnm = 〈LMn|e−iβĴ ′y |LMm〉.
We follow Schwinger’s oscillator method to derive an analytical expres-

sion for the anomalous small d matrix [52, 55]. In the model we consider
two independent harmonic oscillators, whose creation and annihilation op-
erators are labeled by â

(†)
+ and â

(†)
− , respectively, and they satisfy bosonic

commutation relations, [â±, â
†
±] = 1. And we consider the particle number

basis:

|n+, n−〉 =
(a†+)n+(a†−)n−√

n+!n−!
|0, 0〉. (B.6)

Next, we introduce the anomalous angular momentum operator repre-
sented by the oscillator operators:

Ĵ ′+ = − 1√
2
â†+â−; Ĵ ′− =

1√
2
â†−â+; (B.7)

Ĵ ′z =
1

2
(â†−â− − â†+â+); (B.8)

J ′x ≡ 1√
2

(Ĵ ′− − Ĵ ′+); J ′y =
i√
2

(Ĵ ′− + Ĵ ′+). (B.9)

It is easy to check that they satisfy the anomalous commutation relations
Eq. (4.3). If we make a shift n+ = L− n; n− = L + n, the particle number
basis can be written in the anomalous angular momentum basis:

|n+, n−〉 → |LMn〉 =
(a†+)L−n(a†−)L+n√
(L− n)!(L+ n)!

|0〉, (B.10)

where the second quantum number M is irrelevant. The state satisfies

Ĵ ′z|LMn〉 = n|LMn〉, (B.11)

Ĵ ′2|LMn〉 = L(L+ 1)|LMn〉. (B.12)

Ĵ ′+|LMn〉 = − 1√
2

√
(L+ n)(L− n+ 1)|LM(n− 1)〉 (B.13)

Ĵ ′−|LMn〉 =
1√
2

√
(L− n)(L+ n+ 1)|LM(n+ 1)〉 (B.14)
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Now, we can use the above representation to calculate the corresponding
anomalous small d matrix:

e−iβĴ
′y |LMm〉

=
[d̂′(β)â†+d̂

′†(β)]L−m[d̂′(β)â†−d̂
′†(β)]L+m√

(L−m)!(L+m)!
d̂(β)|0〉

=
[cos β

2
â†+ + sin β

2
â†−]L−m[cos β

2
â†− − sin β

2
â†+]L+m√

(L−m)!(L+m)!
|0〉

=
∑
m′

|LMm′〉d′(L)
m′m(β)

(B.15)

where d̂′(θ)â†±d̂′†(θ) = cos θ
2
a†± ± sin θ

2
a†∓ and

d
′(L)
m′m(β) =

∑
k

(−1)k+m+m′

√
(j −m)!(j +m)!(j +m′)!(j −m′)!

(j −m− k)!k!(j −m′ − k)!(k +m+m′)!

× (cos
β

2
)2j−2k−m−m′(sin

β

2
)2k+m+m′ .

(B.16)

We can next calculate the superposition coefficients for the anomalous
spin coherent state, which is a special case of the Wigner d-operator with
m = L, given by:

D̂′(−φ,−θ)|LML〉

=eiφĴ
′z [d̂′(−θ)a†−d̂′†(−θ)]2L√

(2L)!
|0〉

=
∑
n

(
2L

L+ n

)1/2

(cos
θ

2
)L+n(sin

θ

2
)L−neiφn|LMn〉.

(B.17)

Without loss of generality, we can introduce a global phase and obtain the
superposition coefficients:

gn =

(
2L

L+ n

)1/2

(cos
θ

2
)L+n(sin

θ

2
)L−ne−iφ(L−n). (B.18)

Then, one can calculate the expectation values of the anomalous angular
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momentum:

J ′x =〈Ĵ ′x〉
=〈LML|e−iθĴ ′ye−iφĴ ′z Ĵ ′xeiφĴ ′zeiθĴ ′y |LML〉
=〈LML|e−iθĴ ′y(cosφĴ ′x + sinφĴ ′y)eiθĴ

′y |LML〉
=〈LML|(cosφ(cosφĴ ′x + sinφĴ ′z) + sinφĴ ′y)|LML〉
=L sin θ cosφ,

(B.19)

J ′y =〈Ĵ ′y〉
=〈LML|e−iθĴ ′ye−iφĴ ′z Ĵ ′yeiφĴ ′zeiθĴ ′y |LML〉
=〈LML|e−iθĴ ′y(cosφĴ ′y − sinφĴ ′x)eiθĴ

′y |LML〉
= sin θ sinφ〈LML|Ĵ ′z|LML〉
=L sin θ sinφ,

(B.20)

J ′z =〈Ĵ ′z〉
=〈LML|e−iθĴ ′ye−iφĴ ′z Ĵ ′zeiφĴ ′zeiθĴ ′y |LML〉
=〈LML|e−iθĴ ′y Ĵ ′zeiθĴ ′y |LML〉
=〈LML|(cos θĴ ′z − sin θĴ ′x)|LML〉
=L cos θ.

(B.21)



Appendix C

Multimode coherent state ansatz

The coherent state ansatz Eq. (4.8) works well only for low angular mo-
mentum sectors since the product state structure does not include enough
entanglement between the angular and the bosonic state. A straightforward
way to generalize is letting each mode of angular state |LMn〉 accompa-
nied by a singlemode coherent state |Cn〉 = Ûn|0〉 = eB̂

†σz∆n|0〉. Hence, we
propose a multimode coherent state ansatz, which is given by

|ψ〉 =
∑
n

gn|LMn〉 ⊗ eB̂†σz∆n|0〉 =
∑
n

gn|n〉 ⊗ Ûn|0〉. (C.1)

Here we use the Nambu basis for convenience: B̂ = (b̂, b̂†)T , ∆ = (β, β∗)T .
This ansatz is similar to the so-called Silbey-Harris ansatz [56–58] in studying
the spin-boson model.

Imaginary-time evolution

We first consider a general Hamiltonian and derive the equation of motion
for imaginary-time evolution to optimize the variational parameters for the
ground state, starting from

∂τ |ψ〉 = −(Ĥ − E)|ψ〉. (C.2)

The left-hand side can be expanded as

∂τ |ψ〉 =
∑
n

Ûn(∂τgn)|0〉|n〉

+
∑
n

gnÛn(
1

2
∆†nσ

z∂τ∆n + B̂†σz∂τ∆n)|0〉|n〉.
(C.3)
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One can obtain the equation of motion for ∂τβn,k by projecting out the
one phonon state 〈n|〈0|b̂k:

〈n|〈0|b̂kÛ †n∂t|ψ〉

=∂τgn〈0|b̂k|0〉+ gn
1

2
∆†b,nσ

z∂τ∆n〈0|b̂k|0〉+ gn〈0|b̂kB̂†σz∂τ∆n|0〉
=gn∂τβn,k.

(C.4)

Next, we consider the right hand side. The Hamiltonian can be split into
diagonal and off-diagonal term for the angular state, Ĥ = Ĥd+ Ĥo. One can
trace out the angular state, such that Ĥd

n = 〈n|Ĥd|n〉 and Ĥo
nm = 〈n|Ĥo|m〉.

Then the projection can be written as

− 〈n|〈0|b̂kÛ †n(Ĥ − E)|ψ〉
=− 〈n|〈0|b̂kÛ †nĤd|ψ〉 − 〈n|〈0|b̂kÛ †nĤo|ψ〉+ E〈n|〈0|b̂kÛ †n)|ψ〉.

(C.5)

The third term is given by

〈n|〈0|b̂kÛ †n|ψ〉 = gn〈0|b̂k|0〉 = 0. (C.6)

The diagonal term is given by

〈n|〈0|b̂kÛ †nĤd|ψ〉
=gn〈0|b̂kÛ †nĤd

nÛn|0〉
=gn〈0|b̂kB̂†hdn|0〉
=gnηn,k,

(C.7)

where the diagonal Hamiltonian can be approximated as a mean-field energy
plus one-excitation term Ĥd

n ≈ Ed
n + δB̂†nh

d
n.

The off-diagonal term is given by

〈n|〈0|b̂kÛ †nĤo|ψ〉
=
∑
m

gm〈0|b̂kÛ †nĤo
nmÛm|0〉

=
∑
m

gm[〈0|Û †nĤo
nmb̂kÛm|0〉+ 〈0|Û †n[b̂k, Ĥ

o
nm]Ûm|0〉 − βn,k〈0|Û †nĤo

nmÛm|0〉]

=
∑
m

gm[(βm,k − βn,k)〈0|Û †nĤo
nmÛm|0〉+ 〈0|Û †n[b̂k, Ĥ

o
nm]Ûm|0〉]

(C.8)
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Therefore, the equation of motion for βn can be written as

gn∂τβn,k = −gnηn,k
−
∑
m

gm[(βm,k − βn,k)〈0|Û †nĤo
nmÛm|0〉+ 〈0|Û †n[b̂k, Ĥ

o
nm]Ûm|0〉]. (C.9)

Diagonalization of the angular state

We next consider the angular state using a diagonalization method. The
variational energy can be expanded in a matrix form:

E = 〈ψ|Ĥ|ψ〉 = 〈ψ|Ĥd + Ĥo|ψ〉
=
∑
n

|gn|2Ed
n +

∑
nm

g∗ngm〈Cn|Ĥo
nm(b̂†, b̂)|Cm〉

=
∑
n

|gn|2Ed
n +

∑
nm

g∗ngmH
o
nm(β∗n, βm)〈Cn|Cm〉

=
∑
n

|gn|2Ed
n +

∑
nm

g∗nE
o
nmgm

=
(
g∗1 g∗2 · · · g∗N

)

Ed

1 + Eo
11 Eo

12 · · ·
Eo

21 Ed
2 + Eo

22
. . .

... . . . . . .
Ed
N + Eo

NN



g1

g2
...
gN


(C.10)

where Ĥo
nm is normal ordered about b̂ and Ho

nm = Ĥo
nm(b̂(†) → β(∗)), and

Eo
nm = Ho

nm〈Cn|Cm〉. The inner product between the two coherent states
reads

Pnm = 〈Cn|Cm〉 = e−
1
2
β†nβn+β†nβm− 1

2
β†mβm . (C.11)

Then we can minimize the energy by diagonalizing the energy matrix.

Angulon

Next, we go back to the angulon problem, which can be split into two
parts:

Ĥ = Ĥd + Ĥo (C.12)
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where the diagonal term reads

Ĥd =BĴ ′
2

+
∑
kλ

Vλ(k)(b̂†kλ0 + b̂kλ0) +
∑
kλµ

Wkλb̂
†
kλµb̂kλµ

+B
∑
α

∑
kλµν

∑
qlρσ

σλ,αµν σ
l,α
ρσ b̂
†
kλµb̂

†
qlρb̂qlσ b̂kλν ,

(C.13)

and the off-diagonal term reads

Ĥo = −2B
∑
α

∑
kλµν

Ĵ ′,αb̂†kλµσ
λ,α
µν b̂kλν . (C.14)

The variational energy is given by

E =〈ψ|Ĥ|ψ〉
=〈ψ|Ĥd|ψ〉+ 〈ψ|Ĥo|ψ〉
=
∑
n

|gn|2Ed
n +

∑
nm

g∗ngm〈Cn|Ĥo
nm|Cm〉,

(C.15)

where the diagonal part reads

Ed
n =BL(L+ 1) +

∑
kλ

Vλ(k)(β∗n,kλ0 + βn,kλ0)

+
∑
kλµ

Wkλβ
∗
n,kλµβn,kλµ +B

∑
α

Λα
nΛα

n,
(C.16)

and the off-diagonal part reads

〈Cn|Ĥo
nm|Cm〉

=− 2B
∑
α

∑
kλµν

J ′,αnm〈Cn|b̂†kλµσλ,αµν b̂kλν |Cm〉

=− 2B
∑
α

∑
kλµν

J ′,αnmβ
∗
n,kλµσ

λ,α
µν βm,kλν〈Cn|Cm〉

=− 2B
∑
α

J ′,αnmΛα
nmPnm.

(C.17)

As discussed above, the diagonal part can be approximated as a mean-
field energy plus a one-excitation fluctuation:

Ĥd
n ≈ Ed

n + δB†nhn = Ed
n + (

∑
kλµ

δb̂†n,kλµηkλµ + h.c.). (C.18)
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Figure C.1: (a) The energy for L = 0, 1 and (b) the effective rotational
constant obtained by the coherent state and multimode coherent state ansatz.

Here the fluctuation is given by

ηn,kλµ = Vλ(k)δµ,0 +Wkλβn,kλµ + 2B
∑
α

∑
ν

σλ,αµν βn,kλνΛ
α
n. (C.19)

One can calculate the building-blocks for the off-diagonal term:

〈Cn|Ĥo
nm|Cm〉 = −2B

∑
α

J ′,αnmΛα
nmPnm, (C.20)

and

〈Cn|[b̂kλµ, Ĥo
nm]|Cm〉 = −2B

∑
α

∑
ν

J ′,αnmσ
λ,α
µν βm,kλνPnm. (C.21)

Then we conclude the equation of motion:

∂τβn,kλµ = −ηn,kλµ
+

2B

gn

∑
m

gmPnm
∑
α

J ′,αnm[Λα
nm(βm,kλµ − βn,kλµ) +

∑
ν

σλ,αµν βm,kλν ].
(C.22)

In Fig. C.1, we compare the static energy and the effective rotational
constant obtained by the coherent state and multimode coherent state ansatz.
And in Fig. C.2, we show the displacement vector for the multimode coherent
state. For L = 0, the two ansatzes coincide with each other thus predict the
same energy. For L = 1, the entanglement between different modes plays
a role, and the multimode coherent state compresses the static energy and
significantly lowers the effective rotational constant.
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Figure C.2: The multimode displacement vector βn,kλµ for L = 1 and ln ñ =
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