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Abstract

Mass-spectrometry based bottom-up proteomics is the main method to analyze pro-

teomes comprehensively and the rapid evolution of instrumentation and data analy-

sis has made the technology widely available. Data visualization is an integral part of

the analysis process and it is crucial for the communication of results. This is a major

challenge due to the immense complexity of MS data. In this review, we provide an

overview of commonly used visualizations, starting with raw data of traditional and

novel MS technologies, then basic peptide and protein level analyses, and finally visu-

alization of highly complex datasets and networks. We specifically provide guidance

on how to critically interpret and discuss the multitude of different proteomics data

visualizations. Furthermore, we highlight Python-based libraries and other open sci-

ence tools that can be applied for independent and transparent generation of cus-

tomized visualizations. To further encourage programmatic data visualization, we pro-

vide the Python code used to generate all data figures in this review on GitHub (https:

//github.com/MannLabs/ProteomicsVisualization).
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1 INTRODUCTION

Mass spectrometry (MS)-based bottom-up proteomics allows com-

prehensive analysis of highly complex proteomes [1–6]. Thanks to

recent technological advances that dramatically increased proteomic

depth and throughput, MS technology is nowadays accessible to many

non-expert labs either through core facilities or individual proteomics

setups. Firstly, the field has witnessed a huge enhancement of instru-

mentation, exemplified by a new robust and high-throughput liquid

Abbreviations: BPI, base peak intensity; DDA, data dependent acquisition; DIA, data

independent acquisition; DOI, digital object identifier; FDR, false discovery rate; LC, liquid

chromatography;MS, mass spectrometry; PC, principal component; PCA, principal

component analysis; PTM, post-translational modification; TIC, total ion chromatogram; XIC,

extracted ion chromatogram
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chromatography (LC) system [7] and new types of mass spectrome-

ters allowing peptide separationby ionmobility [8–13]. Secondly, these

advances were accompanied by the development of high-throughput

data acquisition techniques [14–19] and a burst of computational

methods for proteomics data analysis [20–24]. Facilitated by increas-

ingly powerful computational hardware and programming backends,

computational proteomics has evolved into an independent,multidisci-

plinary field, but nowpresents a newbarrier to scientists lacking exper-

tise either in proteomics or bioinformatics.

Adequate data visualization is crucial to interpret data and commu-

nicate results of evermore complex experiments [25, 26]. A variety of

data analysis tools have integrated visualization functions to address

this need [27–30], but visualization is usually not among the highest

priorities in the development of novel data analysis workflows and is
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often an afterthought. Consequently, data assessment, interpretation

and visualization often remain exclusive abilities of experts familiar

with the data and capable of handling it programmatically. This dras-

tically slows down method dissemination and knowledge transfer to a

broader audience from different research fields. Due to this required

expertise, communicationwith non-experts in proteomics is often sub-

optimal. While there are several reviews that either focus on stand-

alone software tools [31, 32] or cover computational aspects of the

visualization process by making an overview of available R libraries

[33], they do not necessarily provide insight to non-experts in pro-

teomics onwhycertain visualizations are important or howto interpret

them.

In this review, we provide an overview of several common types of

visualizations, focusing on their use and interpretation rather than the

software. We also demonstrate how such visualization can be interac-

tively createdwith Python, one of themost common programming lan-

guages in science that has a low threshold to learn and use. Following

the main steps of proteomics data analysis, we first describe the visu-

alization of raw data and peptide identification with a special focus on

novelMS instrument types and data acquisitionmodes. Next, we cover

the visualization of quantitative information on the level of proteins,

peptides and post-translational modifications (PTMs). In light of the

continuously increasing complexity of experimental designs, we also

include strategies for visualizingmultidimensional data and aprimer on

protein networks. For each visualization we describe its common use

cases and relevance, what it shows, and what aspects of it are impor-

tant for interpretation and reporting. In the final section, we describe

how Python and community resources can be used to create and share

customized data visualizations by utilizing both generic and specialized

libraries. To make it easier for readers to adopt customized MS data

visualization themselves, we provide fully documented Python code

that was used to generate all data Figures presented in this review on

GitHub: https://github.com/MannLabs/ProteomicsVisualization. With

this reviewwewant to enable researchersworking on interdisciplinary

projects to (1) critically assess proteomics data visualizations in pub-

lications, (2) discuss effectively with experts, and ultimately (3) turn

their own data into visualizations that optimally communicate their

results.

2 VISUALIZATION OF PROTEOMICS DATA

In brief, a standard MS-based bottom-up proteomics workflow can

be described as follows (see fig. 1 in [6]). Proteins are enzymatically

digested into short, MS-accessible peptides and separated using a LC

setup that is directly coupled to a mass spectrometer (LC/MS setup).

TheMS thenmeasures both intact peptidemasses and the correspond-

ingmassesof peptide fragment ions that are generatedon the fly,which

is called tandem mass-spectrometry (LC-MS/MS setup). The result-

ing peptide and fragment ion spectra are then used to identify which

peptides were present in the sample based on a reference proteome,

commonly provided as species-specific protein FASTA file. With many

Statement of significance

We review data visualizations used to evaluate and com-

municate bottom-up proteomics data. Critical aspects are

explicitly explained by presenting concrete use-cases of raw

and processed proteomics data. As practical guidance, we

highlight publicly available Python-based tools and provide

our own codebase for data visualizations that are presented

herein. This should help the interdisciplinary use of bottom-

up proteomics by ensuring a common ground for data com-

munication and by enabling independent data exploration

and visualization.

strategies available, identified peptides are then quantified and their

information is aggregated to the protein level by protein inference.

Strategies for peptide and protein quantification vary from absolute

quantification within samples to relative quantification across sam-

ples.Amoredetailed introduction tobottom-upproteomics is available

elsewhere [34]. In table 1we provide an overview of the analysis steps,

visualizations andmost importantpitfalls/best practices covered in this

review. Many of the recommendations wemake apply beyond the pro-

teomics field and many statistical aspects are beautifully explained in

the ‘‘Points of significance’’ series in NatureMethods.

2.1 Raw data visualization

At the heart of all proteomics projects is the raw data acquired by the

MS [35] and unsatisfactory analysis results can often be traced back to

low data quality. Evaluating the rawMS data quality is therefore a crit-

ical first step during data analysis, yet it is often neglected. Data qual-

ity is commonly assessed by visual exploration of the raw MS data, as

it can reveal a variety of flaws of samples and instrumentation alike

[31]. Alternately, various computational quality control methods are

also available in the field and are extensively covered in literature [36].

In this section, we cover standard visualizations of rawMS data on pre-

cursor and fragment ion level and how to read them. For most of these

visualizations either the MS vendors or the MS search software tools

provide a graphical user interface. As one prominent option for visu-

alizing data from public repositories we want to point out the PRIDE

Inspector [37].

2.1.1 Visualizations at the precursor level

Ion chromatograms. The first steps of data quality control should

always include a performance assessment of the LC and the MS.

This is commonly done by inspecting how many precursor ions reach

the MS detector over time, visualized in the total ion chromatogram

(TIC), showing the summed intensity of all detected precursor ions

https://github.com/MannLabs/ProteomicsVisualization
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F IGURE 1 Visualization of proteomics data at the precursor level. (A-C) For these subFigures a dataset [62] from PXD012867 is used. (A)
Total ion chromatogram (TIC) and base peak intensity (BPI) ofMS1 data from 2 h nanoLC gradient measured on anOrbitrap based instrument. Low
signal stretches in the first and last 10min are due to loading time and LC flushing respectively. (B) Extracted ion chromatogram (XIC) for the
analyte (m/z= 457.9978) with 5 ppmm/z tolerance. (C) Two-dimensional MS1map showing the intensity of observed precursor masses across the
whole retention time. (D) Two-dimensional MS1 ionmobility heatmap of precursor intensities acquired on an ionmobility separating
time-of-flight instrument at a single time point, demonstrating a correlation of m/z and ionmobility (PXD017703, [107]).
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TABLE 1 Overview of all visualizations presented in this review, including associated data, analysis steps, and pitfalls/recommendations

Data Analysis step Visualizations Figure Pitfalls/recommendations

MS1 raw data Inspection ofMS1 ion

chromatograms to identify

instrumentation and loading

issues

Total ion chromatogram (TIC),

Base peak intensity (BPI)

1A Compare to a high-quality reference

chromatogrammatched by instrument,

gradient, and sample complexity.

Analysis of individual elution

profiles

Extracted ion chromatogram

(XIC)

1B Mass range is critical: wide enough for mass

errors, tight enough for specific selection.

Inspection of precursormaps

to identify instrumentation

issues

Two-dimensional precursor

maps

1C, 1D Compare to a high-quality referencemap.

Different dimensions can be displayed.

MS2 raw data Inspection of DDA peptide

fragmentation

(mirrored)MS2 spectra and

sequence fragmentation

2A, 2B Number of fragments is crucial.

Inspection of DIA peptide

fragment groups

Two-dimensional or

Three-dimensional elution

profiles

2C, 2D Elution peak shape should be highly

correlated across fragments.

Peptide/PTMdata Map identified peptides to

protein sequence

Non-overlapping traces 3A Missed cleavages and repeated fragmentation

are apparent.

Map differential sequence

coverage and external

sequence features/PTMs

Overlapping traces per

condition+ external traces

3B Missed cleavages are hidden in favor of

differential coverage.

Map PTMpositions and

quantities to sequences

Lollipop plot 3C Different quantitativemeasures can be

shown on y-axis.

Protein intensities Dynamic range and

normalization

Intensity histogram(s) 4A Replicates should have similar shape.

Proteome coverage Protein rank plot 4B Lower tail reveals depth limitation.

Proteome correlation and

reproducibility

Pairwise correlation plots and

sample correlation

heatmaps

4C, 4D Use for small and high numbers of samples

respectively.

Two-condition

comparisons

Differential expression

analysis by two-tailed tests

Volcano plots with square

cutoffs/non-linear volcano

lines

4E, 4F Multiple hypothesis correction is mandatory.

FDR and power (square cutoff) or s0

(non-linear cutoff) need to be reported.

Enrichment analysis (e.g., by

Fisher’s exact test)

Variable visualization

depending on experiment

complexity

4G The p-value is themost important parameter

to display if fewer visual channels are

available.

Multidimensional

experiments

Dimensionality reduction to

display complex datasets

Two-dimensional projection of

proteins

5A, 5D, 5E Algorithm determines topology

(PCA/UMAP/tSNE).

Reproducibility by PCA PCA loadings plot 5B Replicates should cluster.

Variability contribution in PCA Bar chart with all PCs 5C Main discriminators of samples can be

identified.

Cluster analysis to group

proteins and/or samples

Heatmapwithmarginal

dendrograms

5F Distancemeasure and clustering algorithm

are key parameters, cutoffs are largely

arbitrary.

Display all features for a

subset/summary of the data

Profile plot/parallel

coordinates/radar plot

5G-I Selection depends on data types and visibility

of the key result.

Protein networks Display protein distances Weighted edge network 6A Avoid hairballs, by parsimonious selection of

nodes and edges, use a deterministic

layouting algorithm.

Display hierarchical groups Hierarchical network 6B Depends on underlying grouping.

Display biological processes Semantic network 6C Indicate source for relationships.
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against the retention time (blue line in Figure 1A). Problems that can

be revealed inspecting the TIC are poor peak separation (very broad

peaks), unstable spray or MS failure (intensity drops) and mistakes

in sample preparation (low intensity, few peaks, unexpected overall

shape) [38, 39]. Another major issue is saturation of the whole LC-

MS system, for example, by overloading or contamination. This can

be revealed by the base peak intensity (BPI) plot, which shows the

intensity of the most abundant ions detected over time (red line in

Figure 1A). If the system is saturated one can see plateaus in the BPI

trace. It is generally advisable to have a reference TIC and BPI plot for

the sample type and instrument setup used to be able to detect anoma-

lies.

It can further be important to follow up on individual detected ions

or groups of ions, to evaluate, for example, the spread of contaminants,

the peak shape of quality control ions or the quality of identified pep-

tide features. To this end, extracted ion chromatograms (XICs) are com-

monly used (Figure 1B). Thedesiredmass and charge range is extracted

from the raw data and its intensity is plotted against the retention

time. In doing so it is important to set adequate boundaries to the

mass range (m/z tolerance), accounting for mass errors and coeluting

ions.

Precursormaps. To get an overview of thewhole range of precursor

masses detected along the retention time, a two-dimensionalMS1map

can be used [40, 41]. It shows the intensity (color) of observed precur-

sor masses (x-axis) across the chromatographic retention time (y-axis)

as a heatmap (Figure 1C). Same as for the TIC, it is advisable to have a

reference image for this to be able to see anomalies, as they could again

hint at technical issues with the instrument.

Recent developments in MS instrumentation introduced ion mobil-

ity as an additional separation dimension [9, 11, 13], which should

be evaluated in a similar way as the m/z dimension. Akin to the two-

dimensional MS1 map, precursor signal intensities can be visualized

in the ion mobility dimension against the m/z dimension (Figure 1D).

This heatmap would be even more informative if it showed the inten-

sity across all three dimensions (retention time, ion mobility and m/z).

While this is in principle possible, the resulting visualizations are hard

to interpret intuitively and improving them isoneof the remaining chal-

lenges in proteomics data visualization [42].

2.1.2 Visualizations at the fragment level

The first principal step of aggregating raw MS spectra into proteomic

data is the identification of analyzed peptide sequences. The two

required elements for sequence identification are the measured pep-

tide fragment (MS2) spectra and the sequence search space, both of

which depend on the acquisition mode and to a lesser extent the

quantification strategy used [43]. We cover label-free data-dependent

acquisition (DDA) and data-independent acquisition (DIA) here.

DDA. In the classical DDA approach the MS instrument isolates

and fragments individual selected peptide ions from the precursor

scan (MS1), most commonly the top-N most intense ones. The spectra

are then searched against a sequence database that contains masses,

sometimes also intensities, of peptide fragments from in silico protein

digestion and fragmentation [44–46].

It can be important to manually evaluate the MS2 spectra and the

identifications based on them, particularly when follow-up experi-

ments hinge on a single or few proteins or even peptides. To do so, one

can look at the individualMS2 spectra, highlighting the N-terminal and

C-terminal fragment ions of the single selected precursor (Figure 2A).

Underneath the spectrum itself, the sequence of the identified peptide

and the position of identifiedN/C terminal fragment ions are indicated.

Depending on the exact fragmentation method used, the peptide

bond breaks at different positions, yielding different pairs of ions,

most commonly b/y ions. Issues that can become apparent here are

co-fragmentation of several peptides (manymore fragments visible) or

other isotopes of the same peptide (isotopic clusters for fragments),

or poor fragmentation (very few ions and intense precursor peak). To

check the quality of the peptide-spectrum-match against the library,

mirrored spectra are commonly used (Figure 2B). Here the theoretical

fragment masses are shown on a mirrored y-axis, which makes it

immediately apparent which fragments aremissing or should correctly

be identified in themeasured spectrum.

DIA. In DIAmode, instead of isolating a single precursor mass, mass

ranges containing multiple precursors are isolated and fragmented for

every MS1 scan, covering more precursors, but yielding more complex

MS2 spectra. For a general introduction to DIA we suggest this review

[49].

Due to the increased complexity, the simple MS2 spectrum visual-

izations lose most of their relevance and a spectral library containing

onlymasses and intensities is no longer sufficient for identification.DIA

libraries therefore additionally contain the retention time and if appli-

cable the ionmobility of the precursor ions to narrow the search space

at each time point [20, 48–50]. On top of the fragment masses, the

exact coelutionof fragments and their precursor is nowcrucial for scor-

ing candidate identifications. To assess thequality ofDIA identification,

it is therefore most common to look at the elution profiles of all frag-

ments associated with a specific precursor. Ideally, they should form a

single sharp peak togetherwith the precursor (Figure 2C). Indicators of

peak misassignment would be peak shifts or blending additional peaks

of individual fragments.Here,measuring ionmobility can lead tohigher

confidence, as fragments should correlate along this dimension aswell.

Both dimensions together can be visualized in heatmaps for the pre-

cursor and all its fragments in retention time and ion mobility space,

colored by intensity (Figure 2D).

Additional complexity. Independent of the acquisition mode MS

spectra can be complicated by peptide modifications, but the same

visual techniques apply. Modifications can be either biologically gen-

erated PTMs (e.g., phosphorylation) [51, 52], artifacts introduced dur-

ing sample preparation (e.g., oxidation) [53] or sample labelling tech-

niques (e.g., TMT [54] or EASITag [55]). Depending on the exact type,

modifications lead to additional peaks for neutral losses or reporter ion

series inMS2 spectra, or even require an additional level of fragmenta-

tion (MS3) to acquire additional fragments. To interpret these complex

spectra more specialized background knowledge that goes beyond the

scope of this review is required.



6 of 18

F IGURE 2 Visualizations of proteomics data at the fragment ion level. (A) PeptideMS2 spectrum generated by data dependent acquisition
(PXD012867, [62]). The peptide sequence is annotated with the identified b- and y-ions. (B)MirroredMS2 spectrum showing the experimental
(top) and predicted (bottom) spectra for the same peptide as in A, confirming the correct identification (PXD012867, [62]). (C-D) Coelution of a
peptide precursor and its fragment ions acquired on an ion-mobility separating time-of-flight instrument (PXD017703, [107]). (C) Extracted ion
chromatograms in the elution timewindow of precursor and fragments nicely overlap. (D) Heatmaps of ion intensities in ion-mobility and retention
time dimensions provide additional information on coelution in the ion-mobility dimension.
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F IGURE 3 Peptide visualization. (A) Figure displaying peptide coverage along the protein sequence, overlap between peptides and
identification frequency (color scale) (PXD012867, [62]). (B) Figure displaying differential peptide coverage across sets of samples with
overlapping peptides collapsed into a single trace, PTMs (here only n-terminal acetylation) and external features (PXD012867, [62]). Generated
using [58]. (C) Lollipop plot displaying phosphosites, their intensity and localization probability (bubble size) (PXD010697, [77]).

2.2 Peptide and PTM visualization

When moving from raw data to aggregated peptide and protein quan-

tifications, it is important to point out again that all bottom-up pro-

teomics data is based on the identification of peptides rather than

intact proteins. Therefore, assessing the coverageof protein sequences

with identified peptides provides essential information. Sequence cov-

erage can for example be assessedusing aFigure in the style of thePep-

tideAtlas [56] (Figure 3A). Here, all unmodified peptides are displayed

in a non-overlapping way along the protein sequence and are colored

by their identification frequency across samples. This representation

is well suited for assessing the reproducibility of peptide identification

and to evaluate peptide overlaps caused by missed peptide cleavages.

To evaluate differential sequence coverage between samples, overlap-

ping peptides should be collapsed to a single line per sample to avoid

clutter (Figure 3B).

If PTMs are measured, their position, intensity and localization

probability can be visualized per modification site. If only the position

needs to be visualized in the context of identified peptides, they can

simply be added to these peptide views (start mark in Figure 3B). If

a PTM’s intensity and/or site probability are of interest a lollipop plot

can be used (Figure 3C). These can for example be found on Phospho-
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SitePlus [57]. Here, the size of the markers reflects the site probabil-

ity and their vertical position reflects the intensity. For any of these

visualizations it can be very informative to include additional annota-

tion traces, for example, showing tryptic cleavage sites, and protein

domains. This is for example possible using AlphaMap [58], which was

also used here to create Figure 3B. With these visualizations in hand,

various aspects of observed peptide and PTM signals associated with

a protein of interest can be visualized and easily compared with data

available in external databases. In doing so it is important to keep in

mind that not all peptides are unique for just a single protein [59, 60].

2.3 Protein quantity visualization and basic
analysis

Aggregating peptide quantifications into protein quantifications is any-

thing but a trivial task and highly depends on the inference strategy

and quantification method used [61]. Agnostic to the quantification

method, the assignment of peptides to proteins is not always uniquely

possible, and therefore proteomics studies often talk about protein

groups [59, 60]. These usually consist of any number of proteins that

could be contained in the sample based on a set of shared non-unique,

or ‘‘razor’’, peptides identified. Most protein groups consist of geneti-

cally closely related proteins, like isoforms or paralogs. From here on

out we will focus on the analysis of protein groups independent of

the inference and quantification method used, but want to point out

that each quantificationmethod comeswith individual parameters and

visualizations used for quality control. All following visualizations can

in principle also be applied on the peptide level, but are mostly used

on the protein level. We will start with the evaluation of single condi-

tion samples and simple two-condition comparisons by the example of

a knock-out versuswildtypeexperiment [62] and thenmoveon tomore

complex experimental designs and protein networks in the following

sections.

Range and reproducibility. Once protein groups are quantified the

first thing to look at is the distribution of their intensities. This is fre-

quently done using log-intensity histograms (Figure 4A) or boxplots.

These can indicate if certain samples have different intensity distribu-

tions, whichmight necessitate normalization, or a significantly reduced

depth. They can further be used to assess the distribution of certain

protein categories relevant to the downstream analysis, like imputed

values or reverse database hits as in Figure 4A.

The dynamic range of a dataset is another important parameter as

the measurement of low abundant proteins is a major limitation in

untargeted bottom-up proteomics. To display it, a protein rank plot

can be used (Figure 4B). Depending on the quantification method

and the downstream processing, the y-axis can represent either raw

intensity units or estimates of absolute protein quantities (e.g., iBAQ

[63], proteomic ruler [64]). In full proteome studies, the highest abun-

dant proteins typically include cytoskeletal and ribosomal proteins and,

depending on the proteomic depth, the lower tail includes, for example,

signaling proteins and transcription factors.

Next, it is important to assess the reproducibility of replicate sam-

ples and the general similarity of samples to compare. For a limited

number of samples, multi-scatter plots displaying all pairwise log-

intensity distributions and their correlations can be used (Figure 4C).

For larger numbers of samples, where a visualization of all sample pairs

is no longer feasible, reproducibility can be assessed by a heatmap of

correlation values (Figure 4D), or alternatively by principal component

analysis (see next chapter).

Volcano plots. Theminimal comparative experiment spans two con-

ditions with n biological replicates each. The standard analysis work-

flow for this is to perform multiple hypothesis corrected two-sample

(Student’s T-) tests [65, 66]. The multiple hypothesis correction is

essential in any proteomics experiment, as p-values can be seemingly

significant (i.e., very small) just by chance when making thousands

of comparisons from the same dataset at once. Plotting the negative

log10 of the (corrected) p-value against the difference in log-space for

each protein leads to the classical volcano plot (Figure 4E-F).

The thresholds for calling a protein differentially abundant can be

determined by one of two methods: (1) square cutoffs for p-value and

fold-change (Figure 4E), or (2) non-linear volcano lines (Figure 4F).

(1) For square cutoffs, the horizontal threshold is selected based on

a desired multiple hypothesis testing corrected p-value (or FDR). The

vertical fold-change cutoff is set with regard to the experimental

power, which is the probability of detecting an effect of a certain size,

given it actually exists. When using square cutoffs, the power should

alwaysbe indicatedas inFigure4E, regardless ofwhether a fixedpower

is used to calculate the fold-change cutoff or theotherway around [67].

(2) For nonlinear volcano lines, an s0 parameter is set instead of a spe-

cific fold-change cutoff [68]. The s0 parameter is added as a constant

to all standard deviations used in the t-tests and can roughly be inter-

preted as the assumed systematic error of the measurements, thereby

setting a lower bound on the fold-change as a function of themeasured

standard deviation.

In both methods the boundaries on the fold-change ensure that

the biological variability exceeds the numerical variability introduced

by measurement noise or imperfect normalization. Both methods are

valid if applied correctly, but yield slightly different hitlists and are both

highly dependent on the arbitrarily selected parameters. It should also

be kept in mind that either method still has a false discovery rate and

protein groups can be on either side of the boundaries by mistake. The

boundaries rather serve the purpose of generating a statistically sound

list for further downstream analysis. Importantly, multiple hypothesis

correction always has to be performed and documented. Usually this

is done either by Benjamini-Hochberg correction or by performing

a permutation test. For square cutoffs the y-axis usually shows the

corrected p-value (not done here to ease comparison).

Enrichment analysis. One common analysis to do downstream of

a volcano analysis is to look at overrepresentation of biologically rel-

evant groups of proteins (e.g., biological pathways of cellular com-

partments) in the hitlist compared to the overall proteome (methods

reviewed in [69]). This is usually done by a Fisher’s exact test [70] or

gene set enrichment analysis (GSEA, [71]) based on systematic annota-
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F IGURE 4 Dataset properties and two-condition comparisons. The data displayed in this Figure is taken from [62], where the principal
comparison was drawn betweenwildtype and∆RPN4 budding yeast cells (PXD012867). (A) Intensity histograms showing the distribution and
number of protein groups are used to assess sample comparability. Hits from the reverse decoy database are annotated. (B) Protein rank plot from
highest to lowest abundant proteins, illustrating the dynamic range. (C) Pairwise correlation plots demonstrate the biological and technical
reproducibility. (D) Sample correlationmatrix that is suitable to higher sample numbers than the pairwise correlation plot. It additionally illustrates
sample grouping. (E, F) Volcano plots showing results of comparisons between two conditions, here betweenwildtype and∆RPN4 samples.
Multiple hypothesis testing was done by permutation and the FDRwas set to 0.01. (E) Square significance cutoffs withminimal log2 fold change
set to 1.5, which has a statistical power of 0.81. (F) Nonlinear volcano lines based on s0= 0.1 adjusted p-value. (G) Enrichment analysis by Fisher’s
exact test for significant proteins from F. FDR= 5% after Benjamini-Hochberg correction. For all significant terms the corrected p-value, group size
and the enrichment factor are displayed.
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tions available, for example, through gene ontology [72, 73]. Often this

is done using online tools that use the whole theoretical proteome as

background. However, bottom-up proteomics is not able to quantify all

proteins and unidentified proteins should not be included in the back-

ground for an enrichment analysis [74]. Thus, only tools that can con-

sider the specific background should be used (e.g., String [75] or Pan-

ther [76]). The three main values resulting from an enrichment analy-

sis per candidate group are enrichment factor, group size and multiple

hypothesis testing corrected p-value, which can be visualized together

(Figure 4G). From this one could now draw biologically relevant con-

clusions, linking the prior difference between the compared samples

to enriched sets of protein groups. If differential enrichment in several

samples is displayed, thex-axis canbeused todisplay thedifferent sam-

ples and the size can be switched from group size to p-value. Perseus is

a common tool to generate many of the aforementioned visualizations

and to run most underlying analyses, including the enrichment analy-

sis [29]. However, given the output of the statistical analysis almost any

comprehensive visualization tool can create these Figures.

2.4 Multi-conditional and multidimensional
experimental designs

With increasing throughput, thanks to improvements inMS instrumen-

tation, more complex experimental designs became practical. Com-

mon multi-conditional designs include time course experiments [77]

andprofilingexperiments across subcellular compartments [78] orpro-

tein complex fractionation [79]. Two- and multi-conditional designs

can further be combined into multidimensional experiments with each

other (e.g., measuring subcellular profiles over time [80] or in differ-

ent genetic backgrounds [78]) andwith additional variables (e.g., demo-

graphic parameters in clinical sample cohorts [81]). In this section we

use a comparative spatial proteomics dataset [78] for demonstration

purposes.

Dimensionality reduction. While the full scope of a two-condition

experiment can easily be displayed in two-dimensional, higher dimen-

sional experiments require dimensionality reduction for visualization.

Just selecting two dimensions can be useful if a direct comparison is

needed, but this will always disregard biological variability added by

other dimensions. This is problematic because it can mask correlated

or orthogonal effects.

One universal tool to incorporate these effects into dimensionality

reduction is PCA [82]: The data is usually scaled and log-transformed

and then linearly transformed onto a new coordinate system, such

that the first component describes the largest fraction of the over-

all data variability and successive components decreasingly less. This

effectively aggregates a large fraction of the data variability into fewer

dimensions. This serves three purposes: First, any number of dimen-

sions can be reduced to the main PCs to visualize all proteins and their

annotation groups in two-dimensional (Figure 5A). Second, the contri-

bution of each original dimension to the PCs (loading plot) serves as

quality control for sample grouping (Figure 5B), where tight clustering

of replicates should be apparent. Third, the variability contributed by

each PC can inform on the independence of the acquired dimensions

(Figure 5C). If many PCs have a similar contribution to the overall vari-

ability, this indicates independent underlying variables. In contrast, a

single high variability PC often indicates that several of the underlying

variables are at least partially dependent.

Other dimensionality reduction algorithms are tSNE [83]

(Figure 5D) and UMAP [84] (Figure 5E). The major difference between

PCA and tSNE/UMAP is that the latter performs non-linear trans-

formations, whereby distances between individual proteins become

incomparable. Their advantage is that they usually achieve visually

more obvious separation of protein clusters in return and can provide

performance benefits for two-dimensional clustering algorithms. In

principle, these techniques can also be applied to a [sample x protein]

rather than a [protein x sample] matrix to look at the data from a

different perspective.

Heatmaps. A common visualization across different ‘‘omics’’ tech-

nologies are heatmaps with marginal dendrograms (Figure 5F). They

can be used to understand the relations between samples and pro-

teins alike.During the early stages of the analysis process heatmaps are

often used similar to the PCA loadings plot to evaluate sample sim-

ilarity. However, in contrast to the PCA plot they are based directly

on the distance between the untransformed protein quantifications in

each sample. Based on these distances a dendrogram is built, where

branches of similar samples are grouped together. Additionally, it

shows which groups of proteins follow a similar abundance pattern

across samples, by building a vertical dendrogram across proteins in a

similar fashion. The latter is particularly useful when it comes to a later

stage of the analysis when proteins with specific behaviors of interest

need to be grouped in order to form hypotheses about the underlying

biology.Critical factors in creating and interpreting theseheatmaps are

the distance metric and clustering methods applied [85] to either axis

and the normalization method that unifies the color scale across pro-

teins. The distance is usually either euclidean distance or Pearson cor-

relation. For normalization across samples z-scoring if often used.

Visualizing individual dimensions. The methods described above

are most useful to display proteomic data across all measured dimen-

sions. To show single dimensions (e.g., time course) or to combine pro-

teomic data with other data types, different visualizations are better

suited. The simplest way to display individual experimental dimensions

is a line plot (Figure 5G), which works with continuous and categori-

cal dimensions alike. Since showing the full proteomic scopewould lead

to clutter, we recommend either showing a relevant subset of proteins

with thin lines, indicating density by opacity, or alternatively showing

summary statistics. For some applications a radar plot might be pre-

ferred over a linear axis to ease interpretation (Figure 5I). Suitable

applications include time course experiments along circadian cycles or

biological slices of a bigger whole, for example, different organ tissues.

Mixing data types. If other data types (e.g., clinical parameters,

additional ‘‘omics’’ data, quality parameters) are integrated with

proteomic data, it is likely that none of the visualizations above can

be applied. In that case one can turn to dimension plots having either

parallel coordinates or categories. These have multiple parallel axes

that can each represent a different data type with individual ranges.
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F IGURE 5 Visualization ofmultidimensional experimental designs. The data used for this Figure is a comparative spatial proteomics dataset
from [78] (PXD010103). For organelle annotationmarker proteins from [109] were used. (A-C) Dimensionality reduction by principal component
analysis (PCA). (A) Projections onto PCs 1 and 3 show separation of protein groups into organelles. (B) Loading of PCs 1 and 2with individual
dimensions, that is, samples. Separation along PC1 is between<= 6K and>= 12K fractions, while PC2 separates fractions within each of these
groups. As this represents the Eigenvectors of the PCA it is often represented with arrows instead of points. (C) Data variability explained by
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Here, every line represents a dataset (e.g., protein or sample) and

connects the data points across the parallel dimensions (Figure 5H).

If all dimensions are categorical, the group sizes and membership

combinations are displayed instead.

2.5 Network representations of proteomic data

Manyextensive proteomics studies, such as interactomics [86, 87], pro-

teome profiling based [88104] or extensive clinical studies [89], focus

on networks between proteins or could be mined for them. Any exper-

iment that yields enough data to identify or quantify the physical or

phenotypic relation between several pairs of proteins is sufficient to

build a network, albeit of variable size. Since all networks are built from

nodes and edges, many networks look similar at a first glance although

they usually convey vastly different information. In proteomics, most

often the nodes represent proteins and edges usually represent one

of three types of information: physical interaction or proximity (inter-

actomics), phenotypic similarity (profiling) or shared annotations (e.g.,

Gene Ontology). The most relevant distinctions made in graph the-

ory are between weighted and unweighted networks and between

directed and undirected networks. Additionally, the type of both nodes

and edges can be homogenous throughout the network or not. For a

general review of networks in biological systems see [47].

Different combinations of these characteristics give rise to three

different types of networks often encountered in proteomics stud-

ies: (1) The most direct representation of measured relations between

nodes are networks with homogenous node types and weighted edges

(Figure 6A). Since a two-dimensional layout is often insufficient to con-

vey edge properties accurately simply by length, additional visual chan-

nels like number of edges, color and thickness can be used. Groups of

nodes are usually highlighted by color (e.g., query proteins vs interac-

tors). (2) Akin to dendrograms, hierarchical networks (Figure 6B) con-

vey information about the organization of proteins into groups. These

networks are inherently directed, are often unweighted and generally

have heterogeneous node types (e.g., protein complexes and proteins).

(3) Incorporating extracted or annotated information about biological

processes like protein regulation gives rise to semantic networks.

When reading or creating a network it is important to realize which

type of network is used/required, what the main information behind

nodes and edges is and how they are encoded in the visualization

(see Fung et al. 2012 for more considerations). Depending on the

degree of complexity and customization required, different tools can

be used to create networks: Literature based interaction networks

can be generated using STRING [76] and biological pathway graphs

are provided by Reactome [90]. For networks based on quantifica-

tions provided by a researcher, many tools are available, including

Cytoscape [91] - a very extensive and expandable standalone software

- and Perseus, although it only contains limited network functionali-

ties [92]. For scientists with programming experience several options

exist, including the Cytoscape API [93], Python libraries like NetworkX

[94] and graphviz (https://graphviz.readthedocs.io), the R library net-

work [95], or igraph (https://igraph.org), which is available in both

languages. A more specialized tool for clinical proteomics that aims

to capture comprehensive prior knowledge is the clinical knowledge

graph (CKG) [96].

3 CUSTOM PROGRAMMATIC DATA
VISUALIZATION

In the previous sections we have described several commonly used

visualizations in the proteomics field, along with available software

tools to create them. However, depending on the experimental design

and specific focus of a study, it might still be challenging to find a

fitting visualization in one of these tools. A scientist might want to

create something entirely novel, or just customize the Figure beyond

the capabilities of the tool that you are using. Besides these practical

limitations, the data visualization process can also contribute to low

transparency and reproducibility in scientific papers by use of closed

source software and lack of documentation [97]. These challenges

can be mastered by programming the visualizations oneself and

sharing the code appropriately. Thus, in this section we describe

how Python in combination with established open code/science

tools can be used to generate customized proteomics visualizations

transparently.

3.1 Proteomics data visualization in Python

For this review we chose Python as a programming language, because

it is widely known for its readability and versatility, as well as a shal-

low learning curve for new developers and a very active, support-

ive and collaborative community. The latter is particularly useful con-

sidering that ‘‘open code’’ and community engagement can benefit

researchers by saving time and funding resources [98]. As a primer for

proteomics visualization in R, we recommend [33]. Similar to R, Python

already has a large variety of well-documented and well-maintained

libraries for scientific computing [99]. Although Python has only been

in widespread use in the computational proteomics field for roughly

individual PCs. Only the first three PCs are shown here, as they jointly cover> 90% of the data variability. (D) Projection onto non-linear tSNE
dimensions. This has a similar density as the PCA, but different arrangement of organelles. (E) Projection onto non-linear UMAP dimensions.
Although this shows the same dataset as A andD, clusters are a lot more visible because the local density is increased. (F) Heatmapwithmarginal
dendrograms (complete linkage) of all organelle marker proteins. Samples are clustered by Pearson correlation, proteins by euclidean distance. (G)
Line plot showing profiles along the subcellular dimension of all ERmarker proteins. (H) Parallel coordinates plots can be used to relate proteomic
data to other data dimensions that use different scales. Here, showing the identification score and q-value together with the normalized protein
intensity in one sample (same proteins as in G). (I) Radar plot displaying average profiles per organellar marker group.

https://graphviz.readthedocs.io
https://igraph.org
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F IGURE 6 Common network types encountered in proteomics studies. These are only schematics, in reality these networks are a lot more
extensive and often turn into ‘‘hairballs’’ that are hard to read. (A)Weighted protein network with variable visual channels used to encode edge
weights. Node color often shows query versus neighboring proteins. (B) Hierarchical network showing groupmembership of proteins. (C) Semantic
pathway network describing biological processes.

TABLE 2 Selection of open-source software libraries for
proteomics data analysis and visualization in Python

Library Description

pymzML [110,111] AnmzML data parser for fast access and

handling of the data with integrated data

visualization.

Pyteomics [112,113] A framework for proteomics data analysis,

supporting different data formats.

pyOpenMS [114] A library for the analysis of proteomics and

metabolomics data.

multiplierz [115] A scriptable framework for access to

manufacturers’ formats via mzAPI.

PaDuA [116] A Python package optimized for the

processing and analysis of quantified

(phospho)proteomics data.

AlphaTims [117] A Python package for efficient accession and

visualization of Bruker TimsTOF raw data.

AlphaMap [58] A Python package for the visual annotation of

proteomics data on the peptide level with

sequence specific knowledge.

spectrum_utils [118] A Python package for processing and

visualization ofMS/MS spectra.

a decade, a number of libraries for MS data accession and specialized

analysis tasks are already established (Table 2).

Similar to this data analysis stack, many data visualization libraries

exist that are differently well suited for different purposes. Static plots

in Python can be generated using Matplotlib [100] or Seaborn [101].

Both libraries are highly versatile, but Seaborn adds additional func-

tionality on top of Matplotlib, for example, it offers more choices

for plot styles and colors. Interactive plots are particularly useful for

exploratory data analysis by providing data on demand and basic tools

like zooming, selecting, rotating, and so on. These can be built in

libraries such as Bokeh (docs.bokeh.org) and Plotly (https://plotly.com).

Plotly is very popular in the scientific field due to the high number

of unique visualizations, including three-dimensional and scientific use

cases. Thus, we also used it throughout the code used to generate the

Figures in this review.

One overall challenge of data visualization is how to efficiently han-

dle big data. Big data is particularly challenging, because the simulta-

neous display of thousands of data points usually leads to occlusion

of information (as can be seen in Figure 5A) and oftentimes misinter-

pretation. Common workarounds are down sampling, reduced opacity

(as in Figure 5E), replacement by summary statistics (as in Figure 5F)

and more. While these methods can often improve data display, the

full data scope should always be evaluated and in many cases, it can-

not be replaced. An easyway to visualize it without occlusion is offered

by the Datashader library (https://datashader.org). It rasterizes the

data space similar to a histogram, but in two-dimensional and encodes

the number of points per two-dimensional bin by color (Figure 1C,

Figure 3C). This facilitates quick visualization of patterns or structures

in big data sets.

Due to the amount of data contained in most proteomic studies,

there is usually more biological insights to be gained than can be

described in a single publication. While uploading datasets to reposi-

tories is generally mandatory nowadays, data can be made even more

accessible by providing a dedicated online resource or even an analy-

sis service with embedded interactive visualizations. Python provides

several libraries that integrate data analysis and visualization capabil-

ities with modern web frameworks to create browser based graphical

user interfaces, examplesbeingDash (https://dash.plotly.com), Stream-

lit (https://docs.streamlit.io) and Panel (https://panel.holoviz.org).

Using a combination of the scientific Python stack, the generalized

visualization libraries and web engines, several visualization tools and

resource pages for the proteomics field have already been created

[46,58,96,102-104].

3.2 Open science tools

Toenable full accessibility, transparency and reusability of customvisu-

alizations we briefly introduce several existing open science and open

source principles and tools.

Firstly, it is important to fully document what any code is doing and

to provide necessary context, akin to wet-lab protocols and documen-

tation. Amodern software development tool supporting this is Jupyter

https://plotly.com
https://dash.plotly.com
https://docs.streamlit.io
https://panel.holoviz.org
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(https://jupyter.org), which is compatible with Python, R and Julia. It

integrates code, execution output (e.g., visualizations) and static doc-

umentation in a single interactive, but freezable file format. The docu-

mentation is written in the very simplemarkdown syntax, which allows

standard text formatting and inclusion of complex elements like images

and formulas. In recentMS-basedproteomics publications, one already

sees links to the study specific codeprovided in Jupyter [98,105]. Given

a suitable Python environment and access to the data anybody can

thereby reproduce results transparently. In case local hardware is lim-

iting code execution, community resources can be used. Specifically,

Google provides a free but powerful Jupyter notebook environment

called Google Colab [106].

Secondly, it is important to share code publicly and since code usu-

ally continues evolving after publication it is crucial to transparently

keep track of code versions, dependencies and contributions. The com-

munity standard tool for version control is Git, complemented by the

public hosting service GitHub [107], which is free to use for scien-

tific projects. Beyond sharing versioned code, it is also a social cod-

ing platform that enables community contributions like peer-review

and ensures transparent attribution of code contributions to authors.

For code that requires interactive execution, or creates interactive ele-

ments,GitHubprovides integration online hosting solutions likeBinder

(https://mybinder.org). To create persistent and citable digital object

identifiers (DOIs) for code repositories, Zenodo (https://zenodo.org)

can be used directly fromGitHub.

To give new developers an easy entry point and an example of what

these tools can do, we applied them to the Python code we wrote to

create thedata visualizations in this review. The repository is hostedon

the GitHub (https://github.com/MannLabs/ProteomicsVisualization),

which includes a link to the hosted interactive version in Binder and

installation instructions for a computational proteomics Python envi-

ronment and a short guide on how to contribute custom visualizations

for others to reuse.

4 CONCLUSION

In this review we have summarized data visualizations specific to the

proteomics field, from raw data to complex experimental designs. As

this field is rapidly progressing and highly translational, we decided to

not only cite existing tools for visualization, but to further provide guid-

ance towards creating common data visualizations programmatically

and interpreting them critically and correctly. As the options for exper-

imental design are constantly evolving we could not cover all flavors

of proteomics data visualization herein. It will be exciting to see how

interactive web technologies and virtual reality will improve the way

we visually explore proteomics data in the years to come, especially

with regard to current limitations on three-dimensional visualization.

Lastly, we want to encourage our readers to try out different visualiza-

tion types and visual channels interactively for the data they have at

hand and to view data visualization as a creative, yet crucial step of sci-

ence and science communication.
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