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Abstract

In competitive sports it is often very hard to quantify the performance. A player to score or

overtake may depend on only millesimal of seconds or millimeters. In racquet sports like ten-

nis, table tennis and squash many events will occur in a short time duration, whose record-

ing and analysis can help reveal the differences in performance. In this paper we show that

it is possible to architect a framework that utilizes the characteristic sound patterns to pre-

cisely classify the types of and localize the positions of these events. From these basic

information the shot types and the ball speed along the trajectories can be estimated. Com-

paring these estimates with the optimal speed and target the precision of the shot can be

defined. The detailed shot statistics and precision information significantly enriches and

improves data available today. Feeding them back to the players and the coaches facilitates

to describe playing performance objectively and to improve strategy skills. The framework is

implemented, its hardware and software components are installed and tested in a squash

court.

Introduction

At present in competitive sports there are a lot of talented sportsmen and the differences

between individual performance are often very small to spot. It catalyses a race condition to be

present already in the practising period, thus more and more coaches and players seek finding

different means and aids to elaborate and make the preparation for the tournaments always

more effective. There are a lot of new technological achievements available in the market.

Small electronic devices are capable of measuring various metrics including those that are rele-

vant for the sports, like heart rate and blood temperature and pressure registers, pedometers,

speedometers and accelerometers to name a few. Using such devices is more than necessary

since the results in a competition and then the final scores may depend on millesimal of milli-

meters. Another reason why to use measurement devices yielding objective performance met-

rics is because when sportsmen are overloaded in a performance, with adrenalin in their vein,

it is hard if possible for them to spot and fix their failures. In certain types of sports a continu-

ous or prompt feedback is definitely helpful, squash is one of them.
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Vattay G (2018) Audio-based performance

evaluation of squash players. PLoS ONE 13(3):

e0194394. https://doi.org/10.1371/journal.

pone.0194394

Editor: Sven G. Meuth, Universitatsklinikum

Munster, GERMANY

Received: April 3, 2017

Accepted: March 4, 2018

Published: March 26, 2018

Copyright: © 2018 Hajdú-Szücs et al. This is an
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Squash is a very rapid ball and racquet game with typically 40-60 hit events per minute.

Depending on the various surfaces the ball interacts during its flight defines the different shot

classes. Some shot classes are very rare due to being tricky to deliver or may occur only in cir-

cumstances where the rally may seem already lost. So knowing the detailed statistics of various

hits and shot patterns talks about the quality of the sportsmen and are very important informa-

tion for both the coaches and the squash players. However, these data and their statistical anal-

ysis are not available at present because of the paste of squash. Given its fast speed the human

processing of events enables the score registration in real-time only, but the recording of shot

types and the detailed sequences of the shots are rendered definitely impossible. One possible

solution might be to analyse videos of the matches using image processing as it has been

shown to work for the tennis [1]. Though for the squash it turns out that this approach remains

difficult even with the use of high speed and high resolution cameras, due to the small size of

the ball and the view provided by the cameras. Traditionally cameras are placed behind the

court, therefore the players will most often cover the sight of the ball during the match making

the reconstruction of ball trajectories an inauspicious problem. To provide reliable statistics by

this approach will require human processing and validation so in the end a thorough analysis

of the tournament will cost many times of the duration of this sport events in man-hours.

In this study we introduce a framework to unhide these information based on the analysis

of acoustic data. Playing squash produces characteristic sound patterns. The sound footprint

of each rally is a projection of all the details about the strength and the position of the ball hit-

ting various surfaces in the court. Naturally, this pattern, which maintains the natural order of

the events, is contaminated by some additional noise. Recording the sound in more directions

allows for inverting the problem and for giving statistical statements about where and what

type of an event took place in the play. We are focusing on events generated by the ball hits,

which serves as a basis for further analysis and the reconstruction of shot patterns or the ball

trajectories. Note, the framework to be detailed can be applied to various other types of ball

games.

Related work

Squash and soccer were the first sports to be analysed by ways of analysis systems. Formal sci-

entific support for squash emerged at the late 1960s. The current applications of performance

analysis techniques in squash are deeply investigated in the book of Stafford et al. [2].

One test that was developed by squash coach Geoffry Hunt is the “Hunt Squash Accuracy

Test” (HSAT) [3], that is a reliable method used by coaches to assess shot hitting accuracy. The

test is composed of 375 shots across 13 different types of squash strokes and it is evaluated

based on a total score expressed as the number of successful shots.

Recent technological advances have facilitated the development of sport analytical software

such as Dartfish video based motion analysis system [4, 5]. However, these systems still require

a considerable amount of professional assistance.

To the best of our knowledge there is no previous research investigating the applicability of

sound analysis techniques for squash performance analysis, therefore it is not possible to

directly compare our system to existing solutions. In other application environments a wide

literature can be found on real-time sound source localization that is the most closely related

topic to our work. The emerging application of camera pointing in video conferencing envi-

ronment motivated many research papers on the field of visual speaker localization [6–10]. A

linear-correction least-squares estimation procedure is proposed in [6–8]. The simulation

results in [7] show that the bias level of this technique is around 30 cm. In the work of Tobias

Gehrig et al. [10] a method is presented to speaker tracking using audio-visual features, namely
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time delay of arrival estimation on microphone array signals and face detection on multiple

camera images. The sound source localization is based on a maximum likelihood approach. In

the experimental results the authors measure 57.2 cm root mean square error for the audio-

only solution and 49.9 cm for the audio-video approach. One conceptually simple solution for

source localization is beamforming [11], where the source location is estimated by calculating

the steered output power of a beamformer over a set of candidate locations. Although this con-

cept has advantages in speech localization and enhancement, it is computationally expensive

and its resolution is too low for our purposes.

The measurement equipment

This study is based on the analysis of sound waves generated during the squash play. Among

many other, squash is a game where various different sources of sound are present, including

the players themselves (their sighing or their shoes squeaking on the floor), the ball hitting sur-

faces (like the walls, the floor or the racquet) and also external sources (including the ovation

of the spectators or sound generated in an adjacent court). Here we focus on audio events

related to the ball.

When planning the experiments the following constraints had to be investigated and

satisfied. The framework should be fast in signal processing point of view, because the target

information can be most valuable when in a competitive situation it helps fine tune tactical

decisions made by the coach and/or the player. The cost of the equipment should be kept low

and the installation of the sensors requires a careful design to prevent them from disrupting

the play. As the spatial localization of the ball is one of the fundamental goals a lower bound to

the sampling rate is enforced to remain able to differentiate between displaced sound sources.

In Fig 1 the hardware and software components are sketched. Hardware components

include 6 audio sensors, three of which are omnidirectional microphones (Audio Technica

ES945) sinking in the floor and the rest of them are cardioid microphones (Audio Technica

PRO 45) hanging from the top. Amplification and sampling of the microphone signals are

done by a single dedicated sound card (Presonus AudioBox 1818VSL) so that all channels in a

Fig 1. A schematic view of the components. To process audio events in the squash court a three component

architecture was designed.

https://doi.org/10.1371/journal.pone.0194394.g001
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sample frame are in synchrony. The highest sampling rate of the sound card is used (96 kHz),

so by each new sample the front of a sound wave travels approximately 6 mm.

According to their functionalities software components fall in the following groups. Signal

processing is done in the analysis module, which include the detection of the audio events, the

classification and the filtering of the detections and after matching event detections of more

channels the localization of the sound source. While these steps of signal processing can be

done real-time a storage module is also implemented so that the audio of important matches

can be recorded. Recording of data helps training of the parameters of the classification algo-

rithms, and it also enables a whole re-analysis of former data with different detectors and/or

different classifiers. All output generated by the Analysis module is fed to the output queue.

Hardware and software components are triggered and reconfigured via a web services API

exposed by the Control interface. Finally, to be able to listen to what is going on in the remote

court a Monitoring interface provides a mixed, downsampled and compressed live stream

across the web.

The ball impact detection

The localization and the classification of ball hits both require the precise identification of the

beginning of the corresponding events in the audio streams. The detection of ball impact

events is carried out for each audio channels independently and in a parallel fashion, which

speeds up the overall performance of the framework significantly. Different detection algo-

rithms of various complexities were investigated two extreme cases are sketched here. The first

model assumes that the background noise follows the normal distribution. An event is

detected if new input samples deviate from the Gaussian distribution to a certain predefined

threshold value. Next for each channels the mean and the variance estimates of a finite subset

of the samples are continually updated according to the Welford’s algorithm [12].

The second method is an extension of the windowed Gaussian surprise detection by

Schauerte and Stiefelhagen [13]. The algorithm tackles the problem evaluating the relative

entropy [14]. It is first applied in the frequency domain and if there is a detection then a finer

scale search is carried out in the time domain. The power spectrum of w-sized chunks of win-

dowed data samples is calculated. Between detection regime the series of the power spectra is

modelled by a w-dimensional Gaussian. The a priori parameters of the distribution are calcu-

lated for n elements in the past, and the posteriori parameters are approximated including the

new power spectrum. The Kullback Leibler divergence between the a priori and the posteriori

distributions exceeds a predefined threshold when a new detection takes place

Si ¼
1

2
log
jSij

jS0ij
þ Tr ðS� 1

i S0iÞ � wþ ðm0i � miÞ
T
S� 1

i ðm
0

i � miÞ

� �

;

where primed parameters correspond to the posteriori distribution. The time resolution at this

stage is w and to increase precision a new search is carried out in the time domain evaluating

the Kullback Leibler divergence for 1-d data. In order to bootstrap a priori distribution param-

eters n samples from the former windows are used.

The localization of sound events

In this section we lay down a probabilistic model to determine the time and location of an

audio event. For a unique event we denote these unknowns t and rev respectively. The location

vector rev is a 3 dimensional array of Descartes coordinates (x, y, z), however, the calculation

presented here also applies for lower dimension setups. The inputs required to find the audio
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event are the locations of the N + 1 detectors rmike
i and the timestamps τi when these synchro-

nized detectors sense the event (0� i� N).

The probability that microphone i detects an event at (r, t) is

pðti; riÞ ¼
1
ffiffiffiffiffiffi
2p
p

si

exp �
ðcti � riÞ

2

2s2
i c2

;

where c is the speed of sound, ti = τi − t is the propagation delay and ri ¼ jjr � rmike
i jj is the dis-

tance between the sound source and the microphone. The uncertainty σi depends on the char-

acteristics of the microphone, which we will consider constant in the first approximation.

By introducing relative delays t̂ i ¼ ti � t0 the joint probability of relative delays detected is

pðt̂1; . . . t̂NÞ ¼
R

dt0 pðt0; r0Þ
YN

i¼1

pðt̂ i þ t0; riÞ:

The formula can be rearranged

pðt̂1; . . . t̂NÞ ¼
1

ffiffiffiffiffiffi
2p
p Nþ1QN

i¼0
si

Z

dt0 e� f ðt0Þ;

where f ðt0Þ ¼
PN

i¼0

ðct̂ iþct0 � riÞ
2

2s2
i c2 is a quadratic function and in the expression for p the Gaussian

integral follows

Z

dt0 e� f ðt0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
2p

f @ðt�
0
Þ

s

e� f ðt�
0
Þ:

The first order derivative f 0 vanishes in t�
0
¼ S2

PN
i¼0

1

s2
i

ri
c � t̂ i

� �
, where S2 ¼ 1=

PN
i¼0

1

s2
i

is

introduced for convenience.

After substitution of t�
0

we arrive at

f ðt�
0
Þ ¼

1

2

XN

i¼0

1

s2
i

ri

c
� t̂ i

� �2

� S2
XN

i¼0

1

s2
i

ri

c
� t̂ i

� �
" #2( )

:

This formula can be interpreted as a variance formula, which can be rewritten

f ðt�
0
Þ ¼

1

2S2

XN

i¼0

1

s2
i

XN

j¼0

1

s2
j

ri � rj

c
� ðt̂ i � t̂ jÞ

� �
" #2

:

A good approximation of the audio event maximizes the likelihood p, which at the same

time minimizes f ðt�
0
Þ, thus we seek the solution ofrr f ðt�

0
Þ ¼ 0 equations.

In practice f behaves well and its minimum can be found by gradient descent method. Fig 2

shows a situation, where the ball hit the front wall and 6 microphones detect this event error

free. To show the functions behaviour f is evaluated in the floor, in the front wall and in the

right side wall. Finding the minimum of f takes less than ten gradient steps.

The likelihood based localization model is derived for a noiseless situation, assuming the

perfect detection of samples in each channel. In real environment, however, noise is present

and the error deviating the detection is exposed in the final result of the localization. In order

to track this effect the method was numerically investigated as follows. 10000 points in the vol-

ume of the court is selected randomly and the sound propagation is calculated in each six

microphones. Next for the ideal detections Gaussian noise is added in all channels, with
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increasing variation (σ = 1, 10, 50). In Fig 3 the noiseless case is compared to cases with

increasing errors. In the figure the cumulative distribution of the error, ie. the difference

between the randomly selected point and the location guess by the model is presented. Natu-

rally, by increasing the detection error the error in the position guess is increasing, but the

Fig 2. The visualization of the likelihood function. The ball hit the front wall. f ðt�
0
Þ can be evaluated in space given the positions of the sensors (marked by

white disks) to find its minimum, which indicates where the event took place. (0.5 m from the right corner and 3 m above the floor, marked by a blue disk).

https://doi.org/10.1371/journal.pone.0194394.g002

Fig 3. The cumulative distribution of the localization error. For a noiseless case most often localization will have an

error comparable to the size of the ball. With a bad detector (σ = 50 samples) still the localization is exact in the order

of 10 cm.

https://doi.org/10.1371/journal.pone.0194394.g003
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model performs very well, for poor signal detectors the error in localization is in the order of

10 cm.

Classification

It is the task of the classification module to distinguish between the different sound events

according to their origin. Sound events are classified based on the type of the surface that suf-

fered from the impact of the ball. This surface can be the wall, the racquet, the floor or the

glass. When the sound does not fit any of these classes, like the squeaking shoes, then it is clas-

sified as a false event. The classification enhances the overall performance of the system by two

means. First, skipping to localize the false events speeds up the processing. And second, in

doubtful situations when the calculated location of the event falls near to multiple possible sur-

faces, by knowing the type of the surface that suffered from the impact can reinforce the locali-

zation. For example a sound event localized a few centimetres above the floor could be

generated by a racquet hit close to the floor or by the floor itself.

Classification utilizes feed-forward neural networks that had been trained with backpropa-

gation [15–18]. The training sets are composed of vectors belonging to 5461 audio events,

which have been manually labelled. Based on these audio events two types of input were con-

structed for teaching.

In the first case temporal data is used directly. A vector element of the training set T1 is the

sequence of the samples around the detections for each channels.

T1 ¼ fðad� w; . . . ; ad; . . . ; adþwÞg;

where the channel index is dropped and d is a unique detection and w sets the length of the

vector. Given the sampling rate 96 kHz and setting w = 300 the neural network is taught by

6.25 millisecond long data.

The second feature set T2 is built up of the power spectra.

T2 ¼ fjFðad; . . . ; adþwÞjg;

where F denotes the discrete Fourier transform.

A single neural network model where all event classes are handled together performed

poorly in our case. Therefore, separate discriminative neural network models were built for all

four classes (racquet, wall, floor and glass impact) and for both of the training sets. It has also

been investigated if any of the input channels introduce discrepancy. In order to discover this

effect models were built and trained for each unique channels and another one handling the

six channels together. Note, that not all possible combinations of the models were trained due

to the fact that some channels poorly detected certain events, for example microphones near

the front wall detected glass events very rarely.

In the training sets the class of interest was always under-represented. To balance the classi-

fier the SMOTE [19] algorithm was used, which is a synthetic minority over-sampling tech-

nique. A new element is synthesized as follows. The difference between a feature vector from

the positive class and one of its k nearest neighbours is computed. The difference is blown by a

random number between 0 and 1, to be added to the original feature vector. This technique

forces the minority class to become more general, and as a result, the class of interest becomes

equally represented like the majority set in the training data.

Different network configurations were realized to find that for the direct temporal input a

20 hidden layer network (with 10 neurons in each layer) performed the best, while for the spec-

tra input a 10 hidden layer (each layer with 10 neurons) is the best choice.
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Analysis

In this section the performance of each modules of the framework and the datasets are

presented.

Datasets

In order to analyse the components of the framework implementing the proposed methods

two audio and video record sets were used. Datasets are available at https://figshare.com.

Audio 1 was recorded on the 18th of May 2016 when a squash player was asked to target spe-

cific areas of the wall. This measurement was necessary to increase the cardinality of the differ-

ent hits significantly in the training datasets T1 and T2, and it was also manually processed to

be able to validate the operations of the detector and the localization components. Audio 2
resembles data in a real situation as it contains a seven minutes squash match recorded on the

8th of March 2016. Table 1 summarizes the details of these audio recordings.

Training the neural network models require properly labelled datasets. After applying the

ball impact detection algorithm to the audio records the timestamps of the detected events

were manually categorized as front wall event, racquet event, floor event or glass event. In the

categorization procedure video files helped in doubtful situations. Every sudden sound effect

that was detected by the algorithm but does not belong to these relevant classes was labeled as

false event. In Audio 1 prescribed audio events were generated and recorded and it does not

contain any false events. In contrast, Audio 2 was captured in a real situation and it presents

several false events by nature.

Detection results

The performance of the detector is analysed by comparing the timestamp reported by the

detector ddetector and the human readings dhuman. For Audio 1 in Fig 4 the cumulative probabil-

ity distribution of the time difference is shown for each channel and in Table 2 the average

error and its variance are shown grouped by the event types present in the dataset. One can

observe that the detectors in channels ch4 and ch5 perform poorly for front wall and racquet

events. When estimating the position discarding one of or both of these channels will enhance

the precision of the localization. However, for floor events, these two channels performed the

Table 1. The content of the audio files.

Class Ch0 Ch1 Ch2 Ch3 Ch4 Ch5 Total

Audio 1 Front wall 165 165 165 165 165 165 990

Racquet 166 166 166 166 166 166 996

Floor 30 30 30 30 30 30 180

Glass 25 25 25 25 25 25 150

Total 386 386 386 386 386 386 2316

Audio 2 Front wall 100 109 108 110 107 111 645

Racquet 112 112 113 110 109 99 655

Floor 85 70 75 19 115 11 375

Glass 46 20 24 15 62 11 178

False event 227 274 254 264 456 147 1622

Total 570 585 574 518 849 379 3475

The count of events in Audio 1 and Audio 2 broken down for each class and each channel. In total 5791 events have been labeled.

https://doi.org/10.1371/journal.pone.0194394.t001
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best along with channel ch2. For glass events the smallest deviations were measured on chan-

nels ch2, ch3 and ch5.

In Table 3 the error statistics for dataset Audio 2 is shown. Intensive events, like front wall

impacts, can be detected precisely, whereas the detection of milder sounds like a floor or glass

impact is less accurate.

The false discovery and the false negative rate of the detector were examined on Audio 2.

False positives are counted if detector signals for a false event, and false negatives are the miss-

ing detections. The results are summarised in Table 4.

Classification results

Approaching the problem at first and to use as much information as possible to teach the neu-

ral networks a large training set was constructed of the union of the detections of all the six

channels. However, this technique gave poorer results than treating all the channels separately.

Fig 4. The error of the detector. The detection error is defined as the difference between the timestamps generated by

the module and read by a human.

https://doi.org/10.1371/journal.pone.0194394.g004

Table 2. The class and channelwise error of the detector.

Front wall Racquet Glass Floor

ch0 9.6 ± 46.0 -5.8 ± 63.7 22.1 ± 33.6 38.3 ± 81.3

ch1 3.1 ± 1.9 -9.3 ± 130.6 88.4 ± 42.8 12.0 ± 15.8

ch2 3.5 ± 5.4 21.3 ± 129.3 7.7 ± 6.8 7.8 ± 10.9

ch3 3.0 ± 1.9 7.3 ± 39.9 9.7 ± 23.2 33.1 ± 63.4

ch4 221.4 ± 476.5 116.4 ± 401.3 31.0 ± 55.2 5.7 ± 16.5

ch5 210.8 ± 512.3 23.5 ± 136.2 7.7 ± 26.6 2.4 ± 2.1

The error of the detector algorithm is measured in samples for the various classes and all channels. The sampling rate is 96 kHz (1 sample� 0.01 ms).

https://doi.org/10.1371/journal.pone.0194394.t002
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The different settings of the microphones and the distinct acoustic properties of the squash

court at the microphone positions are found to be the reasons of that phenomenon.

Eight-fold cross-validation [20] was used on the datasets to evaluate the performance of the

classifiers. Three measures are investigated closer: the accuracy, the precision and the recall.

Accuracy (in Fig 5) is the ratio of correct classifications and the total number of cases exam-

ined (
ntpþntn

n ). Precision (in Fig 6) is the fraction constrained to the relevant cases (
ntp

ntpþnfp
). Recall

(in Fig 7) is the fraction of relevant instances that are retrieved (
ntp

ntpþnfn
).

Table 3. Classwise error of the detector.

Class Audio 1 Audio 2

Front wall 4.8 ± 23.3 6.9 ± 19

Racquet 3.4 ± 99.8 107 ± 85

Floor 38.0 ± 141.1 125 ± 149

Glass n.a. 183 ± 173

The statistics of the dataset Audio 1 is calculated for 660 events for each class excluding Floor events, counting 24

pieces. For Audio 2 200 events were available for each class. The sampling rate is 96 kHz (1 sample� 0.01 ms).

https://doi.org/10.1371/journal.pone.0194394.t003

Table 4. Performance of the detector.

False alarm Ch0 Ch1 Ch2 Ch3 Ch4 Ch5

FDR 39% 47% 44% 51% 54% 39%

FNR 16% 24% 22% 38% 5% 43%

False Discovery Rate (FDR:
nfp

ntpþnfp
) and False Negative Rate (FNR:

nfn
nfnþntp

) of the detector based on 3475 events.

https://doi.org/10.1371/journal.pone.0194394.t004

Fig 5. The classifiers’ accuracy. The classwise accuracy of each channel is presented in T1 (blue) and T2 (red) input

sets. Front wall classification gives high accuracy on all channels in both sets. It is interesting to observe that floor

classification is more accurate in input T2. Racquet classification performs best on channel 2 in both sets.

https://doi.org/10.1371/journal.pone.0194394.g005
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Table 5 summarises the results of the best classifiers for each class. It can be seen that the

classification of the front wall and the racquet events is reliable. However, the precision and

the recall of floor and glass events are poor. The reason for it is that these classes are under-rep-

resented in the data sets. Whenever x, an unseen sample comes, the best classifiers of each

Fig 6. The classifiers’ precision. The classwise precision of each channel is presented in T1 (blue) and T2 (red) input

sets. Front wall classification gives high precision in input T1. The precision of floor classification is low. Racquet

classification still performs best on channel 2. The precision of glass classification is only acceptable on channel 4.

https://doi.org/10.1371/journal.pone.0194394.g006

Fig 7. The classifiers’ recall. The classwise recall of each channel is presented in T1 (blue) and T2 (red) input sets. The

performance of front wall classification is reliable. The recall of racquet classification is high on channels 1 and 2 in

both sets. However, the performance of floor and glass classifications is low.

https://doi.org/10.1371/journal.pone.0194394.g007
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class are applied on the new element. The prediction of the class label ŷ to which x belongs to

is computed by the following formula:

ŷ ¼
arg max

k2C

fkðxÞ � cutk

1 � cutk

preckP
i2C preci

� �

; 9k : fkðxÞ > cutk

false event; otherwise

8
><

>:

where C is the set of class labels without the class of false events and fk(x), cutk and preck are

the confidence, the cutoff value and the precision of the best classifier in class k respectively.

Fig 8 depicts the combined output generated by the detector and the classifier modules. A

1.77 seconds long segment of channel 1 audio samples are grabbed from Audio 2. Detections

and resolved classes are also shown. From the snapshot one can observe the different intensi-

ties of the events. Generally the change in the ball’s moment happens when a racquet or a front

wall impacts and the sample amplitudes are higher, whereas floor and glass events tend to gen-

erate lower intensity and are harder to detect.

Localization results

Based on the geometry of the court, the placement of the microphones and using the localiza-

tion technique detailed in this study for each set of detection timestamps the 3-d position of

the source of the event can be estimated. In case not all source channels provide a detection of

the event localization is still possible. Four or more corresponding timestamps will yield a 3-d

estimate, whereas with three timestamps the localization of events constrained on a surface

(e.g. planes like wall or floor) remains possible.

In Fig 9 the located events present in dataset Audio 1 are shown. In this measurement sce-

nario the player was asked to hit different target areas on the front wall. It was a rapid exercise,

as the ball was shot back at once. Only a few times the ball hit the floor, most of the sound is

composed of alternating racquet and front wall events. In Fig 10 the front wall events are

shown. The target areas can be seen clearly, and also it is visible the spots scatter a little more

Table 5. The classwise performance of the best classifiers.

Class Channel Input Acc Prec Rec

Front wall ch4 T1 0.98 0.93 0.88

Racquet ch2 T1 0.94 0.81 0.81

Floor ch4 T2 0.88 0.53 0.7

Glass ch0 T2 0.88 0.63 0.5

https://doi.org/10.1371/journal.pone.0194394.t005

Fig 8. Labelled audio signal. 1.77 second long samples from channel ch1 in Audio 2. Detected timestamps and the event classes are marked.

https://doi.org/10.1371/journal.pone.0194394.g008
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Fig 9. The position of impacts. Visualize the localized events embedded in 3-d.

https://doi.org/10.1371/journal.pone.0194394.g009

Fig 10. Front wall impacts. Gray squares embrace the eight target areas.

https://doi.org/10.1371/journal.pone.0194394.g010

Audio-based performance evaluation of squash players

PLOS ONE | https://doi.org/10.1371/journal.pone.0194394 March 26, 2018 13 / 16

https://doi.org/10.1371/journal.pone.0194394.g009
https://doi.org/10.1371/journal.pone.0194394.g010
https://doi.org/10.1371/journal.pone.0194394


on the left. The reason could be the player being right handed or the fact the target area was hit

later during the experiment and the player showed tiredness.

Measuring the error of the localization method is not straight forward because the ball hit-

ting the main wall does not leave a mark, where the impact happened and there was no means

to take pictures of these events. Taking advantage of the geometry of the front wall an error

metric can be defined for front wall events. The error δ is defined by the offset of the approxi-

mated location from the plane of the front wall. In Fig 11 the error histogram is shown. The

mean of δ should vanish and the smaller its variance the better the framework located the

events. From this exercise one can read the standard deviation is σ(δ)< 3 cm, which is smaller

then the size of the squash ball.

Another way to define the error is based on relying on human readings of the events. In the

dataset Audio 1 all of the sound events were marked by human as well as by the detector algo-

rithm. Localizing the events using both inputs the direct position difference can be investi-

gated. The mean difference between the positions is 11.8 cm and their standard deviation is

39.9 cm.

Discussion

Our results support that in sports, where the relevant sound patterns are distinguishable, care-

ful signal processing allows the localisation of shots. The described system is optimized for

handling events and as a consequences the real-time analysis of data is possible, which is

important to give an instant feedback. The framework can be extended to provide higher level

statistics of events such as the evolution of shots types. From the wide range of possible appli-

cations we highlight three use cases. Firstly, during a match the players can get to know their

precision in short time and if is necessary they can change their strategy. Secondly, during

practice coaches can track the development of the players hit accuracy. Or thirdly, certain

Fig 11. The front wall offsets. The distribution of the offset δ from the front wall (σ(δ)� 0.02 m).

https://doi.org/10.1371/journal.pone.0194394.g011
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exercises can be defined, which can be automatically and objectively evaluated, without the

need for the coach be present during the exercise.

In this study our framework was adopted to squash. In theory it can be extended to any

other sports where the stereotypical events are associated with a specific sound pattern. In

those applications, where typical patterns are present but the surroundings introduce signifi-

cant amount of noise, a solution could be to use additional microphones with possibly special

characteristcs to record the noise allowing to subtract its contribution from all other input sig-

nals. For example in tennis games played in the open field.

Ethics statement

In this study human participants were instructed to carry out specific squash excercises. Partic-

ipants were informed beforehands about the fact that during the excercise the sound is to be

recorded. During the excercises the sound emerging mainly from the ball impacts was

recorded. The recording itself do not contain any sensitive information. Along with the raw

recordings no additional information about the participant is saved or published. Participants

do not object that these recordings are made public.
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Visualization: Katalin Hajdú-Szücs, József Stéger.
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References
1. Broadbent DP, Ford PR, O’Hara DA, Williams AM, Causer J. The effect of a sequential structure of

practice for the training of perceptual-cognitive skills in tennis. PLOS ONE. 2017; 12(3):1–14. https://

doi.org/10.1371/journal.pone.0174311

2. OBE NM. Current applications of performance analysis techniques in squash. Science of Sport:

Squash. 2016;.

Audio-based performance evaluation of squash players

PLOS ONE | https://doi.org/10.1371/journal.pone.0194394 March 26, 2018 15 / 16

https://doi.org/10.1371/journal.pone.0174311
https://doi.org/10.1371/journal.pone.0174311
https://doi.org/10.1371/journal.pone.0194394


3. Williams BK, Hunt GB, Graham-Smith P, Bourdon PC. Measuring squash hitting accuracy using the

‘Hunt squash accuracy test’. In: ISBS-Conference Proceedings Archive; 2014.

4. Barris S, Button C. A review of vision-based motion analysis in sport. Sports Medicine. 2008; 38

(12):1025–1043. https://doi.org/10.2165/00007256-200838120-00006 PMID: 19026019
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