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Abstract
It has been long debated how the so called cognitive map, the set of place cells, develops in rat hip-

pocampus. The function of this organ is of high relevance, since the hippocampus is the key component

of the medial temporal lobe memory system, responsible for forming episodic memory, declarative

memory, the memory for facts and rules that serve cognition in humans. Here, a general mechanism

is put forth: We introduce the novel concept of Cartesian factors. We show a non-linear projection of

observations to a discretized representation of a Cartesian factor in the presence of a representation of a

complementing one. The computational model is demonstrated for place cells that we produce from the

egocentric observations and the head direction signals. Head direction signals make the observed fac-

tor and sparse allothetic signals make the complementing Cartesian one. We present numerical results,

connect the model to the neural substrate, and elaborate on the differences between this model and other

ones, including Slow Feature Analysis [17].
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1 Introduction
What is mammalian intelligence about? What are the key components necessary for the scientific and

technological progress of mankind in the last 20,000 years or so? Are those very special to the human

race, or for primates, or for mammals? Recent review suggests that the basic mechanisms, or algo-

rithms are similar in rats and humans [8]. In their paper, Buzsáki and Moser propose that planning has

evolved from navigation in the physical world and that navigation in real and mental space are funda-

mentally the same. They also underline the hypothesis that the entorhinal cortex and the hippocampus,

the hippocampal entorhinal complex (EHC) support navigation and memory formation.

The importance of this complex was discovered many years ago [44]. Now, it is widely accepted

that the EHC is responsible for episodic memory, see, e.g., [46] and [35] for an earlier review and

for a recent one, respectively. The intriguing puzzle is that people are able to describe autobiographic

events, can discover rules, in spite of the many dimensional inputs, such as the retina (millions of

photoreceptors), the ear (cca. 15,000 inner plus outer hair cells), the large number of chemoreceptors as

well as proprioceptive, mechanoreceptive, thermoceptive and nociceptive sensory receptors. This looks

like an impossible mission, since the number of the sensors influence the size of the state space observed

in the exponent and make it enormous. This number is gigantic even if the basis of exponent is only

two. How is it possible to remember for anything in such a huge space?
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An illuminating observation to us is the fact that the brain develops low dimensional topographic

maps manifested by retinotopy in the visual system, tonotopy in the auditory system, somatotopy in the

somatosensory system, among many others. Such maps are related to some metric of the sensed space,

being visual, auditory, or body related. The dimensionality of the maps are low unlike the number of

the sensors that give rise to the map. One may say that (i) the representation, i.e., the topographic map,

discretizes a low dimensional variable, (ii) both the space and the actual state are described by such

variables, and (iii) the variables are like Cartesian coordinates at different cognitive levels, examples

including the ‘where’ and ‘what’ system, or, the form and the color of an object, or, the face and facial

expressions, or, the position and the direction of an animal in the world among others. In turn, we

distinguish two factor types

Type 1 factors: These factors make no (or minor) assumptions on each other. Non-negative matrix

factorization (NMF), for example, originates from chemistry: it is used in mass spectrometry

and radiology among other fields, where absorbing or radiating components sum up. In a given

environment and for a given detector system, the presence of different Radon isotopes depends

on the environment and the detector, but they do not influence each others spectrum except that

to a good approximation they sum up.

Type 2 factors: These factors assume each other and they are supposed to characterize objects and

episodes. For example, texture, shape, weight, material components are all relevant when con-

sidering the value of a sword like a Damascus Khanjar. Nonetheless, the set of such factors

is insufficient for providing a full description of the state of a sword; the state of the atoms or

molecules. On the other hand, these Cartesian factors can give a fairly good and highly com-

pressed description, suitable for communicating the usage and the value of the sword.

Sensory information brings about two interdependent task types: Information fusion and the related

pattern completion make the first type. For example, when searching for food, the animal may use

either visual information, or smell, or both. Thus, information fusion is about the Cartesian product of

sensory modalities and pattern completion occurs in this product space. This task can be accomplished

efficiently with sparse compressed sensing methods [13] that may have neuronal implications [42]. The

other task is the formation of new, low dimensional maps, at least in a discretized form that are not
having dedicated sensors. This is a kind of abstraction, when irrelevant details, judged from the point of

view of the tasks, are cleaned off.

The concept of numbers is such an abstraction; it eliminates material properties. Two plus two

equals four, no matter if we are concerned with apples or peaches. Such abstractions enable concise for-

mulations for many similar tasks. The world of numbers is one dimensional and material properties are

orthogonal to it, so it is like a coordinate system: quantity is one coordinate and the material substance

is another. We are concerned with such generalized Cartesian factors.

Geometry uses concepts like points and straight lines, disregards physical interactions, which can

be described by a different set of Cartesian factors. Geometry can serve many tasks including the

computation of homing distance [9] and the prediction of the paths of planets. Cartesian coordinates

or concepts are typically low dimensional. In the brain, the computations of Cartesian factors, like

the estimation of homing distance, should be based on high dimensional sensors, including visual and

vestibular information and the representation of novel Cartesian factors that are derived from those.

Laboratory coordinate system also called allothetic representation is the landmark of geometry rep-

resentation. Such representation appears already in rats and supports path planning and navigation,

possibly because it detaches the egocentric direction from the other parameters of the environment. The

allothetic description is robust against certain changes in the environment, e.g., (i) the abstraction can

be used both in light and in dark and (ii) it can be used efficiently in obstacle avoidance, since it is not
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subject to occlusions as opposed to visual observations. In addition, such abstract concepts offer highly

compressed Cartesian description of facts and episodes.

Here, we put forth a novel method for the development of a Cartesian factor. We demonstrate the

method in the derivation of the allothetic representation of the world; we develop a set of direction

independent place cells [38] from sensory information. The set of place cells is called ‘the cognitive
map’ [39], because they can be used in path planning. We will exploit direction sensors called head

direction cells, an allothetic signal (see, e.g.,[53] and the references therein) together with idiothetic vi-

sual information. We will apply deep learning methods in an autoencoder to derive direction insensitive

place cells. Due to the autoencoder part of our model, we can connect our method to the comparator

hypothesis of the hippocampus [58], where place cells are abundant.

Both the mathematical background and the demonstrative examples have relevance in goal oriented

framework and, in part, they have been submitted elsewhere [31]. Here, we review them and embed the

results into the neurobiological context. In turn, our contribution is a meta-level functional model of the

entorhinal-hippocampal neuronal circuits that may shed light to the algorithmic principles behind the

development of discretized low dimensional representations that can support cognition.

The paper is organized as follows. In the next section (Sect. 2), we review related works, including

algorithmic models that can produce place cells and distinct findings in neuroscience that indicate the

required components for developing such cells. Section 3) deals with our computational architecture

capable of developing cognitive maps, while satisfying relevant constraints of neuroscience. Section 4

lists our results followed by the discussion in Sect. 5. Conclusions are drawn in Sect. 6. The Appendix

contains the mathematical details.

2 Related Works

The number of place cell models is considerable. Neural representation of trajectories travelled and the

connectivity structure developed during such paths have been suggested as the method for place cell

formation [41]. Sensory information includes external cues and internally generated signals. They are

fused to develop place cells in [2]. Place cells can be derived [45] by linear combinations of entorhinal

grid cells [18] and vice versa, neuronal level model can derive grid cell firing from place cell activities

[7]. Time plays the key role in the slow feature analysis model of place cells [17, 43]. Time does not play

a role in the independent component analysis based place cell model, except in the novelty detection

step of the autoencoder of the model [30, 32].

We believe that all of these models, i.e., navigation based models, models based on interaction

between representations, models that search for components that change slowly in time, and models

that consider novelty detection, have their merits: the development of low-dimensional representation

of Cartesian factors is hard and all possible clues should be exploited for developing them. Beyond

learning, the different mechanisms can be used during task execution: navigation in partially observed

environments, like the Morris maze or when in dark, can be supported by temporal integration, or

novelty detection may support the separation of a rotating platform from remote, non-rotating cues

[48, 49].

Another point of reference comes from neuroscience indicating that both the entorhinal grid repre-

sentation and the place cell representation of the hippocampus depend strongly on the vestibular infor-

mation. It has been a long standing question what comes first, namely if the idiothetic head direction

representation, the representation of place cells, or the representation of grid cells is the prerequisite of

the others. For example, grid cells require hippocampal input [4]. There are indications [60] that head

direction cells may be critical for grid cell formation, but it may not be so for place place cells since

those can be controlled by environmental cues, like visual landmarks. However, very recently, it turned
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out that the disruption of head direction cells can impair grid cell signals and are thus crucial for the

formation of the allothetic representation including both place cells and grid cells [59].

It is clear that information both from the environment and self-motion should be combined for an

efficient and precise neural representation of space [16] and that different sensory signals can serve the

purpose. Object recognition is similar in many respects;, it can exploit different mechanisms such as

stereoscopic information, structure from motion, shape from shading, gradient of the optica texture, and

occlusion contours, for example, all being important for disambiguation of the visual information under

different conditions [55].

Due to the critical nature of the vestibular input, our goal is to derive place cells under the assumption

that only this component of the Cartesian representation, namely the egocentric direction relative to an

allothetic coordinate system is available and we ask if the allothetic representation of space can be

derived by using only (i) the egocentric direction and (ii) the egocentric visual information.

3 Methods

3.1 Autoencoder
An autoencoder is the unsupervised version of the Multilayer Perceptron (MLP) and may have deep
versions [22, 57]. For the sake of general formulation, the deep version is described below although

deep studies are limited to a single case.

Consider a series of non-linear mappings (layers) of the form:

H = fN

�
· · · f2

�
f1(XW1)W2

� · · ·WN

�
, (1)

where X ∈ R
I×J is the matrix of I inputs of size J , Wn ∈ R

Qn−1,Qn are parameters with Q0 = J ,

and fn are non-linear almost everywhere differentiable element-wise functions (n = 1, . . . , N ; N ∈ N).

Then H ∈ R
I×Q is called the feature map (QN = Q). Typically, one takes two such mappings with

reversed sizes — an encoder and a decoder — and composes them. Thereupon one can define a so-

called reconstruction error between the encoder input X and the decoder output �X ∈ R
I×J (normally

the �2 or Frobenius norm of the difference, i.e., 1
2‖X−�X‖2F = 1

2

�
i=1,...,I

�
j=1,...,J (Xi,j − �Xi,j)

2)

and try to find a local minimum of it in terms of parameters Wn after random initialization, by taking

advantage of a step-size adaptive mini-batch subgradient descent method [14, 61, 28]. The non-linearity

can be chosen to be the rectified linear function fn(x) = x · I(x > 0) for x ∈ R [36, 11] to avoid the

vanishing gradient problem [24, 25], where I designates the indicator function.

3.2 Spatial and Lifetime Sparsity
Deep Autoencoders are often used as a pretraining scheme [15] or as a part of supervised algorithms

[40], but they lack the ability to learn a meaningful or simple data representation without prior knowl-

edge [50]. To obtain such a description, one might add regularizers or constraints to the objective

function [20, 3], or employ a greedy procedure [56, 12]. It is well known that minimizing the sum of

�2 norms of parameters Wn can reduce model complexity by yielding a dense feature map, and sim-

ilarly, the �1 variant may result in a sparse version [54, 37]. An alternative possibility is to introduce

constraints in the non-linear function fn. For example, one may utilize a k-sparse representation by

keeping solely the top k activation values in feature map H , and letting the rest of the components zero

[33]. This case, when features, i.e., the components of the representation, compete with each other is

referred to as spatial sparsity. Input indices of the representation may also go up against each other and

this case is called lifetime sparsity [34].
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3.3 Problem Formulation

We assume that a latent random variable Z (e.g., the discretized allothetic representation of the state,

that is, the place cells) and an observed random variable Y (e.g., the head direction, that is, a compass)

are continuous and together they fully explain away – by means of saved memories – another observed

binary random variable X (e.g., the egocentric view with pixel values either one or zero taken in the

direction of the head). The ranges of Z and Y are supposed to be grid discretized finite r- and one-

dimensional intervals, respectively. For more details, see Fig. 1 and the Appendix.

Figure 1: Numerical experiment. (a): input is concatenated from sub-vectors, which belong to differ-

ent allothetic directions. A given index corresponds to the same box, the ‘remote visible cue’, in all

sub-vectors. The value of the a component of a sub-vector is 1 (0) if the box is visible (non-visible)

in the corresponding direction. Three directions are visible (green). Some boxes may be present in

neighboring sub-vectors, since they are large. (b)-(d): the ‘arena’ from above with the different boxes

around it. Shaded green areas in (b), (c), and (d), show the visible portions within the field of view at

a given position with a given head direction. Insets show the visual information for each portion to be

transformed to 1s and 0s in the respective components of the sub-vectors. Components of out-of-view

sub-vectors are set to zero.

3.4 Demonstration

For our study, we generated a squared ‘arena’ surrounded by d = 150 boxes (Fig. 1). The ‘arena’ had

no obstacles. Boxes were placed pseudo-randomly: they did not overlap. The ‘arena’ was discretized

by an M ×M = 36× 36 grid. From each grid point and for every 20o, a 28o field of view was created

(i.e., L = 360o

20o = 18, overlap: 4o between regions), and the visibility — a binary value (0 for occlusion

or out of the angle of view) — for each box was recorded, according to Eq. (2); we constructed a total

of I = 37 · 37 · 18 = 24,642 binary (x(m,l)) vectors.

These vectors were processed further. Beyond the actual direction of the center of the viewing angle,

we introduced some degree of closeness about the input regarding the direction, but not the position: we

varied the viewing angle between 28o and 360o. Formally, for various experiments, we defined masks

Vi,· summing to v = 1, 3, . . . , 17, 18, for which we carried out the concatenation method (see, Fig. 2

below and Eq. (3) in the Appendix): for each visible 20o sector, while for all non-visible sectors, an

all-zero vector were appended. Rr. The procedure is summarized in Fig. 2.

In some experiments we normalized the inputs to unit �2 norm for each d = 150 dimensional

components, provided that at least one of the components differed from zero. This is called normalized

experiment. We used spatial sparsification with k = 1 and lifetime sparsification with p = 3.33% and

p = 6.66%. In the error of the autoencoder we considered two options: (a) error of the full output and

(b) error only on the visible components that belonged to the viewing angle as in Eq. (4). This latter

is called masked experiment. We used them in combination. We also tried 3 and 5 layer autoencoders,
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Figure 2: General architecture. In the numerical experiments the notations correspond to the following

quantities: Z latent positions, Y discretized ‘compass’ values. Input to the network: red: not visible,

green: visible, i.e., the viewing angle range of the viewing direction and some neighboring viewing

angle ranges. Each viewing angle range provides inputs about all boxes visible within that range. No

topography is assumed within the ranges; box indices are ones if they are visible and zero otherwise.

The full input equals to the ‘No. of boxes × No. of viewing angle ranges’.

with the middle layer representing the latent variables.

The size of the middle layer was always Q = 30. This means that spatial (i.e., latent component-

wise) sparsity gave rise to 3.33% lifetime sparsity. On the other hand, p = 3.33% lifetime sparsity was

effectively larger than 3.33% since it was possible that none of the latent unit was selected for a given

input (and thus all of them were set to zero), when backpropagation became ineffective. The same holds

for p = 6.66% lifetime sparsity, which, on the average, would give rise to 1, 2, 3, or more non-zero

latent units with average above 2. The sizes of the hidden layers were spaced linearly between 2,700
and 30 for the 5 layer autoencoder (2700, 1335, 30, 1335, 2700).

4 Results
The dependencies of the responses in the hidden representation vs. space and direction are shown

in Fig. 3 and Fig. 4. Linear responses of randomly selected latent units for different algorithms are

depicted in Fig. 3, illustrating the extent that the responses were localized. Figure 4 shows the direction

(in)dependence of the responses. For each input, we chose the highest activity latent component and

in each position we computed the number of directions (out of the 18 possible) that a neuron was the

winner in the dataset. We computed these numbers for all units, selected the largest values at each

position and combined them in a single figure that we color coded (Fig. 4): Black color at one position

means that unit won in all angles at that position. The lighter the colors, the smaller the number of

winning directions is.

One should ask (i) if the linear responses are local and activities far from the position of the peak

activity are close to zero; (ii) if the number of dead latent units is small, (iii) if responses are direction

independent, that is, if we could derive the discretization of space in allothetic coordinates, the comple-

mentary component of the egocentric direction. We found that spatial sparsity with the 3 layer network

and the 5 layer network with dense 2nd and 4th layers rendered the output of some or sometimes all

hidden units to zero (Table 1). On the othe hand, lifetime sparsity with the 5 layer network produced

excellent results. Lifetime sparsity p = 6.66% can still produce place fields. Note that local responses

appear without the mask, but only for very large viewing angles. For the sake of completeness, we also

provide the ICA responses in Fig. 3. We discuss the relevance, the limitations and the promises below.
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Figure 3: Linear responses of individual latent units selected randomly: we chose neuron with index 2

from the latent layer. ICA: values may take positive and negative values. Other experiments: all units are

ReLUs, except the output, which is linear. Color coding represents the sum of responses for all directions

at a given point. SP1: spatial sparsity with k = 1, LT3.3%: lifetime sparsity = 3.3%, Norm: for each

150 components, the �2 norm of input is 1 if any of the components is non-zero, Mask: autoencoding

error concerns only the visible part of the scene, DL: dense layer. ‘Norm-LT3.3%-LT3.3%-Mask’ means

normed input, masked error, 5 layers: input layer, 3 layers with LT sparsity equals 3.3%, output layer.

Table 1: Dead neuron count: number of non-responsive computational units.

Field of view [deg]

28 68 108 148 188 228 268 308 348 360

Norm-SP1-Mask 2 0 5 5 10 12 16 18 15 18

LT3.33% 0 0 0 0 0 2 2 6 8 9

Norm-LT3.33% 0 0 0 1 1 3 2 4 9 11

Norm-LT3.33%-Mask 0 0 0 0 0 0 1 2 7 11

Norm-LT6.66%-Mask 0 0 0 0 0 0 1 4 13 13

Norm-DL-LT3.33%-Mask 0 3 1 29 30 30 30 30 30 30

Norm-LT3.33%-LT3.33%-Mask 0 0 0 0 0 0 0 0 0 0

5 Discussion

We elaborate on two aspects below. First, we consider temporal dynamics, integrated neural implemen-

tations, and control. Then, we relate our algorithm to the neural substrate.
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Figure 4: Angle independence. Notations are the same as in Fig. 3. The highest activity (winning) unit

was selected for each input at each position in each direction. We counted the number of wins at each

position for each unit and selected the largest number. Results are color coded. Black (18): there is a

single winner for all angles at that position. White (0): no response at that point from any neuron in any

direction. Values between 1 and 17: the darker the color the larger the direction independence for the

best winner at that position.

5.1 General consideration

Our goal was to find a discretization of hidden Cartesian coordinates, an abstraction, provided that

we already have the complementer one. Due to the nature of such coordinates, the one that we have

must have metrics. The abstraction that we are after is similar to geometrical abstractions or algebraic

abstractions: they cannot be sensed directly, so they are latent and they are Cartesian, i.e., they are

like coordinates in an abstract space. In turn, they promote highly compressed description, since in

problem solving the may eliminate irrelevant variables, an example being path planning that can be

accomplished in an allothetic abstraction. This can be of high importance for goal-oriented activities,

since reinforcement learning scales with the number of variables in the exponent [27, 5, 52] and the

abstraction decreases that exponent.

Any metrics may show up in the temporal domain or, alternatively, it may manifest itself implicitly,

via discretized spatial information (such as neighboring viewing ranges). Temporal information has been

exploited by the SFA procedure [17]. It was found that in realistic conditions that include large viewing

angles, direction independent place fields can be formed [17, 43] by means of temporal information.

Here, we wanted to neglect temporal information and, instead, to include some metrical one. In our

demonstration, we included the Cartesian (metrical) factor; the head direction. We could go down to

viewing angle of about 100o, or so. Further improvements can be expected for deeper networks. We

found in our simulations that for deeper networks sparsity should be kept at least for some of the layers.

It is worth noting that we are not opposing the exploitation of temporal information, but it may not

be available for every type of data. Temporal information, if available, should improve the capabilities.

In this respect, our aim was to develop a general cognitive mechanism for developing Cartesian factors

and the demonstration was inspired by the neural representation found in the entorhinal-hippocampal

complex of rodents, where the temporal information might lower the minimal viewing angle needed for

the formation of place cells further. Our model predicts that rats can develop place cells with view-
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266



ing angles much lower than 3000, which they have. Such large viewing angles may be necessary for

observations, but they are not needed for the development of the cognitive map.

We highlight that high quality reconstruction is corrupted without the mask, i.e. if the autoencoder

has to match the zero inputs, too. Large viewing angles (cca. 300o) were needed for developing direction

independent representation in our numerical experiments for this case (see rows in Fig. 4 not having

‘Mask’ marks).

Consider, path planning. Place fields uncover neighboring relations in linear mode by computing the

correlations between the activities. The neighboring graph can be used for navigation in real and mental

space, i.e., for control and for path planning. The neural architecture that can accomplish integrated

control and path planning and suits place fields formulation has been described some years ago, see,

e.g., [51] and the references therein.

Lifetime sparsity seems important in the development of place fields, whereas it can not be applied

in real time. Real time operation requires spatial sparsity, or possibly some thresholding, or even the

linear mode, since responses are fairly local for the linear mode for lifetime sparsity p = 6.66% and for

the 5 layer network. Thresholded and non-thresholded modes can both uncover the neighbor relations

supporting path planning. In turn, two types of operations may be favorable, one for learning off-line

that enables lifetime sparsity, and one for developing the neighboring relations that can work real-time.

Before turning to the features that can be related to the neural substrate, we mention that a trans-

formation of the result of a path planning procedure accomplished in an abstract allothetic coordinate

system to idiothetic control is needed when the path is being traversed. This transformation is similar

to the symbol grounding problem (for a review, see [21]) at each instant during execution with the spe-

cific property that the representation abstracted can have a metric. This specific feature, however, is not

exploited in our algorithm, neither through time, nor through neighboring relations.

5.2 Relating structure and function: some features of the neural substrate
Our architecture requires cells that represent the direction of the head. Such head direction (HD) cells

have been found in the brain. For a recent review, see [23] and the cited references. Our candidate is the

so called ‘head direction pathway’ [1] that passes through the medial entorhinal cortex before reaching

the hippocampus.

We were able to develop direction independent locally responding cells. Cells with similar properties

are called place cells and they can be found in the CA1 and CA3 regions of the hippocampus, in the

dentate gyrus, the parasubiculum the entorhinal and postrhinal cortices (see, [6] and the references

therein).

The model of this paper needs neurons that can multiply and can produce conjunctive representa-

tions, e.g., between the visual cues and the head direction cells. There are at least three candidates for

such computations

1. Deep networks should be able to implement the multiplicative function

2. Logical operations, such as the AND operation as well as others are made possible by synchro-

nized synaptic inputs, called coincidence detection (for a recent review, see [47])

3. The interplay between distal and proximal dendritic regions when the proximal input enhances

the propagation of the distal dendritic spikes can also support a multiplicative function [29, 26].

The EHC has sophisticated interconnections between distant and proximal regions [19] and this prop-

agation enhancing mechanism listed above as the last option is our proposed candidate mechanism for

place cell formation: We exploited this multiplicative feature in our representation by using the product

space and using masking.
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267



It has been suggested that the autoencoder mechanism of Vinogradova [58] should be modified: it

is the full EHC that works as an autoencoder [30, 10]. We note that novelty detection can be used for

the development of direction insensitive grids [32], a subject that we have not explored in the present

studies. Temporal information with slow feature analysis have been used for developing place cells,

head-direction cells, and spatial-view cells [17, 43]. These mechanisms may promote the learning of

Cartesian factors.

6 Conclusions
One of the mysteries of intelligence is the development of novel concepts that are not directly sensed.

For example, the concept of an infinitesimal point, a straight line, or the concept of numbers are such

creatures. Such features that we call Cartesian factors originate from generalizations and enable one to

solve complex problems in lower dimensional spaces. An example is the allothetic representation. It is

of high relevance since path planning is simplified in such representation. It is known that some neurons

in the brains of rats form allothetic codes; they are the place cells of the hippocampus.

We put forth a novel method for the development Cartesian factors and demonstrated it via the

forming of place cells. We exploited the complementary information, the head direction cells. Our

proposed cognitive mechanism does not work in the absence of such information. We note that upon

destroying the vestibular system, which is critical for having head direction cells, no place cell is formed

[53, 60].
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Appendix: Problem Formulation
Assume that a latent random variable Z and an observed random variable Y are continuous and to-

gether they fully explain away another observed binary random variable X . The ranges of Z and Y
are supposed to be grid discretized finite r- and one-dimensional intervals, respectively. We denote the

resulting grid points by (z(m), y(l)) ∈ R
r × R; l = 0, . . . , L, m = 1, . . . , (M + 1)r, L,M, r ∈ N.

The indices m = 1, . . . , (M + 1)r are supposed to be scrambled throughout training (i.e., we assume

no topology between z(m)). Then observation x(m,l) ∈ {0, 1}d is generated by a highly non-linear

function g : Rr × {1, . . . , L} → {0, 1}d from grid point z(m) and grid interval [y(l−1), y(l)) as

x(m,l) = g(z(m), l) (2)

for m = 1, . . . , (M + 1)r; l = 1, . . . , L. For each fixed m, one is given masks Vi,· ∈ {0, 1}L;�L
l=1 Vi,l = v ∈ N indexing pairs of the form (l,x(m,l)), where i = 1, . . . , I is a global index.

Provided such a sample from Y and X , we aim to approximate the discretized version of Z.

We formulated the above problem as a multilayer feedforward lifetime sparse autoencoding [34]

procedure with input matrix X ∈ {0, 1}I×J utilizing two novelties: concatenated input vectors and

a masked loss function are motivated by the input structure. In order to construct the inputs Xi,·;
i = 1, . . . , I of size J = L · d, we coupled each v-tuple of x(m,l) vectors for fixed m into a single

block-vector using the Vi,· values as follows:

Xi,· =
�
Vi,1 · x(m,1), . . . ,Vi,l · x(m,l), . . . ,Vi,L · x(m,L)

	
. (3)
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Then, we used the �2 reconstruction error as the loss, but on a restricted set of elements, namely, on the

v non-zero blocks for each input:

l(X, �X,V ) : =
1

I



i=1,...,I
j=1,...,J

Vi,� j−1
d +1� · (Xi,j − �Xi,j)

2 (4)

where �X denotes the output of the decoder network. Finally, a sparse non-linearity was imposed on

top of each encoder layer, which selected the k percent topmost activations across one component. We

applied both lifetime [34] and spatial sparsification [33]. Multilayer autoencoders with rectified linear

units, k = 1 spatial sparsity, p%-sparse lifetime sparsity, and linear decoder output layer make the

non-linear units of the network.
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