
Acta Univ. Sapientiae, Informatica 8, 2 (2016) 216–240

DOI: 10.1515/ausi-2016-0010

Internal quality evolution of a large test

system–an industrial study

Attila KOVÁCS
Eötvös Loránd University

email: attila.kovacs@inf.elte.hu

Kristóf SZABADOS1

Eötvös Loránd University
email:

kristof.szabados@ericsson.com

Abstract

This paper presents our empirical observations related to the evolu-
tion of a large automated test system. The system observed is used in
the industry as a test tool for complex telecommunication systems, it-
self consisting of more than one million lines of source code. This study
evaluates how different changes during the development have changed
the number of observed Code Smells in the test system. We have moni-
tored the development of the test scripts and measured the code quality
characteristics over a five years period.

The observations show that the introduction of continuous integra-
tion, the existence of tool support for quality improvements in itself,
changing the development methodologies (from waterfall to agile), chang-
ing technical and line management structure and personnel caused no
measurable change in the trends of the observed Code Smells. Inter-
nal quality improvements were achieved mainly by individuals intrinsic
motivation. Our measurements show similarities with earlier results on
software systems evolutions presented by Lehman.

Computing Classification System 1998: D.2.2, D.2.9
Mathematics Subject Classification 2010: 68N99
Key words and phrases: code smells; empirical study; software evolution; test systems;
Lehman’s laws; TTCN-3

1Corresponding author

216

http://compalg.inf.elte.hu/~attila/
http://www.elte.hu/
mailto:attila.kovacs@inf.elte.hu
http://www.elte.hu/
mailto:kristof.szabados@ericsson.com


Internal quality evolution of a large test system–an industrial study 217

1 Introduction

Do we really know how to build large test sets? Do we really know how test
systems evolve, how can their development be managed, their quality ensured?

Nowadays the usage of software systems belongs to the everyday life of the
society, yet testing these systems is still a challenging and not really understood
activity. Software helps in navigating to locations, supports communication
with other people, drives the production, distribution and consumption of
energy resources. Software controls companies, trades on the markets, takes
care of people’s health.

To support the testing these systems need, ETSI2 developed the TTCN-33

language, which can be used in testing of reactive systems. By now test systems
developed by ETSI, 3GPP4 and in the industry, have evolved to be comparable
to the tested systems in both size and complexity ([26]). Standardized test
systems were shown to contain design problems similar to those present in
other (C / C++ / Java) systems ([29, 28]).

In this paper we show empirical observations on the evolution of two large
test systems developed in the industry and our measurements on the number
of code smells in them. We ask the following research questions: Was the
number of measured code smells affected by the introduction of Continuous
Integration (RQ1), by tool support for detecting code smells (RQ2), by the
merging of 2 test systems (RQ3), by doing the development using different
methodologies (RQ4), by changing leaders on the project (RQ5) ? Our final
research question is: Do code smells in test systems follow predictable patterns
during the system’s evolution (RQ6) ?

In this study we examine the evolution of TTCN-3 test systems from a soft-
ware quality point of view. In our research we treat test systems as software
products used for testing, rather than tests. We present historical information
on changes in line and project management, development practices, organiza-
tional and technical structures, tool support that happened during their five
years development period. By comparing our measurements with historical in-
formation we show how the evolution could affect the quality of the observed
large scale test system.

2European Telecommunication Standardization Institute
3Testing and Test Control Notation Version 3
43rd Generation Partnership Project



218 A. Kovács, K. Szabados

1.1 Structure of this paper

This paper is organized as follows. In Section 2 we present earlier results re-
lated to this subject. Section 3 contains the history of the studied projects and
the measurement environment. In Section 4 we analyze the measured data and
correlate the measurements to publicly known items. Section 5 presents the
measured results from the enterprise’ point of view (significance of develop-
ment methods, leadership styles, tool support) to emphasize their influences.
Section 6 lists the factors that might be a threat to the validity of our results.
Finally, Section 7 summarizes our findings.

2 Previous work

Before presenting our findings it is necessary to understand the importance
and limitations of code smells, software evolution and the state of how this
knowledge is translated to testing.

2.1 Code smell studies

Code smells were introduced by Fowler [4] as issues that are not necessarily
technically incorrect codes and do not disable the program from functioning,
but might indicate architectural problems or misunderstandings, issues which
are very hard to detect. Since then, the initial list of 22 code smells has been
extensively extended (see e.g. [33, 19, 21]), and code smells have become a
metaphor for software design aspects that may cause problems during further
development and maintenance of software systems.

Empirical work on code smells revealed that smelly codes in software sys-
tems are changed more frequently than other codes ([9, 22]). Moser at al.
found [20] that in the context of small teams working in volatile domains (e.g.
mobile development) correcting smelly code increased software quality, and
measurably increased productivity.

On the other hand the value of code smells has been questioned by many.
Yamashita et al. found [37] that only 30% of the maintenance problems were
related to files containing code smells. Sjøberg at al. found [25] that none of the
code smells they investigated was significantly associated with increased main-
tenance effort when adjusted by file size. Macia et al. observed [18] that more
than 60% of the automatically detected code anomalies were not correlated
with architectural problems.

In order to understand software aging better the lifespan of code smells was



Internal quality evolution of a large test system–an industrial study 219

studied by many (see e.g. [23]). Chatzigeorgiou et al. published [1] that code
smells are usually introduced with new features, accumulating as the project
matures, persisting up to the latest examined version. The disappearance of
smell instances was usually the side effect of maintenance works, not the re-
sult of targeted correcting activities. Peters and Zaidman concluded [24] that
developers might be aware of code smells, but are usually not concerned by
their presence. In each system inspected there were only one or two developers
who resolved code smell instances intentionally, or resolved significantly more
instances than others (possibly unintentionally).

In their 2013 paper Yamashita et al. [35] conducted a survey on 85 soft-
ware professionals in order to understand the level of knowledge about code
smells and their perceived usefulness. They found that 32% of the respondents
did not know about code smells, nor did they care. Those who were at least
somewhat concerned about code smells indicated difficulties with obtaining
organizational support and tooling. In their empirical studies ([34, 36]) they
observed that code smells covered only some of the maintainability aspects
considered important by developers. They also observed, that developers did
not take any conscious action to correct bad smells that were found in the
code.

2.2 Software evolution studies

Lehman [14] described the evolution of software as the study and management
of repeatedly changing software over time for various reasons.

Out of Lehman’s laws of software evolution the following are the most rel-
evant for this study [16]:

• Law 2: “As an E-type5 system is evolved its complexity increases unless
work is done to maintain or reduce it”

• Law 4: “Unless feedback mechanisms are appropriately adjusted, average
effective global activity rate in an evolving E-type system tends to remain
constant over product lifetime”

• Law 5: “In general, the incremental growth and long term growth rate
of E-type systems tend to decline”

• Law 8: “E-type evolution processes are multi-level, multi-loop, multi-
agent feedback systems”

Lehman and Ramil [15], and Lawrence [10] found that commercial systems
have a clear linear growth, viewed over a number of releases. Izurieta and

5systems actively used and embedded in a real world domain.



220 A. Kovács, K. Szabados

Bieman found [6] that Open Source Software products FreeBSD and Linux
also appear to grow at similar rates.

Turski showed ([32]) that the gross growth trends can be predicted, with a
mean absolute error of order 6%, with

Si+1 = Si + ê/S2i , (1)

where Si is the system size at the i-th measurement, and ê can be calculated
as (Si−1 − S1)/(

∑i−1
k=1 1/S

2
k).

There are plenty of researches ([17, 13, 8, 7, 5]) in which the authors show
that the laws seem to be supported by solid evidence. But applying them
currently requires the understanding of human, technical, usage and organi-
zational contexts of the measures, they were derived from.

2.3 Test quality and evolution studies

Deursen at al. [3] noticed while working on a Java project that tests in their
test system have their own set of problems and repertoire of solutions, which
they translated into code smells and refactorings for the JUnit framework.

Zaidman et al. [38] witnessed both phased and synchronous co-evolution of
tests and production codes.

Zeiss et al. [39] published a model for TTCN-3 test specification derived
from ISO 9126, by translating the quality standard for testing.

2.4 Our contributions

In our long term research we explore similarities between systems of tests and
software systems. We look at tests as software systems, re-interpreting test
systems and script as software products.

In [26] we have shown that automated test systems written in TTCN-3 can
grow large and complex similar to the structures studied in [31]. In [29] we
have defined 86 code smells for TTCN-3 and their relations to international
software quality standards. In order to understand the quality of such huge
test systems 35 selected code smells were implemented and measured on 16

projects.
The updated list of code smells, used in this measurement, can be found at

[30].
To the best of our knowledge the evolution of code smells in test systems

was not yet studied in the domain of testing communication systems. We have
also not found any work presenting the relation between real world events and
what effects they had on the quality of test suites.



Internal quality evolution of a large test system–an industrial study 221

3 History of the studied systems

3.1 Background

Current test systems have grown large with many different parts, which might
be developed separately in different organizations. Although these parts are
designed to become test suites or serve as components of test suites, most
of them can not be called tests (ex. the software layer converting between
abstract TTCN-3 messages and actual bit stream messages). For this reason
in this article we use the term “test system” to describe software components
of test suites and the test suites built of them.

We have studied two test systems developed and used at our industry part-
ner. The history of these systems goes back to 2005. We started to analyze
them in 2012. At the end of 2012 the two systems were merged to form a single
solution.

Both test systems are built on a set of libraries and tools in a hierarchical
structure. We will call this set of systems Common. Parts of Common in the lower
abstraction layers support (1) sending and receiving messages of a specific
protocol, (2) the protocol logic (3) and the forming of a glue layer between a
generic product and some specific usage.
System-1 was originally designed for demonstrating and testing the features

of Common, containing a set of project independent, reusable data structures
and algorithms that can be used for creating high levels of load in TTCN-3.
System-2 was aimed at testing IMS6 products. At the end of 2012 these two

test systems were merged into one, which we will call the Merged System.
System-1, System-2 and Merged offer complex and computationally inten-

sive functionalities. They are used to test if the System Under Test is able to:
(1) handle large amount of users, (2) handle large data traffic coming in a mix
of several supported traffic type and (3) stay stable for long durations (days
or even weeks).

Titanium is our open source ([27]), static code analyzer, developed as part
of our research to support detecting issues in TTCN-3 source codes.

3.2 History of the tracked systems

In this section we provide a list of the most important events which could have
influenced the quality of the studied systems.

6IP Multimedia Core Network Subsystem is an architectural framework designed by 3GPP
for evolving mobile networks beyond GSM



222 A. Kovács, K. Szabados

• 2005 - 2006: The development on Core Library started.

• Mid. 2007: First Core Library release.

• Early 2008: System-1 was born. Developers were dedicated to indepen-
dent customers with little coordination among them.

• Mid. 2009: A team in System-1 switched to Scrum methodology for
development, led by an experienced Scrum Master. Strong coordination
appeared for the teams but there were still external developers working
on the same source codes.

• End of 2009: The Scrum Master moved to a different unit inside the
company. Her place was filled with people she trained earlier.

• 2010: System-2 was moved from abroad to in-house. The in-house team
decided to rewrite the code from ground up.

• 2010 - 2011: The team of System-1 was experimenting with Kanban and
custom methodologies designed specifically for the project.

• February 2012: Work starts on Titanium.

• 2012 beginning: System-2 changed to a new version handling repository.
This was the first version of its source code available for us to study.

• 2012 first half year: New Scrum Master and Product Owner were se-
lected for System-1. One system architect was selected from each team
to analyze requirements, write implementation studies and guidelines.
A System Architect Forum was created, fostering information sharing
between system architects.

• 2012 second half year: The organizational structure of System-1 was
changed. The Scrum Master and the Product Owner were replaced. From
this point in time there were no external developers changing the source
code in parallel with the team.

• Dec. 2012: System-1 and System-2 were merged forming the Merged

System. The source codes were stored in a new source code repository.

• May 2013: during a “Boost day” event Titanium is integrated into the
continuous integration server of Merged. The effect of every change is
measured and displayed on web pages accessible by all developers and
managers in the project.

• 11 July 2013: “Titanium Quest” was organized. Among others, the par-
ticipants removed 10% of fixme and todo comments, reduced the number
of “circular importations” by 57% and the number of “unused imports”
by 50%. The removal of the circular imports enabled a 3% improvement
in the build time of the Merged System.



Internal quality evolution of a large test system–an industrial study 223

• 2014 first half year: All of the system architects of the Merged System
are replaced by a single System Architect.

• 17 July 2014: The “Green Day” event is organized. Among others, most
of the remaining “unused imports” were removed.

• 4th December 2014: the “Black Thursday” event is organized. Partici-
pants removed 0.6% of the code, reviewing readonly variables, inout and
out parameters, unused local definitions

“Titanium Quest”, “Green Day” and “Black Thursday” were 24 hour code
fixing challenges.

3.3 Subjective information

From organizational point of view these systems were developed by several
teams. The size, structure and responsibilities of the teams changed with time.
All teams were working within the same organizational unit, sitting together
in the same part of the building. Communication among members of teams
and among teams was not obscured.

Developers of System-1, System-2 and Merged have mentioned that be-
tween 2008 and 2011 the system architect was always available for questions
but it was not mandatory to ask him. Members of the System Architect Fo-
rum mentioned that they had no tools to enforce their proposals as the teams
were following agile methodologies (particularly Scrum) where reviewing and
accepting the implementations of features/requirements was the responsibility
of the PO role.

3.4 Trainings on Code Smells and usage of Titanium

Between 22 July 2013 and 17th July 2014 there were 73 issues reported for
the Merged System. These issues range from product and structural issues via
performance and code duplications to code complexity and inefficient variable
scoping. All reports contained the location and a description of the specific
defect. Some reports contain advises for possible corrections as well.

During 2014 we organized trainings to spread knowledge about code smells
with the following agendas:

• January: Handling lists efficiently in TTCN-3,

• Mids of February: Introduction to code smells and their relevance,

• End of February: Advanced uses of Altsteps



224 A. Kovács, K. Szabados

• March: How to efficiently assign a value?

• April: Parameter passing in TTCN-3 in theory and practice.

3.5 Effort

Table 1 shows the actual efforts (in ratios of man-hours) reported for the test
systems at different points in time. For each year we show data for the months
January and October7 to represent the starting and closing of the year.

Name
2009 2010 2011 2012 2013 2014

Jan Oct Jan Oct Jan Oct Jan Oct Jan Oct Jan Oct

Common 1.00 2.06 1.70 1.92 1.54 1.97 1.90 1.56 1.30 1.50 1.39 1.36
System-1 1.20 0.52 0.64 0.76 0.76 0.78 0.81 1.14
System-2 0.68 0.42 1.07 1.06 1.13
Merged 2.63 2.65 3.35 3.51

Table 1: The actual effort (ratios of man-hours) reported on the investigated
systems at different points in time. The values are shown as ratios compared
to the effort reported for Common in January, 2009.

The efforts invested into the products show a growing trend with some
fluctuations. Since the work started in 2009 the number of Man-Hours reported
for the project have almost doubled by the end of 2014.

After the merge all previous efforts invested into System-1 and System-2

were redirected to Merged taking away some resources from Common.

4 Code smell measurements

In this section we present our measurements. For each day in the investigated
range we checked out the source code in the state it was at midnight and
measured the number of code smells (listed at [30]) present.

4.1 Size

We analyzed the size growth of System-1 and Merged systems measured in
LOC. Figure 1 shows the measured data8 and a quadratic trend line fitted.

7In November and December employees tend to go on vacations, significantly changing
the amount of work reported on each project.

8Measuring the lines of code was an afterthought in our case. For System-1 we measured
the lines of code of released software versions, for Merged we show monthly measurement



Internal quality evolution of a large test system–an industrial study 225

0

200000

400000

600000

800000

1000000

1200000

2010.07.16 2011.07.16 2012.07.16 2013.07.16 2014.07.16

Measured

Quadratic

Figure 1: Size evolution of the System-1 and Merged systems.

When we used the Lehman’s prediction according to equation (1) on the
lines of code in Merged, we measured a maximal absolute error between the
measured data and the predicted model is about 3%.

4.2 Correlations among code smells

For each possible pair of code smells we calculated the Pearson correlation
between the data series of the code smells ([30]) on the Common + System-1 +
Merged system evolution (Table 2). We excluded code smells having less than
50 occurrences at every measurement point during the development of the
systems, as even small changes can appear to break trends using such small
numbers. Based on the correlation values the code smells could be separated
into 3 groups:

1. In the largest group, the correlation was at least 0.95 between the smell
pairs. These are exactly the code smells that have never been addressed
during special events: FIXME tags, TODO tags, empty statement block,
if instead altguard, magic numbers, magic strings, logic inversion, def-
inition should be private, readonly inout formal parameter, size check
in loop, switch on boolean, too complex expression, too many parame-
ters, uncommented function, uninitialized variable, unused function re-
turn values, visibility in definition.



226 A. Kovács, K. Szabados

C
o
d
e

S
m
e
l
l
s

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
2
0

2
1

22
23

2
4

2
5

2
6

27

1
F
I
X
M
E

t
a
g
s

1.
00

2
T
O
D
O

t
a
g
s

0.
98

1.
0
0

3
C
i
r
c
u
l
a
r

i
m
p
o
r
t
a
t
i
o
n

0.
42

0.
4
0

1
.0

0
4
E
m
p
t
y

s
t
a
t
e
m
e
n
t

b
l
o
c
k

0.
99

0.
9
8

0
.4

3
1.

00
5
I
f

i
n
s
t
e
a
d

a
l
t
g
u
a
r
d

0.
99

0.
9
7

0
.4

3
0.

98
1.

00
6
I
f

w
i
t
h
o
u
t

e
l
s
e

0.
87

0.
8
7

0
.4

4
0.

91
0.

87
1.

00
7
M
a
g
i
c

n
u
m
b
e
r
s

0.
98

0.
9
6

0
.4

7
0.

99
0.

96
0.

90
1.

00
8
M
a
g
i
c

s
t
r
i
n
g
s

0.
99

0.
9
8

0
.4

2
0.

99
0.

98
0.

90
0.

99
1.

00
9
M
o
d
u
l
e

n
a
m
e

i
n

d
e
f
i
n
i
t
i
o
n

0.
86

0.
8
5

0
.3

9
0.

90
0.

86
0.

99
0.

89
0.

90
1.

00
10

L
o
g
i
c

i
n
v
e
r
s
i
o
n

0.
97

0.
9
7

0
.4

3
0.

99
0.

95
0.

92
0.

98
0.

99
0.

93
1.

00
11

D
e
f
i
n
i
t
i
o
n

s
h
o
u
l
d

b
e

p
r
i
v
a
t
e

0.
98

0.
9
6

0
.4

5
0.

99
0.

96
0.

89
0.

99
0.

99
0.

90
0.

98
1.

00
12

R
e
a
d
o
n
l
y

l
o
c
a
l

v
a
r
i
a
b
l
e

0.
68

0.
6
9

0
.3

5
0.

72
0.

67
0.

67
0.

72
0.

68
0.

66
0.

74
0.

67
1.

00
13

R
e
a
d
o
n
l
y

o
u
t

f
o
r
m
a
l

p
a
r
a
m
e
t
e
r

-0
.4

2
-0

.4
5

-0
.3

1
-0

.4
9

-0
.4

4
-0

.7
9

-0
.4

7
-0

.4
7

-0
.7

4
-0

.5
1

-0
.4

3
-0

.3
7

1.
00

14
R
e
a
d
o
n
l
y

i
n
o
u
t

f
o
r
m
a
l

p
a
r
a
m
e
t
e
r

0.
97

0.
9
7

0
.4

6
0.

98
0.

96
0.

86
0.

98
0.

97
0.

85
0.

97
0.

97
0.

75
-0

.4
2

1.
0
0

15
S
i
z
e

c
h
e
c
k

i
n

l
o
o
p

1.
00

0.
9
8

0
.4

1
0.

99
0.

98
0.

86
0.

98
0.

99
0.

86
0.

98
0.

98
0.

67
-0

.4
0

0.
9
8

1
.0

0
16

S
w
i
t
c
h

o
n

b
o
o
l
e
a
n

0.
98

0.
9
7

0
.3

9
0.

98
0.

95
0.

81
0.

97
0.

97
0.

81
0.

97
0.

97
0.

68
-0

.3
3

0.
9
7

0
.9

9
1
.0

0
17

T
o
o

c
o
m
p
l
e
x

e
x
p
r
e
s
s
i
o
n

0.
99

0.
9
8

0
.4

2
0.

99
0.

98
0.

90
0.

99
1.

00
0.

90
0.

99
0.

99
0.

67
-0

.4
7

0.
9
7

0
.9

9
0
.9

7
1.

00
18

T
o
o

m
a
n
y

p
a
r
a
m
e
t
e
r
s

0.
99

0.
9
8

0
.4

1
0.

99
0.

98
0.

85
0.

98
0.

99
0.

85
0.

97
0.

98
0.

68
-0

.3
9

0.
9
7

0
.9

9
0
.9

8
0.

99
1.

00
19

T
y
p
e
n
a
m
e

i
n

d
e
f
i
n
i
t
i
o
n

0.
94

0.
9
3

0
.4

2
0.

93
0.

95
0.

80
0.

92
0.

95
0.

80
0.

92
0.

96
0.

56
-0

.3
2

0.
9
3

0
.9

6
0
.9

3
0.

95
0.

93
1.

0
0

20
U
n
c
o
m
m
e
n
t
e
d

f
u
n
c
t
i
o
n

0.
97

0.
9
5

0
.4

7
0.

98
0.

96
0.

95
0.

98
0.

98
0.

95
0.

98
0.

98
0.

68
-0

.5
7

0.
9
5

0
.9

7
0
.9

4
0.

98
0.

96
0.

9
2

1
.0

0
21

U
n
i
n
i
t
i
a
l
i
z
e
d

v
a
r
i
a
b
l
e

0.
99

0.
9
9

0
.4

1
0.

99
0.

98
0.

87
0.

98
0.

99
0.

86
0.

98
0.

98
0.

70
-0

.4
2

0.
9
8

1
.0

0
0
.9

8
0.

99
0.

99
0.

9
5

0
.9

6
1
.0

0
22

U
n
n
e
c
e
s
s
a
r
y

c
o
n
t
r
o
l

0.
86

0.
8
7

0
.4

4
0.

91
0.

88
1.

00
0.

89
0.

90
0.

98
0.

92
0.

88
0.

67
-0

.8
0

0.
8
6

0
.8

6
0
.8

2
0.

90
0.

85
0.

8
0

0
.9

4
0
.8

7
1
.0

0
23

U
n
u
s
e
d

f
u
n
c
t
i
o
n

r
e
t
u
r
n

v
a
l
u
e
s

0.
97

0.
9
4

0
.4

0
0.

96
0.

97
0.

91
0.

96
0.

98
0.

90
0.

95
0.

96
0.

57
-0

.5
3

0.
9
2

0
.9

7
0
.9

3
0.

98
0.

96
0.

9
3

0
.9

7
0
.9

6
0
.9

0
1
.0

0
24

U
n
u
s
e
d

g
l
o
b
a
l

d
e
f
i
n
i
t
i
o
n

0.
91

0.
9
2

0
.3

8
0.

93
0.

89
0.

79
0.

93
0.

92
0.

80
0.

95
0.

91
0.

82
-0

.3
2

0.
9
3

0
.9

2
0
.9

4
0.

92
0.

93
0.

8
4

0
.8

9
0
.9

3
0
.7

9
0
.8

3
1.

00
25

U
n
u
s
e
d

i
m
p
o
r
t

-0
.7

2
-0

.7
2

-0
.4

3
-0

.7
5

-0
.7

5
-0

.8
7

-0
.7

4
-0

.7
5

-0
.8

4
-0

.7
3

-0
.7

4
-0

.3
4

0.
79

-0
.7

0
-0

.7
2

-0
.6

4
-0

.7
6

-0
.7

0
-0

.7
3

-0
.8

1
-0

.7
1

-0
.8

7
-0

.8
4

-0
.4

9
1
.0

0
26

U
n
u
s
e
d

l
o
c
a
l

d
e
f
i
n
i
t
i
o
n

0.
04

0.
0
5

-0
.1

1
0.

01
-0

.0
1

-0
.3

2
0.

02
0.

00
-0

.2
8

0.
02

0.
01

0.
34

0.
69

0.
09

0.
05

0.
14

-0
.0

1
0.

0
9

0
.0

1
-0

.1
1

0.
0
7

-0
.3

2
-0

.1
7

0.
3
1

0.
6
1

1
.0

0
27

V
i
s
i
b
i
l
i
t
y

i
n

d
e
f
i
n
i
t
i
o
n

0.
98

0.
9
7

0
.3

8
0.

97
0.

95
0.

83
0.

97
0.

98
0.

83
0.

96
0.

97
0.

64
-0

.3
6

0.
9
6

0
.9

9
0
.9

8
0.

98
0.

99
0.

9
4

0
.9

5
0
.9

8
0
.8

2
0
.9

4
0.

93
-0

.6
7

0
.1

0
1
.0

0

T
a
b

le
2:

T
h

e
P

ea
rs

on
co

rr
el

at
io

n
b

et
w

ee
n

th
e

d
at

a
se

ri
es

of
th

e
co

d
e

sm
el

ls
.

T
o

sa
ve

on
sp

ac
e

th
e

n
u

m
b

er
s

in
th

e
h

ea
d

er
re

p
re

se
n
t

th
e

co
d

e
sm

el
ls

,
n
u

m
b

er
ed

in
th

e
fi

rs
t

co
lu

m
n

.



Internal quality evolution of a large test system–an industrial study 227

2. Code smells with correlation values related to the first group, lying be-
tween 0.3 and 0.95, were addressed during special events, but only a
fraction of their appearances were removed: Module name in definition,
If without else, Unnecessary control, readonly local variable, typename in
definition, unused global definition, circular importation.

3. Three code smells have zero or negative medium correlation values (−0.42,
−0.72 and 0.04) compared to the members of the first group. Most of the
occurrences of these code smells were addressed during special events or
in personal efforts: readonly out formal parameter, unused import, Un-
used local definition.

4.3 Code smell trends

In this section we show how the different events in the history of the test
systems have correlated with the changes in the number of code smells.

4.3.1 First correlation group

0

10000

20000

30000

40000

50000

2009.12.31 2010.12.31 2011.12.31 2012.12.31 2013.12.31 2014.12.31

System-1 System-2
Generic Linear (System-1)
Linear (System-2) Linear (Generic)

Figure 2: Number of magic string issues and its linear approximations.

From the first correlation group we present the magic strings code smell.
The data series of other code smells from this group have high correlation with
this data series, hence, we omit to show them.

In both systems the cumulative number of magic strings was increasing
following a nearly linear trend (Figure 2). Before the merge the number of



228 A. Kovács, K. Szabados

magic strings was growing by 5152/7923/7027 instances in System-1 and by
4225 instances in System-2 per year. Directly after the merge the growth
dropped to 2378 instances per year for most of the year 2013. The growth
speed reached 4733 instances per year in 2014.

It is interesting to point out that the reduction of growth after the merge,
lasted approximately until the numbers were fitting to the original growth
trend of System-1. From 2014 the growth of Merged followed a trend much
closer to that of System-2 than to System-1.

The sudden increases in the measured data in System-1 till the middle
of 2011 indicates 3 months development cycles and developers working on
branches separate from the main development branch. Later in System-1 and
System-2 these increases are not present, indicating frequent changes to the
main development branch. This fits to the part of the history: the development
was not done as a team, but rather individuals serving the needs of separate
customers.

Between April and May 2011 the number of most code smells in this group
temporarily dropped. The project descriptor was corrupted in both cases. The
build system used a forgiving way for extracting information from the project
descriptor, but for our tool this made the project appear as if large amounts
of files were removed. At the end of 2013, already after agile and continuous
integration was introduced, the same problem reappeared while code quality
measurements were displayed in publicly available places.

4.3.2 Second correlation group

From the second correlation group we show each code smell separately.
In case of the Module name in definition code smell (Figure 3) the trends of

System-1 and System-2 seems to be added together, and following the growth
trend of System-2. After the merge the smell occurences of Merged followed
the growth of System-2.

In case of the Readonly local variable code smell (Figure 4) the growth
trend slowed down after the merge, creating a different trend from that of its
source systems. In System-1 the growth was 118 instances in 2012, and 89 in
System-2. The trend continued by 9 in 2013 and 11 in 2014 after the merge
until the occurrences were greatly decreased at the “Black Thursday” event.

The Typename in definition trends (Figrure 5) also slowed down after the
merge. The reason behind the drop in System-1 from around mid 2010 till
mid 2011 was a naming convention change.

In the case of the Unused global definition code smell the trends in System-1



Internal quality evolution of a large test system–an industrial study 229

0

10

20

30

40

50

60

70

80

90

2009.12.31 2010.12.31 2011.12.31 2012.12.31 2013.12.31 2014.12.31

System-1

System-2

Generic

Figure 3: Module name in definition smell trends

0

100

200

300

400

500

600

700

2009.12.31 2010.12.31 2011.12.31 2012.12.31 2013.12.31 2014.12.31

System-1

System-2

Generic

Figure 4: Readonly local variable smell trends

continued in Merged (Figure 6) also slowed down after the merge. Several
instances of this code smell were handled during the “Green Day” and “Black
Thursday” events. The corruption of the project descriptor caused a temporal
drop in April 2011, and a temporal increase at the end of 2013. In the first case
files containing unused global definitions disappeared from our measurements,
in the second case the files disappearing caused the increase in the number of
unused global definitions.



230 A. Kovács, K. Szabados

0

500

1000

1500

2000

2500

3000

2009.12.31 2010.12.31 2011.12.31 2012.12.31 2013.12.31 2014.12.31

System-1

System-2

Generic

Figure 5: Typename in definition smell trends

0

2000

4000

6000

8000

10000

12000

2009.12.31 2010.12.31 2011.12.31 2012.12.31 2013.12.31 2014.12.31

System-1

System-2

Generic

Figure 6: Unused global definition smell trends

Circular importation followed a different behavior. In System-1 the occur-
rences were rare and stable. In System-2 their occurrences were higher and
changing frequently (this smell is reported for every module in the circle in-
dividually in our tool, allowing for small changes in the source leading to
large changes in reported numbers of this smell). After the merge the trend
stabilized.

In System-1 the growth was 4 instances in 2012, in System-2 chaotic till



Internal quality evolution of a large test system–an industrial study 231

0

100

200

300

400

500

600

700

800

900

1000

2009.12.31 2010.12.31 2011.12.31 2012.12.31 2013.12.31 2014.12.31

System-1

System-2

Generic

Figure 7: Circular importation smell trends

0

500

1000

1500

2000

2500

2009.12.31 2010.12.31 2011.12.31 2012.12.31 2013.12.31 2014.12.31

System-1

System-2

Generic

Figure 8: Number of unused imports smell trends.

the half of that year. Which continued with 2 in 2013 and 7 in 2014 after the
merge. When two libraries developed on separate branches were merged in
February and March 2014, the numbers increased to 351 and 566. Only to be
reduced to 45 during the “Green Day” event.

The code smells Readonly local variable, Circular importation and Unused
global definition were addressed on special events, but only a portion of their
numbers could have been corrected.



232 A. Kovács, K. Szabados

4.3.3 Third correlation group

From this group we show only the unused imports smell trends.
The occurrences of this smell in System-1 drops from 1717 to 1398 between

June and July and to 215 till the end of December 2012 (Figure 8). In System-2

the occurrences of unused imports falls from 420 to 298 on October and to 215

on December, 2012. We found that all of these code quality improvements
were related to one employee. After learning that Titanium had support for
detecting unused imports she/he decided to clean up some of the code.

Shortly after July 2013 the occurrences of unused imports drops from 329

to 84 during the “TitaniumQuest” event.
The large fallback at end of 2013 appeared as an increment of issue numbers.

The imports to missing modules were reported as unused.

5 Analysis of our research questions

5.1 Was the number of measured code smells affected by the
introduction of Continuous Integration (RQ1)?

Continuous Integration was introduced together with the Agile methodology.
As many systems had to adapt to it the process took months, with fine tuning
happening even at the time of writing this article. Quality checking was intro-
duced into continuous integration during the “Boost day” (May 2013), with
the integration of Titanium.

We found no direct connection between the number of code smells present
in the source code and the introduction of quality checking to continuous
integration, or continuous integration itself.

Most of the observed code smell occurrences followed the same or similar
trends after continuous integration was introduced.

We also observed two cases when project descriptors were corrupted (one
before, one after continuous integration was introduced). In neither of the
cases did the build and test system notice the corruption. Although during
the second case, the code quality displays, driven by continuous integration,
showed the changes, they did not evoke immediate action.

Our experience on the influence of using continuous integration aligns with
earlier published results of others ([1, 24, 35]).



Internal quality evolution of a large test system–an industrial study 233

5.2 Was the number of measured code smells affected by the
introduction of tool support for detecting Code Smells
(RQ2) ?

We have created Titanium to detect and report internal quality issues. Tita-
nium was integrated into the continuous integration system during the “Boost
day” (May 2013). We have organized tutorials: we explained (1) the usage
of the tool, (2) the meaning of the reported code smells and (3) what kind
of problems the smells can create. In order to reduce the entry barrier of
correction we analyzed the observed systems and reported some issues found
together with a guide on what to correct, where and how. 73 issues were re-
ported between July 2013 and July 2014 (one year interval) as improvement
proposals.

We have found no evidence, breaks in the trends, showing that tool support
in itself motivates project members to clean up their code.

Yet, measurements show that, when personal motivation is present, or spe-
cial events are organized, tool support increases productivity. One person can
review and correct numerous of instances of issues otherwise unnoticed.

These results align with the earlier results of others ([24]).

5.3 Was the number of measured code smells affected by the
merging of 2 test systems (RQ3) ?

We measured that the merge increased the amount of code smells present and
also decreased their previous growth rate.

These results align with the 5th law of software evolution ([16]) and other
earlier results ([1, 24, 35]).

It is interesting to note, that the growth of the merged system is between
the original growths of the two systems it consists of. At the time of writing,
we do not know whether this growth rate will stay longer or will follow one of
the original system’s growth rate.

5.4 Was the number of measured code smells affected by the
different development methodologies (RQ4) ?

During the history of the observed projects the development was performed
sometimes by individuals, sometimes by teams. Teams used company specific
methods in the beginning, Scrum and Kanban for some time, tailored Agile-
like methods for other periods of time.

We have seen that before the middle of 2011 the changes in the numbers



234 A. Kovács, K. Szabados

of code smells indicated 3 month development period. After this time the
changes became smaller and more frequent. Although this might indicate an
effect custom methodologies or maturing in agile methodologies might have
had, there was no change in the general trend lines. The changes became more
frequent, but followed the same trends in their effects.

Other than the changes becoming more frequent we were not able to find
any change correlating to the methodologies, or lack of in our measurements.

5.5 Was the number of measured code smells affected by chang-
ing leaders of the projects (RQ5) ?

Conway’s law [2] suggests that there is a mirroring effect between the structure
of an organization and the structure of the product it creates. In our case there
were several organizational changes on the lower levels: teams were formed,
team internal processes were changed, system architects were appointed, prod-
uct ownership changed.

In the measured data we were not able to find any evidence that could be
related to these changes. We assume that changes in the immediate leadership
were not able to affect the systems. The reason for this is not clear: there could
be higher-level organizational structures that binded the immediate leaders,
or code smells and lines of code might not correlate with such structures.

Based on the information we collected from the system architects and devel-
opers we believe the former assumption. There were no organizational tools in
place for enforcing the system architect’s guides. Tasks were selected for imple-
mentation and prioritized for dedicated developers by the distinct customers
they support. This relation might have circumvented the power of technical
and managerial leaders.

5.6 Do code smells in test systems follow predictable patterns
during the system’s evolution (RQ6) ?

In this section we show how our findings detailed in section 4 relate to Lehman’s
laws of Software Evolution ([16]).

• Our measurements support the 2nd law: in all examined test systems all
code smells measured followed an increasing trend unless work was done
to reduce them.

• Our measurements support the 4th law: the work rate in each test sys-
tem studied stayed approximately the same during their whole lifetime.



Internal quality evolution of a large test system–an industrial study 235

The invariant work rate was not significantly affected by the changes in
history. Lehman showed [12] that although corporate and local manage-
ment certainly has control over resource allocation and activity targets
their ability to do this was constrained by external forces, like the avail-
ability of personnel with appropriate skills and trade unions.

• Our measurements support the 5th law: the average incremental growth
of successive releases was largely invariant. This property was not af-
fected by most of the changes in history. Only individual efforts and the
merge of the two systems has disturbed the trends. Lehman conjectured
[17] that this effect is caused by the rate of acquisition of the necessary
information by the participants.

• The 8th law is usually proved with showing ripples in the measured
data, which are believed to reflect self-stabilization through positive and
negative feedback. We believe that the slowdown right after the merge
was the result of this feedback mechanism. The merge of the test systems
increased the amount of code to be maintained and developed further,
but at the same time, the growth trends were somewhat decreased.

6 Threats to validity

This study might suffer from the usual threats to external validity. There
might be limits to generalizing our results beyond our settings (programming
language used, project setups and possible industry specific effects).

This study was performed on two test systems, developed at the same organi-
zation. The field of software evolution studies has limited information sources.
Publications in the field analyze only a few open source systems ([6, 10]) and
few commercial systems ([11, 17]). Our efforts are an addition to the growing
body of knowledge to this field.

To the best of our knowledge these are the first results for the evolution of
test systems from software quality point of view, and also the first observation
of the effects of products merging. Although it is a valid question if our results
can be generalized to other testing languages and domains of software devel-
opment, we believe this to be true as our results align with previous results in
the field of software evolution ([5, 6, 7, 8, 10, 11, 13, 15, 16, 17, 32]).

The study might suffer from not measuring the metrics which were changed
by the historical happenings. We have measured several code smells and pre-
sented our observations of their changes in this article. These code smells were
either collected from a wide range of tools supporting other languages and



236 A. Kovács, K. Szabados

adapted to TTCN-3, or defined by us based on our earlier observations related
to the language ([29]). We believe that these metrics are correctly measuring
internal quality and exhaustive for the TTCN-3 language.

This study also faces the threat of delayed influence: as the work on the
studied systems is still going on, it could happen that the influence of some
change in the past, will only appear after the publication of this paper. We
don’t believe this to be a big threat, as the projects studied have been in
development for 5 years, our tool support appeared 3 years ago and we have
organized several code improvement special events in the last 2 years.

It is an unlikely but theoretically possible scenario that all changes happened
at the right time: the changes were necessary to keep the rate of growth; all
transitions were smooth and all changes stack up to keep up the same rate of
growth.

7 Summary

We have previously defined ([29]) several code smells for test systems written in
TTCN-3 and have shown ([28]) that publicly available TTCN-3 test systems
have room for improvement. We have also already shown ([26]), that test
systems written in TTCN-3, can become large and complex structures. In this
article we studied the long term evolution of a large test system in the industry.

We have monitored the development of a test system and measured the code
quality characteristics for a five years period at our industry partner. Changing
the development processes, project leaders, team and technical leaders, intro-
ducing Continuous Integration and automated quality checks did not cause
significant difference in the number of code smell instances present. We can
conclude that the development of the observed test system follows predictable
tendencies.

Just like Lehman’s law predicted and observed in [1, 35].
The presence of tool support only made a difference when code smell reduc-

tions were the target of personal motivations. According to our observations
the best way to improve a software’s internal quality is to provide people
with dedicated time and tools. This way people, who were already motivated
[34, 24, 36, 35], could focus on a few lines of the source code instead of ana-
lyzing all of it by hand. This phenomenon was also observed in [24].

Our observation on the evolution of the studied test systems show similarity
with the evolution of software systems. This is the main conclusion of the
paper.



Internal quality evolution of a large test system–an industrial study 237

Acknowledgements

We thank the referee for providing constructive comments and help in improv-
ing the contents of this paper.

The authors would like to thank the Faculty of Informatics of Eötvös Loránd
University for supporting this research.

We would also like to thank Gábor Jenei, Dániel Poroszkai and Dániel Góbor
for their help in implementing features that were crucial to our investigation.
Their work allowed us to quickly process large amount of data.

References

[1] A. Chatzigeorgiou, A. Manakos, Investigating the evolution of bad smells in
object-oriented code, Proc. 2010 Seventh International Conference on the Qual-
ity of Information and Communications Technology, QUATIC’10, pp. 106–115,
Washington, DC, USA, 2010. IEEE Computer Society. ⇒219, 232, 233, 236

[2] M. E. Conway, How do committees invent?, Datamation, 14 ,5 (1968) 28–31.
http://www.melconway.com/research/committees.html [accessed 26-Aug-2015].⇒234

[3] A. v. Deursen, L. Moonen, A. v. d. Bergh, G. Kok, Refactoring test code, Proc.
2nd International Conference on Extreme Programming and Flexible Processes
(XP2001), pp. 92–95. University of Cagliari, 2001. ⇒220

[4] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999. ⇒218

[5] A. Israeli, D. G. Feitelson, The linux kernel as a case study in software evolution,
J. Syst. Softw., 83, 3 (2010) 485–501. ⇒220, 235

[6] C. Izurieta, J. Bieman, The evolution of freebsd and linux, Proc. 2006
ACM/IEEE International Symposium on Empirical Software Engineering,
ISESE’06, pp. 204–211, New York, NY, USA, 2006. ACM. ⇒220, 235

[7] K. Johari, A. Kaur, Effect of software evolution on software metrics: An open
source case study, SIGSOFT Softw. Eng. Notes, 36, 5 (2011) 1–8. ⇒220, 235

[8] C. F. Kemerer, S. Slaughter, An empirical approach to studying software evolu-
tion, IEEE Trans. Softw. Eng., 25, 4, (1999) 493–509. ⇒220, 235

[9] F. Khomh, M. Di Penta, Y.-G. Gueheneuc, An exploratory study of the impact
of code smells on software change-proneness, Proc. 16th Working Conference on
Reverse Engineering, WCRE’09, pp. 75–84, Washington, DC, USA, 2009. IEEE
Computer Society. ⇒218

[10] M. J. Lawrence, An examination of evolution dynamics, Proc. 6th International
Conference on Software Engineering, ICSE’82, pp. 188–196, Los Alamitos, CA,
USA, 1982. IEEE Computer Society Press. ⇒219, 235

[11] M. M. Lehman, The programming process, 1969. IBM Research Report RC 2722.⇒235

http://users.uom.gr/~achat/index_en.html
https://www.researchgate.net/researcher/75023620_Anastasios_Manakos
http://www.melconway.com/Home/Home.html
http://www.melconway.com/research/committees.html
http://www.st.ewi.tudelft.nl/~arie/
http://swerl.tudelft.nl/leon/
https://www.researchgate.net/researcher/33420727_Alex_Bergh
https://www.researchgate.net/researcher/9099094_Gerard_Kok
http://www.unica.it/pub/english/
http://www.martinfowler.com/
http://www.pearsoned.co.uk/imprints/addison-wesley/
http://www.pearsoned.co.uk/imprints/addison-wesley/
https://www.researchgate.net/profile/Ayelet_Israeli
http://www.cs.huji.ac.il/~feit/
http://www.journals.elsevier.com/journal-of-systems-and-software/
http://www.cs.montana.edu/izurieta/
http://www.cs.colostate.edu/~bieman/
https://www.acm.org/
https://www.researchgate.net/profile/Kalpana_Johari
http://ipu.ac.in/usitnweb/faculty/arvinder-kaur.htm
http://www.sigsoft.org/SEN/
http://www.pitt.edu/~ckemerer/kemerer.htm
https://www.researchgate.net/profile/Sandra_Slaughter
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=17384
http://www.khomh.net/
http://www.ing.unisannio.it/mdipenta/
http://www.yann-gael.gueheneuc.net/
https://www.computer.org/
https://www.computer.org/
https://www.researchgate.net/researcher/69536200_M_J_Lawrence
https://www.computer.org/web/cspress
https://www.researchgate.net/researcher/7544482_M_M_Lehman


238 A. Kovács, K. Szabados

[12] M. M. Lehman, Laws of software evolution revisited, Proc. 5th European Work-
shop on Software Process Technology, EWSPT ’96, pp. 108–124, London, UK,
UK, 1996, Springer-Verlag. ⇒235

[13] M. M. Lehman, Feast/2 final report – grant number gr/m44101, 2001. ⇒ 220,
235

[14] M. M. Lehman, J. F. Ramil, Towards a theory of software evolution - and its
practical impact (working paper), Proc. Intl. Symposium on Principles of Softw.
Evolution (invited talk), ISPSE 2000, 1-2 Nov, pp. 2–11. Press, 2000. ⇒219

[15] M. M. Lehman, J. F. Ramil, Evolution in software and related areas, Proc. 4th
International Workshop on Principles of Software Evolution, IWPSE’01, pages
1–16, New York, NY, USA, 2001, ACM. ⇒219, 235

[16] M. M. Lehman, J. F. Ramil, Rules and tools for software evolution planning and
management, Ann. Softw. Eng., 11, 1 (2001) 15–44. ⇒219, 233, 234, 235

[17] M. M. Lehman, J. F. Ramil, D. E. Perry, On evidence supporting the feast
hypothesis and the laws of software evolution, Proc. 5th International Symposium
on Software Metrics, METRICS ’98, pp. 84 –, Washington, DC, USA, 1998. IEEE
Computer Society. ⇒220, 235

[18] I. Macia, J. Garcia, D. Popescu, A. Garcia, N. Medvidovic, A. von Staa, Are
automatically-detected code anomalies relevant to architectural modularity?: An
exploratory analysis of evolving systems, Proc. 11th Annual International Con-
ference on Aspect-oriented Software Development, AOSD ’12, pp. 167–178, New
York, NY, USA, 2012, ACM. ⇒218

[19] N. Moha, Y.-G. Gueheneuc, L. Duchien, A.-F. Le Meur, Decor: A method for
the specification and detection of code and design smells, IEEE Trans. Softw.
Eng., 36, 1 (2010) 20–36. ⇒218

[20] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, G. Succi, A case study on the
impact of refactoring on quality and productivity in an agile team, in Balancing
Agility and Formalism in Software Engineering, pp. 252–266, Springer-Verlag,
Berlin, Heidelberg, 2008. ⇒218

[21] H. Neukirchen, M. Bisanz, Utilising code smells to detect quality problems in
ttcn-3 test suites, Proc. 19th IFIP TC6/WG6.1 International Conference, and
7th International Conference on Testing of Software and Communicating Sys-
tems, TestCom’07/FATES’07, pp. 228–243, Berlin, Heidelberg, 2007, Springer-
Verlag. ⇒218

[22] S. Olbrich D. S. Cruzes, V. Basili, N. Zazworka, The evolution and impact of code
smells: A case study of two open source systems, Proc. 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, ESEM ’09,
pp. 390–400, Washington, DC, USA, 2009. IEEE Computer Society. ⇒218

[23] D. L. Parnas, Software aging, Proc. 16th International Conference on Software
Engineering, ICSE ’94, pp. 279–287, Los Alamitos, CA, USA, 1994. IEEE Com-
puter Society Press. ⇒219

https://www.researchgate.net/researcher/7544482_M_M_Lehman
http://www.springer.com/gp/
https://www.researchgate.net/researcher/7544482_M_M_Lehman
https://www.researchgate.net/researcher/7544482_M_M_Lehman
https://www.researchgate.net/profile/Juan_Fernandez-Ramil
https://www.researchgate.net/researcher/7544482_M_M_Lehman
https://www.researchgate.net/profile/Juan_Fernandez-Ramil
https://www.acm.org/
https://www.researchgate.net/researcher/7544482_M_M_Lehman
https://www.researchgate.net/profile/Juan_Fernandez-Ramil
https://www.researchgate.net/researcher/7544482_M_M_Lehman
https://www.researchgate.net/profile/Juan_Fernandez-Ramil
http://users.ece.utexas.edu/~perry/
https://www.computer.org/
https://www.computer.org/
http://www.les.inf.puc-rio.br/opus/members/members_isela.html
https://www.researchgate.net/researcher/70830475_Joshua_Garcia
http://www.popescu.de/
http://www-di.inf.puc-rio.br/~afgarcia//
http://csse.usc.edu/~neno/
http://www-di.inf.puc-rio.br/~arndt//
https://www.acm.org/
http://www.naouelmoha.net/
http://www.yann-gael.gueheneuc.net/
http://www.lifl.fr/~duchien/
https://www.researchgate.net/researcher/18308472_Anne-Francoise_Le_Meur
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5401361
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5401361
https://www.researchgate.net/researcher/70937792_Raimund_Moser
https://www.researchgate.net/researcher/69623447_Pekka_Abrahamsson
http://www.ece.ualberta.ca/~pedrycz/
https://www.researchgate.net/profile/Alberto_Sillitti
http://www.giancarlosucci.org/
http://www.springer.com/gp/
https://uni.hi.is/helmut/
https://www.researchgate.net/researcher/2015212731_Martin_Bisanz
http://www.springer.com/gp/
http://www.springer.com/gp/
https://www.researchgate.net/researcher/70696211_Steffen_M_Olbrich
https://www.sintef.no/en/all-employees/?EmpId=4504
https://www.cs.umd.edu/users/basili/
http://www.nicozazworka.com/
https://www.computer.org/
https://www.researchgate.net/profile/David_Parnas
https://www.computer.org/web/cspress
https://www.computer.org/web/cspress


Internal quality evolution of a large test system–an industrial study 239

[24] R. Peters, A. Zaidman, Evaluating the lifespan of code smells using software
repository mining, Proc. 2012 16th European Conference on Software Mainte-
nance and Reengineering, CSMR’12, pp. 411–416, Washington, DC, USA, 2012.
IEEE Computer Society. ⇒219, 232, 233, 236

[25] D. I. K. Sjoberg, A. Yamashita, B. Anda, A. Mockus, T. Dyba, Quantifying
the effect of code smells on maintenance effort, IEEE Trans. Softw. Eng., 39, 8
(2013) 1144–1156. ⇒218

[26] K. Szabados, Structural analysis of large ttcn-3 projects. Proc. 21st IFIP WG 6.1
International Conference on Testing of Software and Communication Systems
and 9th International FATES Workshop, TESTCOM ’09/FATES ’09, pp. 241–
246, Berlin, Heidelberg, 2009, Springer-Verlag. ⇒217, 220, 236

[27] K. Szabados, Titanium, https://projects.eclipse.org/proposals/titan, 2015. [On-
line; accessed 26-Aug-2015]. ⇒221

[28] K. Szabados, A. Kovács, Advanced ttcn-3 test suite validation with titan, Proc.
9th Conference on Applied Informatics, pp. 273–281, 2014. ⇒217, 236

[29] K. Szabados, A. Kovács, Test software quality issues and connections to interna-
tional standards, Acta Universitatis Sapientiae, Informatica, 5, 1 (2014) 77–102.⇒217, 220, 236

[30] K. Szabados and A. Kovács, Up-to-date list of code smells, http://compalg.
inf.elte.hu/~attila/TestingAtScale.htm, 2015. [Online; accessed 26-Aug-
2015]. ⇒220, 224, 225

[31] C. Taube-Schock, R. J. Walker, I. H. Witten, Can we avoid high coupling?,
Proc. 25th European Conference on Objectoriented Programming, ECOOP’11,
pp. 204–228, Berlin, Heidelberg, 2011, Springer-Verlag. ⇒220

[32] W. M. Turski, The reference model for smooth growth of software systems re-
visited, IEEE Trans. Softw. Eng., 28, 8, (2002) 814–815. ⇒220, 235

[33] E. Van Emden, L. Moonen, Java quality assurance by detecting code smells,
Proc. Ninth Working Conference on Reverse Engineering (WCRE’02) pp. 97–
106, Washington, DC, USA, 2002. IEEE Computer Society. ⇒218

[34] A. Yamashita, L. Moonen, Do code smells reflect important maintainability as-
pects?, Proc. 2012 IEEE International Conference on Software Maintenance,
ICSM ’12, pp. 306–315,Washington, DC, USA, 2012. IEEE Computer Society.⇒219, 236

[35] A. Yamashita, L. Moonen, Do developers care about code smells? an exploratory
survey, Proc. 20th Working Conference on Conference: Reverse Engineering, pp.
242–251. IEEE Computer Society, 2013. ⇒219, 232, 233, 236

[36] A. Yamashita, L. Moonen, Exploring the impact of inter-smell relations on soft-
ware maintainability: An empirical study, Proc. 2013 International Conference
on Software Engineering, ICSE ’13, pp. 682–691, Piscataway, NJ, USA, 2013.
IEEE Computer Society Press. ⇒219, 236

[37] A. Yamashita, L. Moonen, To what extent can maintenance problems be predicted
by code smell detection? - an empirical study, Inf. Softw. Technol., 55, 12 (2013)
2223–2242. ⇒218

https://www.researchgate.net/researcher/81208731_Ralph_Peters
http://www.st.ewi.tudelft.nl/~zaidman/
https://www.computer.org/
http://heim.ifi.uio.no/~dagsj/
https://www.hioa.no/tilsatt/aikyam
https://www.researchgate.net/profile/Bente_Anda
http://web.eecs.utk.edu/~audris/
http://folk.uio.no/toredy/
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6568862
https://www.researchgate.net/profile/Kristof_Szabados
http://link.springer.com/chapter/10.1007%2F978-3-642-05031-2_19
http://link.springer.com/chapter/10.1007%2F978-3-642-05031-2_19
http://www.springer.com/gp/
https://www.researchgate.net/profile/Kristof_Szabados
https://projects.eclipse.org/proposals/titan
https://www.researchgate.net/profile/Kristof_Szabados
http://compalg.inf.elte.hu/~attila/
http://icai.ektf.hu/icai2014/papers/ICAI.9.2014.2.273.pdf
https://www.researchgate.net/profile/Kristof_Szabados
http://compalg.inf.elte.hu/~attila/
http://www.acta.sapientia.ro/acta-info/C5-1/info51-6.pdf
https://www.researchgate.net/profile/Kristof_Szabados
http://compalg.inf.elte.hu/~attila/
http://compalg.inf.elte.hu/~attila/TestingAtScale.htm
http://compalg.inf.elte.hu/~attila/TestingAtScale.htm
https://www.researchgate.net/profile/Craig_Taube-Schock
http://lsmr.org/walker
http://www.cs.waikato.ac.nz/~ihw/
http://www.springer.com/gp/
https://www.researchgate.net/researcher/2005596445_Wladyslaw_M_Turski
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=22077
https://www.researchgate.net/researcher/29428783_Eva_Van_Emden
https://leonmoonen.com/
https://www.computer.org/
https://www.hioa.no/tilsatt/aikyam
https://leonmoonen.com/
https://www.computer.org/
https://www.hioa.no/tilsatt/aikyam
https://leonmoonen.com/
https://www.computer.org/
https://www.hioa.no/tilsatt/aikyam
https://leonmoonen.com/
https://www.computer.org/web/cspress
https://www.hioa.no/tilsatt/aikyam
https://leonmoonen.com/


240 A. Kovács, K. Szabados

[38] A. Zaidman, B. Rompaey, A. Deursen, S. Demeyer, Studying the co-evolution of
production and test code in open source and industrial developer test processes
through repository mining, Empirical Softw. Engg., 16, 3 (2011) 325–364. ⇒
220

[39] B. Zeiß, D. Vega, I. Schieferdecker, H. Neukirchen, J. Grabowski, Applying the
ISO 9126 Quality Model to Test Specifications–Exemplified for TTCN-3 Test
Specifications, Software Engineering 2007, Lecture Notes in Informatics, Copy-
right Gesellschaft für Informatik, Mar. 2007. ⇒220

Received: June 9, 2016 • Revised: August 20, 2016

http://www.st.ewi.tudelft.nl/~zaidman/
https://www.uantwerpen.be/nl/personeel/bart-vanrompaey/
http://www.st.ewi.tudelft.nl/~arie/
http://win.ua.ac.be/~sdemey/
https://www.researchgate.net/researcher/69979642_Benjamin_Zeiss
https://www.researchgate.net/researcher/14906223_Diana_Vega
https://www.fokus.fraunhofer.de/usr/ina.schieferdecker
https://uni.hi.is/helmut/
https://www.swe.informatik.uni-goettingen.de/staff/jens-grabowski

