
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjit20

Journal of Information and Telecommunication

ISSN: 2475-1839 (Print) 2475-1847 (Online) Journal homepage: https://www.tandfonline.com/loi/tjit20

Information systems modelling based on graph-
theoretic background

B. Molnár, A. Béleczki & A. Benczúr

To cite this article: B. Molnár, A. Béleczki & A. Benczúr (2018) Information systems modelling
based on graph-theoretic background, Journal of Information and Telecommunication, 2:1, 68-90,
DOI: 10.1080/24751839.2017.1375223

To link to this article: https://doi.org/10.1080/24751839.2017.1375223

© 2018 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 21 Sep 2017.

Submit your article to this journal

Article views: 2192

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjit20
https://www.tandfonline.com/loi/tjit20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24751839.2017.1375223
https://doi.org/10.1080/24751839.2017.1375223
https://www.tandfonline.com/action/authorSubmission?journalCode=tjit20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjit20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24751839.2017.1375223
https://www.tandfonline.com/doi/mlt/10.1080/24751839.2017.1375223
http://crossmark.crossref.org/dialog/?doi=10.1080/24751839.2017.1375223&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1080/24751839.2017.1375223&domain=pdf&date_stamp=2017-09-21

Information systems modelling based on graph-theoretic
background
B. Molnár , A. Béleczki and A. Benczúr

Information Systems Department, Eötvös Loránd University, Budapest, Hungary

ABSTRACT
The recent tendency in analysis and design of information systems is
that the emphasis is placed on the documents that are ubiquitous
around information systems and organizations. The proliferation
of computer literacy led to the general use of electronic
documents. To understand the anticipated behaviour of
information systems and the actual operation of an organization,
the analysis of documents plays increasingly an important role.
The behaviour of information systems can be interpreted in a
framework of Enterprise Architecture and its models that are
contained in it. Certain parts and entirety of various types of
documents are connected to business processes, tasks, roles, and
actors within an organization. The tracking of life cycle of
documents and representing the complex relationships are
essential at both analysis and operation time. We propose a
theoretical framework that makes use of previous results of
modelling and well-founded mathematical techniques. The basic
idea is that the very flexible mathematical structure, the
hypergraph, provides a sound groundwork on which a formal
structure can be built up through mapping the essential concept,
construction, components, and constituents of information
systems. Thus, the representations of models for information
systems that mapped onto a hypergraph can be analysed by
either using more traditional tools as logic and inference rules or
by a set of tools belonging to data science later. The paper
describes the mapping of the important concepts onto
hypergraphs as documents, processes in cases, their models and
some rules for verification and validation; the hypergraph
description can be interpreted as a concept hypergraph to be
subjected for logical reasoning.

ARTICLE HISTORY
Received 15 April 2017
Accepted 31 August 2017

KEYWORDS
Information system
modelling; document-centric
modelling; information
system architecture;
Zachman framework;
hypergraphs; ontology;
description logics; concept
hypergraph

1. Introduction

The information systems become more complex for several reasons. The use of various
electronic document types is commonplace in organizations. The interactive forms, Web
pages, the structured and semi-structured documents, on the one hand, are the stimulus
to start the chain of activities within an organization; on the other hand, they are the end

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

CONTACT B. Molnár molnarba@inf.elte.hu, molnarba@gmail.com Information Systems Department, Eötvös Loránd
University of Budapest, Pázmány Péter sétány 1/C, Budapest 1117, Hungary

JOURNAL OF INFORMATION AND TELECOMMUNICATION, 2018
VOL. 2, NO. 1, 68–90
https://doi.org/10.1080/24751839.2017.1375223

http://crossmark.crossref.org/dialog/?doi=10.1080/24751839.2017.1375223&domain=pdf
http://orcid.org/0000-0001-5015-8883
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:molnarba@inf.elte.hu
mailto:molnarba@gmail.com
http://english.tdt.edu.vn
http://www.tandfonline.com

of business processes. The Business and System Analysts typically encounter documents
during the process of analysis, the conceptualization of requirements by users. The docu-
ments emerge in the disguise as requirements, subject of actual business processes and
tasks, essential component of data processing internal to the information systems.

There are several modelling and descriptive approaches for modelling information
systems. Some of them make use of formalism grounded in mathematics. It seems to
be beneficiary and feasible if we elaborate a method that focuses on documents and
their life cycle and places them into the context of Information Architecture of Information
Systems. The adequate mathematical formalism that is capable to represent the complex
relationships is the generalized hypergraph (Bretto, 2013).

In a contemporary information system, a phenomenon that can be called document-
centric can be discerned. Much of the recent information systems can be typified as
business-oriented information systems, i.e. the business processes, the workflows play
an important role in the environment in which the information system is embedded.
The business processes and documents are intertwined so that a document-centric
approach with a formal grounding provides a helping hand for understanding the
system, maintaining the consistency in a dynamic environment, sustaining the data secur-
ity and privacy, assisting in verification and validation of the model at analysis, design, and
operational season (Bell, 2008).

The scientific contribution of our research is the mapping of the concepts that are
related to documents, business processes, and models of information systems onto a
hypergraph structure that offers the opportunity for both static verification and opera-
tionalization in a graph database environment. On the created structure, a set of logic
rules specified that provide an initial basis for formal verification, validation, and main-
taining the consistency of the models. In the preceding conference paper (Molnár,
Benczúr, & Béleczki, 2016b), the way for the application of description logics and a
brief set of the defined logical axioms were described. In the recent paper, our scientific
contribution is that the outlined approach in the previous paper is pursued further on
and extended in the following areas: (1) Taking advantage of case studies (Molnár,
Béleczki, & Benczúr, 2016; Molnár, 2017), the document-centric approach is examined
in a public administration environment in the light of Adaptive Case Management
(Swenson, 2011); (2) the mapping onto the proposed hypergraph structure of the com-
ponents of cases (processes, procedures, input and output documents) is formalized; (3)
the hypergraph structure for describing cases and relevant documents was reformu-
lated as a concept hypergraph to enable the reasoning mechanism of description
logics; (4) the logical axioms are augmented that are formulated in description logics;
(5) the concept hypergraph and the strongly coupled logical rules made possible the
conceptualization of matching between the components of models in cases and defin-
ing a qualitative measurement for the degree of matching; and (6) the first formal steps
are taken towards modelling of dynamically changing business processes in all three
seasons of their life cycles.

The implementation of the framework is taken place firstly on a hypergraph database
(Iordanov, 2010). Although the typical problems of an open-source software occurred,
there is an ongoing attempt to exploit the properties of graph databases and to work
out a homeomorph mapping onto a bipartite graph to represent a bipartite, concept
hypergraph.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 69

In Section 2, we present the previous researches reported in the literature; in Section 3,
we describe the required mathematical background; in Sections 4 and 5, we outline our
method making use of the previous approaches in a document-centric approach, and
Section 6 provides a summary and conclusions.

2. Literature review

The web-based and Web Information Systems (WIS) are the typical examples that make
extensive use of the various document formats. The emphasis on Web technologies
slowly diminished as the application of Web technology, at user interfaces, became com-
monplace. The WIS contains traditional information systems element and semi-structured
XML documents, which behave actively beside other important parts of the system. The
XML documents make use of active hyperlinks and other features of Web and Web ser-
vices (Isakowitz, Bieber, & Vitali, 1998). A WIS can be considered as an information
system that has an underlying database, or at least sets of data collection. The WIS can
be accessed on the web from anywhere in the cyberspace via web browsers. The data
and information that flow through the web interfaces and web pages are incorporated
into documents. The documents as appropriate format for structuring both information
and data can serve to query data from the information system or actualize the underlying
data structure.

A systematic design approach to construct web-based applications was discussed in
Köppen and Neumann (1999). The shown method made use of semi-structured and
interactive documents represented by XML. Another paper presented an approach for a
well-founded, concept-based modelling process for a website. For designing of WIS,
Rossi presented a design procedure (Rossi, Schwabe, & Lyardet, 1999). To grasp the
complex behaviour of information systems, the notion of the Enterprise Architecture
gives a helping hand, namely Blokdijk’s perception of information systems, Zachman’s
ontology, and TOGAF, all of them was created for information systems (Blokdijk & Blokdijk,
1987; Clark et al., 2001; MacKenzie et al., 2006; Zachman, 1987).

An information system supports business processes (Business Process Modelling, BPM)
and is usually tightly coupled to another information system. A standard way to model
business processes is the application of BPM methods. The information systems can
also be perceived as a structure with underlying databases for structured, semi-structured,
as well as unstructured documents (XML-based). The documents play an important role at
the interface, interaction level, and at core activities of data processing. The integration
level and the degree of reconciliation between business processes and the organization
were analysed on the basis of ontologies and semantic approaches (Kő & Ternai, 2011).
A model-driven and formal comprehensive approach for information systems modelling
was depicted in Lukovic, Ivancevic, Celikovic, and Aleksic (2013). There are various input
data format for communication to services: (1) HTML pages, (2) SOAP messages, (3)
semi-structured and unstructured documents (XML-based) (Bernauer & Schrefl, 2004;
Chiu & Bieber, 2001; Nam, Jang, & Bae, 2003).

In the contemporary information systems, the analysis and design problems can be for-
mulated as follows: (1) the weight of communication with information systems shifted
from the structured data towards semi-structured and unstructured data in the form of
documents; (2) the data exchange between information systems and the organizational

70 B. MOLNÁR ET AL.

environment happens through services provided by some logical component of the infor-
mation system that ingest the data that have been inputted. The input data, document,
and the service that handles them are strongly interconnected at the level of business
process management, furthermore at a logical level of modelling too so that these
compounds of elements were considered as one unit by several researchers. Some
approaches called that perception as Business artifact (Cohn & Hull, 2009; Hull,
2008). In this approach, the events, data, and services that process the data
compose one entity so that these artefacts were the subject of formal modelling
and operationalization of the activities. Furthermore, there were similar concepts
that have been defined by disparate names, such as adaptive documents (ADoc)
(Kumaran, Nandi, Heath, Bhaskaran, & Das, 2003) and adaptive business objects (ABO)
(Nandi & Kumaran, 2005). However, none of them tried to connect the documents
as inputs to the various architecture layers that contain design, implementation, and
operation models; moreover, neither of them attempted to exploit the duality and
dichotomy between business processes and documents that exist in models contained
in the Enterprise Architecture. At the human–machine interface, the efficient and
effective usage of documents was investigated that may provide a better understand-
ing and perception of documents, whereby a suitable personal information system
was created for the comfortable management of documents for the end-user
(Indratmo & Vassileva, 2006).

There were some previous papers that tried to put the before-mentioned approaches
into a unified framework by a semi-formal way (Molnár, 2014; Molnár & Tarcsi, 2011;
Molnár & Benczúr, 2013). The Enterprise Architecture framework such as Zachman and
TOGAF provided a supporting environment (Bent, Sante, Kerssens, & Kemmeren, 2008;
MacKenzie et al., 2006; Zachman, 1987). Blokdijk’s collection of Information System
Models yielded a structuring guideline (Blokdijk & Blokdijk, 1987); moreover, the axiomatic
design approach employed for the Information System environment offered an opportu-
nity for a method that was interesting not only for theoretic modelling point of view but
provided a chance to support practical design methods (Christensen, Curbera, Meredith, &
Weerawarana, 2001).

3. Formal mathematical background

Hypergraphs. As we have outlined previously, the problem to be solved can be described
as a set of complex, heterogeneous relationships. The basic components that appear as
constituents participate sometimes in hierarchical and sometimes network-like relation-
ships. These two kinds of relations are different from each other. The hypergraphs – as
mathematical structure – seem to be apt to representing the interrelationships among
the models, views, viewpoints, perspectives, and the overarching documents and business
processes (Zachman, 1987).

We start with the basic definitions of hypergraphs to employ for depicting the before-
mentioned complex relationships.

Definition 3.1: A hypergraph H is a pair (V, E) of a finite set V = {v1,… ,vn} and a set E of
nonempty subsets of V. The elements of V are called vertices (nodes) and the elements of E
are called edges (Bretto, 2013).

JOURNAL OF INFORMATION AND TELECOMMUNICATION 71

Definition 3.2: Generalized or extended hypergraph. The notion of hypergraph is
broadened so that some of the hyperedges are denoted – in certain cases – as vertices,
thereby a generalized hyperedge e may consist of both vertices and hyperedges as
well. The hyperedges that are contained within the hyperedge e should be different
from e (Bretto, 2013).

Considering a document model, a document type hierarchy can be perceived as a ‘hier-
archy’ of hyperedges. The free variables or placeholders to be filled-in may occur as ulti-
mate vertices within hyperedges that represent the instance of the extension of a
document type. In a document subpart hierarchy, a specific subpart of document may
be denoted by a vertex within a specific hyperedge that describes this document that con-
tains the subpart, although that subpart as a vertex may include a document type hierar-
chy that can be depicted by a hyperedge.

Definition 3.3: A directed hypergraph is an ordered pair

�H = (V ; �E = {�ei|i [I}), (1)

where V is a finite set of vertices and �E is a set of hyperarcs with finite index set I. Every
hyperarc �ei can be perceived as an ordered pair

�ei = (e+i
�= (e+i ; i); e

−
i
�= (e−i ; i)), (2)

where e+i # V is the set of vertices of e+i
�

and e−i # V is the set of vertices e−i
�

. The elements
of e+i

�
(hyperedges and/or vertices) are called tail of �ei , while elements of e−i

��
are called

head (Bretto, 2013). We may use as shorthand notation for ordered pairs, e.g. a vertex
and a directed hyperedge as ordered pair kvi , ejl.

The underlying graph representation is based on the hypergraphs and directed hyper-
graphs. The potential implementations of hypergraphs in a hypergraph database allow for
linking attributes to vertices and to hyperedges too. The target domain – namely, docu-
ments and model of information systems within organizations – contains complex n-ary
relationships. The hypergraph provides the opportunity to depict recursive construction,
to describe logical relations, and to store compound structures along with their values
(Ausiello, Franciosa, & Frigioni, 2001; Gallo, Longo, Pallottino, & Nguyen, 1993; Iordanov,
2010).

As an illustration of the basic concepts of directed hypergraph, an example can be seen
in Figure 1 that makes sense of the representation for the domain by hypergraph. The
essential characteristic is that vertices contain composite constituents that are themselves
may be graphs; generalized hyperedge may contain other hyperedges – but not itself –
and nodes. A detailed description about the Architecture Describing Hypergraph can be
found in Molnár, Benczúr, and Béleczki (2016a, 2016b).

4. Formalized document-centric approach

In the case of an organization, we can imagine that there is a comprehensive document
that is a representation – in conceptual sense – of all potential documents. This overarch-
ing document is composed of generic document types. Generic document types are hier-
archical structures that can be described by configuration hyperedges that reflect the
composition of documents. There are hierarchical relations among the members of a

72 B. MOLNÁR ET AL.

generic document. The hierarchical relationships can be described by configuration hyper-
edges (EC); the instances of a generic document member can be perceived as extensions
and can be represented by extensional hyperedges.

A generic document type GDT is a hierarchy of document types DTH. The elements of
DTH can belong to a configuration hyperedge eCi [EC as vertices. The generalized hyper-
graphs allow that the vertices may appear as complex structures, as hyperedges. There-
fore, a node can be a hyperedge that itself a configuration hyperedge that contains a
hierarchy of document types. Thereby, the representation makes possible for a recursive
definition of document types and gathering them into a generic document type.

Figure 2 shows a sample for explanation of the structure for recursive document struc-
ture through a case study example (Molnár, Béleczki et al., 2016). The hypergraph structure
provides the opportunity to create a complex structure that can reflect flexibly the docu-
ments during input, processing, and output with connection to the tasks of the workflows.
The data elements, the variable (either free or bounded), and the types of the elements of
XML structures can be represented as nodes embedded into hyperedges and hyperarcs.
The hyperedges and hyperarcs along with their interrelationship can describe the roles
that are played by nodes and hyperedges because the generalized hypergraphs allow
for inserting recursively hyperedges into each other. By this way, the documents can be
described as an interconnected network of specific objects that depicts the static struc-
ture. However, the generalized hypergraph makes possible to represent the operations
on each single object through recursively embedded hyperedges, whereby it mirrors
the dynamical aspect of the interactions between documents and processes.

The direction of the hyperarc shows whether a document plays the input or output role
in a context. The definition given above (see formula (2)) permits the differentiation
between the information represented by the head and tail of a hyperarc and the

Figure 1. Directed hypergraph describing the relations among documents and tasks of business
processes.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 73

information that are represented in the form of nodes that are contained within the heads
and the tails (Bretto, 2013).

Definition 4.1: The Document Subhypergraph consists of:

(1) A finite set of documents that are represented by vertices DOC = {doc1,… ,docn};
(2) The documents contain variables, the variables belong to attribute types Attr = {T1,… ,

Tn};
(3) The finite set of domains is DOMSET = {D1,… ,Dk} that contains the domain of each

single type, Ti, attribute type;
(4) The relationship between a GDT generic document type hierarchy and its constituents

document types belonging to a DTH document type hierarchy can be described by
hyperarcs representing is-a relationships; the hierarchy is a mapping of supertype–
subtype relationships between document types. The relationships can be deduced
from the variables, their attributes, and the types of attributes.

(5) The relationship between a document doci and a document type DT can be described
by a hyperarc representing the instance-of relationship.

The concept of generic document type offers possibilities for the derivation of new docu-
ment types from other document types that can be regarded as templates. The derivation
rules can be formalized as logical statements that assist to create a slightly different docu-
ment type through modifying the structure of an existing document type; and when an
instance of a free document of the document type is created then the derivation rules
may control the life cycle of the instance of the document type. A document type

Figure 2. Hypergraph representation for documents in case management within public administration.

74 B. MOLNÁR ET AL.

belonging to a document type hierarchy having at a top level a generic document type
may contain business rules in the form of predicates, data retrieving and calculation rules.

As an illustration of the above-mentioned facts, we can investigate the case manage-
ment and processes of legal procedures in public administration. A generic document
type can be the ‘Legal Case’, i.e. a comprehensive document that incorporates the
concept of issues that might be initiated by a citizen (Figure 2). There is a generic docu-
ment type – ‘Legal Case’ – that contain document types for identification of citizens
involved in the case and checking the eligibility, i.e. his/her/their rights, to handle
and manage the specific legal issue. The example suggests that the usual personal
data and credentials can be used to identify the actual person(s) attached to the
case. Even a specific legal case may involve several different document types through
the networking of legal procedural rules. These document types referring to sub-
cases should be within the hierarchy and scope of the actual generic document type.
During the document evolution stages, the generic document type and document
types that contained in the document hierarchy instantiated into documents with
free variables; then variables are valuated till the documents reach the finalized
status; however, the finalized state does not mean an end-state in the practice, and
in public administration. The finalized document should be modified according to
specific requirements till it achieves the end-state that may be called ground-document,
when all the free variables are valuated and no change can be executed on the docu-
ment, i.e. it is in a frozen status. Any modification can be carried out only on a new
instance of the document type, starting or continuing the development of the docu-
ment at a certain point of its life cycle.

A ‘legal case’ can be defined as a collection of tasks, actions, processes, and content in
support of a specific public administration objective. Cases can involve multiple flows,
tasks, and content, and sometimes have sub-cases within them. An integral part of a
case is the related documents that evolve along with the strongly coupled tasks within
processes and move within the data flows and go through transitions (Van der Aalst,
Weske, & Grünbauer, 2005).

Definition 4.2: A case comprises of tasks, procedures, processes, and content that is
embodied in the form of documents to achieve certain goals.

A case can be represented by a generalized hyperedge that contains:

. The nodes for the relevant document types and the hyperarcs that represent the trans-
formation of documents:
○ h ∈ EConfiguration_Document, h ⊂ VDoc, where VDoc ⊇ {OGDT}, where OGDT designates the

overarching generic document, that is the supertype of all other document types and
their instances. The set of hyperedges Configuration_Document embodies the
arrangement and structure of documents that can be described by hyperedges
that contain vertices that represent the relevant parts of documents, a single hyper-
edge represent a specific arrangement of constituents for documents.

. VConfiguration = ∪ hi, where hi ∈ EC, and ∩ hi = Ø, where hi ∈ EC. EC consists of the configur-
ation hyperedges. Each hi ∈ EC is a simple hyperedge, i.e. containing only vertices, it does
not contain complex structures and other hyperedges. All hi ∈ EC can be labeled
unambiguously.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 75

. VProcess⊇{BPM, {external_evironment}}, where BPM designates the overall Business Process
Model consisting of process models, the external_environment refers to the outside
world that is typically the source of stimulus that is generated by either humans or
any other systems;
○ The set of arcs (directed edges of graphs) A is partitioned into subsets ADoc_Target,

AProcess_Target, HAInteraction, where ADoc_Target ⊆ VConfiguration × VDoc, AProcess_Target ⊆
VConfiguration × VProcess. The Doc_Target and Process_Target designate those documents
and processes that are on the ‘output side’, on the head of hyperedges (e−i

�
); mean-

while, the Interaction denotes the information exchange between processes and
documents, or any other entities.

○ HAInteraction ⊆ VModel × VDoc, HAInteraction ⊆ ED (directed hyperedges); the interaction
between certain process models and specific documents can be expressed by hyper-
edge h ∈ HAInteraction.

An arc, a directed hyperedge (edoc targeti [ADoc Target) can describe that a set of docu-
ments or multiset of documents can be an input and another set of documents or multiset
can be the output. The transforming tasks and processes can be contained in another
hyperedge (e process targetj [APr ocess Target), the input, the output, and the relevant tasks of
processes can be represented through a directed hyperedge einteractionk [HAInteraction.

ED is a set of hyperarcs, i.e. directed hyperedges; the hyperarc �ei∈ ED can be as follows
(see Definition 3.3):

. �ei = kvj , �hl = (e+i
�= (e+i = vj , i); e−i

�= (i, e−i = h)), where vj ∈ V set of vertices,
j [J index set, and �h ∈ EG; EG is made up of grouping hyperedges that symbolize
various structuring principles on components, e.g. views, and perspectives in architecture
describing approaches (Zachman, 1987); they denote interrelationships between
certain models and pieces or parts of documents, e.g. business activity models, docu-
ments, and responsibilities of roles within an organization unit. The hyperedge h ∈
EG can be utilized for sorting the vertices (representing either documents or models)
into organizational-related, document-related, and activity-related relationships;

. �ei = kvj , �hl = (e+i
�= (e+i = vj , i); e

−
i
�= (i, e−i = h)), where vj ∈ V, j [J index set, and �h

∈ EC;
. �ei = kvj , �hl = (e+i

�= (e+i = vj , i); e−i
�= (i, e−i = h)), where vj ∈ V, j [J index set, and �h

∈ EE (extensional hyperedges);
. there does not exist two hyperarcs �ei = kvj , �hl and �ek = kvl , h′

�
l that either

�h, h′
�

[EC or �h, h′
�

[EE , i.e. every vertex vj ∈ V is linked, at most, to one configuration
hyperedge (EC) and at most to one extensional hyperedge (EE). These conditions can be
interpreted in the following way: a vertex may belong to a configuration structure
(either document or process model) or it may belong to an extension that represents
the instantiation of either a document or a process model.

In modelling perspective, a case can be perceived as a collaborative process that
includes several actors and roles out of public administration (in the case study) and citi-
zens. The participating public officers can belong to various branches and sectors of public
administration; in the case of commercial companies, the actors may be associated with
multiple departments, groups within an organization. The case can be considered as

76 B. MOLNÁR ET AL.

content-intensive, i.e. a case contains lots of document in different states, at various points
in their life cycles. In the process modelling aspect, a case is semi-structured or unstruc-
tured, i.e. a case may be enhanced by ad hoc tasks dynamically during its life cycle
either being in the analysis, design, or operational phase. The processes of a case
include several tasks and actions that are ordered in the hierarchy or network. The docu-
ment type hierarchy and the structure of a case should be correlated, considering their
structures, namely their graph representation within a hypergraph. The dynamism is the
immanent characteristics of a case in the sense that each single case differs from each
other as the case handling depends on the specific circumstances; these circumstances
cause changes in cases so that each ‘season’ or phase of the case – either generic type
level or at a point in the life cycle of the actual instance – requires modifications in the
activities, documents, etc.

As it can be concluded from the above-described formal definition, a case typically con-
sists of the following components: documents, variables (data fields), data items, content
of documents (structured, semi-structured, unstructured), processes and their constituents
as tasks and actions. A case that has – as a major objective – to accomplish a goal of the
stakeholders (in the example both citizens and public administration) possesses other
accessories, e.g. the relevant policies, status during evolution of the cases, the history of
development of the case, audit trails and other logs for monitoring and tracking, and
finally reporting and data analytics mechanisms.

The case management and processing within an overarching information system
environment are primarily an intertwined process and document handling problem. One
of the inherent attributes of the case management is the dynamic characteristic. During
analysis and design time of an information system, the intention is to cover the events,
processes, input, and output data/documents.

As we have seen in our case study (Molnár, Béleczki et al., 2016), the case – a legal pro-
cedure to handle an issue related to a life cycle events of citizens – is broadly defined in the
sense of documents and processes linked to the specific issue. The generic documents, the
document type hierarchy defines the required documents and data sets; the intensional
documents, the entrenched rules, the processes, and tasks linked to a case through
rules are partially defined in advance (Figure 2). The combined sets of generic document
types and the connected process templates provide a framework that gives the opportu-
nity for flexible amendment in all three seasons of the life cycles of processes and docu-
ment types (see Figure 3) (Bell, 2008). The concrete steps of tasks and actions in
tandem with documents are determined by a combination of business events, human
decisions, and business rules (Kossak et al., 2016). The human interaction has relevance
at analysis and operational seasons as well. In public administration, there are laws,
legal rules, directives that govern the workflow joined to a case. However, there are subtle-
ties, details that necessitate the dynamic amendment on the templates and instances
(both documents and processes). There are different legacy systems that are sector
specific within public administration; these systems either demand input data from pro-
cesses or yield some output data to processes and documents involved in a case.
Because of the silo-like organization of public administration, the collaboration between
different branches is limited to share information and handling a case. These facts initiate
ad hoc, dynamic modifications within workflows, on the involved documents and pro-
cesses at both analysis and operational seasons. A design problem of workflows and

JOURNAL OF INFORMATION AND TELECOMMUNICATION 77

business processes is to provide a consistent and timely feedback of about a case to the
involved citizens. A formal model grounded in graph theory provides the chances to
reconcile the various aspects in an integrated and consistent view. The systematic descrip-
tion of the complex relationships makes possible to monitor, track, and manage the cases.

A specific requirement is to set up a reporting scheme on cases that exploits data ana-
lytics and data mining techniques to provide a comprehensive picture on the actual situ-
ation, history, and tendencies (Molnár, 2017). Another important obligation is the
compliance that is the processing of cases should conform several legal rules. These
rules should be kept during all the seasons of case life cycles, namely, analysis, design,
and operation. The compliance means a kind of risks that should be minimized during pro-
cessing of cases.

The formalized model can solve the above-mentioned problems with case management
that appears in the document-centric information system with special emphasis on
business processes.

4.1. Description Logics and business processes for cases

One of the most common approaches of formalization is the use of some mathematical-
logical language. The description logics belong to the theories of mathematical logics, and
their purpose is to create a formal knowledge representation (Baader, 2003; Blokdijk &
Blokdijk, 1987). Compared to propositional calculus (or propositional logic), the

Figure 3. Architecture of documents, data, and processes for case management.

78 B. MOLNÁR ET AL.

expressiveness of description logic is higher, and it has a more effective algorithm for the
decision problem than the first-order predicate logic. On the other hand, the network-like
knowledge representation – where the elements of the network are nodes and links are
relationships, e.g. the semantic network – can be related to the theory of hypergraphs.
In both cases, nodes can be used to define concepts, and links can be used to characterize
the relationships among them. On bearing this in mind, it is obvious to apply description
logic on a system based on the mathematical background of hypergraphs.

The knowledge representation systems based on description logics contains two main
components: the TBox and the ABox. The TBox introduces the terminology, i.e. the basic
concepts, which denote sets of individuals (atomic and complex), and roles, which define
binary relations between individuals. These are forming the vocabulary of an application
domain. The ABox contains assertions among named individuals and the vocabulary.

There are many variations of the description logics (based on the description languages
varieties) and there is an informal convention, where their name indicates which operators
are allowed. For example, a basic logical language is the Attributive Language – AL, which
allows atomic negation, concept intersection, limited existential quantification, and uni-
versal restriction. This can be extended with other operators, such as concept union (U),
full existential qualification (E), cardinality restriction (N), or complex concept negation (C).

We can exploit the description logic for formulating logical rules and axioms that bear
on documents and processes. The advantage of the use of a generalized hypergraph is
that we can associate the more static description logic axioms to hyperedges and hyper-
arcs, and intensional documents; moreover, the more dynamic inference rules can be
attached as well to them. Therefore, formal model for an information system is well pre-
pared for accepting changes resiliently that happen dynamically as it cannot be
assumed that all processes can be accurately planned so that the exceptional event
that causes dynamic changes in discreet time should be perceived as normal situation;
however, the exceptions cannot be forecasted and cannot be designed in advance. The
document-centric approach fits to the adaptive case management approach as the
focus is on the information content of documents and the focus is not only on the pro-
cesses themselves. The dynamic aspect of business processes put emphasis on enhancing
workflow representation through knowledge management that can emerge in formal
modelling as the mapping the knowledge into formal representation, e.g. into description
logics. The concept of dynamic case management permits the formal representation of
the collaboration work either structured, semi-structured, or unstructured; furthermore,
it makes possible that the roles played by humans can be considered during interactions
between humans and automated tasks (Kossak et al., 2016). The document-centric rep-
resentation for case management helps organizations to cut across the silo-like arrange-
ment of business units and the related information systems.

As we have seen previously, a case unifies the processes, sub-processes, tasks, docu-
ments, and the relevant data elements (Figure 3). The business processes are built up
through analysis of the anticipated outputs that are in the form of ground-documents,
then through the input documents that are originally in the form of free-documents popu-
lated by free-variables or placeholders. The data items along with their data types are
stored in data collections then they are retrieved from a database that contains the
data collections in their partitions. The variables, placeholders should fit onto each
other in input, output documents, and data collection.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 79

Definition 4.3: The extent of a case consists of the relevant business process, the set of
tasks within the process, the flow of the input, output documents, and a transformation T
that maps the input set of input documents Inp onto the output set of documents Outp, T:
Inp �Outp,, Inp = {docInp1 ,… ,docInpn }, Outp = {docOutp1 ,… ,docOutpn } ⊆ DOC = {doc1,
… ,docn} that are represented by vertices in the Document Subhypergraph.

Definition 4.4: Elucidation of the Document Subhypergraph, i.e. additional properties are
stated to have the subhypergraph made subject of Description Logic and business rules.

(1) Each vertex doci in DOC Document Subhypergraph represents a document that con-
tains a set of variables and placeholders owning attribute types and referring to
data items.

(2) Each hyperedge e containing vertices doci i = 1, 2,… , n describes a relationship
between documents.

(3) A generalized hyperedge ge may contain hyperedge e that represents relationship
between certain set or multiset of documents, thereby hyperedge ge represents a
set of relationships among documents.

(4) Each vertex v in a hyperedge e has meta-attributes for reasoning, e.g. a declaration
that vertex v is mandatory, or optional element within the relationship represented
by hyperedge e.

The hypergraph allows for a multi-dimensional representation of facts and knowledge,
syntactic and semantic level information that is codified into the documents. Thus, the
graph representation makes allowance for a uniform framework in which unary (collec-
tion-like, e.g. containment), binary, and n-ary relationships, atomic elements (attributes,
data items), and complex relationships can be represented. This approach can underpin
the modelling activities of information systems when the life cycle demands requirement
analysis, specification, verification, and validation, moreover reasoning on the underlying
structure. The hypergraph model can be the subject of graph transformation algorithms.
As we have mentioned in Definition 4.2, the hypergraphs can be labelled unambiguously,
not only the configuration hyperedges but other hyperedges and arcs as well, thereby this
definition of hypergraph can be considered as directed labeled graph. The directed labeled
graphs can be frequently used for depicting semantic nets, simple statements in first-order
predicate logic, Datalog logical statements (Ullman & Widom, 2009), RDF triples, Open
Graph (Facebook, 2017), and Knowledge Graph (Google, 2017). This property of the
directed labeled hypergraph can be exploited: (1) the hypergraph in default interpretation
permits the representation of n-ary relationships, the labels of hyperedges express
relations among the nodes that are contained in an hyperedge, the labels of hyperarcs
can represent, e.g. relational database tuples where the key define the other attributes,
or link input and output format of documents that may have several variables (Definition
4.2); (2) the generalized hypergraph makes possible the depiction of nested hyperedges
representing nested relationships, expression, terms, and logical formulas; (3) higher
order logics, description logics allow for description both the instances and the logical
relations between them (A-box, T-box); (4) the generalized hypergraph provides the
opportunity that labels of hyperedges and hyperarcs can be used as nodes whereby
they can be member of logical statement and inferences.

80 B. MOLNÁR ET AL.

4.2. Description Logic and document-centric approach

To illustrate the use of the Description Logic in a document-centric environment, we give
some examples below:

. With Parameter ⊑ (Free Variable ⊔ Bound Variable) notation, we describe that a docu-
ment parameter can be free or bound variable.

. Parameter ⊑ ∃ is_part_of. (Document Fragment) means that a document fragment
consists of parameters, and Document Fragment. ∃ is_derived. (Free_Document)
means that the document fragments are derived from unprocessed free documents.

. State.P ⊑ ∃ has_successor. (Action State.Q) means that Q action-state follows the P
state.

. The following line describes that an action-state needs free variables to work with:
Action State ⊑ ∃ has_free_variables. (Document); has_free_variables ≡ ≥ 1 is_free_-
variable ⊓ is_free_parameter. Parameter.

. The objective to be achieved by a case can be formulated: Goal of Case⊑ ∃ has_post_-
condition. Task

. Task ⊑ ∃ Model.Business_Process. Defines that a task should belong to an existing
business process model.

. Intensional_document ⊑ ∃ has_rules. Document_type. It determines that intensional
documents are active documents containing inferences and axioms.

. Document ⊑ ∃ Generic_Document_Type ⊔ Document_Type ⊔ Instance_of_Docu-
ment_Type. The definition of documents that appear as nodes in hyperedges.

. Free_Document ⊑ ∃ has_free_variables. (Instance_of_Document_Type) ⊓ ¬ has_-
bounded_variables. (Instance_of_Document_Type). It defines that a document
instance at the beginning of its life cycle is a free document containing only free vari-
ables, data fields to be filled out.

. Variable ≡∀usedInDocument. (Document) ⊓ ∀usedInTask. (Task) ⊓ usedInData_Col-
lection. (Data_Collection). If a task within a process uses a variable, then the variable
should appear in the related document and partition of the underlying database.

. Document ⊑ ∃ has_responsibility. (Role) ⊓ usedInTask. (Task). It declares that a docu-
ment is manipulated in a task should belong to roles within the organization that have
responsibility for manipulation of documents. It is important for checking and control-
ling the security, safety, and compliance aspects.

. Data_Collection ⊑ ∃ Database

. Data_Collection ⊑ ∃ has_data_type. (Data_Item). It clarifies the data collection
concept, i.e. data collection consists of data items that can be considered as atomic
concept and they have data types, thereby data collection constitutes a definite part
of the underlying database.

. has_variable. (Documents) ⊑ ∃ usedInData_Collection. (Data_Collection) ⊓ usedIn-
Task. (Task). The variables to be filled-in are part of the variables that are manipulated
by the specific tasks and the variables can be mapped onto data fields/items that com-
prise a data collection.

The output of a well-designed formalization with description logics of an information
system (represented by a hypergraph) is in a machine-readable format. Thereby it

JOURNAL OF INFORMATION AND TELECOMMUNICATION 81

creates the opportunity to use various frameworks and tools to evaluate the model. By this
way, it is possible to effectively optimize the information system even in the early model-
development phase.

5. Information architecture and documents of cases

Besides the essential documents, information systems can be described by various models
that are ordered into a reasonable structure by the Enterprise Architecture approach.
Above, we have already discussed the process models relating to cases, although
several other models and views exist in an information system environment that should
be taken into account in a comprehensive representation.

The models’ descriptions appear usually in semi-structured document formats as XML
and/or JSON that offers a chance for uniform treatment of documents and models of infor-
mation systems. As structuring principles for models of information systems, we can use
Zachman’s ontology and/or TOGAF (Bent et al., 2008; Zachman, 1987). The set of relations
among models and the internal structure of models plays an essential role.

The models can be arranged into three meta-groups namely organization, documents,
and activities/processes related models. For modelling, the relationships and interactions
among these three meta-groups and the underlying collections of data are significant.
The models, documents, concepts of information systems, and a node representing the
external environment compose a hypergraph that embraces all important parts of the
application domain that may be called as System Hypergraph.

In the case of documents, a directed hyperedge can express the input and output roles
of documents that they may play within activities of business processes. The document
may be attached to organization units and actors through a responsibility hyperedge
(labeled directed hyperedge). The variables of documents may be connected to data ver-
tices of D that is organized into reasonable partitions that are represented by nodes con-
tained in hyperedges that can be mutually mapped to specific data collections. These
subhypergraphs may be called Sub-system Hypergraphs. Between the models, a refine-
ment relation can be identified within an architectural perspective and represented by
a directed hyperarc is-a-refinement (Zachman, 1987). The documents and their structures
can be described by documents model.

Definition 5.1. Models of information systems represented in the Architecture Describing
Hypergraph are:

. The set of vertices is divided up into two basic subsets VDoc and VModel;

. VDoc ⊇ {OGDT}, where OGDT signifies the overarching generic document, that is the
supertype of all other document types and their instances;

. VModel ⊇ {EA, {external_evironment}}, where EA designates the overall Enterprise Architec-
ture consisting of models, the external_evironment refers to the outside world that is
typically the source of stimulus that is generated by either humans or any other systems;

. VConfiguration = ∪ hi, where hi ∈ EC, and ∩ hi = Ø, where hi ∈ EC configuration hyperedge.

The Architecture Describing Hypergraph depicts the architecture of information system
within an organization through the conceptual framework of the Enterprise Architecture,

82 B. MOLNÁR ET AL.

i.e. the layers of the models, the perspectives and aspects of models, and viewpoints of
stakeholders (Zachman, 1987; TOGAF Bent et al., 2008). The hypergraph provides a
unified and uniform representation tool for the heterogenous artefacts that are an integral
part of an information system, e.g. as an architectural component, as an analysis, design,
implementation, and operational model. The hypergraph representation is not only a
static description method despite it, the mathematical properties of the hypergraph rep-
resentation provide opportunities for analysis and assessment of the consistency, integrity,
completeness of the functional requirements in a dynamic environment as well.

Thus, the above-defined expressions articulate the fact that the configuration hyper-
edges represent the structure of artefacts of models and documents in the form of struc-
tural constituents as vertices.

. The set of arcs (directed edges of graphs) A is partitioned into subsets ADoc_Target,
AModel_Target, AInteraction, where ADoc_Target ⊆ VConfiguration × VDoc, AModel_Target ⊆ VConfiguration-
× VModel.

The directed edges (ED, the arcs) map a complex structure to a vertex within the hyper-
graph, namely the configuration of elements to a vertex that describes either a document
or a model.

. HAInteraction ⊆ VModel × VDoc, HAInteraction ⊆ ED;

The interaction between certain models and specific documents can be expressed by a
hyperedge h ∈ HAInteraction.

. EC can be partitioned into two subsets EConfiguration_Document and EConfiguration_Model.

The hyperedges hi, cd∈ EConfiguration_Document, hj, cd∈ EConfiguration_Model represent an inheritance
structure. The inheritance structure conforms to the object-oriented paradigm, i.e. the con-
figuration of documents and models inherit the attributes of super-classes, and may have
extra attributes as well. Each attribute of a certain configuration can be represented by a
vertex of the hyperedge. An attribute linked to a node either in VModel or in VDoc, its value
represented by a link to a d ∈ D when it is valuated. If the attribute is multi-valued, then
the attribute is connected to hyperedge h ∈ Power(D) (the power set of D).

. The set of extensional hyperedges EE is split into two subsets ESuperclass and EExtension
○ The hyperarc h ∈ ESuperclass, if h ∈ EE, (h set of vertices)

- Either h ⊂ VDoc and OGDT ∈ h
- or h ⊂ VModel and EA ∈ h
- Given a node vi∈ h and hʹ ∈ ESuperclass, then either valid that < vi, h’ > ∈ ESuper_doc,
then h’ ⊆ h

- Or < vi, h’ > ∈ ESuper_model, then h’ ⊆ h
(a) Notation: ESuper_doc = VDoc \ {OGDT}) × ESuperclass ⊂ ED;
(b) Notation: ESuper_model = ((VModel \ {EA, {external_evironment}}) ×

ESuperclass ⊂ ED);

JOURNAL OF INFORMATION AND TELECOMMUNICATION 83

The hyperedges h ∈ ESuperclass provide the association between a class of objects
(models or documents) and its super-classes in compliance to the object-oriented para-
digm. For the reason of our modelling approach, we make a distinction between the
two top super-classes, namely OGDT, the overarching generic document, and EA, the
overall Enterprise Architecture. The conditions above specify the transitivity of the is-a
relationship for the relation between class and its super-classes.

. The instances of models can be represented by EInstance_model ⊂ VModel × EE (extensional
hyperedges);

. The instances of documents can be represented by EInstance_doc ⊂ VDoc × EE;

. h ∈ EE (h set of nodes) is h ∈ EAttribute_Set if h ⊂ D. The following statement is valid as well:
∪ hi =D, hi ∈ EAttribute_Set. The hyperarcs h ∈ EAttribute_Set are used to represent the attri-
bute domains and the associated values.

. The hyperarc h ∈ EExtension, if h ∈ EE (h set of nodes) and
○ Given a vertex vi ∈ h ⊂ VDoc and h ∈ EExtension, then < vi, h > ∈ EInstance_doc, < vi, hʹ > ∈

ESuper_doc, then for each n ∈ h and each dt ∈ hʹ ∃ ha ∈ EE (hyperarc) where < dt, ha > ∈
EInstance_doc;

○ Or
○ Given a vertex vi ∈ h ⊂ VModel and h ∈ EExtension, then < vi, h > ∈ EInstance_model, < vi, h’ >

∈ ESuper_model, then for each n ∈ h and each dt ∈ h’ ∃ ha ∈ EE (hyperarc) where < dt, ha
> ∈ EInstance_model;

A hyperedge h ∈ EExtension represents an extension for models and documents as well.
The above-described statement formalizes the transitivity of instance-of relationship.

. The intensional hyperarc h ∈ EI, < d, h> ∈ EIntension if EIntension ⊂ VDoc × EI, d ∈ VDoc, h ∈
EConfiguration_Document, h ⊂ VDoc; the intensional hyperarc defines the hierarchical relation-
ship between templates, rule-based document types, and extensional document types
that are instantiated.

. The set of hyperedges in ED (hyperarcs) can be arranged into several subsets according
to the notion of Enterprise Architecture:
○ The hyperarc h ∈ EView ⊆ EG, h ⊆ VModel, represents a stakeholder’s view that puts

together models that describe the specific viewpoint of a role within the
organization.

○ The hyperarc h ∈ EPerspective ⊆ EG, h ⊆ Powerset (VModel), embodies a hierarchy of
models according to a refinement hierarchy;

○ The hyperarc h ∈ EDoc_Life_cycle ⊆ EG, <d, h> ∈ EInstance_doc × EInstance_model, d ∈ VDoc, that
depicts the life cycle of document through the interactions with models.

One of the main goals is to model the dynamic aspects of the business processes through
a set of models to maintain and to enforce the consistency, integrity, and compliance of
models. Our approach of formal modelling is tried to react and to handle several dynamic
aspects of information systems that originate from changes of documents and these modi-
fications lead amended processing. The description logic along with the hypergraph rep-
resentation provides an infrastructural background that makes possible to recognize
inconsistencies, to regulate the necessary modifications through a controlled

84 B. MOLNÁR ET AL.

environment, to restrict access to the change management as it is proper. The document-
centric approach requires the capability that the data processing should evolve with the
progressing documents. One of the design principles that could be applied is the late
binding, i.e. the resources for tasks within business processes can be utilized at the time
the work will be carried out. The intensional document type yields an appropriate mech-
anism for supporting dynamism in data processing through the rules embedded in docu-
ments and the rules fire when it is necessary, i.e. dynamically fit the actual environment.

Definition 5.2. Ontology for cases including documents. An ontology can be defined as
labelled bipartite hypergraph O = (C, R, E, l), where C is a set that represents the
concepts in the form of nodes and generalized hyperedges, R is a set that describes the
relations in the form of hyperedges, generalized hyperedges, and hyperarcs, E ⊆ C × R,
the edges between the bipartite hypergraph depicting the edge relation L between the
two sets of vertices that can be coloured by two different colours (bipartite or bi-
coloured hypergraph), and l is the labelling of hyperedges, hyperarcs, and edges
(Baader, 2003; Bretto, 2013).

Definition 5.3. Characteristics of processes. The characteristics of processes can be
perceived as functional and non-functional attributes, given an n-tuple of attributes ⟨C1,
C2,… , Cn⟩, the values of the n-tuple can be given by ⟨v1, v2,… , vn⟩, where vi can be a
numerical parameter on a non-functional property either lower or upper bound
depending on the context, or some prerequisite, feature of the functional requirements.

Definition 5.4. Process of a case. Given an ontology O = (C, R, E, l), a process is defined as a
triple pi = I pi , O pi , C pi where:

I pi # O represents the set of concepts (documents, variables, and their structuring) that
semantically depicts the input of the process.

O pi # O represents the set of concepts (documents, variables, and their structuring) that
semantically depicts the output of the process.

C pi # O is an n-tuple of attributes kC1
i , C

2
i , . . . , Cn

i l, where every C
j
i designates the match-

ing value of the n-tuple of attributes ⟨C1, C2,… , Cn⟩.

During modelling and analysing of information systems, then design and operational
time, verification and validation is required for configuration of cases to maintain consist-
ency, integrity, confidentiality, and completeness of the model in all three seasons of life
cycles of each process. Documents along with the data collections can be interpreted as
semantic input and output entities through the ontology. The matching between input
and output entities can prove the compliance of the process to the actual requirements
at a certain point in time.

Definition 5.5. The degree of matching of elements of cases (Bellahsène, Bonifati, & Rahm,
2011; Euzenat & Shvaiko, 2013).

Exact matching. An input (document along with its variables and attributes) i pi [I pi of a
process pi within a case matches an output o pj [O pj with a degree of exact matching if
their representation as concepts in the concept hypergraph can be considered as equiv-
alent (i pi ; o pj).

JOURNAL OF INFORMATION AND TELECOMMUNICATION 85

Plug-in matching. An input (document along with its variables and attributes) i pi [I pi of a
process pi within a casematches an output o pj [O pj with a degree of plug-inmatching if i pi
representation as concept in the concept hypergraph is a direct sub-concept of o pj , i.e. i pi⊑ o pj .

Subsumption matching. An input (document along with its variables and attributes)
i pi [I pi of a process pi within a case matches an output o pj [O pj with a degree of sub-
sumption matching if i pi representation as concept in the concept hypergraph is an indir-
ect sub-concept of o pj , i.e. i pio pj .

Subsumed by matching. An input (document along with its variables and attributes)
i pi [I pi of a process pi within a case matches an output o pj [O pj with a degree of Sub-
sumed by matching if i pi representation as concept in the concept hypergraph is a direct
super-concept of o pj , i.e. i pi⊒o pj .

Failure matching. When none of the aforementioned set of preconditions is fulfilled
then the matching attempt is failed and designated by i pi⊥o pj .

6. Model evaluation

The above-outlined model is implemented in a graph database (Béleczki & Molnár, 2017)
to create a chance for investigation. As we have mentioned earlier, the original plan for
implementation in a hypergraph database (Iordanov, 2010) was not successful in every
respect. The main reason is the lack of continuous maintenance and development of
the hypergraph database management system. For that reason, other graph database
management system was selected, and the hypergraph representation was mapped
onto a bipartite graph that provides the chance to exploit the mathematical and logical
properties of the hypergraph.

One of the case studies contained a large set of documents and the database that
stored them in relation schemas, furthermore processes for retrieving, modifying, main-
taining, and creating the documents (Molnár, Béleczki et al., 2016). A well-defined and sig-
nificant part of the database transformed into the hypergraph representation. The basic
hypothesis was that the hypergraph representation provides a tool for analysis of the orig-
inal design of information systems on the basis of documents.

In the evaluation of the model, we have followed the principles of the Design Science
Research (Wilde & Hess, 2007). Our investigation demonstrated that the idea is viable,
either of the expected relationships or their lack of can be discerned easily through the
graph structures. The seamless integration of the documents and data collection within
databases can be realized, the compliance between the input, output documents and
their data content with the processes can be enforced, i.e. the discrepancies can be high-
lighted and then can be corrected.

However, the rule set formalized in description logic and attached to the adequate
hyperedges needs extension and refinements. The essential characteristics of the hyper-
graph as transversal, acyclicity, cliques and the significant properties of information
systems should be linked to each other to yield a meticulous analysis of the original
design and provide the opportunity to keep the required constraints on the consistency,
integrity, and confidentiality. The mutual mapping of the properties in graphs and infor-
mation systems is an ongoing research.

The original intention of the research was to build up a model for analysis, design,
implementation, and operation of information systems that communicate with the

86 B. MOLNÁR ET AL.

external environment through documents. For that reason, the model is apt to document-
centric, and to document intensive information systems. These information systems and
their communication interfaces are typically implemented by web technologies; they com-
municate with the external world with documents in web interfaces and standardized
messages including and transporting documents. During our research, we have concen-
trated on two case studies – one of them is in public administration that provides assist-
ance for citizens in official procedures through descriptions of legal cases related to life
events; the other one is the Electronic Learning Management Systems that provides
web-based active documents for students, educators, and administrators.

7. Conclusion

In this paper, we proposed an Architecture Describing Hypergraph as representation for
Enterprise Architectures and related Documents, then we extended the hypergraph rep-
resentation towards a concept hypergraph. The suggested descriptive method takes
advantages of the basic properties of generalized hypergraphs, i.e. unequivocal represen-
tation of complex relationships; moreover, there are some distinguished features

. Uniform treatment of both intensional and extensional aspects of documents and
models within Enterprise Architecture;

. Direct depiction of hierarchical relationships through instance-of, sub-class-of, super-
class-of relationships;

. The structure of the hypergraph can be interpreted as an ontology, concept hyper-
graph, thereby it opens the way for semantic methods and reasoning.

The ontology as an extra layer on the Architecture Describing Hypergraph provides a
logical tool set for formal verification, namely the exploitation of description logics. The
proposed information system modelling through hypergraph includes cases besides the
outlined document-centric structure. The definition of case coalesces the notion of
process, documents, input and output data, functional and non-functional properties of
models into a unified framework. The focus on the notion of cases makes possible the
application of the proposed approaches on the one hand in the heterogenous environ-
ment, e.g. enterprises, public administration, and on the other hand the handling of the
situation in a uniform way.

The outlined approach can also be considered as a formal background to analyse and
design information systems. The documents play important roles in information systems
during the time of analysis, design, specification, and operation with strong coupling to
roles of organizations. The unified framework provides an opportunity for uniform hand-
ling of models and documents on a formal foundation.

The hypergraph-based approach offers the chance to apply further mathematical tools
for assistance in the design, verification, and validation to maintain the integrity and con-
sistency of information systems even in a dynamically changing environment.

The novelty of our approach is that it addresses: (1) the functional correctness of the
models starting on the documents on the input side with a document type hierarchy;
(2) consistency and completeness checking through models of the document input,
output, and processes of cases; (3) provides the opportunity to take into account the

JOURNAL OF INFORMATION AND TELECOMMUNICATION 87

functional and non-functional properties that can be described as concepts and ‘roles’ in
the sense of description logics; (4) the alignment between the model elements through
the degree of matching can be assessed by the mathematical properties of hypergraphs
and the fulfillment of logical statements.

Our ongoing research activities target at formal and mathematics-based computational
approach that can be operationalized above an appropriate graph database (hypergraph
database, or other ones), then at evaluating the efficiency and effectiveness of the
approach that utilizes methods and algorithms of data science to provide a sound empiri-
cal investigation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by European Commission [grant number EFOP-3.6.3-VEKOP-16].

Notes on contributors

B. Molnár is Associate Professor (Dr. habil., Ph.D. in Technical Informatics) at Eötvös University of
Budapest. He teaches Methodologies of Information System Development, ERP and Integrated
Systems, Web technologies for Enterprise Information Systems, Database Management Systems,
Theoretical Background of Information Management, Enterprise Architecture, and Security Architec-
tures. He has published several scientific and professional papers and worked as consultant and
project manager at the Hungarian Public Administration. He is a member of the editorial board of
Journal of Information Technology & Politics, The Electronic Journal of Knowledge Management
(EJKM), The European Journal of Applied Economics.

A. Béleczki is Ph.D. student at Eötvös Loránd University of Budapest. His research interest covers
Information Systems and Modelling, Big Data, Data Mining. He teaches Database Management
Systems. He has published his first paper in December, 2015, about formal modelling of docu-
ment-centric information systems.

A. Benczúr is Professor Emeritus at Eötvös Loránd University of Budapest. He teaches Database Man-
agement Systems and its theoretical and formal backgrounds. His research interest covers the
modern Data and Document Management Systems, Big Data, Cloud, Modelling of Information
Systems. He has published several scientific and professional papers in Mathematics and Informatics.
He is Doctor of Sciences at the Hungarian Academy of Sciences.

ORCID

B. Molnár http://orcid.org/0000-0001-5015-8883

References

Ausiello, G., Franciosa, P. G., & Frigioni, D. (2001, October). Directed hypergraphs: Problems, algorith-
mic results, and a novel decremental approach. In Italian conference on theoretical computer
science (pp. 312–328). Berlin: Springer. doi:10.1007/3-540-45446-2_20

Baader, F. (2003). The description logic handbook: Theory, implementation and applications.
Cambridge, UK: Cambridge University Press.

88 B. MOLNÁR ET AL.

http://orcid.org/0000-0001-5015-8883
https://doi.org/10.1007/3-540-45446-2_20

Béleczki, A., & Molnár, B. (2017, November 9). Storing hypergraph-based data models in non-hyper-
graph data storage. AIS 2017: 12th international symposium on applied informatics and related
areas. Óbuda University Alba Regia Technical Faculty, Székesfehérvár, Hungary.

Bell, M. (2008). Service-oriented modeling (SOA): Service analysis, design, and architecture. Hoboken, NJ:
Wiley.

Bellahsène, Z., Bonifati, A., & Rahm, E. (Eds.). (2011). Schema matching and mapping. Heidelberg:
Springer.

Bent, H. V. D., Sante, T. V., Kerssens, D., & Kemmeren, J. (2008). TOGAF, the open group architecture
framework. Zaltbommel: Van Haren Publishing. Retrieved from http://www.opengroup.org/togaf/

Bernauer, M., & Schrefl, M. (2004). Self-maintaining web pages: From theory to practice. Data &
Knowledge Engineering, 48(1), 39–73.

Blokdijk, A., & Blokdijk, P. (1987). Planning and design of information systems. London: Academic Press.
Bretto, A. (2013). Hypergraph theory: An introduction. Berlin: Springer.
Chiu, C.-M., & Bieber, M. (2001). A dynamically mapped open hypermedia system framework for inte-

grating information systems. Information and Software Technology, 43(2), 75–86.
Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (2001).Web services description language

(WSDL) 1.1. Retrieved from http://www.w3.org/TR/wsdl
Clark, J., Casanave, C., Kanaskie, K., Harvey, B., Smith, N., Yunker, J., & Riemer, K. (2001). ebXML Business

Process Specification Schema Version 1.01. Technical report, UN/CEFACT and OASIS. Retrieved from
http://www.ebxml.org/specs/ebBPSS.pdf

Cohn, D., & Hull, R. (2009). Business artifacts: A data-centric approach to modeling business oper-
ations and processes. IEEE Data Engineering Bulletin, 32, 3–9.

Euzenat, J., & Shvaiko, P. (2013). Ontology matching. Heidelberg: Springer.
Facebook, Open Graph Stories. Retrieved from https://developers.facebook.com/docs/opengraph
Gallo, G., Longo, G., Pallottino, S., & Nguyen, S. (1993). Directed hypergraphs and applications. Discrete

Applied Mathematics, 42(2–3), 177–201.
Google, Knowledge Graph. Retrieved from https://www.google.com/intl/es419/insidesearch/

features/search/knowledge.html
Hull, R. (2008). Artifact-centric business process models: Brief survey of research results and chal-

lenges. In R. Meersman & Z. Tari (Eds.), On the move to meaningful internet systems: OTM 2008
(pp. 1152–1163). Berlin: Springer.

Indratmo, I., & Vassileva, J. (2006, April). No more isolated files: Managing files as social artifacts. In G.
Olson & R. Jeffries (Eds.), CHI’06 extended abstracts on human factors in computing systems (pp.
899–904). Montreal: ACM.

Iordanov, B. (2010, July). HyperGraphDB: A generalized graph database. In International conference on
web-age information management (pp. 25–36). Berlin: Springer. doi:10.1007/978-3-642-16720-1_3

Isakowitz, T., Bieber, M., & Vitali, F. (1998). Web information systems. Communications of the ACM, 41
(7), 78–80.

Kő, A., & Ternai, K. (2011). A development method for ontology based business processes. eChallenges e-
2011 conference, Florence, Italy.

Köppen, E., & Neumann, G. (1999). Active hypertext for distributed web applications. IEEE 8th inter-
national workshops on enabling technologies: Infrastructure for collaborative enterprises, 1999
(WET ICE’99), Stanford, CA, USA, pp. 297–302. IEEE. doi:10.1109/ENABL.1999.805216

Kossak, F., Illibauer, C., Geist, V., Natschläger, C., Ziebermayr, T., Freudenthaler, B.,… Schewe, K. D.
(2016). Hagenberg business process modelling method. Springer: International Publishing
Switzerland.

Kumaran, S., Nandi, P., Heath, T., Bhaskaran, K., & Das, R. (2003). ADoc-oriented programming.
Symposium on applications and the internet (SAINT), Orlando, FL, USA, pp. 334–343.

Lukovic, I., Ivancevic, V., Celikovic, M., & Aleksic, S. (2013). DSLs in action with model based
approaches to information system development. In Software design and development: Concepts,
methodologies, tools, and applications (pp. 596–626). IGI Global. doi:10.4018/978-1-4666-2092-6

MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F., Metz, R., & Hamilton, B. A. (2006). Reference
model for service oriented architecture 1.0. OASIS Standard, 12, p. 18.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 89

http://www.opengroup.org/togaf/
http://www.w3.org/TR/wsdl
http://www.ebxml.org/specs/ebBPSS.pdf
https://developers.facebook.com/docs/opengraph
https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
https://www.google.com/intl/es419/insidesearch/features/search/knowledge.html
https://doi.org/10.1007/978-3-642-16720-1_3
https://doi.org/10.1109/ENABL.1999.805216
https://doi.org/10.4018/978-1-4666-2092-6

Molnár, B. (2014). Applications of hypergraphs in informatics: A survey and opportunities for
research. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae: Sectio
Mathematica, 42, 261–282.

Molnár, B. (2017). Proposal for application of data science methods in E-government: An investigation
about the combination of available techniques for performance measurement. The 6th international
conference on electronic government and the information systems perspective EGOVIS 2017.
doi:10.1007/978-3-319-64248-2_11

Molnár, B., Béleczki, A., & Benczúr, A. (2016). Application of legal ontologies based approaches for
procedural Side of public administration. In International conference on electronic government
and the information systems perspective (pp. 135–149). Porto: Springer.

Molnár, B., & Benczúr, A. (2013). Facet of modeling web information systems from a document-
centric view. International Journal of Web Portals (IJWP), 5(4), 57–70.

Molnár, B., Benczúr, A., & Béleczki, A. (2016a). Formal approach to modelling of modern information
systems. International Journal of Information Systems and Project Management. Retrieved from
http://www.sciencesphere.org/ijispm/archive/ijispm-040404.pdf

Molnár, B., Benczúr, A., & Béleczki, A. (2016b). A model for analysis and design of information systems
based on a document centric approach. In Asian conference on intelligent information and database
systems (pp. 290–299). Berlin: Springer.

Molnár, B., & Tarcsi, A. (2011, September). Architecture and system design issues of contemporary web-
based information systems. 2011 5th international conference on software, knowledge infor-
mation, industrial management and applications (SKIMA), Benevento, Italy, pp. 1–8. IEEE. doi:10.
1109/SKIMA.2011.6089978

Nam, C. K., Jang, G. S., & Bae, J. H. J. (2003). An XML-based active document for intelligent web appli-
cations. Expert Systems with Applications, 25(2), 165–176.

Nandi, P., & Kumaran, S. (2005). Adaptive business objects – a new component model for business
integration. Proceedings of international conference on enterprise information systems, Miami, FL,
USA, pp. 179–188. INSTICC.

Rossi, G., Schwabe, D., & Lyardet, F. (1999). Web application models are more than conceptual
models. In P. P. Chen, D. W. Embley, J. Kouloumdjian, S. W. Liddle, & J. F. Roddick (Eds.),
Advances in conceptual modeling, LNCS (vol. 1727, pp. 239–252). Berlin: Springer. doi:0.1007/3-
540-48054-4_20

Swenson, K. (2011). Taming the unpredictable: Real world adaptive case management: Case studies and
practical guidance. Lighthouse Point, FL: Future Strategies.

Ullman, J. D., & Widom, J. (2009). Database systems: The complete book (2nd ed.). Upper Saddle River,
NJ: Pearson.

Van der Aalst, W. M., Weske, M., & Grünbauer, D. (2005). Case handling: A new paradigm for business
process support. Data & Knowledge Engineering, 53(2), 129–162.

Wilde, T., & Hess, T. (2007). Forschungsmethoden der Wirtschaftsinformatik. Wirtschaftsinformatik, 49
(4), 280–287.

Zachman, J. A. (1987). A framework for information systems architecture. IBM Systems Journal, 26(3),
276–292.

90 B. MOLNÁR ET AL.

https://doi.org/10.1007/978-3-319-64248-2_11
http://www.sciencesphere.org/ijispm/archive/ijispm-040404.pdf
https://doi.org/10.1109/SKIMA.2011.6089978
https://doi.org/10.1109/SKIMA.2011.6089978
https://doi.org/0.1007/3-540-48054-4_20
https://doi.org/0.1007/3-540-48054-4_20

	Abstract
	1. Introduction
	2. Literature review
	3. Formal mathematical background
	4. Formalized document-centric approach
	4.1. Description Logics and business processes for cases
	4.2. Description Logic and document-centric approach

	5. Information architecture and documents of cases
	6. Model evaluation
	7. Conclusion
	Disclosure statement
	Notes on contributors
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.245 841.846]
>> setpagedevice

