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AN EFFICIENT GRAPH VISUALISATION FRAMEWORK

FOR REFACTORERL

MÁTYÁS KOMÁROMI, ISTVÁN BOZÓ, AND MELINDA TÓTH

Abstract. Graph visualisation is a well-known and researched field of
graphical informatics. Several good algorithms were developed and re-
viewed by our days. However, most of the graph drawing tools mainly
focus on static drawing generation. In this paper we present an approach
that is efficient enough to visualise the user-requested parts (views) of a
relatively large Semantic Program Graphs of Erlang projects in soft real-
time. With the presented approach the visualised graphs can be traversed
interactively, by changing between different levels of detailed information,
which may support code comprehension in the RefactorErl framework.

1. Introduction

Graph visualisation is a popular research topic, and several algorithms and
tools exist that are ready to use. However, the increasing size of the nodes
and links among them to visualise on the graph makes the layout calculation
more complicated and slow.

Graph visualisation is often used in tools supporting static and dynamic
source code comprehension. It is very convenient to denote the relations/de-
pendencies among program entities using a graph view.

RefactorErl [11, 22] is a static source code analysis and transformation
tool for Erlang [10]. Besides the more than 20 refactorings, the tool provides
several functionalities to support program comprehension: semantic queries,
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static-dynamic call analyses, data-flow analysis, dependence analyses, etc. The
results of several analyses can be visualised as graphs.

Also, the tool itself uses a graph based intermediate representation for the
source code: the Semantic Program Graph [16]. The SPG contains lexical,
syntactic, and semantic information about the source code. These three lay-
ers generate huge amount of data (nodes and edges) from the source code.
Even for a module with few hundreds of lines of code (LOC) the standard
visualisation tools, such as Graphviz [5], are hardly able to generate a proper
view.

Although, it depends on the complexity of the source code, but in general,
there are 50-times more nodes and edges in the graph than lines of code in the
source code.

When analysing millions of LOC in industrial scale software, or when a
single Erlang application is analysed, having more than twenty thousands of
LOC, the graph visualisation is almost impossible. Thus we decided not to
visualise the entire graph, but only the relevant parts for the user. We needed
a graph that can be traversed fully interactively, switching between the levels
of information.

The main contribution of this paper is a solution to the above presented
problem. We are providing a graph visualisation method and a new component
gview for RefactorErl that is capable of handling real Erlang projects. We
demonstrate different views available through the new component and evaluate
the performance on different open-source projects.

2. Related work

Graph visualisation has been subject to research since long time ago, many
good visualisation tools are available for use today.

2.1. Graphviz. Graphviz [5] is an open source graph visualisation software.
It supports many input formats, specifications, and algorithms for presenting
graphs. However, Graphviz is unable to render graphs with high node count,
in an interactive manner, as experienced during the development of the user
interface of RefactorErl. Rendering the main view of Mnesia into an svg file
with Graphviz, consisting of around 2200 nodes, took around 3700 seconds
(more than an hour). After the layout generation, opening the generated svg
file in a browser took 4 minutes. The layout for the very same view can be
generated by gview in 2 minutes, cached, and then displayed interactively.

2.2. Wolfram Mathematica. Wolfram Mathematica [9]: The Wolfram Lan-
guage provides functions for the aesthetic drawing of graphs. Algorithms
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implemented include spring embedding, spring-electrical embedding, high-
dimensional embedding, radial drawing, random embedding, circular embed-
ding, and spiral embedding. In addition, algorithms for layered/hierarchical
drawing of directed graphs as well as for the drawing of trees are available.

2.3. MSAGL. MSAGL [6]: MSAGL is a .NET library and tool for graph
layout and viewing. MSAGL was developed in Microsoft by Lev Na-chmanson,
Sergey Pupyrev, Tim Dwyer, Ted Hart, and Roman Prutkin.

2.4. Erlgraph. Erlgraph [2] is an application which enables a d3js force di-
rected graph to connect to an Erlang VM. The plotted data consists of the
active processes of the running application and the messages they send or
receive. D3.js is a JavaScript library for manipulating documents based on
data. D3 aids creating data driven animations using HTML, SVG, and CSS.
D3 is said to emphasis on modern web standards, which gives full capability
of modern browsers without tying to a proprietary framework. Erlgraph pro-
vides an insight into the underlying mechanism of an Erlang application in
runtime. Erlgraph is an extremely useful tool for visualising how processes of
the project interact with each other. What different in gview and Erlgraph
is that while Erlgraph realises a dynamic (runtime) analysis of Erlang code,
gview targets static analysis of the Erlang project at hand, which means no
code needs to be executed.

3. Background

Gview is built upon Flib [4]. Flib (at the time of writing this paper) is
a single-author OpenGL development library for C++. It supports creating
and handling Windows, OGL contexts and OpenGL objects. It also has a GUI
system, graphical and linear mathematical tools. On windows platforms, Flib
uses the standard Windows API for window creation and management, on
Linux platforms, it uses the XLib windowing system. Consequently, OpenGL
context creation is done using WGL and GLX respectively. The Flib API
documentation generated by doxygen can be found on the online repository [3].

4. Visualisation framework: gview

4.1. Overview. Dot [18] is a general purpose graph describing language ca-
pable of representing directed and non-directed graphs alike, with extra in-
formation options on both edges and nodes. RefactorErl supports exporting
all the data from semantic graphs of loaded Erlang files to a single dot file.
Therefore, by parsing this exported dot file gview is able to create a layout for
the views of the graphs and display these views interactively. The architecture
of the software can be seen on Figure 1.
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Figure 1. The architecture of gview.

4.2. Dot files. The main reason of using dot files is the existing support for
it in RefactorErl and the ease of implementing a custom parser in C++. On
the other hand, using dot files as intermediate data representation is quite
rigid. Having a file changed one must regenerate the dot file in RefactorErl,
and on every startup, gview has to parse the whole dot file. The data-flow of
the program can be seen on Figure 2.

Figure 2. Data-flow in the visualisation process.

4.3. Rendering. The rendering is done using OpenGL [21] with the support-
ing classes of Flib. We preferred OpenGL because it is hardware close and
very fast and, unlike DirectX, portable across operating systems. The drawing
data is generated on the fly after each iteration of the layout algorithm, thick
lines are tessellated into triangles, circles into regular polygons by the C++
implementation. Extra information on vertices for anti-aliasing is also added
in this process. The drawing data is then uploaded to the graphics card and
drawn as a single batch, avoiding the cost of setting up many drawing calls.
The anti-aliasing is done by our shader program on the GPU.
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4.4. Layout. Our layout calculating algorithm is a modified version of two-
dimensional N-Body simulation, known as Force-Directed Layout (FDL) [14].
In a classic N-Body simulation we would have N objects, each pair exerting
attracting gravitational force, proportional to the mass and inverse square
of the distance, to each other. However our FDL algorithm considers these
objects (nodes of the graph) to have electric charges, instead of gravitational
effects, and thus repel one-another. Furthermore edges between nodes of the
graph are represented as springs of logarithmic strength, meaning the force
they exert is logarithmically proportional to the distance they stretch across.
This way the edges attract nodes they connect. After the initial setup Acting
net forces are calculated in every iteration for each node, then we update the
position of nodes according to these net forces and the elapsed simulation time.
Forces are taken to act instantaneously, which means they are applied directly
to the position of nodes not on their speed.

There are many toggleable elements of this simulation; the strength of the
springs, the amount charge a node has, the stepping time between iterations of
the simulation, and initial positions of the nodes. Choosing these parameters
were done on an empirical basis; we experimented with them until the results
looked good. Therefore, by modifying the charge of nodes or the strength of
the springs we can change the final spacing among edges or nodes. This way
we can emphasis parts of the displayed graph.

4.5. Related libraries. Beside the Flib there are many other excellent frame-
works for OpenGL development.

SDL (Simple Directmedia Layer) [12] is one of the oldest of these frame-
works, it has outstanding wide system and hardware support. However, its
interface was designed for C not C++, SDL does not use object-oriented
paradigms. SFML (Simple and Fast Multimedia Layer) [8] is another ex-
cellent choice for OpenGL development. It is completely object oriented (by
the C++ binding) with cross-platform support, but it lacks the GUI module.
Qt [7] is a professional and robust framework with good GUI and OpenGL
support.

Flib (developed by the author of this paper) brings the required OpenGL
window and context management classes and wrapper classes for the mostly
used GL object sand it has a GUI module which we use for simple text output.
It also has a robust event handling system and very convenient graphic classes
such as vectors and matrices.

4.6. GUI Framework. Flib provides GUI classes on top of OpenGL. Gview
uses Flib to automatically open a window, an OGL context associated with this
window, and a GUI context which is responsible for storing GUI related data
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such as fonts and shaders. The GUI context also has a main GUI layout where
the application can attach GUI elements. The GUI elements are structured in
a tree pattern: each GUI element may have a parent layout, each layout may
have any number of children elements, layouts are GUI elements too.

The events, draw calls, and update calls are forwarded down the hierarchical
structure each time. To detect node selection and change the current view,
we use the event listener functionality of Flib to translate mouse events such
as movements, button down, button up, and more complex events as click or
double click. The graph transformation is also done with the built-in classes
of Flib, these are responsible for calculation of scaling, offset, and rotation
values that can be used for generation of the displayed mesh.

4.7. Mesh Generation. Although a mesh is generated on the CPU after
each iteration of the layout calculation by gview, using the CPU for this task
is perfectly sufficient since the displayed part of the graph is expected to have
at most 3000 nodes and 10000 edges (not even Mnesia has this much in the
main view) which results in at most tens of thousands of triangles. For this,
the task is easily handled by an average CPU these days.

Having the layout (the node positions) of the calculated graph, we tessellate
it into triangles and lines. The data to be transferred is generated in a batch,
thus it can be sent in one operation what makes the upload fast. After the
mesh calculation, the drawing can be performed with a single call. Uploading
to the GPU is done by buffer object streaming, dropping the buffer object
before each upload and creating a new one. This enables the GL to complete
drawing commands referring the previous buffer while uploading the new one.

Uploading the mesh is done using the designated interface of Flib for simplic-
ity. Tessellation of lines uses the built-in tessellation functionality from Flib
which automatically includes distance-field data needed by the anti-aliasing
technique. The data is drawn using the drawing API of Flib as well. Results
of the tessellation can be seen on Figure 3.

4.8. Dynamic Level of Detail. A very useful technique for graphical ap-
plications is Dynamic Level Of Detail [23] (DLOD), it involves altering the
detailedness of an object (how many triangles it has or what textures it uses)
based on how small that object appears on the screen. This technique is ef-
fective because our eyes can not make out the difference on small objects, we
use DLOD in gview to reduce workload on CPU when the mesh is generated.
As for an example, circles that represent module or file nodes get drawn as
regular n-sided polygons. The value of n is based on the zooming, the more
it is zoomed in, the larger the value of n is. Application of DLOD is shown
on Figure 4.
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Figure 3. Tessellation of the edges (the thickness of the edges
was increased for demonstration).

To calculate the number of sides our polygon needs, when approximating
a circle, let us say the circle has r radius given in pixels on the screen. The
size of the radius in pixels can be calculated from the resolution at which the
rendering is done and the zooming level. Considering the formula for the circle
perimeter 2*r*π we can approximate the number of pixels on the perimeter of
the circle easily, as p = 2*r*M PI in C++. When drawing a circle of radius
r, we ought to approximate a curve of length p. After taking measurements,
we found that using p/4 line segments produces satisfactory images. It is
also worth noting, that letting the number of sides drop below 3 is trivially
pointless.

Figure 4. Number of sides (denoted as n) of regular polygons
representing circles with different zooming level.

4.9. Anti-aliasing. Anti-aliasing [13] is done using distance fields, through a
technique called distance-to-edge anti-aliasing (DEAA) [17]. The main idea is
that, if we know the distance from the edge of the primitive when processing a
fragment, then we can set the transparency to drop when getting near the edge
of the primitive. Thus, having the transparency stored in the alpha channel of
the fragment, the OpenGL blending mechanism will ensure it will be displayed
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transparently. The effect of using anti-aliasing can be seen in Figure 5. The
distance function is calculated as the minimum of the distances to the edges
of the mesh. For this purpose, we store the distances in separate channels (red
channel holds the distance from the left edge, green channel from the right edge
etc.). Calculating these distances on a per-vertex basis and using the OpenGL
built-in linear interpolation functions, we can approximate the distance to the
edges of the mesh as the minimum of the interpolated distances.

Figure 5. Call and recursive edge with and without antialiasing.

5. Generating the layout

The layout of a displayed graph is defined as a list containing points (two-
dimensional) for each node of the graph. The algorithm described below takes
an initial layout and processes it in iterations. We use the Force-directed layout
algorithm, that is described in more detail in Section 4.4. For experimenting,
we have defined and implemented three different versions of the algorithm
(Sections 5.1, 5.2, and 5.3). The efficiency of different implementations can
be seen on Figure 6, where we plotted the number of iterations it took to
generate the final layout for tested views, against the number of connections
in the views, by connections we mean the number of potential forces acting in
the simulation. The number of these connections is in O(n2 + e), where n is
the number of nodes and e is the number of edges.

5.1. CPU implementation. The first implementation uses only the CPU
without any optimization; it simply iterates through all node pairs and sums
up the forces then applies the forces to the node positions (instantaneous
forces). The calculation of forces the nodes exert on other nodes takes O(n2)
time where n is the number of nodes. Summing the spring forces takes time
proportional to the number of edges e: O(e). Applying the forces on n nodes
take O(n) time.



AN EFFICIENT GRAPH VISUALISATION FRAMEWORK FOR REFACTORERL 29

Figure 6. Iterations needed to reach final state plotted
against number of connections (n2+e) in view.

5.2. QuadTrees. The second implementation uses quad trees for space par-
titioning to reduce computation time. These quadtrees have regions as nodes,
generated by recursively dividing the points in a region into two sets of the
equal size, using horizontal splitting lines and vertical splitting lines alter-
nately. This method is also called as Barnes-Hut algorithm [19]. The recur-
sion stops when a certain minimum of nodes in a region is reached. Therefore,
when calculating the net force on a node we can traverse the generated tree
and approximate the net force exerted by all the nodes in a region of the tree
in constant time when it is far enough from the currently processed node. This
technique results in O(n ∗ log(n)) time complexity when the distribution of
the nodes is even. The problem is that the constant factor of the complex-
ity is quite big as the tree has to be regenerated in each iteration (and not
CPU cache friendly). On large views this method outperforms the trivial CPU
implementation.

5.3. GPU implementation. The third implementation is the parallel equiv-
alent on GPU of the first one using OpenGL Compute Shaders. We chosed
OpenGL over Cuda or OpenCL because it has good support for AMD and
Intel cards too, integrates nicely with the rest of the drawing code, and re-
quires no extra libraries. The graph is sent to the GPU in adjacency matrix
representation in a texture image. A kernel is then dispatched for each node
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of the graph which computes the net force acting on that node. The GPU
implementation reuses the calculated data and thus data is only streamed to
the CPU once every frame (typically 20 iterations). As a consequence, when
the number of nodes is smaller than the number of shader cores, the GPU is
not used efficiently. This issue could be remedied using a divide and conquer
approach: each kernel only calculates the net force on a node exerted by a
portion of other nodes. Then another shader is dispatched to sum up the
subresults.

5.4. Alternatives. Stress majoring [15] is another good algorithm that we
looked into using. However, on lack of time it was not implemented. Thus, it
is not discussed in this paper.

5.5. Caching. Generating the final layout of a graph view is very compu-
tational and time costly. Therefore, caching the generated layouts can save
important resources and speed up gview. Caches need to be stored perma-
nently, thus they are saved as external binary files using the file streams of the
C++ standard library.

One way to implement caching is having a cache file for each view of the
graph. This potentially results in thousand of files per graph, although they
can be loaded separately resulting in less memory usage.

The other way is keeping one cache file per project. This way, the cache
management is easier and clearer. The resulting cache file sizes depend on
the opened views. The cache files barely reach 50kB even on the largest test
project: Mnesia [20].

6. RefactorErl graph views

Plotting the whole graph exported to the dot file would be pointless and
computationally extremely expensive. Consequently, we define views of the
graph and only plot one of these views at a time reducing workload and letting
the user concentrate on one aspect of the project.

6.1. Main view. The main view consists of all the modules and functions
defined or referenced in the application. Each function is linked to the module
they are defined in. One can change the view by clicking on a module node,
then the view for that module is shown.

6.2. Module view. The module view is similar to the main view, but it
displays only one module and the functions defined by the actual module. It
has a ROOT node through which one can return to the main view. One can
change the view by clicking on a function node, than the view for that function
is brought up. The massive main view of Mnesia is shown on Figure 7.
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Figure 7. The main view of Mnesia containing more than
2500 nodes and edges.

Figure 8. The main view of the CosTime application.

6.3. Function view. The function view plots a function and all functions
that directly or indirectly call/get called by it (Figure 9). The plot depth
of the call graph can be adjusted, this depth is an argument of the view.
Currently the depth is not limited, but in the future we plan to limit it to a
reasonable size.
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Figure 9. Deep function views of GreenErl and MAS projects.

6.4. Visual elements. The displaying engine in gview supports various
graphical elements to provide information to the user. The shape of the nodes
can be customised and set for example to triangle, square, or circle. The
width of edges can be adjusted, the colour of the edges, the displayed text
below nodes, and the shape of the arrows of edges can be customised as well.
Through these options the view generator is able to highlight the differences
between the semantic entities (function, module, etc.) of the displayed graph.
Some of the available elements are shown on Figure 10.

7. Evaluation

To measure the performance of gview and profile it we tested it on several
open-source projects.

The largest project was the Mnesia [20], a robust, distributed database
management system, written in Erlang. With more than 2500 functions (and
around 25 thousands LOC) this is by far the largest project gview was tested
on. Plotting all the texts of the main view interactively could be considered a
challenge alone. Part of the main view is shown on Figure 11.

CosTime [1] is an Erlang implementation of the OMG CORBA Time and
TimerEvent Services. It has many modules with few functions, thus it was
a good candidate to test gview on. Main view of CosTime can be seen on
Figure 8.

The measurements were made on loading of dot files and generating the
views. We can conclude that the loading of dot files was the major slowdown
on startup. The loading may take more than 90% of the start time. Other
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Figure 10. Some of the customisable visual elements: trian-
gles, circles, edges, recursive edges, etc.

Figure 11. The massive amount of functions in Mnesia.

events performed on startup, such as window or OGL context creation take
negligible time compared to loading and interpreting dot files.
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Figure 12. The average time taken for layout generation, tes-
sellation, label setting, and drawing the view.

When displaying a view, the most time is spent on generating the layout
(70% and up). Label placement and mesh generation could run in real-time
(without layout calculation). Figure 12 demonstrates distribution of time
spent on different stages. Analysing the charts, it is obvious that described
caching mechanism largely improves the efficiency and ensures real-time re-
sponse on large views.

As an efficiency test, we have compared the execution times of gview and
the old Graphviz based dependence graph drawing component of RefactorErl.
We have exported a graph of the Mnesia application to a dot file. The graph
generation with gview needed cc. 90 seconds, which could be then interactively
used. To generate to same graph in SVG with Grapviz took more than an hour,
and because of the amount of nodes displaying and browsing the content was
hard to manage.

Measurements were done on a laptop, running Windows 10, with Intel(R)
Core(TM) i5-5250U CPU @ 1.60GHz and 8GB of memory, with Intel(R) HD
Graphics 6000 integrated GPU, using a TOSHIBA MQ02ABD100H 1TB HDD
5400Hz, which could be considered a low-end setup today. Using a 7th gen-
eration Intel processor and a much faster SSD could potentially improve the
results of some of these benchmarks.

8. Conclusion and future work

RefactorErl framework has several graphical and command-line interfaces,
that support refactorings, static code analysis, and code comprehension as
well. The tool uses a Semantic Program Graph as an intermediate representa-
tion of the source code. The SPG includes static semantic information beside
the syntactic and lexical information. The conversion of the SPG to an SVG
file with Graphviz was possible only on relatively small graphs. There was
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high demand for an efficient and interactive graph visualisation tool that led
us to create the gview component presented in this paper.

RefactorErl has support for exporting the SPG to a dot file, thus we used
this functionality and the dot format for representing the graph. These files
are then processed by our custom dot parser implemented in C++. The views
of the exported graph are generated and visualised using OpenGL. We have
used Flib for GUI and OGL object management. To calculate the layout of the
graph we used Force-directed layout generation. To improve the performance
of the interactive viewer, the resulted layout is saved to cache files to avoid
the continuous need of recalculating. To enhance the visual quality of the
rendered scene we used anti-aliasing. Dynamic Level Of Detail is applied to
reduce geometry, which is then tessellated using Flib and drawn in a single
batch. We made the appearance fully customisable, thus the users are able
to use different shapes and arrows for different semantic entities and relations
among them accordingly. The user is able to switch between views using
the cursor; pointing on a node and clicking brings up a more detailed view
associated with that node.

Although static data access through dot files was a good starting point,
it turned out that processing/parsing the dot file is the bottleneck in graph
generation. In the future we plan to replace it with dynamic graph information
acquired directly from RefactorErl.

Also, using the GPU for parallelisation of mesh tessellation is also an ap-
propriate subject for future research.
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