
UMass Chan Medical School UMass Chan Medical School 

eScholarship@UMassChan eScholarship@UMassChan 

COVID-19 Publications by UMass Chan Authors 

2022-04-15 

An artificial intelligence deep learning platform achieves high An artificial intelligence deep learning platform achieves high 

diagnostic accuracy for Covid-19 pneumonia by reading chest X-diagnostic accuracy for Covid-19 pneumonia by reading chest X-

ray images ray images 

Dongguang Li 
University of Massachusetts Medical School 

Et al. 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/covid19 

 Part of the Artificial Intelligence and Robotics Commons, Diagnosis Commons, Health Information 

Technology Commons, Infectious Disease Commons, Radiology Commons, and the Virus Diseases 

Commons 

Repository Citation Repository Citation 
Li D, Li S. (2022). An artificial intelligence deep learning platform achieves high diagnostic accuracy for 
Covid-19 pneumonia by reading chest X-ray images. COVID-19 Publications by UMass Chan Authors. 
https://doi.org/10.1016/j.isci.2022.104031. Retrieved from https://escholarship.umassmed.edu/covid19/
374 

Creative Commons License 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 
This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in COVID-19 
Publications by UMass Chan Authors by an authorized administrator of eScholarship@UMassChan. For more 
information, please contact Lisa.Palmer@umassmed.edu. 

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/covid19
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/covid19?utm_source=escholarship.umassmed.edu%2Fcovid19%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=escholarship.umassmed.edu%2Fcovid19%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/945?utm_source=escholarship.umassmed.edu%2Fcovid19%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1239?utm_source=escholarship.umassmed.edu%2Fcovid19%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1239?utm_source=escholarship.umassmed.edu%2Fcovid19%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/689?utm_source=escholarship.umassmed.edu%2Fcovid19%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/705?utm_source=escholarship.umassmed.edu%2Fcovid19%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/998?utm_source=escholarship.umassmed.edu%2Fcovid19%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/998?utm_source=escholarship.umassmed.edu%2Fcovid19%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.isci.2022.104031
https://escholarship.umassmed.edu/covid19/374?utm_source=escholarship.umassmed.edu%2Fcovid19%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://escholarship.umassmed.edu/covid19/374?utm_source=escholarship.umassmed.edu%2Fcovid19%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Lisa.Palmer@umassmed.edu


iScience

Article

An artificial intelligence deep learning platform
achieves high diagnostic accuracy for Covid-19
pneumonia by reading chest X-ray images

Dongguang Li,

Shaoguang Li

shaoguang.li@umassmed.edu

Highlights
We used artificial

intelligence models to

diagnose Covid-19

pneumonia by reading

chest X-ray images

We employed our unique

deep learning voting

algorithms combining

multiple Convolutional

neural networks

Our AI models reached a

high diagnostic accuracy

(>99%) for Covid-19

pneumonia detection

We obtained and

analyzed a large chest X-

ray image dataset (10,182

images)

Li & Li, iScience 25, 104031
April 15, 2022 ª 2022 The
Authors.

https://doi.org/10.1016/

j.isci.2022.104031

ll
OPEN ACCESS

mailto:shaoguang.li@umassmed.edu
https://doi.org/10.1016/j.isci.2022.104031
https://doi.org/10.1016/j.isci.2022.104031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.104031&domain=pdf


iScience

Article

An artificial intelligence deep learning platform
achieves high diagnostic accuracy for Covid-19
pneumonia by reading chest X-ray images

Dongguang Li1 and Shaoguang Li1,2,*

SUMMARY

The coronavirus disease of 2019 (Covid-19) causes deadly lung infections (pneu-
monia). Accurate clinical diagnosis of Covid-19 is essential for guiding treatment.
Covid-19 RNA test does not reflect clinical features and severity of the disease.
Pneumonia in Covid-19 patients could be caused by non-Covid-19 organisms
and distinguishing Covid-19 pneumonia from non-Covid-19 pneumonia is critical.
Chest X-ray detects pneumonia, but a high diagnostic accuracy is difficult to
achieve. We develop an artificial intelligence-based (AI) deep learning method
with a high diagnostic accuracy for Covid-19 pneumonia. We analyzed 10,182
chest X-ray images of healthy individuals, bacterial pneumonia. and viral pneu-
monia (Covid-19 and non-Covid-19) to build and test AI models. Among viral
pneumonia, diagnostic accuracy for Covid-19 reaches 99.95%. High diagnostic ac-
curacy is also achieved for distinguishing Covid-19 pneumonia from bacterial
pneumonia (99.85% accuracy) or normal lung images (100% accuracy). Our AI
models are accurate for clinical diagnosis of Covid-19 pneumonia by reading
solely chest X-ray images.

INTRODUCTION

Only within the first year of the pandemic, more than 100 million people worldwide have been diagnosed

with Covid-19 that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Lam et al.,

2020; Ziegler et al., 2020) and proximate 2% death rate has been observed. In addition, fast-spreading

SARS-CoV-2 variants have been identified worldwide (Grubaugh et al., 2020; Hu et al., 2020; Kirby, 2021;

Korber et al., 2020; Tang et al., 2020). Although the majority of Covid-19 patients have mild symptoms

and do not need specific treatment, approximately 15% of the patients end up developing severe pneu-

monia that potentially progresses to acute respiratory distress syndrome (ARDS) (Huang et al., 2020; Xu

et al., 2020), which requires immediate intensive care to save lives. Pneumonia is often caused by viruses

(including Covid-19) and bacteria and treatment options vary with the causes. Development of ARDS is

a major cause of death in Covid-19 patients because of severe damage to the lungs (Wang et al., 2020;

Zhang et al., 2020a). A correct clinical diagnosis of Covid-19 pneumonia guides appropriate treatment,

especially with anti-SARS-CoV-2 immunotherapy. The SARS-CoV-2 virus can be detected by an RNA

test, but this test does not reflect clinical features and severity of Covid-19; in addition, false negative

and false positive cases have also been observed with RNA testing for SARS-CoV-2 virus detection (Gao

et al., 2020; Zhang et al., 2020b). In addition, pneumonia in Covid-19-positive patients could be caused

by non-Covid-19 viruses or bacteria, especially in a flu season, and needs to be distinguished from pneu-

monia caused by non-Covid-19 organisms. Thus, a correct clinical diagnosis of Covid-19 provides a solid

base for initiating Covid-19-specific therapies and patient isolation. Chest X-ray and CT images are

frequently taken for determining the presence of Covid-19 pneumonia by radiologists, but high diagnostic

accuracy is difficult to achieve. On the other hand, the CT examination is often limited to larger hospitals. By

contrast, chest X-ray is widely available, economical, and less time-consuming. Furthermore, chest X-ray

helps to assess the severity and therapy-response to Covid-19 (Cohen et al., 2020; Hussain et al., 2020; Kik-

kisetti et al., 2020; Shen et al., 2021; Wong et al., 2021; Zhu et al., 2020). However, the current challenge in

evaluating chest X-ray images in Covid-19 patients is to achieve high diagnostic accuracy.

Deep learning is a type of machine learning in which a model learns to perform classification tasks

directly from images. Deep learning is usually implemented using neural network architecture
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(Schmidhuber, 2015). Transfer learning is an approach that applies knowledge of one type of problem to

a different but related problem (Weiss et al., 2016). Using a pretrained network with transfer learning is

typically much faster and easier than training a network from scratch. Medical image analysis and com-

puter-assisted intervention problems have been increasingly addressed with deep-learning-based solu-

tions (Campanella et al., 2019). Although the available deep learning platforms are flexible, they do not

provide specific functionality for medical image analysis and their adaption for this domain of application

requires substantial implementation effort (Razavian, 2019). Consequently, there has been substantial

duplication of effort and incompatible infrastructure has been developed across many research groups

(Appenzeller, 2017). Furthermore, deep learning helps to generate computational models consisting of

multiple processing layers to learn representations of data with multiple levels of abstraction (LeCun

et al., 2015). Compared to machine learning that learns to conduct classification tasks directly from

data, deep learning learns and abstracts the relevant information automatically while the data are being

processed. Within the deep learning networks, the processing layers are interconnected via nodes (neu-

rons), and each hidden layer receives information from the previous layer. Of all deep learning networks,

convolutional neural networks (CNNs) are most commonly used, because CNNs can transform a multi-

dimensional input image into a desired output (LeCun and Bengio, 1998). In general, a CNN is

composed of an input layer and an output layer with several hidden layers in between and the most com-

mon layers are convolution, activation or ReLU (rectified linear activation function unit), and pooling.

Each layer learns to detect different features in the input data. Deep learning networks have been widely

used in the artificial intelligence (AI) field for signal data classification and we believe that they could be

powerful tools for analyzing X-ray images.

Using deep learning, here we generate AI models to only read chest X-ray images of patients to reach

nearly 100% diagnostic accuracy for Covid-19.

RESULTS

Chest X-ray image variations unrelated to pneumonia

To develop accurate AI models for reading chest X-ray images, high quality images are required as the

quality of the images affects the outcomes. We found that sample variations were huge, posing a difficult

challenge in building accurate AI models for reading chest X-ray images. A major type of sample variation

was related to image collection, reflected by image darkness, contrast, size, orientation, (Figure 1A) etc. In

addition, some images contained unexpected nonhuman structures such as image labeling, pen marks,

pictures of medical treatment devices, (Figure 1B) etc. We realized that we need to build our AI models

capable of identifying and excluding those non-pneumonia variations when reading chest X-ray images.

It is equally important that our AI models should have abilities to distinguish Covid-19 pneumonia from

non-Covid-19 pneumonia caused by viruses or bacteria.

Figure 1. Chest X-ray image variations derived from sample collection

(A) There were some major variations of collected chest X-ray images in darkness, contrast, size, orientation, etc.

(B) There were some nonhuman structures in the chest X-ray images, including image labeling, pen marks, pictures of

medical treatment devices, etc.
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Figure 2. Strategies for overcoming image variations using AI models

(A) Core voting algorithm. The voting algorithm was developed by combining 17 trained AI models. Each model votes for

either of the following results: Yes (+) or No (�).

ll
OPEN ACCESS

iScience 25, 104031, April 15, 2022 3

iScience
Article



Strategies for overcoming image variations using AI models

As described above, we faced a difficult challenge to overcome huge variations of chest X-ray images when

generating highly accurate AI models for the diagnosis of Covid-19 pneumonia. It was clear to us that

employment of a single deep CNN, as other researchers often did in establishing AI models, would fail

to generate an AI model that allows achieving a high diagnostic accuracy upon reading chest X-ray images

of patients. Therefore, we developed a unique voting algorithm that allowed for combining 17 CNNs and

utilizing them as a whole to generate our AI models for optimizing the fitness of the data (Figure 2A),

because we had a success in employing our AI models to read pathologic tissue images of patients with

diffuse large B-cell lymphoma with a 100% diagnostic accuracy (Li et al., 2020a). The architecture of the

CNN used in this study comprised multiple layers including convolution, ReLU, and pooling (Figure 2B).

This advanced deep learning neural network approach was aimed to predict Covid-19 disease in patients

and increase diagnostic accuracy using classification models with multiple CNNs based on deep learning

(Figure 2B). We believe that the use of our voting algorithm with the combined 17 CNNs would be required

for reconciling huge image variations to achieve high diagnostic accuracy in the clinic.

We totally reviewed 10,182 chest X-ray images obtained from public datasets for healthy individuals (5,510

cases), bacterial pneumonia (2,530), and viral pneumonia (non-Covid-19: 1,345 cases; Covid-19: 797 cases).

We divided those X-ray images into classification groups based on the causes of pneumonia: Covid-19 vi-

rus, other viruses, bacteria, and healthy (as a control) (Figure 2C). We used 80% of the X-ray images for

model training and 10% of the images for model validation, with the remaining 10% of the images for model

testing. We expected that our combined 17 CNNs approach would help us to establish powerful AI models

for reading chest X-ray images of Covid-19 pneumonia and distinguishing them from the images of other

types of pneumonia with high diagnostic accuracy.

Achievement of high diagnostic accuracy with deep learning

We took a binary classification approach using deep learning; i.e., we set up each comparison group as

Covid-19 versus non-Covid-19 (other viruses, bacteria, or healthy) with the combined 17 CNNs for classifi-

cation (Figure 3A). On the other hand, we realized that training a deep CNN from scratch is computationally

expensive and often requires a large amount of training data (about a few millions) which is not available in

any public database including the one we used. Therefore, we used transfer learning (Figure 3A). We

generated a particular AI model for each comparison group: classifier A (pneumonia vs healthy), classifier

B (viruses vs bacteria), classifier C (Covid-19 vs other viruses), classifier D (Covid-19 vs bacteria), or classifier

E (Covid-19 vs healthy) (Figure 3B). Specifically, we divided X-ray images into classification groups based on

the causes of pneumonia: Covid-19 virus, other viruses, bacteria, and healthy (as a control). 80% of the X-ray

images were used for model training and 10% of the images for model validation, with the remaining 10% of

the images for model testing. Before performing the classification with multiple CNNs, each CNN was

trained (or fine-tuned) with optimized parameters to achieve reasonably good performance. Those param-

eters include learning rate (0.001–0.0001), validation frequency (10–30), mini batch size (16–64), max,

epochs (20–50), and algorithms (sgdm, adam, and rmsprop). In the end, all trained CNNs were fed into

a platform where our core voting algorithm made them work together to produce the final classification

results. With a focus on specifically identifying Covid-19 pneumonia and distinguishing it from pneumonia

caused by other viruses (classifier C) and bacteria (classifier D), we found that our AI models

achieved 99.95% diagnostic accuracy for Covid-19 from reading chest X-ray images of virus-caused pneu-

monia and achieved 99.85% accuracy for Covid-19 from reading the images of pneumonia caused by

Covid-19 and bacteria (Figure 3C). We also generated an AI model for reading the Covid-19 and healthy

images (classifier E) and the diagnostic accuracy for Covid-19 reached 100% (Figure 3C). These results

demonstrate that our AI models provide accurate diagnosis of Covid-19 through reading chest X-ray im-

ages for clinical use.

In a practical sense, a patient with suspected lung infection demands further examination for pneumonia,

for example, by X-ray. If pneumonia existed, it is beneficial to determine whether pneumonia is caused by

Figure 2. Continued

(B) Architecture of a CNN comprising commonly used layers such as convolution, ReLU, and pooling.

(C) Overview of training and diagnosis. X-ray images were divided into classification groups based on the causes of

pneumonia: Covid-19 virus, other viruses, bacteria, and healthy (as a control). 80% of the X-ray images were used for

model training and 10% of the images for model validation, with the remaining 10% of the images for model testing.
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viruses including Covid-19 or bacteria for guiding proper treatments. Therefore, we generated an AI model

to distinguish pneumonia from healthy chest X-ray images (classifier A) and another AI model to distinguish

virus-caused pneumonia from the one caused by bacteria (classifier B). The model of classifier A achieved

99.23% diagnostic accuracy for pneumonia and themodel of classifier B achieved 99.06% accuracy for iden-

tifying pneumonia caused by viruses or bacteria (Figure 3B).

Figure 3. Achievement of high diagnostic accuracy with deep learning

(A) A binary classification approach using deep learning. Each comparison group was set up as Covid-19 versus non-

Covid-19 (other viruses, bacteria, or healthy) with the combined 17 CNNs for classification. A particular AI model was

generated for each comparison group: classifier A (pneumonia vs healthy), classifier B (viruses vs bacteria), classifier C

(Covid-19 vs other viruses), classifier D (Covid-19 vs bacteria), or classifier E (Covid-19 vs healthy).

(B) By focusing on specifically identifying Covid-19 pneumonia and distinguishing it from pneumonia caused by other

viruses (classifier C) and bacteria (classifier D), our AI models achieved 99.95% diagnostic accuracy for Covid-19 from

reading chest X-ray images of virus-caused pneumonia and 99.85% accuracy for Covid-19 from reading the images of

pneumonia caused by Covid-19 and bacteria. High diagnostic accuracy was also reached in the groups of classifier A

(99.23%), classifier B (99.06%), and Classifier E (100%).
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We originally developed the 17 CNN deep learning platform (Li et al., 2020a) and used it in this study. To

demonstrate that our 17 CNN approach is more superior than any individual CNNs often used in the AI

field, we analyzed all five classification groups using each of the 17 CNNs separately and achieved a diag-

nostic accuracy ranging between 79 and 99%, contrasting sharply with the diagnostic accuracy ranging be-

tween 99.06 and 100% accuracy using our combined 17 CNN platform (Table 1). It is necessary to point out

that when all classifiers (A–E) were analyzed by the same CNN, no individual CNN alone could achieve a

diagnostic accuracy greater than 99% (Table 1). By contrast, our combined 17 CNN platform achieved

greater than 99% of diagnostic accuracy for all classifiers (Table 1). In our study on AI-assisted pneumonia

diagnosis for Covid-19 detection, we built several classifiers, and the classification outcomes with those

classifiers shown in the confusion matrices also reflected the high accuracy of our combined multiple

CNN deep learning platform (Figure 4).

We should point out that accuracy only measures the number of correctly predicted values among the total

predicted value. Although it is a good measure of performance, it is not complete and does not work well

when the cost of false negatives is high. To further evaluate our deep learning platform, we employedmore

evaluation measures including precision (PPV: positive predictive value), NPV (negative predictive value),

recall (sensitivity), specificity, and F1 score, because these methods are believed to be valuable ways for

validating performance evaluation measures (Powers, 2008; Tharwat, 2021). Our deep learning platform

allowed us to obtain high values in precision (>99%), negative predictive value (>98%), recall (>98%), spec-

ificity (>99%), and F1 score (>98%) (Table 2).

DISCUSSION

Besides chest X-ray, lung CT images are also taken for clinical diagnosis of Covid-19 pneumonia. Because

the availability of CT examination is often limited to larger hospitals, we focused on developing our AI

models by solely using chest X-ray images that can be obtained from almost any medical facility, including

small clinics/hospitals, even in the remote areas of countries.

In this study, we used transfer learning which allows transferring knowledge from one domain to another by

using trained weights from the previous domain. Traditionally, the weight matrices of several layers in a

Table 1. Individual CNN is less sufficient than 17 CNNs in achieving a clinical-grade diagnostic accuracy for viral and bacterial pneumonia

CNNs

Diagnostic accuracy (%)

Classifier A Classifier B Classifier C Classifier D Classifier E

Average

(A + B + C + D + E)/5

AlexNet 94.38 82.87 99.49 99.70 97.78 94.84

GoogleNet 94.48 79.64 98.13 99.70 98.10 94.01

Vgg16 94.10 79.87 99.63 99.70 98.41 94.34

ResNet18 94.00 81.58 99.07 98.80 98.89 94.47

SqueezeNet 94.38 80.09 99.53 100.00 98.25 94.45

MobileNetv2 93.62 79.87 99.07 99.10 96.98 93.73

Inceptionv3 93.14 85.01 99.07 98.49 98.25 94.79

DenseNet201 93.81 80.30 99.53 99.70 97.62 94.19

Xception 95.52 82.01 99.53 99.10 96.35 94.50

Vgg19 94.48 79.66 99.07 100.00 98.89 94.42

Places365GoogleNet 93.71 84.15 99.53 99.40 97.78 94.91

InceptionResNetv2 91.14 82.66 98.60 99.40 97.30 93.82

ResNet50 94.00 79.23 99.53 98.49 97.30 93.71

ResNet101 93.05 77.09 98.13 99.40 97.14 92.96

NASNetMobile 94.76 79.23 99.53 98.80 96.67 93.80

NASNetLarge 93.05 84.58 99.07 99.40 96.17 94.45

ShuffleNet 94.10 80.09 99.07 99.10 97.46 93.96

Our Platform (with combined 17 CNNs) 99.23 99.06 99.95 99.85 100.00 99.62
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CNN are initially frozen while training on the secondary domain and only the remaining layers are fine-

tuned. This process works well when an overlapping region in the low-level features is shared by both do-

mains. In our case, because the ImageNet and the COVID-19 datasets belong to nonoverlapping domains,

the trained weights from the ImageNet dataset were used to initialize the weights of our model, and none

of them were frozen.

Whenmultiple models are being used to classify a single X-ray image, the final classified class is decided by

amajority rule (May, 1952). Majority rule is a decision rule that selects alternatives which have amajority, i.e.,

maximum votes among those models involved. The idea has been introduced in this study from one of the

election theories, called approval voting. Under approval voting, a voter indicates which candidate he or

she approves. A candidate receives one point for each voter that approves the candidate. A candidate re-

ceives no points for each voter that does not approve the candidate. For a single candidate election, the

candidate with the most points wins the election. Naturally, approving of all candidates or disapproving of

all candidates does not change the difference in the number of points the candidates receive. If there are an

odd number of voters and no voter approves or disapproves of both candidates, then approval voting is

equivalent to majority rule: each voter gives one point to the candidate that he or she prefers and the candi-

date with majority of the points wins the election. Determining a winner for a two-candidate election is

easy, which will be a binary classification problem. It has been shown that the majority rule is the only

two-candidate election procedure in which each voter is treated equally, that is, only the number of votes

matters, not who casts the votes; each candidate is treated equally, that is, only the number of votes that a

candidate receives determines if he or she wins the election; besides, a candidate can never be harmed by

receivingmore votes, that is, if a candidate wins the election, then they would still win the election if some of

the voters who had voted for the candidate’s opponent now voted for the candidate (May, 1952).

In general, the quality of available chest X-ray images of patients varies hugely across hospitals, and it is

challenging to generate highly accurate AI models for diagnosing Covid-19 pneumonia. In some published

studies on deep learning, the diagnostic accuracy of about 90% for Covid-19 with a relatively small number

of cases implies that a significant number of false negative cases existed in the data sets (Jin et al., 2020; Li

et al., 2020b). Practically, we believe that an accuracy close to 100% is required for Covid-19 diagnosis in a

clinical setting. Recently, several studies suggest that the use of chest X-ray images may help to assess the

severity of Covid-19 (Cohen et al., 2020; Wong et al., 2021; Zhu et al., 2020), emphasizing the clinical sig-

nificance of chest X-ray in diagnosing Covid-19 pneumonia. In our study, we have developed reliable AI

models with nearly 100% diagnostic accuracy for Covid-19 pneumonia by solely reading chest X-ray images

of patients, building a solid foundation for using the models in the clinic.

Figure 4. Confusion matrices for binary classifications A, B, C, D, and E

The green quadrants summarize the correct classifications made by the system, and the red quadrants summarize the

incorrect classifications made by the system. TP: true positives; FP: false positives; TN: true negatives; FN: false negatives.
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We have trained and built five binary classification models called Classifier A, Classifier B, Classifier C,

Classifier D, and Classifier E (Figures 2 and 3). Our AI models were built mainly for diagnosing Covid-19

but were also capable of identifying non-Covid-19 pneumonia caused by other types of virus or bacteria,

providing an opportunity to expand the use of our models to diagnose non-Covid-19 viral or bacterial

pneumonia. This approach is meaningful because treatment options for viral and bacterial pneumonia

are different. We envision that when individuals who have had a lung infection but otherwise healthy visit

to the clinic, our AI models can help to read chest X-ray images to determine whether they have had any

form of pneumonia caused by viruses or bacteria, followed by confirming whether they have had

Covid-19 pneumonia.

In summary, we took a binary classification deep learning approach using our combined 17 CNNs and core

voting algorithm by reading whole chest X-ray images and classifying them as either positive or negative to

Covid-19. As a result, we have achieved nearly 100% diagnostic accuracy for Covid-19 pneumonia with high

sensitivity and specificity. Our immediate next step would be to apply our AI models in a clinical trial for

chest X-ray-based diagnosis of Covid-19.

Limitations of the study

As we showed in our results, we have achieved a high accuracy in identifying Covid-19 pneumonia using our

deep learning method for potential clinical use. However, we could not explain why the accuracy did not

reach 100% in some comparison groups. In other words, we do not know whether we need to further

improve our deep learning method or to verify the correctness of image labeling in the public datasets,

although the latter is obviously impossible to achieve. Before clinical use of our deep learning method

for diagnosing Covid-19 pneumonia, we may need to ensure a control of the image collection process

to avoid possible mislabeling of any chest X-ray images.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Material availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Image datasets

B Core voting algorithm

d METHOD DETAILS

B Hardware and software

B Deep learning networks and convolutional neural networks (DCNNs)

d QUANTIFICATION AND STATISTICAL ANALYSIS

Table 2. Statistical analysis of performance of five binary classifiers

Measures

Classifier A

pneumonia vs

normal

Classifier B

virus vs

bacteria

Classifier C

Covid-19 vs

other virus

Classifier D

Covid-19 vs

bacteria

Classifier E

Covid-19 vs

normal

Accuracy 0.9923 0.9906 0.9995 0.9985 1.0

Precision (PPV) 0.9994 0.9916 1.0 0.9975 1.0

Negative predictive

value (NPV)

0.9896 0.9898 0.9993 0.9988 1.0

Recall (Sensitivity) 0.9876 0.9879 0.9987 0.9962 1.0

Specificity 0.9995 0.9929 1.0 0.9992 1.0

F1 Score 0.9935 0.9897 0.9993 0.9968 1.0
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Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Shaoguang Li (shaoguang.li@umassmed.edu).

Material availability

We have prepared four image datasets (Normal or Healthy, Bacteria, Other virus, and Covid-19) in this

study. The datasets used to train and evaluate the proposed platform is comprised of a total 10,182 chest

X-ray images, and these images are available from https://fts.umassmed.edu (user name: dli; password:

Dong2022).

Data and code availability

d Whole source code can be found from https://fts.umassmed.edu (user name: dli; password: Dong2022)

or obtained by sending a request to shaoguang.li@umassmed.edu.

d This paper was produced using large volumes of publicly available image data. The authors have made

every effort to make available links to these resources as well as the software methods and information

used to produce the dataset, analyses, and summary information. The datasets used in this study are

available online (https://fts.umassmed.edu/).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Image datasets

All Covid-19 chest X-ray images were obtained from a publicly-available depository site (https://github.

com/ieee8023/covid-chestxray-dataset/tree/master/images). They are real cases for patients who

tested positive for Covid-19 in hospitals across the global. Non-Covid-19 chest X-ray images were

obtained from the Kaggle’s Chest X-ray Images (Pneumonia) dataset (https://www.kaggle.com/

paultimothymooney/chest-xray-pneumonia). Based on the causes of pneumonia, we grouped all cases

as either Covid-19 or Non-Covid19 (healthy, bacterial pneumonia and other viral pneumonia).

The dataset used to train and evaluate the proposed platform is comprised of a total 10,182 chest X-ray

images, and these images are available from https://github.com/ieee8023/covid-chestxray-dataset/tree/

master/images and https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia. We combined

and modified several different datasets that are publicly available (Kermany et al., 2018; Medicine, 2020;

Paul, 2020; Wang et al., 2017). There is also more information related to those images (Cohen et al.,

2020; Jaeger et al., 2014).

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB Mathworks https://www.mathworks.com/

Core Voting Algorithms with multiple CNNs Nature Communications https://www.nature.com/articles/s41467-020-19,817-3

Code (Classifier A, B, C, D and E) This study https://fts.umassmed.edu/(user name: dli; password: Dong2022)

Pretrained CNN Models Mathworks https://www.mathworks.com/help/deeplearning/ug/

pretrained-convolutional-neural-networks.html

Other

Model Evaluation Measures Wikipedia https://en.wikipedia.org/wiki/F-score

X-ray Image Datasets (Healthy, Bacteria, Virus

and Covid-19)

This study https://fts.umassmed.edu/(user name: dli; password: Dong2022)
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Core voting algorithm

Like many different research groups, we have used different CNNs individually but diagnostic accuracy has

not been satisfactory. In our study, we initially used each of the 17 CNNs, respectively, to analyze the chest

X-ray images of Covid-19 in each of the five classification groups, and found that the average diagnostic

accuracy by using one CNN was ranged from 79% to 99% (Table 1). In our view, the diagnostic accuracy

needs to be near 100% or greater than 99% prior to employing any deep learning model in medical prac-

tice. This is why we programmed multiple models (17 CNNs) into one system with our core algorithms to

enhance the performance of deep learning with a goal of achieving 100% diagnostic accuracy. As a result,

we have indeed reached 100% accuracy, which is superb to a sole use of any one of the 17 CNNs. In fact, we

were not particularly interested in which network(s) contribute themost/the best to the output, because our

model was treated as a black box, which is how deep learning should work. However, what we do know is

that the output of combining the 17 CNNs is much better than any individual network.

In order to get themultiple CNNs to work together, a core algorithm is developed based on a votingmech-

anism. In the classification process, each individual CNNmodel votes for the Covid-19 results either Yes or

No. Yes will get a score +1 and No will get a score �1. An array Vote(n) is created after receiving all of 17

CNNs contributing vote scores. Then the final classification output (Covid or Non-Covid) can be calculated

by adding up all of the scores of 17 CNNs.

Classification =
X17

n= 1
VoteðnÞ (Equation 1)

Covid-19, if Classification R 0

Non-Covid-19, if Classification < 0

Our ability to combine 17 CNNs and use them together as a single model is definitely unprecedented. This

single model has all of the layers built in those 17 CNNs for conducting transfer deep learning with our

datasets, and this novel approach allowed us to achieve a high diagnostic accuracy for Covid-19.

METHOD DETAILS

Hardware and software

CPU Sever and computer used for conducting all experiments are described previously (Li et al., 2020a).

Briefly, the MATLAB2019a was used for training AI models. In data preparation, programming and deploy-

ment, the toolboxes provided by MATLAB were used, including the deep-learning toolbox and the image

processing toolbox.

Deep learning networks and convolutional neural networks (DCNNs)

In this study, we used deep learning to generate computational models that are composed of multiple

processing layers, including convolution, activation or ReLU, and pooling (Figure 2B). Because the size

of the publicly-available COVID-19 dataset is relatively small compared to standard datasets used in

deep learning, we applied transfer learning to augment the decision-making process, and the pre-trained

networks on ImageNet are deep CNNs originally designed to classify images in 1,000 categories (http://

image-net.org/about-overview, 2016). We reused the network architecture of the CNN to classify those

X-ray images in two categories, such as Healthy vs Covid-19, Virus vs Covid-19, Bacteria vs Cocid-19,

and Virus vs Bacteria, from several data sources. Then, we determined the type of classification technique

that could be applied for distinguishing the two classes. Based on the collected images, we could identify

pre-processing techniques that would assist our classification process. We could also determine the type of

CNN architecture utilized for this study based on the similarities within the class and differences across

classes.

Each every of 17 CNNs was trained for many iterations (approximately 20–30 epochs with batch sizes

ranging from 16 to 64, learning rate from 0.0001 to 0.001, validation frequency is 20) before convergence.

The detail procedure of training is illustrated in Figure 3B. We split our data into 3 datasets. 10% of the data

were used for validation, 10% of the data were reserved for testing, while the remaining 80% of the data

were used for training. During training, validation data is useful to detect if the network is overfitting. All

of 17 trained CNNs were incorporated into a core voting algorithm to work out the final classification

output (Figure 2A) with comparison to the performance of each of individual CNNs (Table 1).
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Diagnostic accuracy was used as a measure to evaluate the diagnostic performance, which involved in the

use of the following terms: true positive (TP), false positive (FP), true negative (TN) and false negative (FN).

Diagnostic accuracy was calculated as the following:

Diagnostic accuracy = ðTP + TNÞ=ðTP + FN + FP + TNÞ (Equation 2)

To further evaluate our deep learning platform, we employed more evaluation measures including the

following:

Precision
�
positive predictive value; PPV

�
= TP=ðTP + FPÞ (Equation 3)

NPV
�
negative predictive value

�
= TN=ðTN + FNÞ (Equation 4)

RecallðsensitivityÞ = TP=ðTP + FNÞ (Equation 5)

Specificity = TN=ðTN + FPÞ (Equation 6)

F1 Score = 2 � ��precision � recall� � �precision + recall
��

(Equation 7)

QUANTIFICATION AND STATISTICAL ANALYSIS

Wehave calculated a sets of diagnostic testingmeasures, which is related to the field of binary classification

(https://en.wikipedia.org/wiki/F-score). No other statistical analysis was performed in the study.

ll
OPEN ACCESS

iScience 25, 104031, April 15, 2022 13

iScience
Article

https://en.wikipedia.org/wiki/F-score

	An artificial intelligence deep learning platform achieves high diagnostic accuracy for Covid-19 pneumonia by reading chest X-ray images
	Let us know how access to this document benefits you.
	Repository Citation


