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Abstract: A decrease in ovarian estrogens in postmenopausal women increases the risk of weight
gain, cardiovascular disease, type 2 diabetes, and chronic inflammation. While it is known that gut
microbiota regulates energy homeostasis, it is unclear if gut microbiota is associated with estradiol
regulation of metabolism. In this study, we tested if estradiol-mediated protection from high-fat
diet (HFD)-induced obesity and metabolic changes are associated with longitudinal alterations in
gut microbiota in female mice. Ovariectomized adult mice with vehicle or estradiol (E2) implants
were fed chow for two weeks and HFD for four weeks. As reported previously, E2 increased energy
expenditure, physical activity, insulin sensitivity, and whole-body glucose turnover. Interestingly,
E2 decreased the tight junction protein occludin, suggesting E2 affects gut epithelial integrity. More-
over, E2 increased Akkermansia and decreased Erysipleotrichaceae and Streptococcaceae. Furthermore,
Coprobacillus and Lactococcus were positively correlated, while Akkermansia was negatively correlated,
with body weight and fat mass. These results suggest that changes in gut epithelial barrier and spe-
cific gut microbiota contribute to E2-mediated protection against diet-induced obesity and metabolic
dysregulation. These findings provide support for the gut microbiota as a therapeutic target for
treating estrogen-dependent metabolic disorders in women.

Keywords: diabetes; estrogens; gut permeability/integrity; insulin sensitivity; Akkermansia; gut microbiome

1. Introduction

More than 40% of the US population is obese (CDC, 2018), which is a leading cause
of morbidity and mortality worldwide [1]. The latest example of the increasing impact of
obesity on human health is the strong association of obesity with the number of hospitalized
COVID-19 positive patients [2]. Obesity is more prevalent in women [3], in particular
during menopause, and is positively associated with a steep decline in ovarian hormones.
Increased fat weight gain in postmenopausal women elevates their risk of hyperglycemia,
insulin resistance, hyperlipidemia, low-grade inflammation, osteoporosis, cognitive decline,
breast cancer and colorectal cancer [4–9]. Estrogen replacement therapy decreases the
postmenopausal adiposity and protects women from diabetes, coronary heart disease, and
increases overall lifespan [8,10]. Ovariectomized rodents provide excellent models for
studying estrogen-dependent effects on energy homeostasis. Ovariectomy causes diet-
induced obesity, hyperglycemia and insulin resistance in rodents, which can be rescued
by estradiol (E2) treatment [11–15]. In further support of a protective role for estrogens,
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mice lacking estrogen receptors or the estrogen synthesizing enzyme, aromatase, develop
obesity [16–18].

Another key regulator of energy homeostasis is the gut microbiota, a community of
bacteria, fungi, viruses, and archaea that reside on the gastrointestinal epithelium [19].
The gut microbiota influences host physiology through nutrient harvest, synthesis of
vitamins, hormones, and neurotransmitters, and imprinting and strengthening of the
immune system [20,21]. Gut microbes produce energy from fermentation of non-digestible
carbohydrates, in particular, short-chain fatty acids, that are linked to improved insulin
sensitivity and health in humans [22]. Notably, germ-free mice and rats have a profound
reduction in energy harvest capacity, a compromised immune system, and abnormal
intestinal features compared to conventionally raised animals, indicating an important
function of gut microbiota on host health. [23,24].

Diet strongly modulates gut microbial composition and activity in humans and ro-
dents. For example, high-fat diet (HFD) profoundly decreases microbial diversity [21,25–29].
HFD promotes the endotoxin-producing gram-negative communities, inducing abnor-
mal immune responses and inflammation, characteristic pathologies of obesity and di-
abetes [30,31]. HFD also increases intestinal permeability, allowing microbiota-induced
toxins into the circulation and alters expression of multiple genes in the intestinal epithe-
lium of male and female mice [31–33]. Given that HFD increases the risk of developing
obesity and metabolic syndromes in postmenopausal women [34], it is important to gain
a better understanding of the functions of gut microbiota in metabolic health in females.

Recent evidence suggests there is cross-talk between estrogens and gut microbiota.
Urinary estrogens in postmenopausal women positively correlate with gut microbiota taxa
diversity [35]. In further support of estrogens’ influence on gut microbiota in women, phy-
toestrogens increase Lactobacillus, Enterococcus and Bifidobacterium [36,37]. In mice, ovariec-
tomy alters gut microbial diversity, in particular, by shifting abundances of the two major
bacterial phyla, Bacteroidetes and Firmicutes and by increasing Bifidobacterium [38–40].
In mice fed a high-sucrose, high-fat containing western diet, chronic E2 administration
via drinking water decreased lipopolysaccharide-producing microbes, such as Escherichia
and Shigella, and increased Bifidobacterium and Akkermansia [41]. In addition, we recently
found that estrogens alter gut microbiota in leptin-deficient (ob/ob) obese female mice.
E2 decreased gut microbial evenness in both lean and obese (ob/ob) mice and increased
S24-7 abundance [42]. Taken together, these studies suggest that estrogens can influence
gut microbiota in females.

While diet and gut microbes profoundly affect energy metabolism, it is not known if
the estrogen-mediated protective effects in females are linked to changes in gut microbiota.
In the present study, we tested the hypothesis that the E2-mediated protection against
HFD-induced obesity and metabolic disorders is associated with changes in gut microbiota
and intestinal morphology in female mice. This study investigated the effects of E2 and
diet in female mice on their metabolic profiles, associated longitudinal changes in gut
microbiota, and gut epithelial integrity. These findings enhance our understanding of how
estrogens function in women’s metabolic health and help identify potential gut microbial
modulators in estrogen-dependent protection from metabolic syndromes.

2. Results
2.1. Estradiol Attenuates Body Weight and Fat Mass Gain in Female Mice on HFD

Ten-week-old female C57BL/6J mice were bilaterally ovariectomized (OVX) and
received implants containing 17β-estradiol (E2) or vehicle (Veh, n = 6/group) [11,42].
Metabolic and gut microbiota data were collected at different points through the study
(Figure 1A). Analysis of longitudinal data, including both STND and HFD feeding, showed
a main effect of E2 on body weight. During the two weeks on STND, Veh and E2 mice
did not differ in body weight. After switching to HFD, Veh mice gained weight, whereas
E2 mice were protected from the weight gain. Veh mice weighed more than E2 mice from
D21 till the end of the study (Figure 1B), due to increased fat mass (Figure 1C). The effect
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of E2 on fat mass was profound during HFD, although no effect was seen during STND.
Lean mass was not affected by E2 during either diet (Figure 1D).
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Figure 1. Estradiol attenuates weight gain in female mice on a high-fat diet (HFD). Experimental timeline (A). Ten-week old
mice were ovariectomized and implanted with capsules containing E2 (50 µg) or Veh implants (n = 6/group). Animals
were placed in metabolic cages for 3 days, once each during STND and HFD. Body weight (B) Fat mass (C) Lean mass (D).
Mice were switched from standard diet (STND) to HFD on day 14. Surgery for the hyperinsulinemic- euglycemic clamp on
days 37–39 (4 mice/day) resulted in weight change in both groups. Error bars are shown as ± SEM. * denotes p < 0.001,
using repeated measures ANOVA followed by t-test. OVX: ovariectomy; 5HFS: 5-h fasting blood glucose; MRI: body
composition measurement using proton magnetic resonance spectroscopy (1H-MRS); Clamp: hyperinsulinemic-euglycemic
clamp; # indicates fecal sample collection days.

2.2. Estradiol Reduces Food Intake and Energy Expenditure in Female Mice on STND

Analysis of food intake (calories), including both STND and HFD feeding, showed
a main effect of E2 treatment during night. During STND, E2 reduced food intake during
24 h and day (Figure 2A). An interaction between E2 and diet was also observed on food
intake during 24 h, day and night. E2 altered water intake during STND such that E2-mice
consumed less water during day, but more during night, while no effect was detected in
cumulative 24 h data (Figure S1A).

Locomotor activity was measured using metabolic cages (TSE Systems, Germany) for
a 72-h period on D11–D13 and D29–31 during STND and HFD, respectively. A main effect
of E2 treatment was present on locomotor activity during 24 h and night. E2 mice on STND
were less active during the light phase compared to Veh mice (Figure 2B).

VO2 consumption and VCO2 production were also measured using metabolic cages.
E2 altered VO2 consumption during day and night, and VCO2 production during day in
longitudinal data. During STND, E2 decreased VO2 consumption during 24 h and day
(Figure 2C) and VCO2 production at 24 h, day, and night (Figure 2D). Respiratory exchange
rate (RER, VO2/VCO2), a predictor of relative contribution of carbohydrate (value > 0.85)
vs lipid (value < 0.8) on energy production, was decreased in E2 group during day, but not
during 24 h or night (Figure S2A). E2 affected resting energy expenditure (EE) during day
and night, with no effect on 24 h data. During STND, EE was attenuated in E2-treated mice
during 24 h and day (Figure 2E).
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2.3. Estradiol Increases Food Intake and Energy Expenditure in Female Mice during HFD

E2 increased HFD consumption during 24 h and night (Figure 3A). Similarly, water
intake was increased in E2 mice during 24 h and night (Figure S1B). E2 profoundly increased
locomotor activity during 24 h and night (Figure 3B). Increased metabolic capacity in
E2 mice during HFD was further confirmed by increases in VO2 consumption during 24 h
and night and VCO2 production, during 24 h and night (Figure 3C,D). Similarly, EE was
increased in E2 mice during 24 h and night (Figure 3E). RER was not affected by E2 during
HFD feeding (Figure S2B).

2.4. HFD Increases Body Weight and Fat Mass Gain in Female Mice

To determine the effects of E2 on energy metabolism and gut microbiota under dif-
ferent diet conditions, mice were fed a chow diet (STND) for the first 14 days after OVX
and then fed HFD for days 14–45 (Figure 1A). HFD had a profound effect on body weight
and fat mass. An interaction between diet and E2 treatment was also present on body
weight and fat mass (Figure 1B,C). For the lean mass, while an effect of diet was present on
longitudinal data, there was no effect on separate data during STND or HFD (Figure 1D).

2.5. HFD Alters Food Intake and Energy Expenditure in Female Mice

A comparison of food intake, in calories, between STND and HFD feeding revealed
a main effect of diet during 24 h and day, but not at night. However, there was an interaction
of diet and hormone treatment during 24 h, day, and night. Interestingly, Veh mice on HFD
ate less calories during 24 h compared to Veh mice on STND. In contrast, E2 mice on HFD
ate more calories during 24 h, than during STND (Figures 2 and 3). Both Veh and E2-mice
had a greater water intake during STND than HFD, during 24 h and night (Figure S1A,B).
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(A) Physical activity (B) VO2 consumption (C) VCO2 production (D) Resting energy expenditure (E) were measured in
mice in metabolic cages on days 15–17 of HFD feeding. The average 24-h data were obtained from 72-h data and used for
statistical analysis. * indicates differences between E2 and Veh mice (n = 6/group) (p < 0.05; t-test).

Diet affected locomotor activity during 24 h, day, and night. Within E2 group, mice
were more active at 24 h and night following the switch to HFD compared to STND,
suggesting that one mechanism by which estrogens prevent HFD-induced obesity is by
increasing activity. In contrast, Veh mice were less active during HFD feeding, than on
STND, during day. Diet also affected VCO2 production (during 24 h, day, and night).
Veh mice had reduced VCO2 production during HFD than on STND (on 24 h, day, and
night data). E2 mice also had reduced VCO2 production during HFD compared to STND,
but only during night. Moreover, an interaction of E2 and diet was present on VCO2
production (on 24 h, day and night data). Similar to VCO2 production, Veh mice on
HFD had decreased VO2 consumption (during 24 h, day, and night), compared to STND.
In contrast, VO2 consumption was increased in E2-mice during HFD (during 24 h, day,
and night) (Figures 2 and 3). An interaction of E2 and diet was also present on VO2
consumption (during 24 h, day, and night).

A main effect of diet was also observed on RER, with a lower RER during HFD (during
24 h, day and night) compared to STND. As expected, RER was decreased in both E2 mice
(during 24 h data, day, and night) and Veh mice (also during 24 h, day, and night), during
HFD feeding due to lipid oxidation. In contrast, EE did not show a main effect of diet, but
an interaction of treatment and diet was detected (during 24 h, day, and night). E2-treated
mice had an increased EE during HFD (on 24 h, day, and night data) whereas Veh mice
during HFD had a decreased EE (during 24 h, day, and night) (Figures 2 and 3).

2.6. Estradiol Attenuates Fasting Glucose Levels and Plasma Adipokines in Female Mice

Five-hour fasting blood glucose was measured at different times during STND and
HFD, which was lower in E2-treated mice than Veh mice on D8 and D14 (during STND),
and D23 (during HFD) (Figure 4A). As a response to changes in plasma glucose and lipids,
adipokines are produced, many of which are regulated by E2 [13,43,44]. We investigated
if the adipokines, leptin and resistin, are altered by E2 during STND or HFD feeding.
Leptin was increased in Veh mice on STND as early as D8 (p = 0.029) and on D23 during
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HFD (p < 0.001) (Figure 4B). Compared to E2-treated mice, plasma resistin levels increased
in Veh mice during both STND and HFD (Figure 4C). E2 did not alter plasma levels of
the pro-inflammatory cytokines, IL-6 and TNF-α (Figure S3A,B). Diet had no effect on
plasma glucose and adipokines on the days examined (Figure 4 and Figure S3A,B). Plasma
estradiol was measured on D23 of the implant to confirm its release into the circulation,
which was significantly higher in E2 group compared to controls (Figure 4D). The intestinal
hormones ghrelin and GLP-1 in plasma were undetectable.
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Figure 4. Estradiol decreases plasma glucose and adipokines in female mice independent of diet.
5 h-fasting blood glucose (A) on days 8 and 14, both during STND and on day 23, during HFD.
Resistin (B) and leptin (C) were measured on D8 during STND and on D23 during HFD. Plasma
estradiol levels were measured on D23 to confirm physiological levels in the treatment group (D).
* indicates differences between E2 and Veh mice (n = 6/group) (p < 0.05, repeated measures ANOVA
followed by t-test for A, B, and C, and t-test for D).

2.7. Estradiol Improves Insulin Sensitivity in Female Mice on HFD

We performed hyperinsulinemic-euglycemic clamp to measure insulin sensitivity
and glucose metabolism in awake mice. E2 mice had an increased glucose infusion rate
and increased whole-body glucose turnover compared to Veh controls during clamp
(Figure 5A,B). Whole-body glycogen synthesis was increased in E2-treated mice compared
to Veh mice (Figure 5C). Insulin-stimulated glucose uptake in skeletal muscle (gastroc-
nemius) did not differ between E2 and Veh mice, although a trend towards a decrease
(p = 0.08) was observed in E2 mice, suggesting that skeletal muscle is not primarily respon-
sible for the insulin-stimulated energy utilization in females as an effect of E2 (Figure 5D).
E2 did not alter basal or clamp plasma glucose levels, although a trend towards a decrease
in basal glucose (p = 0.08) was observed in E2 mice (Figure S4A). Consistently, a trend
towards an increase in basal hepatic glucose production (HGP; p = 0.076) was observed
in E2 groups, whereas clamp HGP was not affected (Figure S4B). Whole-body glycolysis,
hepatic insulin action, or liver triglyceride levels were not affected by E2 (Figure S4C–E).
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Figure 5. Estradiol increases insulin sensitivity and glucose utilization in female mice on HFD.
Mice underwent hyperinsulinemic-euglycemic clamp on days 43–45, a week following jugular vein
surgery. Glucose infusion rate (A) Glucose turnover (B) Glycogen synthesis (C) Skeletal muscle
glucose uptake (D). * indicates differences between E2 (n = 6) and Veh (n = 5) mice * (p < 0.05, t-test).

2.8. Estradiol Decreases Occludin Expression in Colon in Female Mice Fed HFD

Tight junction proteins provide an indirect measure of intestinal epithelial integrity.
Thus, to investigate the role of E2 on healthy epithelial barrier, the tight junction proteins
occludin and ZO-1 were measured in female mice after 2 weeks on HFD. Interestingly, E2
treatment reduced the area and intensity of occludin immunoreactivity in the mid-colon
compared to Veh mice (Figure 6B,C). There was no effect of E2 on occludin in the proximal
and distal colon, or on ZO-1 expression throughout the colon (Figure S5A,B).
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2.9. Estradiol Alters Gut Microbial Diversity in Female Mice

To identify the effects of E2 on gut microbial diversity during STND or HFD feeding,
fresh fecal samples from D1 and D8 (during STND), and from D23 and D42 (during
HFD), were analyzed. α-diversity, a measure of within-sample diversity as measured by
richness and evenness of species within a population, was not significantly associated with
E2 during STND or HFD (Figure S6A,B). β-diversity, a measure of dissimilarity between
microbial communities, revealed a distinct clustering of the microbiota communities (Bray-
Curtis distance) due to E2 during HFD on D23 (p = 0.003) and D42 (p = 0.007) (Figure 7B,C,
respectively). There were no significant effects of E2 during STND on the aggregate data
from D0 and D8 (Figure 7D). These data suggest a profound effect of E2 on gut microbiota
diversity in mice fed HFD.
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Figure 7. Estradiol and HFD alter gut microbiota β-diversity in female mice. Bray-Curtis distance
between aggregate microbiota communities shows a distinct clustering between STND and HFD
(A) and between E2 and Veh-treated animals during HFD, on Day 23 (B) and Day 42 (C), but not
during STND (D). For A, (n = 12/group) and for B-D, (n = 6/group). p < 0.05 (PERMANOVA)
considered significant.

2.10. Estradiol Alters Relative Abundances of Gut Microbiota in Female Mice

The generalized mixed effects models with FDR control was used to identify differ-
entially abundant taxa (q-value < 0.05). A total of 14 taxa differed between E2 and Veh
groups (Figure 8A,B). Of these 14 taxa, Verrucomicrobia (phylum) and all its lower taxa lev-
els, including Verrucomicrobiae (order), Verrucomicrobiales (class), Verrucomicrobiaceae
(family), and the genus Akkermansia, were increased in E2 mice, with the most pronounced
differences during HFD feeding (Figure 8B). Dorea spp. were also increased in E2 mice
compared to Veh mice (Figure 8A,B).
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Figure 8. Estradiol and HFD alter gut microbiota taxa diversity in female mice. Cladogram (A) and relative
proportions (B) of taxa associated with E2 or Veh, subgrouped as phylum, class, order, family and genus. Samples
during STND (D0 and D8) and HFD feeding (D23 and D45) were analyzed. Cladogram (C) and relative proportions (D) of
taxa associated with STND (D0 and D8) or HFD (D23 and D45). The innermost nodes in the cladogram represent phyla
and the connecting outer nodes represent lower taxa within the phylum. q-value < 0.05 (generalized mixed effects model)
considered significant. n = 24/group for (A,C), and n = 12/group for (B,D).

Other taxa, including Erysipelotrichi (order) and its genus Coprobacillus, and Strep-
tococceae (family) and its genus Lactococcus were decreased in E2 mice compared to Veh
controls during HFD feeding. In addition, the family Clostridiaceae and its genus Clostrid-
ium, were decreased in E2 mice both during STND and HFD feeding (Figure 8B).

2.11. HFD Alters Gut Microbiota Diversity and Relative Abundances in Female Mice

Similar to previous reports mostly in males [31,32,45–48], HFD profoundly affected
gut microbiota composition in female mice. HFD decreased microbiota richness (Chao1;
p = 0.002; Figure S5A) and increased evenness, the measure of homogeneity of species
distribution in a population (Pielou’s; p < 0.001; Figure S5B).

Diet also profoundly altered microbiota community structures. The microbial commu-
nities distinctly clustered between STND and HFD feeding (p < 0.001, PERMANOVA), as
depicted by the PC1 (64.3%; Figure 7A). The effect of E2 was strong during HFD (Figure 7B),
while no effects of E2 were detected during STND (Figure 7C). Moreover, a total of 49 taxa
were differentially associated with STND vs HFD, of which 39 were positively associ-
ated with HFD, while only 10 were positively associated with STND, further supporting
a profound effect of HFD on gut microbiota (Figure 8C,D).

HFD increased 39 taxa including Firmicutes and its lower taxa Clostridia (order),
Clostridiales (class), the families Mogibacteriaceae and Peptostreptococcaceae, and the
genera Dorea, Ruminococcus, Anaerotruncus, and Oscillospira. HFD increased additional taxa
within the Firmicutes, including Erysipelotrichi (order) and its lower taxa Erysipelotrichales
(class), Erysipelotrichaceae (family) and Allobaculum and Coprobacillus. Two other families,
Bacteroidaceae and Streptococcaceae, and their genera Bacteroides and Lactococcus, respec-
tively, were also positively associated with HFD. Furthermore, HFD increased Proteobac-
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teria and its lower taxa, including Deltaproteobacteria (order), Desulfovibrionales (class),
Desulfovibrionaceae (family), and Desulfovibrio. In addition, the phylum Verrucomicrobia
and all of its lower taxa levels, including Verrucomicrobiae (order), Verrucomicrobiales
(class), Verrucomicrobiaceae (family), and the genus Akkermansia, were increased during
HFD feeding compared to STND. Actinobacteria (phylum) and its lower taxa at all levels,
including Coriobacteriia (order), Coriobacteriales (class), Coriobacteriaceae (family) and its
genus Adlercreutzia, were also increased as a result of HFD feeding.

Ten taxa were increased during STND compared to HFD, including Turibacteriales
(class), its family Turibacteriaceae and the genus Turibacter, as reported previously [49]. The
relative abundances of the family Clostridiaceae and its genus Clostridium and Coprococcus
were also increased during STND compared to HFD. Similarly, Tenericutes (phylum), its
lower taxa Mollicutes (order), and the genus RF39 were increased during STND.

2.12. Gut Microbiota Associates with Metabolic Status in Female Mice

To investigate if metabolic changes are associated with changes in the gut microbiota
community, correlation analysis was performed between the measures. PERMANOVA test
based on Bray-Curtis distance followed by FDR correction (q-value < 0.1) revealed signifi-
cant correlations of body weight (q = 0.015), plasma glucose (q = 0.025) and physical activity
(q = 0.09) with microbial community distances. To identify specific taxa that are linked
to E2-dependent metabolic effects, correlation analysis was done between the microbial
taxa that were altered by E2 treatment and the major metabolic profiles (Figure 9). Verru-
comicrobia, along with its lower taxa levels, including Akkermansia, negatively correlated
with body weight, fat mass, and leptin, suggesting Akkermansia as a microbial mediator
of E2-dependent protection against obesity. Verrucomicrobiae and Dorea, both increased
in E2 mice, were negatively associated with blood glucose levels. In addition, Dorea was
positively associated with physical activity. In contrast, some taxa that were increased in
Veh mice, including Streptococcaceae and its genus Lactococcus, were positively associated
with body weight, fat mass, and leptin, suggesting these taxa are predictors of obesity. Simi-
larly, Erysipelotrichi, its family Erysipelotrichaceae and genus Coprobacillus, were positively
associated with body weight. Interestingly, Coprobacillus was positively correlated with
fat mass, but negatively correlated with physical activity and basal energy expenditure,
suggesting a negative impact of this microbe on metabolic health in female mice.
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3. Discussion

In the current study, we investigated the comprehensive mechanisms by which estro-
gens protect females against diet-induced obesity and insulin resistance. E2 treatment pre-
vented HFD-induced weight gain and adiposity in ovariectomized adult mice, consistent
with earlier work from our group and others [11,13,14,42,44]. The E2-dependent protection
against HFD-induced obesity was most strongly associated with increased physical activity
and basal energy expenditure. E2 prevented hyperglycemia during both STND and HFD
intake. Consistent with previous studies, E2 decreased the plasma adipokines leptin and
resistin [13,44]. Furthermore, hyperinsulinemic-euglycemic clamp results showed that E2
improved systemic insulin sensitivity and glucose turnover in HFD-fed mice. However,
skeletal muscle glucose uptake, hepatic glucose production, and hepatic triglycerides were
not altered by E2 in HFD-fed mice. These data demonstrate tissue-specific effects of E2 in
providing the protective mechanisms against HFD-induced obesity and insulin resistance.

Estrogen receptors (ER) exist in two forms, ERα and ERβ, which are transcribed from
different genes [50,51]. These subtypes differ in their abilities to bind different ligands, are
expressed differently in specific tissues and mediate different functions in behavior and
physiology [51,52]. Intestinal epithelium predominantly expresses ERβ [53]. To identify
any effects of estrogens in this key metabolic passageway, we analyzed changes in the
intestinal epithelium in mice with or without E2. The tight junction protein, occludin,
was decreased in the colon of E2-treated mice fed HFD, suggesting that HFD-induced
increase in gut permeability, due to the depletion of tight junction proteins and mucus
layer thickness [54,55], is modulated by E2. In future work, it will be important to study
additional tight junction proteins combined with in vivo gut permeability assays to further
explore the effects of E2 and diet on gut integrity and barrier function.

Host metabolic status can be predicted by its gut microbiota community and composi-
tion. Metabolic syndrome, characterized by adiposity, hyperlipidemia and hyperglycemia,
is linked to dysbiosis of the gut microbial ecosystem [56–58]. However, we currently lack
a full understanding of the parallel assessment of gut microbiota and metabolic changes
within the same animals as an effect of E2, which limits the knowledge of any direct inter-
actions between the host metabolic status and microbial factors. Thus, in the present study,
we assessed if changes in gut microbiota are linked to the protective effects of estrogens
against obesity, hyperglycemia, and insulin resistance. E2 altered microbial communities
and taxa, with a profound effect during HFD feeding. Notably, the relative abundances
of the phylum Verrucomicrobia, including its major constituent genus Akkermansia, and
Dorea (phylum Firmicutes), were significantly increased by E2 during HFD. An increase in
Akkermansia abundance is also associated with E2-mediated protection against western diet-
induced obesity and metabolic syndrome in ovariectomized mice [41]. In the current study,
we further identified an association between Akkermansia and multiple metabolic measures.
Akkermansia negatively correlated with body weight and fat mass, suggesting it functions in
the protective effects of E2 on metabolic health. Similarly, Dorea was positively associated
with physical activity. In support of these findings, ovariectomy increases weight gain
in both STND- and HFD-fed rats and is associated with changes in gut microbiota [59].
Similarly, in a PCOS mouse model, FMT from androgen-treated mice disrupts metabolic
and endocrine health in germ-free recipients, whereas gut microbiota from control donors
protects against metabolic dysregulation [60–62]. In a different study, diet-independent,
ovariectomy-induced weight gain was not rescued by cohousing with intact mice, with
the goal of transferring of gut microbiota [49]. It is possible that a more complete transfer
of microbiota is needed to rescue this ovariectomy-induced weight gain, such as fecal
microbiota transfer (FMT) by gavage or co-housing combined with FMT. Nevertheless, the
present findings, taken together with previous ones, suggest that gut microbiota functions
in metabolic dysregulation caused by diet or sex hormones.

The relative abundance of Akkermansia, the only intestinal resident genus of the
phylum Verrucomicrobia, was significantly increased in E2-treated mice. Akkermansia,
a mucin-degrader and a producer of short chain fatty acids [63–66], is decreased in obese
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humans, including obese pregnant women [65,67–69]. In postmenopausal women, Akker-
mansia is negatively correlated with insulin resistance and dyslipidemia [70]. Similarly,
in ovariectomized mice fed a western diet, Akkermansia was increased following E2 treat-
ment [41]. Administration of heat-killed Akkermansia muciniphila decreased body weight,
fat mass, and hip circumference in obese women, highlighting its beneficial role in women’s
metabolic health [71]. In further support, A. muciniphila supplementation in male mice
attenuated HFD-induced obesity and inflammation and improved insulin signaling [72–75].
In the present study, the relative abundance of Dorea was also increased by E2 treatment
in HFD-fed females. Similar to Akkermansia, Dorea is a mucin degrader, suggesting these
two microbes are co-altered in response to changes in diet or hormones, likely due to the
similar nutrient environment and/or quorum sensing [76]. Taken together, these findings
suggest that Akkermansia and Dorea contribute to the E2-mediated compensatory protection
against HFD-induced metabolic changes.

Coprobacillus, Lactococcus, and Clostridium, including their families Erysipelotrichaceae,
Streptococceae and Clostridiaceae, respectively, were increased in Veh mice. Among these
microbes, Coprobacillus and Lactococcus were positively correlated with body weight and
fat mass, suggesting they contribute to obesity in E2-deficient female mice. An inverse
correlation of Lactococcus and Coprobacillus with E2 has been previously demonstrated in fe-
male mice on standard diet [77] and female ob/ob mice on HFD [42]. Lactococcus are efficient
energy harvesters through the conversion of glucose to pyruvate [78]. Coprobacillus produce
β-galactosidases, enzymes necessary for the breakdown of galactosides, such as lactose in
food [79]. These and other gut microbes can also affect intestinal endocrine cells through
metabolite production [80,81], which can impact the development of type 2 diabetes and
obesity [82]. In future studies, it will be important to determine if selective depletion of
these microbes mitigates the metabolic insult caused by the loss of estrogens in females.

Intake of a high-calorie diet during menopause, a period characterized by a slowed
metabolic rate, further increases the risk of obesity and metabolic disorders in women [4,7,9]. In
the current study, the protective effect of E2 treatment on metabolic status was profound during
HFD intake in female mice, which is consistent with previous reports [11,13,14,32,42,57,83–85].
The increases in body weight and fat mass, and a decrease in basal energy expenditure, due
to HFD feeding were attenuated by E2. E2 corrected HFD-induced positive energy balance
primarily by increasing basal energy expenditure and locomotor activity, extending previ-
ous findings [14]. Moreover, E2 increased energy utilization in HFD-mice by increasing
systemic insulin sensitivity and whole-body glucose turnover. Since these effects were
not associated with increased muscle glucose metabolism, other estrogen-sensitive organs
might be responsible for increased glucose utilization in E2-treated mice. E2-mediated
improvements in some measures of insulin sensitivity have also been demonstrated previ-
ously [14,44]. Given that mice lacking ERα are insulin resistant [86], these effects of E2 on
metabolic pathways discussed above are most likely mediated by ERα.

The present and previous studies have found that levels of the adipokines, leptin
and resistin, were decreased by E2 in female mice [13,44]. The present study reveals that
this decrease in leptin levels was associated with gut microbiota. In particular, leptin
was negatively associated with Akkermansia, a positive microbial predictor of metabolic
health, whereas was positively associated with Lactococcus [42]. Leptin decreases food
intake and increases energy expenditure [87,88]. However, increased circulating leptin is
positively linked to metabolic syndrome in women [89,90]. In addition, resistin deficiency
is associated with increased insulin sensitivity, particularly through a reduction in hepatic
glucose production [91,92]. Therefore, the early changes in adipokines observed in the
present and previous studies [13,44] may serve as early markers of diet-induced obesity
and insulin resistance, as well as measures of the E2 response against various metabolic
insults. Moreover, the E2-dependent downregulation of leptin and its interaction with
gut microbiota may provide an essential braking mechanism against the development of
diet-induced obesity.
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4. Materials and Methods

The following animal experiments were performed at the University of Massachusetts
Medical School (PROTO202000104, 11/01/20). All procedures were approved by the
Institutional Animal Care and Use Committees of UMass Medical School and Wellesley
College and performed in accordance with National Institutes of Health Animal Care and
Use Guidelines.

4.1. Diet and Ovariectomy

Female C57BL/6J mice were purchased from The Jackson Laboratory and housed in
the animal facility at UMass Medical School. Ten-week-old female C57BL/6J mice were
bilaterally ovariectomized (OVX) and silastic capsules filled with 17β-estradiol (E2, 50 µg
in 25 µL of 5% ETOH/sesame oil, n = 6) or vehicle (Veh, n = 6) were implanted subcu-
taneously [11,42]. Mice were singly housed and fed a chow diet (STND; 13.5% calories
from fat, #5001, Purina, LabDiet, Fort Worth, TX, USA) for the first 14 days after OVX. To
test the effects of E2 on metabolism and gut microbiota under HFD, mice were put on
a HFD containing 60% kcal fat (#D12492, Research Diets, New Brunswick, NJ, USA) for the
remainder of the study (days 14–45; Figure 1A).

4.2. In Vivo Assessment of Energy Balance Using Metabolic Cages

We performed a 3-day measurement of energy balance (i.e., food intake, VO2 consump-
tion and VCO2 production, energy expenditure, respiratory exchange ratios, and physical
activity) using metabolic Cages (TSE Systems, Germany) in mice (n = 6 per treatment
group) on D11-13 during STND and D29-31 during HFD as described previously [93,94].
The O2 consumption and CO2 production were used to calculate the respiratory exchange
ratio (RER). The horizontal and vertical movement (XYZ-axis) were measured in the cages
as an index of locomotor activity. Body composition (fat/lean mass) was assessed by
proton magnetic resonance spectroscopy (1-H MRS; EchoMRI, Houston, TX, USA) once
each week (Figure 1A).

4.3. Measurement of Glucose Metabolism Using Hyperinsulinemic-Euglycemic Clamp

On days 37–39, anesthetized mice underwent a survival surgery to establish an in-
dwelling catheter in the jugular vein. One week after the surgery, following overnight
fasting, a 2-h hyperinsulinemic-euglycemic clamp was conducted in awake mice with
a primed (150 mU/kg body weight) and continuous infusion of human insulin at a rate of
2.5 mU/kg/min to raise plasma insulin within a physiological range [95]. D-[3-3H] glucose
was intravenously infused using microdialysis pumps during the experiments to assess the
whole-body glucose turnover [96]. Blood samples were collected at 10–20 min intervals for
the immediate measurement of plasma glucose, and 20% glucose was infused at variable
rates to maintain euglycemia. To estimate insulin-stimulated glucose uptake in individual
organs, 2-[1-14C] deoxy-D-glucose (2-[14C] DG) was administered as a bolus (10 µCi) at
75 min after the start of clamp. Blood samples were taken for the measurement of plasma
[3H] glucose, 3H2O, and 2-[14C] DG concentrations. At the end of the clamp, mice were
anesthetized and tissue samples were taken for biochemical and molecular analyses.

4.4. Calculation of In Vivo Glucose Metabolism

Basal whole-body glucose turnover was determined as the ratio of the [3H] glucose
infusion rate to the specific activity of plasma glucose at the end of basal period, as
previously described [96]. Insulin-stimulated whole-body glucose uptake was determined
as the ratio of the [3H] glucose infusion rate to the specific activity of plasma glucose
during the final 30 min of clamps. Hepatic glucose production during insulin-stimulated
state (clamp) was determined by subtracting the glucose infusion rate from the whole-
body glucose uptake. Whole-body glycolysis was calculated from the rate of increase in
plasma 3H2O concentration from 90–120 min of clamp. Whole-body glycogen plus lipid
synthesis was estimated by subtracting whole-body glycolysis from whole-body glucose
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uptake. Since 2-DG is a non-metabolizable glucose analog, insulin-stimulated glucose
uptake in skeletal muscle were estimated by determining muscle-specific content of 2-[14C]
DG-6-P. Skeletal muscle glucose were calculated from plasma 2-[14C] DG decay profile and
intracellular 2-[14C] DG-6-P content.

4.5. Biochemical Assays

Blood samples were collected after 5-h fasting on day (D) D8 (during STND) and on
D23 (9 days on the start of HFD) by tail vein puncture (Analytic Core, MMPC). Plasma E2 on
D23 was measured using Mouse/Rat Estradiol ELISA kit (#ES180S, Calbiotech [12,97].
The cytokines Il-6 and TNF-α, the adipokines leptin and resistin, and intestinal hormones,
ghrelin and GLP-1 were measured using an ELISA with a Luminex 200 Multiplex system
(Millipore, Darmstadt, Germany).

Glucose concentrations during clamps were analyzed using clinical glucose analyzer,
and insulin levels were measured using an ELISA kit. Plasma [3H] glucose, 2-[14C]
DG, and 3H2O concentrations were determined following deproteinization of samples
using liquid scintillation counter on dual channels for separation of 3H and 14C. The
radioactivity of 3H in tissue glycogen was determined by precipitating glycogen with
ethanol. Organ-specific 2-[14C] DG-6-phosphate concentrations were determined using
ion-exchange column as previously described [98]. Hepatic intracellular triglyceride level
was measured using spectrophotometry using triglyceride assay kit after digesting tissue
samples in chloroform-methanol.

The following animal experiments were performed at Wellesley College, and all
procedures were approved by the Institutional Animal Care and Use Committees of
Wellesley College (#2101, 02/05/21) and performed in accordance with National Institutes
of Health Animal Care and Use Guidelines.

4.6. Fecal DNA Extraction and Sequencing

DNA was extracted from fresh frozen fecal samples on D0 and D8, during STND and
D23 and D42, during HFD, using MO BIO PowerSoil DNA Isolation Kit (Valencia, CA) with
minor adjustments to the manufacturer’s protocol, as described previously [42]. The DNA
quality and quantity were assessed using Nanodrop spectrophotometer (Thermo Scientific,
Waltham, MA, USA). 16S rDNA was amplified at the V3-V4 region using the universal
16S rDNA primers: for- ward 341F (5′-CCTACGGGAGGCAGCAG-3′) and reverse 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) with sequence adapters on both primers and sample-
specific Golay barcodes on the reverse primer [99]. The amplicons were quantified by
PicoGreen (Invitrogen, Carlsbad, CA, USA) and pooled in equal concentrations. The pooled
amplicons were cleaned using UltraClean PCR Clean-Up Kit (MO BIO, Carlsbad, CA, USA)
followed by quantification using the Qubit (Invitrogen, Carlsbad, CA, USA).

Samples were multiplexed and paired-end sequenced using 16S rDNA primers on
an Illumina MiSeq (Illumina, San Diego, CA, USA) at the Microbiome Core (Mayo Clinic,
Rochester, Minnesota). Paired R1 and R2 sequence reads were processed via the hybrid-
denovo bioinformatics pipeline, which clustered a mixture of good-quality paired-end
and single-end reads into operational taxonomic units (OTUs) at 97% similarity level [100].
OTUs were assigned taxonomy using the RDP classifier trained on the GreenGenes
database (v13.5) [101,102]. A phylogenetic tree based on FastTree algorithm was con-
structed based on the OTU representative sequences [103]. The total number of reads
ranged from 44,869 to 697,323 with a median of 122,445 reads per sample.

4.7. Intestinal Tissue Processing for Histology

Mice used for the intestinal histology analysis were housed in the animal facility at
Wellesley College. Mice were ovariectomized and implanted with E2 (n = 6) or Veh (n = 6),
as described above. Animals were fed STND for 7 days and switched to HFD containing
60% kcal fat (#D12492, Research Diets) on day 8 (D8). On D22 of OVX (after 2 wks on HFD),
mice were euthanized and colons were collected.
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Mice treated with E2 or Veh (n = 6/group) were euthanized after 2 wks on HFD to
investigate the effects of E2 on intestinal epithelium. Colon was prepared as previously
described, with some modifications [104]. In brief, colon tissue was longitudinally cut open
and vigorously washed 3 times in 1X PBS (pH 7.2). The colon tissue was then dipped in
modified Bouin fixative (50% EtOH in 5% Acetic acid in 1X PBS) for 5 min. The tissue was
rolled on a toothpick, transferred to a tissue cassette, and fixed overnight in 10% formalin
at room temperature. Prior to paraffin embedding, tissue was processed using a tissue
processor (CITADEL 2000, Thermo Fisher) at DERC Morphology Core, UMass Medical
School. Briefly, the tissue was incubated in 70% EtOH for 1x, 95% EtOH for 1x, and 100%
EtOH and 3x, for 1 h each on an orbital shaker. The tissue was then incubated in xylene
(#X5SK, Thermo Fisher) 3x for 1 h each and kept in a tissue mold and incubated in paraffin
(Histoplast IM, Cat# 8331, Thermo Fisher, Waltham, MA, USA) at 58 ◦C 2x for 2 h. The
tissue roll was sectioned at 5 µm thickness on a cryostat.

4.8. Triple-Label Immunohistochemistry for Tight Junction Proteins

Triple-label immunohistochemistry was done on colon sections to quantify tight junc-
tion proteins, occludin and zona occludens 1 (ZO-1), and a nucleic acid stain (DAPI) in
colonic epithelium including crypts as described previously [105]. In brief, the colon
sections were deparaffinized in xylene and dehydrated in 100% ethanol, followed by rehy-
drating in graded ethanol concentrations of 95%, 70% and 50%. Antigen retrieval was done
to increase the antigen accessibility by incubating the slides for 30 min in Tris-EDTA (pH
9.0) in boiling water. Slides were allowed to cool and washed in 0.5% sodium borohydride
(w/v) in TBS for 20 min to remove excess fixative. Following additional washes in TBS,
the sections were incubated in blocking buffer (10% normal donkey serum, 0.3% Triton,
1% BSA) for 30 min. The sections were then incubated at 4 ◦C overnight in rabbit poly-
clonal antibody directed against human occludin (1:100, #ab168986, Abcam) [106] and goat
polyclonal antibody directed against C-terminal of human ZO-1 (1:100; #ab190085, Abcam,
Cambridge, MA, USA) [107]. The specificities of occludin and ZO-1 on mouse intestinal
tissue have been verified previously [74,108]. The following day, sections were washed
then incubated for 1 h in dark at room temperature with a nucleic acid stain, DAPI, at
a concentration of 30 uM and fluorescently labeled donkey-anti-rabbit (1:100; Alexa Fluor
647, Invitrogen) [109] and donkey-anti-goat (1:100; Alexa Fluor 488, Invitrogen, Waltham,
MA, USA) [110] secondary antibodies for the detection of occludin and ZO-1, respectively.
Slides were washed, coverslipped with Fluorogel (Electron Microscopy Sciences, Hatfield,
PA, USA), stored overnight in dark, and imaged within two days.

4.9. Imaging by Confocal Microscopy and Analysis

The proximal, middle and distal regions of the colon were imaged using a Leica
laser scanning confocal microscope (TCS SP5 II), equipped with 405 Diode, Argon, HeNe
594, and HeNe 633 lasers and with Leica software (LAS version 2.7.3.9) [111]. All images
were taken under 200x magnification with the PL APO dry-objective (numerical aperture,
0.7). The gain and offset values for each laser were optimized for each channel and kept
constant for all animals. Sections of 1 µm thickness were optically imaged and analyzed
using the NIH ImageJ software (version 1.52) [112]. A representative section per animal
per subregion was analyzed using uniform regions of interest (ROI), which were kept
constant for each subregion across all animals. For the quantification of immunolabeling,
threshold for each laser channel was set separately based on a scale of 0–255, to minimize
the background. Using three random images per treatment, the threshold that displayed the
immunolabeling signal closest to the unprocessed original image was chosen and applied
across all animals. Any value below the threshold was considered to be background. The
% area with labeling above threshold and the mean pixel intensity were collected within
the selected ROI for each subregion.
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4.10. Statistical Analysis
4.10.1. Metabolic Data

The effects of diet and E2 treatment were analyzed on longitudinal data using mixed
model repeated measures (“lme” in R “nlme” package) [113] using mouse as a random sub-
ject. Once the main effects were observed, the separate effects during STND and HFD were
measured using repeated measures ANOVA (spss v.24) [114]. Data from metabolic cages,
including food and water intake, locomotor activity, and respiration (O2 consumption and
CO2 production) and its derivative measures, respiratory exchange ratio and resting energy
expenditure, were recorded over 72 h and averaged to produce 24-h data, and analyzed
using the t-test. Fasting blood glucose, plasma hormones and cytokines, and end point
measures (including clamp data) were analyzed using the t-test. p < 0.05 was considered
statistically significant.

4.10.2. 16S rRNA Sequence Data

The data were rarefied to the minimum depth of 44,869 prior to the α-diversity and
β-diversity analyses [115]. For α-diversity analysis (Chao1 richness and Pielou’s evenness
indices), linear mixed effects models were fitted to the alpha diversity measures with
a random intercept for each mouse (“lme” in R “nlme” package). Wald test was used for
assessing the significance. For β-diversity analysis (Bray-Curtis distance), PERMANOVA
test (R adonis, 1000 permutations) was used to test whether overall microbiota composition
is associated with E2 or diet. For testing the E2 effects, the mouse (not individual sample)
was the permutation unit; for testing the diet effects, the mouse was the permutation
stratum (i.e., permutation only occurred within the same mice) [116]. The R2 was given as
the effect size.

Differential abundance analysis of treatment (E2 vs Veh) and diet (HFD vs STND)
effect was performed on the phylum, class, order, family and genus level. Only taxa
with prevalence >10% and maximum proportion >0.2% were tested. Generalized linear
mixed effects model (R “glmmPQL” function, over-dispersed Poisson regression, random
intercept) was fitted to the aggregated counts accounting for within-mouse correlation [117].
The library size was estimated using GMPR method [118]. The log library size was
included as an offset in the regression model. Treatment and diet variables were included
as covariates. Potential treatment and diet interaction (GxD) was also investigated by
including the interaction term in the regression model. Wald test was used to test the
significance of the association. Data were winsorized at 95% quantile (i.e., we replace outlier
counts with 95% quantile) to reduce the influence of potential outliers. False discovery rate
(FDR) control (BH procedure, R p.adjust function) was used for multiple testing correction
and performed on each taxonomic level from phylum down to genus. The taxa with
an FDR-adjusted p value (or q value) < 0.05 were considered as statistically significant.

4.10.3. Correlation Analysis of Microbiome and Metabolic Data

To identify if any changes in E2-dependent metabolic effects significantly associate with
changes in gut microbiota, correlation analyses were performed between the two outcomes.
PERMANOVA was used to perform an overall association test based on the Bray-Curtis
distance. For metabolic measures where multiple samples within the same mouse were
obtained, within-mouse permutations were done. Next, correlation tests were done to
identify microbial taxa associated with metabolic measures. To control for the potential
confounding effects due to diet and E2 treatment, residuals were taken by fitting regression
models (linear mixed effects model) to the microbial taxa abundance (square-root trans-
formed) and metabolic measures adjusting for diet and E2 effects. Spearman correlation
tests were then performed on the residuals. To reduce multiple testing burden, correlation
analyses were focused on the taxa associated with E2 treatment. The associations with an
FDR-adjusted p value (or q value) < 0.1 were considered as statistically significant.
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5. Conclusions

The present study provides compelling evidence that estrogens profoundly impact
energy and metabolic homeostasis in female mice. Consistent with previous studies, the
key metabolic changes, including food intake, energy expenditure, and glucose turnover,
were improved by E2 in females fed HFD. Moreover, the present findings reveal that gut
microbiota and gut barrier integrity are additional targets of E2-mediated protection against
diet-induced metabolic disorders. Furthermore, the role of gut microbiota in metabolic
health is supported by the present findings of strong correlations of multiple microbial
taxa with specific metabolic measures and physical activity. In future studies, it will be
important to perform shotgun metagenomics for the functional study of the gut microbiome
and explore the potential beneficial effects of Akkermansia and other microbes identified in
this study and their causative links with metabolic protection in females provided by E2.
In addition, identification and characterization of microbial metabolites that contribute to
the beneficial effects of E2 on metabolism will provide important insights for targeting gut
microbiota to improve women’s metabolic health.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11080499/s1. Figure S1. E2 alters water intake in female mice during STND (A) and
HFD (B). Mice were kept in metabolic cages from days 11–13 after ovariectomy and E2 implant and
the average 24-h data were obtained from 72-h data and used for statistical analysis. * indicates
differences between E2 and Veh mice (n = 6/group) (p < 0.05, t-test), Figure S2. Estradiol decreases
the respiratory exchange ratio (RER) in female mice during the day. Respiratory exchange ratios
of mice on STND (A) or HFD (B) were measured in metabolic cages for 72 h. The average 24-h
data were obtained from 72-h data and used for statistical analysis. * indicates differences between
E2 and Veh mice (n = 6/group) (p < 0.05, t-test), Figure S3: Estradiol or high fat diet did not alter
levels of the plasma cytokines, IL-6 and TNF-α in female mice. 5 h-fasting blood samples were
used to measure IL-6 (A) and TNF-α (B) during STND (on D8) and HFD (on D23); n = 6/group,
Figure S4. Estradiol does not alter hepatic insulin sensitivity and lipid production in female mice on
HFD. Mice E2 (n = 6) and Veh (n = 5) underwent hyperinsulinemic-euglycemic clamp on days 43–45,
a week following jugular vein surgery. Blood glucose (A) Whole-body glycolysis (B) Hepatic glucose
production (C) Hepatic insulin action (D) Liver triglycerides (E), Figure S5. Estradiol does not alter
zona occludens (ZO-1) immunoreactivity in the colonic epithelium in female mice fed a HFD. Percent
area (A) and mean intensity (B) in the three subdivisions of the colon (n = 6/group), Figure S6. HFD
alters gut microbiota α-diversity in female mice. HFD lowers richness (A) and increases evenness (B),
(n = 12/group). * indicates a difference between STND vs. HFD (p < 0.05; “lme” in regression).
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