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For quality, interpretation, reproducibility and sharing value, 
microscopy images should be accompanied by detailed 
descriptions of the conditions that were used to produce 
them. Micro-Meta App is an intuitive, highly interoperable, 
open-source software tool that was developed in the con-
text of the 4D Nucleome (4DN) consortium and is designed 
to facilitate the extraction and collection of relevant micros-
copy metadata as specified by the recent 4DN-BINA-OME 
tiered-system of Microscopy Metadata specifications. In 
addition to substantially lowering the burden of quality assur-
ance, the visual nature of Micro-Meta App makes it particu-
larly suited for training purposes.

For microscopy images to be appropriately interpreted and 
reproduced, and to satisfying Findable Accessible Interoperable 
and Reusable (FAIR) principles1, they should be accompanied by 
detailed descriptions of microscope hardware, image acquisition 
settings, image pixel and dimensional structure and instrument 
performance. Currently, documentation of imaging experiments 
is seriously impaired by the lack of easy-to-use software tools 
that facilitate the extraction and collection of relevant microscopy 
metadata. Micro-Meta App is an intuitive open-source software 
designed to tackle these issues that has been developed in the con-
text of the 4D Nucleome (4DN) consortium2,3, and of nascent global  

bioimaging community organizations, including BioImaging North 
America (BINA)4,5 and Quality Assessment and Reproducibility 
in light microscopy (QUAREP-LiMi)6–8, whose goal is to improve 
reproducibility, data quality and sharing value for imaging experi-
ments. The App provides a visual interface for building compre-
hensive descriptions of the conditions used to produce microscopy 
datasets as specified by the 4DN-BINA-OME tiered-system of 
Microscopy Metadata specifications9–13. To ensure wide adoption by 
microscope users with different skill levels and needs, Micro-Meta 
App is ideally suited for training purposes and interoperates closely 
with MethodsJ2 (refs. 14,15) and OMERO.mde16,17, two complemen-
tary tools described in parallel manuscripts.

Microscopy metadata improve data quality and reproducibility. 
In addition to providing essential information about the provenance 
(that is, origin, lineage)18,19 of microscopy results, the establishment of 
community-driven, documentation and quality control (QC) speci-
fications for light microscopy would make it possible to faithfully 
interpret scientific claims, facilitate comparisons within and between 
experiments, foster reproducibility and maximize the likelihood of 
data reuse6–8,20–25. First and foremost, such information would facilitate 
the compilation of accurate Methods sections for scientific publica-
tions26–29. Furthermore, it would provide clear guidance to microscope 
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and software manufacturers about what information should be writ-
ten automatically in the headers of image files during image acquisi-
tion to ensure scientific rigor. Finally, machine-actionable versions of 
the same information30 could be uploaded alongside image-datasets 
on the growing number of public image data resources22,31–43 that 
allow the deposition of raw image data associated with scientific 
manuscripts, emulating for light microscopy the successful path that 
led to genomics community standards44–48.

To promote the development of shared standards, the NIH- 
funded 4DN2,3 and the CZI-funded BINA4,5 have recently proposed 
the 4DN-BINA-OME (NBO) Microscopy Metadata specifica-
tions9–13. These specifications consist of an extension of the Open 
Microscopy Environment (OME) data model (that is, the basis for 
the widely adopted BioFormats library)49–52, which is organized in 
three tiers (details in Supplementary Information), and allows the 
classification of imaging experiments into levels of increasing com-
plexity11–13,53. These specifications not only provide an OME-based 
comprehensive set of metadata that should be recorded, but they 
also specify which information subset should be included depend-
ing on experimental intent, technical intricacy and image analysis 
needs. The 4DN-BINA-OME specifications lay the foundations 
for upcoming community-sanctioned standards being devel-
oped by QUAREP-LiMi6,7. Their purpose is to provide a scalable, 
interoperable and OME-Next-Generation File Format (NGFF)54,55  
compatible framework, guiding scientists as to what provenance 
metadata and calibration metrics should be afforded to ensure qual-
ity, reproducibility and value for different categories of light micros-
copy experiments.

To render metadata specifications and QC standards actionable 
and easy to adopt, experimental scientists require software tools (or, 
even better, automated pipelines) to easily extract all available meta-
data from microscope configuration and image files and produce 
well-documented, high-quality, reproducible and reusable datasets. 
Despite some advances26,56,57, current tools offer limited function-
alities, and are not integrated with community standards. Here, 
we present a suite of three interoperable software tools (Extended 
Data Fig. 1) that were developed to provide complementary, intui-
tive approaches for the bench-side collection of experimental and 
microscopy metadata10,11,13. In two related manuscripts, we describe: 
(1) OMERO.mde, which emphasizes the development of flexible, 
nascent specifications for experimental metadata16,17,58 and (2) the 
ImageJ/Fiji MethodsJ2 plugin14,15, which automatically generates 
Methods for scientific publications. Here, we present Micro-Meta 
App (Figs. 1 and 2 and Supplementary Video 1), which works both 
as a stand-alone app and as an integrated resource in web reposito-
ries2,59,60. It offers a visual guide to navigate the steps required for the 
rigorous documentation of imaging experiments as sanctioned by 
4DN-BINA-OME11–13,59.

Micro-Meta App: intuitive microscopy experiment documenta-
tion. In the absence of tools that expedite image data documenta-
tion and QC, the metadata provided by manufacturers often does 
not align with existing minimal information criteria (that is, OME 
and BioFormats)50,52 and, as a consequence, is extremely variable, 
interfering with quality assessment, reproducibility and meaning-
ful reuse of third-party datasets (Extended Data Figs. 2 and 3). 
Micro-Meta App, developed to address these unmet needs, con-
sists of an interactive open-source and interoperable software tool 
to facilitate and (where possible) automate the annotation of light 
microscopy datasets. It provides a visual approach for document-
ing imaging experiments based on available OME-compatible 
community-sanctioned tiered systems (details in Supplementary 
Information) of specifications, such as 4DN-BINA-OME11–13,53. 
Thus, Micro-Meta App can adapt to varying levels of imaging com-
plexity and to evolving data-models emerging from the community. 
To this aim, Micro-Meta App uses two parallel dataflows (Fig. 1):

 1. In ‘Manage Instrument’ (hardware specifications; Figs. 1b and 
2a and Extended Data Fig. 4) microscope users and custodians 
create accurate graphical depictions of microscope configura-
tions by dragging-and-dropping icons representing hardware 
components onto the workspace while collecting relevant in-
formation scaling with microscope modality, experimental 
design, instrument-complexity and image analysis needs ac-
cording to the 4DN-BINA-OME tier-level system11–13,53. From 
this, Micro-Meta App automatically generates interoperable 
Microscope.JSON files containing structured descriptions of 
the microscope Hardware Specifications (examples illustrated 
in Supplementary Information)61 that can be saved locally, and 
shared with other scientists via community repositories such 
as the 4DN-Data-Portal2,29,60,62, thus substantially lowering the 
burden of rigorous record-keeping and facilitating dissemina-
tion. Furthermore, such files can be imported in MethodsJ2 to 
automatically generate the Methods and Acknowledgement 
sections of scientific publications14,15.

 2. To document the conditions used to produce specific 
image-datasets, ‘Manage Settings’ (Figs. 1c and 2b and Extend-
ed Data Fig. 5) (1) automatically extracts Hardware Specifica-
tions metadata from available Microscope.JSON files, (2) uses 
BioFormats52 to import OME metadata stored in the header 
of image files (Extended Data Figs. 2 and 3) and (3) interac-
tively guides the user to enter missing, instrument-specific, 
tier-appropriate, 4DN-BINA-OME sanctioned ‘Settings’ meta-
data used during the relevant ‘Image Acquisition’ session. From 
this, the App generates interoperable Settings.JSON files con-
taining comprehensive documentation of the ‘Image Acquisi-
tion Settings’ relative to individual microscopy datasets (ex-
amples illustrated in Supplementary Information)61. These files 
can be stored as described in (1) and associated with related 
Microscope.JSON files and image-datasets to ensure proper 
imaging experiment documentation.

Detailed descriptions of the functionality, implementation 
and documentation material of Micro-Meta App are available in 
Supplementary Information, Methods and ref. 63.

Case studies: use at core facilities. To demonstrate feasibility  
and test usability, Micro-Meta App was employed, with minimal 
initial training, at 16 partnering core facilities (Extended Data  
Fig. 6) to document both example microscope instrumentation  
and the settings used for the acquisition of exemplar image-datasets 
(Fig. 2, Extended Data Figs. 7–9 and Supplementary Figs. 3–15)64–83.  
The most striking result (detailed in Supplementary Information) 
was that, in comparison with the baseline represented by 
BioFormats alone (Extended Data Figs. 2 and 3), the use of 
Micro-Meta App considerably increased the uniformity of reported 
metadata fields, facilitating comparison of image data within and 
across different microscopes and imaging experiments. In addi-
tion, since the App’s data model is defined dynamically on the 
basis of shared and evolving community specifications, the use of 
this method maximizes reproducibility, quality and value, while 
minimizing effort on the part of individual scientists. Example 
Microscope.JSON, Settings.JSON and image files produced for 
the use case in Extended Data Fig. 9 are publicly available on 
Zenodo as illustrated in the Data Availability section and in  
Supplementary Information61.

Case studies: integration to 4DN-Data-Portal. An initial impetus 
for the development of Micro-Meta App was the need to expedite 
and, where possible, automate the rigorous reporting of imaging 
experiments and QC procedures for the purpose of integrating 4DN 
imaging and omics experiments2. Thus, the Micro-Meta App was 
embedded into the 4DN-Data-Portal (Extended Data Fig. 10)59,60,62 
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and the content of the Microscope .JSON file was integrated directly 
into the portal’s database. This allows microscopy metadata associ-
ated with individual experiments to be used for searching, filtering 
and visualization purposes.

Case studies: teaching with Micro-Meta App. Micro-Meta App 
provides a digital representation of freely configurable microscopes, 
ideal for microscopy custodians to provide users with a detailed 
inventory of all available microscopes and for teaching purposes 
(Supplementary Video 1). Micro-Meta App was used by graduate 
students at UMass Medical School84 for working on (1) specific 
problem sets and (2) self-driven exploration of microscope com-
ponents, functions and imaging modalities. The success of these 
pilots indicates that Micro-Meta App could be used in online 
teaching-modules (for example, GlobalBioImaging (GBI) Training 
Resources)85 for familiarizing users with the intricacies of specific 

instrument hardware configurations and for the interactive applica-
tion of microscopy concepts.

Future directions. Micro-Meta App has been developed and will 
continue to evolve in close collaboration with communities that 
include 4DN2,3, BINA5, GBI86 and QUAREP-LiMi6–8,87. Ongoing 
efforts include:

 1. Outreach and education: to increase awareness and promote 
adoption of microscopy documentation and QC, and dissemi-
nate the use of Micro-Meta App, we have initiated an extensive 
outreach effort directed towards microscope users, custodians 
and manufacturers, which includes university classes (Case 
Studies), online training and workshops88–90. This will be aug-
mented with specialized inperson courses as circumstances al-
low and in close collaboration with our community partners91,92.
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Fig. 1 | Micro-Meta App data processing workflows. Flowchart depicting the three sections of Micro-Meta App (1). a, The function of the initial  
section is to select among the three available 4DN-BINA-OME11,13 documentation tier levels (2), which is most appropriate for a given experimental 
-design, instrument-complexity and image analysis needs (details in Supplementary Information). b, The purpose of the Manage Instrument section  
is to create (or edit) a visual representation of the hardware configuration of a given microscope, which is then saved in a Microscope.JSON file (3) 
containing a list of components and associated 4DN-OME-BINA-specified metadata-information. c, The aim of the Manage Settings section is to collect 
relevant hardware information from an existing Microscope.JSON file (3), use BioFormats52 to retrieve existing OME-compatible microscopy metadata 
from an image of interest (4) and create (or edit) a Settings.JSON file (5) containing a rigorous description of the acquisition settings used for a given 
imaging experiment.
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 2. Creation of Instrument and Hardware components databases: 
while engaging with microscopy manufacturers to ensure the 
full automation of light microscopy data provenance and QC re-
porting, it will be necessary to engage the community to reduce  

the burden imposed on individual microscope custodians and 
users that need to document similar imaging experiments, 
therefore maximizing their adoption of community standards. 
For this purpose, and echoing 4DN59,60,62, we are developing 
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exchange-sites for microscopy metadata JSON files, similar to 
ImageJ/Fiji plugin repositories. Furthermore, integration with 
the Research Resource ID (RRID) effort93 could promote the 
recognition of microscope configurations as a quantifiable sci-
entific output, providing credit to the work of imaging scientists.

 3. Further integration with MethodsJ2: Micro-Meta App will 
be extended to automatically generate text for scientific pub-
lications and MethodsJ2 (refs. 14,15) will be adapted to use 
Micro-Meta App Settings.JSON files as sources of image acqui-
sition settings and QC metadata.

 4. Further OMERO and OMERO.mde integration: a pilot 
Micro-Meta App OMERO plugin is available94. Future develop-
ment will include extracting experimental metadata developed 
using OMERO.mde16,17 and saving 4DN-BINA-OME meta-
data11–13 as collections of key-value pairs associated with indi-
vidual OMERO image-datasets.

 5. Implementation of additional microscopy modalities and QC: 
currently, the App implements the Core OME data model and 
the 4DN-BINA-OME Basic extension11–13. Efforts to imple-
ment the Confocal and Advanced as well as the Calibration and 
Performance 4DN-BINA-OME extensions are underway. As a 
proof-of-concept, we are collaborating with QUAREP-LiMi95 to 
automatically annotate imaging datasets with calibration metrics 
calculated using the open-hardware Meta-Max96 calibration tool.

Conclusions
Easily accessible and facile tools such as Micro-Meta App, MethodsJ2 
and OMERO.mde are essential for microscope custodians and users 
to see image data documentation and QC as routine tasks in their 
imaging workflow, therefore promoting better quality, reproduc-
ibility and value for imaging data. In addition, reaching this goal 
will entail partnering with manufacturers to promote the automated 
interpretation of metadata stored in image file headers, the devel-
opment of community-wide repositories for microscopy hardware 
metadata specifications and the automated annotation of datasets to 
be uploaded in imaging data repositories30. Thus, key support from 
funding agencies and institutions will ultimately lead to automating 
all aspects of the process used by members of the community to 
annotate and upload metadata-rich imaging datasets to both local 
and public repositories38,40,51. As an added advantage, full documen-
tation of the provenance and QC of imaging experiments will be 
key for the development of pipelines to integrate images and their 
metadata with -omics data from the same experiment, such as is 
underway as part of 4DN.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41592-021-01315-z.
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Methods
Software implementation. Micro-Meta App is available in two JavaScript (JS) 
implementations. The first was designed to facilitate integration of the software 
into third-party web portals, such as the 4DN-Data Portal)2,59,60,62,97 and OMERO94, 
and was developed using the JS React library, which is used widely to build 
web-based user interfaces. Starting from this version, a stand-alone version of the 
App was developed by wrapping the React implementation using the JS Electron 
library, with the specific purpose of lowering the barrier of adoption of the tool by 
laboratories that do not have access to, or prefer not to use, imaging databases.

Dependencies. For the Micro-Meta App to work, the following elements are 
generated in advance as described in the following sections and made available  
via GitHub:

 1. JSON schema: a JSON file or a series of files that define the underlying 
schema, which are used to construct the graphical user interface (GUI) of 
the application on the basis of the 4DN-BINA-OME Microscopy Metadata 
specifications11–13.

 2. Dimensions and coordinates: a JSON file that codifies the dimensions of the 
canvases used by the Manage Instrument GUI of the Micro-Meta App as well 
as the position on the canvas occupied by icons representing each microscope 
hardware component.

 3. Icons: a series of SVG files, each containing an icon representing the indi-
vidual hardware components.

In addition, the stand-alone version of Micro-Meta App depends on the 4DN 
Microscopy Metadata Reader98, which implements the BioFormats library52 to 
allow the user to import known OME metadata directly from the file header 
of an image data file of interest. To maximize flexibility, these elements can be 
customized to meet the needs of individual users.

XSD to JSON schema converter. The main function of this Java-encoded 
component99 is to transform the XML schema definition (XSD) implementation 
of the 4DN-BINA-OME data model11–13,100 into a JSON-based schema, which is 
subsequently ingested by Micro-Meta App to automatically generate the software 
GUI and the associated data insertion forms. The XSD to JSON schema converter 
middleware uses the Xerces2 Java XML Parser101 and W3C Java XML bindings 
libraries102 to navigate the XSD schema, and produces two kinds of version-aware 
JSON files:

 1. A comprehensive JSON file containing an array of schemas for all necessary 
individual components that constitute the 4DN-BINA-OME data model 
(for example, Objective, Filter or Detector). This comprehensive JSON file is 
made available on GitHub and is designed specifically to facilitate the remote 
loading of the schema by web portal embedded React implementations of 
the Micro-Meta App. This schema is available as an individual file on GitHub 
(https://github.com/WU-BIMAC/4DNMetadataSchemaXSD2JSONConvert
er/blob/master/latest/fullSchema.json).

 2. A series of JSON files, each containing the schema of individual components, 
which were designed to be employed by the Electron implementation of the 
App. These individual schema files are available within a subdirectory of the 
main repository on GitHub (https://github.com/WU-BIMAC/4DNMetadataS
chemaXSD2JSONConverter/tree/master/latest/schemas).

The middleware was designed specifically to maximize flexibility and  
extensibility. As such, the software allows the introduction of implementation- 
specific modifications of the resulting JSON schema so that it can be adapted 
for special purposes. For example, the introduction of a ‘Version’ field allows 
validation of whether the data being saved is compatible with the specific version 
of the schema being employed. As a further example, the introduction of the 
‘Category’ field allows the organization of different components in specific 
submenus across the sidebar. To facilitate the evolution of the model while 
ensuring back-compatibility, the GitHub repository supports versioning by storing 
all revisions of the output JSON schema.

TXT to JSON dimensions converter. This Java-encoded component99 is used to 
process an input text file containing the dimensions of the Manage Instrument 
canvas of Micro-Meta App alongside the desired x,y positions where each icon 
has to be placed. As a result, the software produces a Dimensions and Coordinate 
JSON file that is made available for remote loading from GitHub (https://github.
com/WU-BIMAC/4DNMetadataSchemaXSD2JSONConverter/tree/master/
latest/dimensions)99 and is ready to be used to implement the ‘snap-in-place’ 
functionality of the software.

ICON. Scalable vector graphic (SVG) files containing icons representing the 
different microscope hardware components were generated specifically for this 
project and are made available in a version-aware manner for remote loading from 
GitHub (https://github.com/WU-BIMAC/4DNMetadataSchemaXSD2JSONConv
erter/tree/master/latest/images)99. Custom-made icons can be similarly generated 
by developer users and manufacturers for representation of their hardware 
components within the application.

Microscopy metadata reader. This software is written in JAVA to fully take 
advantage of the BioFormats library and the OME-XML metadata structure98. 
Using these two dependencies, this software accesses all the OME-compatible 
metadata present in user-selected images and maps it to the 4DN-BINA-OME 
microscopy metadata specifications11–13 that extend the OME Data Model50,52 to 
produce a temporary, Micro-Meta App-compatible JSON object that can be  
read by Micro-Meta App. The object is then passed on to the Micro-Meta App and 
read by the Manage Settings section of the App to prepopulate the corresponding 
metadata fields.

JS React implementation of Micro-Meta App. This is the core implementation 
of the Micro-Meta App, and it is the starting point for embedding it into a 
third-party web portal, and for wrapping it into Electron for local execution97. 
This component ingests JSON schema files, JSON Dimension and Coordinate files 
and Icon images produced as described above and uses a series of custom React 
classes to produce a set of individual windows composing the GUI. Specifically, 
these windows can be categorized into two main sections: the Manage Instrument 
and the Manage Settings (Figs. 1 and 2 and Supplementary Figs. 2 and 3). In the 
Manage Instrument section, the application employs a Canvas setup that provides 
the flexibility to incorporate as many icon elements as necessary to describe the 
hardware components of any given microscope. For this purpose, the toolbar is 
generated dynamically as dictated by the underlying JSON schema produced as 
described above and by the selected tier level. On this basis, elements present in 
each of the graphical menus present on the sidebar can be dragged to the canvas 
and dropped either to a custom position specified by the user, or they can be 
snapped-in-place as defined by the position and dimension file produced by the 
Dimension Converter component.

In the Manage Settings, the application builds a series of nested windows that 
are launched by individual buttons allowing the user to select individual hardware 
components and enter specific settings for each of them. Of particular interest is 
the Channel interface in which the user can define the LightPath configuration 
associated with each channel of a given image by following a predefined graphical 
flowchart (Supplementary Fig. 3d).

JS Electron implementation of Micro-Meta App. This implementation of the 
Micro-Meta App is encoded in JS103. It uses the Electron library to wrap the React 
implementation of Micro-Meta App with all necessary schemas, icon images and 
position/dimension to ensure its correct functionality. This discrete executable file 
can interact directly with the underlying operating system and launch the software 
from the local file system.

Beta testing. Micro-Meta App was developed in the context of community efforts 
organized around the 4DN Consortium need for imaging data dissemination and 
integration with omics datasets2,3 and the BINA5 effort to improve rigor, QC and 
reproducibility in light microscopy. As part of this effort, several core facilities 
were identified to serve as reference beta-testing sites for the Micro-Meta App (a 
subset of the facilities listed in Extended Data Fig. 6). To this aim, the stand-alone 
JS Electron implementation of Micro-Meta App was deployed locally and 
microscope custodians at individual beta-testing sites were trained both on the use 
of the App and on bug and feature request reporting. Such feedback was collected 
either directly or by taking advantage of the GitHub issue-reporting feature and 
incorporated into the main development branch in a close-iterative cycle ahead of 
the release of the initial production version of the software

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data associated with this manuscript is available as follows: (1) Example 
Microscopy Metadata JSON files and associated image data file related to the use 
case presented in Fig. 2 and Extended Data Fig. 9 are publicly available on Zenodo 
at: https://doi.org/10.5281/zenodo.4891883. These files were produced using 
Micro-Meta App at UMass Medical School to document the acquisition of the 
FSWT-6hVirus-10minFIX-stk_4-EPI.tif.ome.tif example image file using the TIRF 
Epifluorescence Structured Illumination Microscope (TESM)79 custom built by the 
Biomedical Imaging Group. These files demonstrate the usability of Micro-Meta 
App to document microscopy experiments. (2) Example datasets associated with 
Extended Data Figs. 7–8 and Supplementary Figs. 3–15 and used at 16 different 
imaging core facilities to evaluate the functionality and test the usability of 
Micro-Meta App, can be made available upon request from the corresponding 
author. These exemplar image data files were not produced to test hypotheses or 
reach conclusions that are part of this study. Rather, they were used successfully 
as case studies to test the feasibility of the Micro-Meta App approach. (3) Data 
associated with Extended Data Fig. 10 are available publicly on the 4DN-Data 
Portal as follows: panel 10a https://data.4dnucleome.org/files-microscopy/4DNFI7
639BEB/; 10b https://omero.hms.harvard.edu/pathviewer/vanilla-viewer/975042/; 
10c https://data.4dnucleome.org/microscope-configurations/28f1c0f2-d903-4761-
93c6-dd3994db3462/. (4) Supplementary Video 1 is also available publicly at: 
https://vimeo.com/manage/videos/604291798
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Code availability
This manuscript describes the Micro-Meta App software tool whose function is 
to facilitate the collection of Microscopy Metadata that can be used to document 
the hardware specifications, image acquisition settings and QC metrics used 
to produce high-quality, reproducible and valuable light microscopy image 
data. Micro-Meta App is available in two JS implementations that are described 
in detail above. To promote the adoption and reuse of Micro-Meta App, the 
executables and source code for both JS-React and -Electron implementations of 
Micro-Meta App are available on GitHub97,103. In addition, a website describing 
Micro-Meta App104 was developed alongside complete documentation and 
tutorials105. More specifically, as listed in the Reporting Summary document 
associated with this publication, and on the README file on GitHub (https://
github.com/WU-BIMAC/MicroMetaApp-Electron), the software is available as 
follows: (1) Project name: Micro-Meta App. (2) Project home page: https://github.
com/WU-BIMAC/MicroMetaApp.github.io. (3) Documentation (including video 
tutorials): https://micrometaapp-docs.readthedocs.io/en/latest/index.html. Note: if 
you intend to use the Micro-Meta App on MacOS you might encounter difficulties 
unzipping and launching the MacOS Zip. To address these issues please follow the 
special instructions specified in this VIDEO: https://vimeo.com/529609242. (4) 
Executable: https://github.com/WU-BIMAC/MicroMetaApp-Electron/releases/
latest (https://doi.org/10.5281/zenodo.4750765). (5) Source code: (i) https://
github.com/WU-BIMAC/MicroMetaApp-Electron (https://doi.org/10.5281/
zenodo.4750765); (ii) https://github.com/WU-BIMAC/MicroMetaApp-React 
(https://doi.org/10.5281/zenodo.4889259). (6) Operating system(s): (i) Windows 
×32; (ii) Windows ×64 (tested on Win 7 Pro v.6.1.760; Win 8.1 v.6.3.9600; Win 10 
Home v.10.0.19040–10.0.19041–10.0.19042; Win 10 Pro v.10.0.19041–10.0.19042; 
Win 10 Enterprise v.10.0.18362, 10.0.19041 and 10.0.19042); (iii) MacOS (tested 
on High Sierra v.10.13.6; Mojave v.10.14.6; Catalina v.10.15.7; Big Sur v.11.0–11.1–
11.2–11.3–11.3.1–11.4–11.5 Beta). (7) Programming language: JS and Java. (8) 
Other requirements: Java v.1.8.0. In addition, see dependencies listed in Methods 
and the Supplementary Information. (9) License: GNU GPL v.3 (https://www.gnu.
org/licenses/gpl-3.0.html).
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Extended Data Fig. 1 | Quality, rigor, reproducibility and sharing value for imaging experiments require the definition of community-driven Microscopy 
Metadata specifications and the adoption of easy-to-use metadata collection tools to facilitate the documentation and quality control tasks for 
experimental scientists. The establishment of FAIR1, community-driven Microscopy image data Standards implies parallel development on three 
interrelated fronts: 1) WHERE: Next-Generation File Formats (NGFF) where the ever-increasing scale and complexity of image data and metadata would 
be contained for exchange55 (blue bubble). 2) WHAT: Community-driven specifications for what ‘data provenance’ information (microscope hardware 
specifications, image acquisition settings and image structure metadata) and quality control metrics are essential for rigor, reproducibility, and reuse and 
should therefore be captured in Microscopy Metadata (magenta bubble). 3) HOW: Shared rules for how the (ideally) automated capture, representation 
and storage of Microscopy Metadata should be implemented in practice (yellow bubble). Micro-Meta App, MethodsJ2 and OMERO.mde14–17,63 are three 
highly interoperable tools and complementary that function to: 1) train users on the importance of documentation and quality control; 2) facilitate 
metadata extraction, collection, and storage; 3) automatically write Methods sections; and 4) facilitate the development of experimental metadata 
specifications in connection with local core facilities. The different tools leverage different use- styles and preferences and are based on different software 
platforms in order to appeal to the broadest community including microscope builders, imaging scientists working in core facilities and experimental 
scientists. Thus: Micro-Meta App is used as a stand- alone app and can be integrated in third-party data portals2,59,60,62. MethodsJ2 works as an ImageJ 
plugin. OMERO.mde works in the context of the OMERO image data repository. The concept is to bring the tools to software platforms people are already 
using and lower the bar to enable broad uptake.
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Extended Data Fig. 2 | Table I | Percentage of OME Data Model Core <Instrument> element attributes that can be retrieved from image file headers 
and interpreted by BioFormats. The fraction of attributes associated with <Instrument> sub-elements (for example, <Microscope>, <Objective>, 
<Detector>, etc.,) of the core of the OME Data Model, whose values could be retrieved in the header of the raw image data files associated with the case 
studies presented in Fig. 2, Extended Data Figs. 6–9 and Supplementary Figs. 3–15, was determined and is reported above.
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Extended Data Fig. 3 | Table II | Percentage of OME Data Model Core <Image> element attributes that can be retrieved from image file headers 
and interpreted by BioFormats. The fraction of attributes associated with <Image> sub-elements (for example, <LightSourceSettings>, 
<Objective>, <Detector>, etc.,) of the core of the OME Data Model, whose values could be retrieved in the header of the raw image data files 
associated with the case studies presented in Fig. 2, Extended Data Figs. 6–9 and Supplementary Figs. 3–15, was determined and is reported above.
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Extended Data Fig. 4 | The Micro-Meta App is designed to aid in the collection of 4DN-BINA-OME sanctioned Microscope Hardware Specifications 
metadata. Micro-Meta App can be used as a stand-alone desktop application. Alternatively, it can be launched from a third-party portal such as the 
4DN-Data Portal (Extended Data Fig. 10), where Microscope files can be stored as image-dataset attachments. In either situation: Α) After selecting 
the desired location for saving Microscope.JSON files for later use (not shown), before creating a new microscope file it is first necessary to select the 
desired Tier for the experiment at hand. Β) The Manage Instrument workflow in Micro-Meta App. The App can be used to create a structured Microscope.
JSON file containing a description of the hardware components of a given microscopy Instrument based on the 4DN-BINA-OME ontology <Instrument> 
class model. C) A new microscope can be created totally from scratch by selecting either an Inverted or an Upright Microscope Stand. D) Alternatively, a 
previously saved Microscope.JSON file can be selected among those saved on an available repository and opened for further editing, such as in the depicted 
example. E) In this example, the “Magnification” drop- down menu is opened [1] and an “Objective” is dragged and snapped-in-place in the designated 
position [2] on the workspace. F) In this example, an additional “Objective” [3] is dragged onto the workspace and relevant metadata fields are entered 
using the designated metadata entry form [4]. G) Once all changes are entered, the microscope file can be saved to file or to the desired repository.
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Extended Data Fig. 5 | The Micro-Meta App utilizes the information contained in a previously generated Microscope metadata file and interactively 
aids in the collection of 4DN- BINA-OME sanctioned Image Acquisition settings metadata. Once a Microscope.JSON file is available (Figs. 1–2 and 
Extended Data Fig. 4), it is used as the basis for collecting the Image Acquisition Settings utilized for a specific microscopy experiment. After clicking 
on Manage Settings (A), the user first selects the Microscope metadata file describing the instrument used to acquire the image of interest (B), then 
the image file (C), and finally, if available, an existing Settings metadata file (D). From these files Micro-Meta App imports all relevant metadata for the 
user to inspect, edit and when missing enter from scratch. E) In the main window of Manage Settings the user accesses different sections of Settings 
metadata by launching the corresponding metadata collection windows. For example, the Edit image settings button [1.1] opens the metadata entry form 
[1.2] allowing to inspect and edit general Image metadata. In addition, the Edit Planes button [2.1] opens an interface where a given image Plane can be 
selected [2.2], and Plane metadata (for example, TimeStamp, ExposureTime) can be inspected and edited [2.3]. Finally, the Edit Objective Settings button 
[3.1] allows users to select the Objective that was used to acquire the image of interest, among those available in the Microscope file [3.2] and enter the 
relevant Objective Settings [3.3]. The same procedure is also used for the Imaging Environment, Microscope Table, Microscope Stand, and Sample Positioning 
Settings (not shown). F) After clicking the Edit Channels button in the main Manage Settings window (E), the list of Channels that were found in the image 
file header is displayed (top left) to be individually selected [4.1]. In the Channel interface [4.2] the Edit Channel Settings button [5.1] launches a general 
Channel metadata editing form [5.2], while an interactive GUI manages the different components of the channel’s Lightpath. In this example, the user clicks 
on LightSource [6.1] to select one of the available Light Sources present in the Microscope file, add it to the Lightpath and enter the associated settings 
that were applied during image acquisition [6.2]. G) Advanced features of the Lightpath are managed via one of the seven Add additional element(s) [7.1] 
buttons found at key locations along the lightpath. In the example, the Add [7.3] button is used to append an additional Shutter [7.4] after the existing 
Shutter, Mirror, Dichroic and BeamSplitter [7.2].
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Extended Data Fig. 6 | Table III | List of Microscopes documented using Micro-Meta App. List of key information regarding the microscopes, experiment 
types and image data file formats that were utilized to assess the feasibility of the Micro- Meta App approach to document microscopy experiments.
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Extended Data Fig. 7 | Micro-Meta App was utilized at the Centre for Cell Imaging of the University of Liverpool to document a Zeiss Axio Observer 
Z1 inverted microscope equipped with a LSM 710 confocal scan head and the settings that were applied to the microscope to acquire specific example 
image-datasets. Illustrated here is the use of Micro-Meta App for Tier 1 (Minimum Information/Materials & Methods), 4DN-BINA- OME-specified11–13 
documentation of: (A-B) the Zeiss Axio Observer Z1 inverted microscope equipped with a LSM 710 confocal scan head, owned by the Centre for Cell Imaging 
(CCI) of the University of Liverpool (Extended Data Fig. 6-Table III); and (C-D) the settings that were applied to the microscope for the acquisition of 
example published image-datasets73. A) Picture of the indicated microscope. B) Micro-Meta App-generated schematic representation of the indicated 
microscope. C) Particles composed of superhydrophobic polymer–nanoparticle composite (SPNC) material were analyzed by confocal microscopy to 
shed light on the differences in composite architecture between different coating polymers. Preparations of SiO2-polydimethylsiloxane (PDMS) coated 
SPNC (40–75 μm) particles were labelled by staining PDMS with Nile Red. Confocal 3D Z-stacks were acquired using the microscope indicated in Panels 
A and B. Depicted here is a slice from the middle (24 μm) of a Z-stack depicting a representative particle73. D) Micro-Meta App-generated schematic 
representation of the lightpath associated with the 561 Channel utilized for the acquisition of the image in Panel C. To demonstrate the functionality and 
usability of the App and to assess the feasibility of the overall microscopy documentation approach, Micro-Meta App was tested independently at 16 sites 
(Extended Data Figs. 6–9 and Supplementary Figs. 3–15).
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Extended Data Fig. 8 | Micro-Meta App was utilized at the Montpellier Resources Imagerie of the University of Montpellier to document a Andor 
Dragonfly Spinning Disk confocal microscope system and the settings that were applied to the microscope to acquire specific example image-datasets. 
Illustrated here is the use of Micro-Meta App for Tier 2 (Advanced Quantification and/or Live cell Imaging), 4DN-BINA-OME- specified11–13 documentation 
of: (A-B) the Andor Dragonfly Spinning Disk confocal microscope system (with Nikon Eclipse Ti inverted compound microscope stand) owned by the Montpellier 
Resources Imagerie at the Centre de Recherche de Biologie cellulaire de Montpellier (MRI-CRBM) of the University of Montpellier (Extended Data Fig. 
6-Table III); and (C-D) the settings that were applied to the microscope for the acquisition of example published image-datasets70. A) Picture of the 
indicated microscope. B) Micro-Meta App-generated schematic representation of the indicated microscope. C) Cerebral organoids were cocultured 
with ZIKV-infected monocytes, fixed, permeabilized, stained with DAPI to detect all cellular nuclei (405 channel, visualized in blue) anti-CTIP2 (488 
channel, visualized in green), anti-PAX6 (568 channel, visualized in magenta) and anti- ZIKV2-E (Flavivirus group antigen Antibody (D1-4G2-4-15 (4G2); 
640 channel, visualized in yellow), and clarified. 3D Z- stacks of representative organoids were acquired using the indicated microscope (Panels A and 
B) equipped with a 20x, NA 0.8, air Nikon objective. The displayed image corresponds to a representative Z-plane70. D) Micro-Meta App-generated 
schematic representation of the lightpath associated with the 488 Channel utilized for the acquisition of the image in Panel C. To demonstrate the 
functionality and usability of the App and to assess the feasibility of the overall microscopy documentation approach, Micro-Meta App was tested 
independently at 16 sites (Extended Data Figs. 6–9 and Supplementary Figs. 3–15).
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Extended Data Fig. 9 | Micro-Meta App was utilized at UMass Medical School to document a custom built TIRF Epifluorescence Structured light 
Microscope and the settings that were applied to the microscope to acquire specific example image-datasets. Illustrated here is the use of Micro-Meta 
App for Tier 3 (Manufacturing/Technical Development/Full Documentation), 4DN-BINA-OME-specified11–13 documentation of: (A-B) the custom build TIRF 
Epifluorescence Structured light Microscope (TESM; based on Olympus IX71) developed, built and owned by the Biomedical Imaging Group79 at the Program 
in Molecular Medicine of the UMass Medical School (Extended Data Fig. 6-Table III); and (C-D) the settings that were applied to the microscope for 
the acquisition of example images. A) Picture of the indicated microscope. B) Micro-Meta App- generated schematic representation of the indicated 
microscope. C) TZM-bl human cells were infected with HIV-1 retroviral vectors, fixed and permeabilized before staining with mouse-anti-p24 primary 
followed by DyLight488-anti-Mouse secondary antibodies, to detect HIV-1 viral Capsid. In addition, cells were counterstained using rabbit-anti-LaminB1 
primary followed by DyLight649-anti-Rabbit secondary antibodies, to visualize the nuclear envelope and with DAPI to visualize the nuclear chromosomal 
DNA. Displayed is a representative image obtained using the indicated microscope (Panels A and B)79. D) Micro-Meta App-generated schematic 
representation of the lightpath associated with the DAPI channel utilized for the acquisition of the image in Panel C. E) The insert shows a detail of the 
optical path followed by the 405-laser beam, in which the TIRF lightpath was used for epifluorescence illumination by orienting the beam perpendicular 
to the specimen plane. Specifically, in this portion of the lightpath the 405-laser beam passes through an electronically controlled shutter (405 
Shutter), a mirror (405 Mirror), a dichroic filter (Dichroic 1), a 50/50 beam splitter (50/50 Epi vs. TIRF BS) and finally a shutter to control the TIRF 
lightpath illumination (TIRF Shutter). Example Microscope.JSON, Settings.JSON and associated image data file for this use case are available at: https://
doi.org/10.5281/zenodo.4891883. To demonstrate the functionality and usability of the App and to assess the feasibility of the overall microscopy 
documentation approach, Micro-Meta App was tested independently at 16 sites (Extended Data Figs. 6–9 and Supplementary Figs. 3–15).
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Extended Data Fig. 10 | Micro-Meta App is integrated in the 4DN-Data Portal for the documentation of imaging experiments. In order to facilitate the 
full documentation of microscopy experiments (A), ensure the quality, reproducibility and value of image data (B), and facilitate their integration with 
genomic data, Micro-Meta App (C) was incorporated in the 4DN-Data Portal and made an integral part of the imaging experiment documentation and 
quality control workflow developed by the 4DN-Data Coordination and Integration Center (DCIC) of the NIH-funded 4DN Consortium2,59,60,62. For this 
use the App’s data flow was adapted to allow the direct ingestion of the content of the JSON Microscope- and Settings-files into the portal database, 
which allows individual fields to be utilized for filtering and searching purposes and to be visualized directly on the portal. Data for this figure is available 
publicly on the 4DN-Data Portal59,60 as follows: A) https://data.4dnucleome.org/files-microscopy/4DNFI7639BEB/; B) https://omero.hms.harvard.edu/
pathviewer/vanilla-viewer/975042/; C) https://data.4dnucleome.org/microscope-configurations/28f1c0f2-d903-4761-93c6-dd3994db3462/.
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