
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Dissertations (1934 -) Dissertations, Theses, and Professional
Projects

All Pairs Routing Path Enumeration Using Latin Multiplication and All Pairs Routing Path Enumeration Using Latin Multiplication and

Julia Julia

Haochen Sun

Follow this and additional works at: https://epublications.marquette.edu/dissertations_mu

 Part of the Mathematics Commons

https://epublications.marquette.edu/
https://epublications.marquette.edu/dissertations_mu
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/dissertations_mu?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F1218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F1218&utm_medium=PDF&utm_campaign=PDFCoverPages

ALL PAIRS ROUTING PATH ENUMERATION USING LATIN
MULTIPLICATION AND JULIA

by

Haochen Sun

A Dissertation submitted to the Faculty of the Graduate School,
Marquette University,

in Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy

Milwaukee, Wisconsin

May 2022

ABSTRACT
ALL PAIRS ROUTING PATH ENUMERATION USING LATIN

MULTIPLICATION AND JULIA

Haochen Sun

Marquette University, 2022

Enumerating all routing paths among Autonomous Systems (ASes) at an Internet-
scale is an intractable problem. The Border Gateway Protocol (BGP) is the standard
exterior gateway protocol through which ASes exchange reachability information.
Building an efficient path enumeration tool for a given network is an essential step
towards estimating the resiliency of the network to cyber security attacks, such as
routing origin and path hijacking. In our work, we use the matrix Latin multiplica-
tion method to compute all possible paths among all pairs of nodes. We parallelize
this computation through the domain decomposition for matrix multiplication and
implement our solution in the Julia high performance programming language. We
also compare our method with classical Monte Carlo method. Our results provide
positive evidence for the applicability of the method.

i

ACKNOWLEDGMENTS

Haochen Sun

I would first like to thank my academic advisor, Dr. Debbie Perouli, whose ex-
pertise was invaluable in formulating the research questions and methodology. Your
insightful feedback pushed me to sharpen my thinking and brought my work to a
higher level.

I would also like to thank my father, my mother and my family for being with me
every step of the way. You support, guidance, and love have meant the world to me,
and you’re always pushed me to my best.

To my friends, my committees, my professors , my faculties, and everyone else
who has been part of my journey, I really appreciate you more than you know and
none of this would be possible without you all. I was blessed to have the opportunity
to join Marquette University and through the highs and lows. I will never forget that.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . i

LIST OF TABLES . v

LIST OF FIGURES . vii

1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Research Goal and Contribution . 2

1.3 Dissertation Outline . 4

2 BACKGROUND INFORMATION AND RELATED WORK . . . 6

2.1 BGP Overview . 6

2.2 BGP Hijacking and BGP Security . 10

2.3 Julia . 14

2.4 Related Work . 15

2.4.1 BGP Simulation . 15

2.4.2 Securing BGP . 17

2.4.3 Monte Carlo Simulation and Julia 19

3 METHODOLOGY . 20

3.1 Network Model . 20

3.2 Latin Multiplication Method . 23

3.3 A* Algorithm and Path Matrix Multiplication 25

3.4 Autonomous System(AS) Relationship Policy 26

3.5 Router Level Network Generation . 28

3.5.1 Router Generation for the Network Model 28

iii

3.5.2 Border Router Selection Between Two ASes 29

3.5.3 Routing Policy . 31

3.6 Monte Carlo Method . 32

3.6.1 Original Monte Carlo Method 32

3.6.2 All Paris Monte Carlo Method 34

4 SYSTEM COMPONENTS . 39

4.1 Routing Path Solver . 39

4.1.1 General Path Solver . 39

4.1.2 Shared-Array Path Solver . 43

4.1.3 Parallel Path Solver . 44

4.1.4 Router Level Path Solver . 47

4.2 Path Prefix Attack . 52

5 TEST CASES AND SIMULATION RESULTS 55

5.1 All Test Cases . 55

5.2 Hardware and Software Configuration 56

5.3 Path Solver Experiments Result . 57

5.3.1 Serial Version Result . 57

5.3.2 Parallel Version Result . 59

5.3.3 Shared-Array Version Result . 60

5.4 Router Level Simulation Result . 61

5.5 Path Prefix Attack Result . 62

5.6 Monte Carlo Method Result . 65

6 SIMULATION RESULT DISCUSSION 67

6.1 Compare Different Running Environments 67

6.2 Two Parallel Version on Different Environments 69

iv

6.3 Two Parallel Version on Same Environments 72

7 CONCLUSION . 75

7.1 Conclusion . 75

7.2 Future Work . 76

A Adjacency Matrices of Test Cases . 77

B Simulation Results Tables . 79

B.1 Serial Version Result . 79

B.2 Parallel Version Result . 80

B.3 Shared-Array Version Result . 83

Bibliography . 87

v

LIST OF TABLES

5.1 Path Solver Test Cases . 55

5.2 Monte Carlo Method Test Cases . 56

5.3 Hardware Configuration . 57

5.4 Router Level Simulation Result . 62

5.5 Eight Node Network Change in Best Path 63

5.6 Attack Simulation Result . 63

5.7 Monte Carlo Simulation Execution Time Result 65

5.8 Monte Carlo Simulation Number of Path Result 66

B.1 Execution Time in Seconds . 79

B.2 Memory Usage in GiB . 80

B.3 Execution Time in Seconds on Local Machine 80

B.4 Memory Usage in GiB on Local Machine 81

B.5 Execution Time in Seconds on Pascal Server 81

B.6 Memory Usage in GiB on Pascal Server 82

B.7 Execution Time in Seconds on Raj Server 82

B.8 Memory Usage in GiB on Raj Server 83

B.9 Execution Time in Seconds on Local Machine 84

B.10 Memory Usage in GiB on Local Machine 84

B.11 Execution Time in Seconds on Pascal Server 85

B.12 Memory Usage in GiB on Pascal Server 85

B.13 Execution Time in Seconds on Raj Server 86

B.14 Memory Usage in GiB on Raj Server 86

vi

LIST OF FIGURES

2.1 BGP Overview . 7

2.2 iBGP and eBGP . 8

2.3 BGP Operational Algorithm . 10

2.4 BGP Hijacking . 11

2.5 RPKI Encryption Process . 12

2.6 BGP Validation Based on RPKI . 13

2.7 How fast is Julia? . 14

3.1 Generated PoPs . 21

3.2 Generated Ellipses and PoPs . 21

3.3 Final Ellipses and PoPs . 22

3.4 Network modeled through matrices C and R. 24

3.5 Relationship Policy - Valley Free . 27

3.6 Relationship Policy - Loop . 28

3.7 Simple Router Level Network. 30

3.8 A simple network with 5 nodes. 33

4.1 Flowchart of the Path Solver. 40

4.2 Simple Network. 41

4.3 Flowchart of the Parallel Path Solver. 45

4.4 Simple Router-Level Network . 48

4.5 Screenshot of Single Pair Routing Table. 51

4.6 Screenshot of Multiple Pair Routing Table. 51

4.7 Process of Path Prefix Attack. 52

4.8 Screenshot of Attack Result. 54

4.9 Screenshot of Attack Statistics. 54

vii

5.1 Serial Version Result on Local Machine. 58

5.2 Serial Version Result on Pascal Server. 58

5.3 Serial Version Result on Raj Server. 58

5.4 Parallel Version Result on Local Machine. 59

5.5 Parallel Version Result on Pascal Server. 59

5.6 Parallel Version Result on Raj Server. 60

5.7 Shared-Array Version Result on Local Machine. 60

5.8 Shared-Array Version Result on Pascal Server. 61

5.9 Shared-Array Version Result on Raj Server. 61

5.10 Compared with General Path Solver. 62

5.11 Eight node topology. 63

5.12 Origin Attack Statistics with 38 Node Network. 64

5.13 Origin Attack Statistics with 94 Node Network. 64

5.14 Origin Attack Statistics with 219 Node Network. 64

6.1 Serial Version Execution Time(Mins). 68

6.2 Parallel Version Execution Time(Mins) with different cores. 68

6.3 Shared-Array Version Execution Time(Mins) with different cores. . . . 69

6.4 Parallel Version Execution Time(Mins). 70

6.5 Shared-Array Version Execution Time(Mins). 71

6.6 Computed Speedup. 71

6.7 Shared Array Memory Usage on Raj 72

6.8 Two Parallel Execution Time(Mins) Compare on Pascal. 73

6.9 Two Parallel Execution Time(Mins) Compare on Raj. 74

1

Chapter1

INTRODUCTION

For researchers and network engineers, the network is a fantastic and unique

world. It is practically impossible for one to know all connections and routes between

Autonomous Systems(ASes), because ASes are administratively independent from

each other. The network infrastructure consists of thousands of smaller networks

classified as AS. The AS defines a set of connected one or more Internet Protocol

(IP) routing prefixes managed by one or more network operators on behalf of an

administrative agency or domain with a specific, clearly specified Internet routing

policy [32, 8].

The Border Gateway Protocol (BGP) is the standard routing protocol of the

Internet used to exchange network reachability information through ASes [51, 58].

The reachability information indicates the traffic between ASes, and the specific AS

must transit to reach those networks.

On the Internet, routing announcements are accepted without almost any vali-

dation. This opens a possibility for a network operator to announce someone else’s

network prefixes without permission. Prefix hijacking is a significant threat to the

BGP. Resource Public Key Infrastructure (RPKI) provides a tool to secure BGP. Ori-

gin validation is a mechanism using RPKI for authenticating route announcements

as originating from an intended AS [44]. Path validation is a mechanism used to

supplement the origin validation by verifying AS Path of the announcement [12].

Research in BGP security is deemed primarily necessary because BGP is the

only available protocol for inter-domain routing[31, 41]. Moreover, despite its role

in holding the Internet together, the BGP protocol was not initially designed for

2

security, making later efforts to secure it relatively hard.

1.1 Motivation

Evaluating the performance characteristics of new routing mechanisms on the

Internet requires testing them in realistic simulation setups before deployment in

the wild. Since the size of the Internet can significantly impact how novel protocols

or enhancements behave, designing a simulator able to model how essential routing

aspects scale is critical.

Compared with the other work, most BGP simulators just solve the best routing

path enumeration problem, not capturing all possible routing paths within the whole

network model. In our work, we attempt to simulate all possible routing paths to

solve all routing path enumeration problems. Enumerating all possible routing paths

among all nodes can improve the reliability of the network and against the cyber

security, specifically for BGP prefix hijacking.

BGP allows policy-based routing. In our work, we aim to solve the the routing

path enumeration problem not only at ASes level network, but also a routing path at

router level network. Because of the routing policy always performs on the routers

not on the ASes.

1.2 Research Goal and Contribution

Building an efficient and reliable BGP simulator for the network model is essential

to solving a routing path enumeration problem. In our work, we do not intend to

capture the details of the BGP message exchanges. We focus on building a solver

to the routing problem that, given network topology and the announced prefixes, it

produces all possible paths among all nodes. This type of simulator is proper when

considering the resiliency of a network to topology changes and the alternative paths

to many destinations, not just the best path. We specifically target modeling the

effects of BGP origin and BGP path validation mechanisms [12, 43, 15].

3

A successful BGP simulator should have a reliable Internet topology model and

an efficient routing path enumeration algorithm. In our work, we use a randomly gen-

erated topology network model to deploy the BGP simulator and the Latin- Multipli-

cation theory to implement a path enumeration algorithm called the A* algorithm.

This dissertation aims to solve the routing path enumeration problem by providing

not only the best but also a ranked list of other candidate paths. Our main contribu-

tion is implementing the new BGP simulator through the Latin-Multiplication theory

and the Julia programming language.

More specifically, our contributions can be summarized as:

• Enhanced an efficient path enumeration method – Latin Multiplication. And

we call it A* algorithm.

The original Latin Multiplication only produces path connection between two

simple path. In our work, we extended it to make it enumerate path between

two matrix if and only if matrix is two dimensional and contains elements are

paths.

• Design and implementation of a new path solver based on the Latin-Multiplication

theory and A* algorithm.

The new path solver produces not only the best path, but all candidate paths

ranked based on the AS’s policy preferences. This allows for experiments fo-

cusing on the resiliency of the network towards malicious or other unexpected

routing events.

Also, our new path solver produces path not only at AS level network, but also

at router level network topology.

• Parallelization of the method using the Julia high-performance programming

language and evaluation of different such techniques.

4

• Design and implementation new Monte Carlo method - All Paris Monte Carlo

method.

In our all pairs Monte Carlo method, we try to estimate all possible path among

all nodes for the network. Not like original Monte Carlo method, just estimating

path between two nodes.

• Publicly available implementation code.

1.3 Dissertation Outline

The rest of the dissertation is organized as follows.

Firstly, in the background and related work chapter, a description of the Border

Gateway Protocol (BGP), BGP Hijacking, and BGP origin is given to help the reader

understand the more specific details explained in the following chapters. Also, we

provide a short description of Julia programming language to explain why we use it in

our project. The different BGP simulator, path simulation method, BRP security and

RPKI framework described to present the previous work on which this dissertation

was based.

Next, in the Methodology chapter, we describe the general methodology and math-

ematical principles used to implement the BGP path simulator during this project to

provide the available features that should be considered before we fully explain the

implementation in later chapters. Moreover, we present the Monte Carlo method for

this project to compare our results.

In the System Components chapter, we focus on using the methodology and math-

ematical principles to implement the BGP path simulator. A full explanation of the

implementation process of the BGP path simulator is presented, followed by the

technical details. Moreover, a simple example is given to help understand the whole

simulation process.

5

In the Test Cases and Simulation Result chapter, we present all the test cases

we used in the experiments and the experiment results. Moreover, the simple data

analysis results are shown in this chapter. In this chapter, we also discuss our running

environments.

In the Result Discussion chapter, we compared different method on different run-

ning environments.

Finally, in the Conclusion chapter, we review the result of our work.

6

Chapter2

BACKGROUND INFORMATION AND RELATED WORK

The necessary background to understand the proceedings of this project is pre-

sented in this chapter. Section 2.1 introduces the general information of Border

Gateway Protocol (BGP). BGP Hijacking and BGP Security are presented in Sec-

tion 2.2. Section 2.3 discuss some features of Julia and why we use Julia. Section 2.4

present related work of our project.

2.1 BGP Overview

Border Gateway Protocol (BGP) is an autonomous system routing protocol that

runs on the Transmission Control Protocol(TCP) [58, 34]. BGP is the only protocol

used to handle networks as large as the Internet and the only protocol that can

adequately handle multiple connections between routing domains.

BGP is based on the experience of the Exterior Gateway Protocol(EGP) [34]. The

primary function of the BGP system is to exchange network reachability information

with other BGP systems. The network reachability information includes the infor-

mation of the listed autonomous system (AS). This information effectively constructs

the topology diagram of AS interconnection and thus eliminates routing loops, and

at the same time, policy decisions can be implemented at the AS level.

BGP is used to exchange routing information between different autonomous sys-

tems (AS). When two ASes need to exchange routing information, each AS must

designate a node running BGP to exchange routing information on the AS and other

AS. This node can be a host, but it is usually a router to perform BGP. Routers that

use BGP to exchange information in the two ASes are also called border gateways or

border routers.

7

Figure 2.1 shows how BGP works.

Figure 2.1: BGP Overview

Source from: https://know.bishopfox.com/blog/2015/08/an-overview-of-bgp-hijacking

Since it may be connected to different ASes, there may be multiple border routers

running BGP within an AS. BGP running between two or more peer entities in the

same autonomous system (AS) is called iBGP (Internal/Interior BGP). BGP running

between peer entities belonging to different AS is called eBGP (External/Exterior

BGP).

The following Figure 2.2 describe the relationship between iBGP and eBGP.

There are 3 ASes and 5 routers in the figure, we can create typical customer-

provider scenario, AS-1 and AS-3 are customers of AS-2. When AS-1 want to reach

AS-3, we have to pass through AS-2. The black line in Figure 2.2 represent connection

status between routers.

From this customer-provider scenario, we can learn:

• We need eBGP between AS-1 and AS-2 because these are two different AS.

8

Figure 2.2: iBGP and eBGP

This allows us to advertise a prefix on R1 in BGP so that AS-2 can learn it.

• We also need eBGP between AS-2 and AS-3 so that R5 can learn prefixes

through BGP.

• We need to get the prefix that R2 learned from R1 somehow to R5. So, we need

configure iBGP between R2 and R4, this allows R4 to advertise it to R5.

BGP is an external or inter-domain routing protocol. The main goal of BGP

is to provide routing information communication between routers in different ASes.

BGP is neither a vector distance protocol nor a link-state protocol. It is usually

called a path vector protocol. BGP, while publishing the reachability to a destination

network, contains a list of ASes that must pass through when IP packets reach the

destination network. Path vector protocol is beneficial because it’s simply looking up

the AS number updated by the BGP route can effectively avoid loops. BGP has no

restrictions on the network topology, and its characteristics include: [58]

• Path Information. When BGP advertises the reachability information of the

destination network, in addition to processing the next hop information of the

specified destination network, the advertisement also includes a path vector,

9

that is, a list of ASs that need to pass through to the destination network. It

enables the recipient to understand the access information to the destination

network.

• Policy-Based Routing. BGP also allows policy based routing. The network

operator can design and implement different policies by programming on it.

• Security Extension. Since the BGP does not contains any security features. It

supports security extensions, like the original BGP protocol based on the RPKI

framework. It allows the receiver to validate and authenticate the message to

verify the identity of the sender.

The router sends a BGP update message to the network, the updated BGP metric

is called the path attributes.

• Origin. Origin attribute indicates the origin of the path.

• AS path. This attribute consists of all the different AS numbers from which the

the advertisement passed from.

• Local Preference. This attribute is used to choose the exit path for an AS.

The following Figure 2.3 describes the BGP operational algorithm.

10

Figure 2.3: BGP Operational Algorithm

Source from: https://www.bgp.us/wp-content/uploads/2016/01/BGP-Border-
Gateway-Protocol.png

The neighbor table contains a list of all BGP neighbors, and the BGP operational

algorithm learns from all neighbors, including AS path, local preference, and other

BGP attributes. BGP Table contains BGP attributes for each path and lists networks

received from each neighbor. The BGP table also might have multiple paths to a

destination network. Then, the router will advertise the best routes to the routing

table. The Routing table list all of the best routes to destination networks.

2.2 BGP Hijacking and BGP Security

BGP Hijacking, sometimes referred to as prefix hijacking or IP hijacking, is an

attacker maliciously changing the Internet traffic. Attackers achieve this by mistak-

enly claiming ownership of IP address groups (called IP prefixes) that they do not

actually own or control it [63, 11, 17].

When an AS announces a route with an IP prefix that is not under its control,

this announcement, can be propagated and added to the routing table of BGP routers

on the Internet. From then until somebody notices and corrects the routes, traffic to

11

those IPs will be routed to that AS [7].

BGP always prefer the shortest, most specific prefix to the desired IP address. In

order to understand the BGP hijacking, Figure 2.4 give a clearly example how BGP

hijacking work.

Figure 2.4: BGP Hijacking

Source from: https://know.bishopfox.com/blog/2015/08/an-overview-of-bgp-hijacking

Resource Public Key Infrastructure (RPKI) is a public key infrastructure frame-

work designed to protect the routing protocol, specifically for BGP. RPKI provides

a way to connect Internet number resource information (such as IP Addresses) to

a trust anchor [3]. RPKI is an encryption method to sign the record with origin

IP prefix and AS number. Five regional Internet registry(RIPs) provide method for

taking an IP prefix/AS number pair and signing a Route Origin Authorisation(ROA)

record to database [39].

The Figure 2.5 shows this encryption process.

12

Figure 2.5: RPKI Encryption Process

Origin validation helps to prevent the unintentional advertisement of routes. Ori-

gin validation is a mechanism using RPKI for authenticating route announcements

as originating from an intended AS [44].Origin validation performs authentication on

one or more RPKI servers for specified BGP prefixes. The border router queries the

validated prefix-to-AS mapping database on the RPKI server, to authenticate a prefix

and ensures that the prefix originates from an intended AS. The Figure 2.6a shows

how origin validation work with whole AS path.

Path validation is similar as origin validation, they both use PRKI to sign certi-

fication. Path validation is a mechanism used to supplement the origin validation by

verifying AS Path of the announcement [12]. Path validation use one or more RPKI

servers to perform authentication for AS. The origin AS check its following AS in

RPKI server to ensures the following AS in sign the certification. Figure 2.6b and

Figure 2.6c detailed that how path validation work.

13

(a) BGP Origin Validation

(b) Without BGP Path Validation

(c) With BGP Path Validation

Figure 2.6: BGP Validation Based on RPKI

14

2.3 Julia

Julia is a fairly modern language, developed in 2009 by Jeff Bezanson, Stefan

Karpinski, Viral B. Shah, and Alan Edelman who had the idea of designing a language

that was free, high-level, and fast. It has following features [35]:

• As high-level and interactive as Matlab or Python

• AS general purpose as Python

• As productive for technical work as Matlab or Python

• But as fast as C

Moreover, Julia is a general purpose programming language and can be used to write

any application, many of its features are well suited for numerical analysis and com-

putational sciences. Based on official statistics result [14], and if normalized that C

speed equal 1, the Figure 2.7 shows has fast Julia is.

Figure 2.7: How fast is Julia?

Source from: https://julialang.org/benchmarks/

15

It is necessary to state that the benchmark codes are not written for absolute max-

imize performance. Rather than, the benchmarks are written to test the performance

of identical algorithms and code patterns implemented in each language.

Here is a quote from the creators of Julia from their first official blog article “Why

We Created Julia” [13]:

“We want a language that’s open source, with a liberal license. We want the speed

of C with the dynamism of Ruby. We want a language that’s homo iconic, with true

macros like Lisp, but with obvious, familiar mathematical notation like Matlab. We

want something as usable for general programming as Python, as easy for statistics

as R, as natural for string processing as Perl, as powerful for linear algebra as Matlab,

as good at gluing programs together as the shell. Something that is dirt simple to

learn, yet keeps the most serious hackers happy. We want it interactive and we want

it compiled.”

2.4 Related Work

Previous section, we provided basic background information of our project, and

in this section, we discussed the useful related work.

2.4.1 BGP Simulation

An important segment of related work [22, 50, 62] aims at capturing the packet-

level details of the Border Gateway Protocol (BGP), which has been the default

interdomain routing protocol for decades. BGP++ [22] is built by combining the ns-

2 network simulator with the GNU Zebra routing package and the parallel distributed

network simulator PDNS. For a topology size of 1000 nodes, the total execution time

is around 1000 seconds, and when the topology increases to 2500, the total execution

time is about 9000 seconds.

A recent related work [10] develops a distributed network control plane which

is called Tiramisu. It uses Path Vector Protocol(TPVP) algorithm to enumerate

16

paths. A complete verification process should consider coverage and performance.

The Tiramisu platform achieves good performance without losing too much coverage

at the same time.

A significant difference to related work [10, 56] is that our solver produces all

candidate paths towards a destination, not just the best path. BGP allows policy-

based routing, that is, the best path is not necessarily the shortest. A lot of the

BGP literature has used for testing purposes the business relationships identified by

Gao [25] as peer-to-peer (p2p), customer-to-provider (c2p), and provider-to-customer

(p2c). Although our initial experiments follow these simple policies, our framework

is not restricted by these specific policies. However, it can be used to model any

arbitrary relationship needed, as more recent literature suggests, e.g. [47, 55].

Ding et al. [40] designs the model based on Quagga Routing Software Suite

to study BGP routing update messages in parallel processing with multithreading

technology. Compared to the original module, the parallel module performs better at

the mid-stage. However, as time goes by, the efficiency worsens the original module.

To improve efficiency, the authors also design the garbage collection mechanism to

discard useless resources.

Feamster et al. [23] implements the Route Prediction Algorithm to model the

routing decision process for each router in a single AS. The Route Prediction Al-

gorithm has three phases. The first phase defines the algorithm as straightforward

because it aims for a single router. The second phase of the algorithm computes the

set of the best eBGP routes, and the third phase determines the best BGP route

from the set of the best eBGP routes. Compared to our work, we solved all candidate

paths towards a destination, not just the best path.

In the thesis, ”An Analysis of Convergence Properties of the Border Gateway Pro-

tocol Using Discrete Event Simulation,” Brian J. Premore [48] proposes to implement

17

and run BGP protocol on top of the SSFNet [62] discrete event simulator. He has

studied BGP behavior with several parameters, network characteristics, and protocol

characteristics. He also analyzes four network topologies: line, ring, focus, and clique

topology with at most 30 hosts.

C-BGP [1, 50] is a BGP simulator addressing routing policy evaluation. C-BGP

uses a full BGP implementation, we can see all BGP parameters of each node during

simulation process. In the process, each BGP decision by making all routing policies.

Also, C-BGP is state driven simulator. It stable, and not change over time for the

BGP routers.

McDaniel et al. [42] have developed lseb, a large scale BGP simulator, is capable

of simulating every AS in the Internet using realistic data. The authors also add

attack and defense modules so that different strategies for attacking and defending is

easily modified and observed.

2.4.2 Securing BGP

A nice classification of attacks on BGP was made by [43, 45, 15]. Mitseva et al.

review three fundamental vulnerabilities and attack vectors. First, BGP infrastruc-

ture face attack from the outside, e.g., hardware damage. Second, tampering with

the underlying protocol data by outsiders. Because the BGP messages transfer based

on TCP sessions. Third one is outsiders’ intentional corruption of control messages,

e.g., Prefix hijacking.

In our project, we focus more on prefix hijacking. The common prefix hijacking is

AS falsely announcement which is discussed in Section 2.2. A recent study [59] shows

that more than 20 % of the global IPv4 address space is not available to the public,

making it potentially vulnerable to attack, like BGP hijacking.

BGP prefix hijacking allows malicious ASes falsely announcement its IP prefixes

to intercepte or black network traffic [17]. So, BGP prefix hijacking is threat to

18

network administrator and users. In the paper [57], the author give the survey to

network administrator around world. The result shows the RPKI deployment is

limited, and more than 71% network administrator said that they have not deploy

RPKI infrastructure.

A true story happened to us, China Telecom’s BGP Hijacking [21, 9, 30]. On

April 8th, 2010 China Telecom hijacked 15% of the Internet traffic for 18 minutes.

And now, China Telecom out of the US market.

The study [16] of one-year BGP traffic study of 40 globally distributed ASs shows

that, on average, less than 2% of prefixes are advertised using more than 10 paths,

and less than 0.06% of prefixes are advertised using more than 20 paths. Less than

0.06% of prefixes are advertised using more than 20 paths in a month. Butler et

al. design and implement BGP path authentication mechanism to reduce cost by

exploiting path stability.

RPKI is an encryption method to sign the record with the origin IP prefix and

AS number. It is also an efficient method to secure the inter-domain routing system.

Wählisch et al. [60] look at BGP tables and updates from RIPE’s RRC00 [4] and

RouteViews [5] and check updates which against RPKI system. And recent study [18]

shows that more than 12.1 % of the global IPv4 address space is covered by Route

Origin Authorizations (ROAs). 94.3% of announcements covered by ROAs are valid

based on RouteViews dataset. But we also should know, the RPKI certificate is limit,

only 35% IPv4 Prefix-Origin Pairs is valid in the RPKI-ROV system [2].

Although RPKI is a critical security tool, we still face many challenges and prob-

lems that show in [33, 26, 52, 24], specific for securing origin. Gilad et al. [27] design

and implement DISCO, a Decentralized Infrastructure for Securing and Certifying

Origins, to securing and against BGP prefix hijacking. In comparison to RPKI ROA,

DISCO ROA has the same authorization process. However, DISCO ROA also spec-

19

ifies a list of excluded sub-prefixes for each prefix in the ROA. For the Path-End

validation question, DISCO adopt basic and simple method, just like [20, 19].

There is the chicken-and-egg problem in PRKI deployment, authentication is only

valid when ROVs are deployed, and ROVs are valid only for certified IP address

blocks. As a result, almost no one performs ROV [33, 26]. Oryu et al. [46] simulate

RPKI deployment process to find a balance between the cost and benefits decision

of each AS. The authors compute balance between cost of RPKI deployment and

reduction of BGP prefix hijacking.

2.4.3 Monte Carlo Simulation and Julia

Yeh [61] introduces a Hybrid Monte Carlo method to estimate reliability of net-

work. The important term in this paper, the author mentioned Crude Monte Carlo

(CMC) method. And every proposed Monte Carlo method should compare with CMC

to reflect its efficiency.

A significant difference to related work [53] is that our All Paris Monte Carlo

method tries to produce all possible paths for the whole network topology, not just

the all possible paths between two nodes. In the paper, Roberts et al. designs and

implements two Monte Carlo methods: original Monte Carlo method and length

distribution Monte Carlo method. We will discuss the original Monte Carlo method

in Section 3.6. The length distribution Monte Carlo method based on the original

Monte Carlo method, add new parameters l. And the authors estimate l using the

Crude Monte Carlo (CMC) estimator [61, 38].

Kwon [36] also introduces the same original Monte Carlo method in his book.

Compared with another related work [53], Kwon is more focused on how to use

Julia programming language to implement the original Monte Carlo method. He also

created a new Julia package, PathDistribution [37], which includes two Monte Carlo

methods that we discussed in the previous paragraph.

20

Chapter3

METHODOLOGY

The methodology to be used in this project is described in this chapter. Section 3.1

explains how do we generate a random network and represent it in a matrix. Latin-

Multiplication method and A* algorithm are described in Section 3.2 and 3.3. In

the Section 3.4, we introduce the Autonomous System(AS) Relationship Policy that

is used during path enumeration process. Section 3.5 describes how do we generate

routers within the existed the random networks.Section 3.6 introduces the Monte

Carlo method and how to use it to estimate the path between node and estimate all

possible paths for the network.

3.1 Network Model

We use the Julia Geometry2D package [54] to generate the network topology. This

Julia package generates random ellipses and points, which are used to represent the

Autonomous Systems (ASes) and PoPs (Points of Presence). The links between ASes

are established when both ASes are present in the same PoP. If the points do not fall

into the intersection of two ellipses, we will ignore them. The links also describe the

AS business relationships, and will discuss it in Section 3.4.

Based on the area of random ellipses, we define the type of Autonomous Systems:

Tier-1: ASes that only provide transit and never buy it.

Tier-X: ASes that both provide and buy transit. Providers can be other Tier-1 or

other Tier-X.

Stubs: ASes that appear only at the beginning of the AS path. They only buy

transit (from both Tier-1 and Tier-X) and never provide it.

21

The following Figures 3.1, 3.2, and 3.3 describe network generation process.

Figure 3.1: Generated PoPs

Figure 3.2: Generated Ellipses and PoPs

22

Figure 3.3: Final Ellipses and PoPs

We use the metrics to represent the generated data for further study. The network

topology is captured through the Connection Matrix C. Each matrix element indicates

whether two ASes have a connection at a specific PoPs. For instance, in the following

connection matrix C, the C23 value means that AS-2 and AS-3 are connected at PoP

4.

Connection Matrix C =



0 4 0 0 0 0 0 0

4 0 3 1 2 0 0 5

0 3 0 0 0 2 1 0

0 1 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 1 0 0 0 0 0

0 5 0 0 0 0 0 0


The business relationships are captured through the relationship matrix R. Our

23

model does not pose any limitation on the number or type of policies that can be

captured. On the contrary, our design was guided by the idea to allow a diverse set

of policies for the user to define.

For our initial experiments, we maintain a set of policies often used in the litera-

ture, and we codify each relationship type through an integer number.

1 : provider-to-customer (p2c);

2 : customer-to-provider (c2p);

3 : peer-2-peer (p2p)

A more diverse set of policies can be modeled by assigning additional integers to

corresponding relationship types. A relationship type could also be compound, i.e.,

being the result of merging together with other policies. In the example relationship

matrix R below, the value R23 is 1 and indicates that AS-2 is a provider to As-3.

Relationship Matrix R =



0 2 0 0 0 0 0 0

1 0 3 2 2 0 0 1

0 3 0 0 0 2 1 0

0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 2 0 0 0 0 0

0 2 0 0 0 0 0 0


The example network corresponding to matrices C and R is depicted in Figure 3.4.

3.2 Latin Multiplication Method

Latin-Multiplication [29] is an algebraic method useful in enumerating paths. Let

X* be the set of all paths, which includes the empty path ∅. Latin-Multiplication ⊗

24

Figure 3.4: Network modeled through matrices C and R.

between two paths uαi and uβj means path concatenation if the last node of uαi is

the same as the first node of uβj. In case this condition does not hold, the Latin-

Multiplication between the two paths produces the empty path.

More formally,

if

u ⊗ ∅ = ∅ ⊗ u ∀ x ∈ S

uαi = (i1,i2,...ik)

uβj = (j1,j2,...jl)

then

uαi ⊗ uβj =


i1, i2, ...ik, j2, j3, ..., jl if ik = j1

∅ otherwise

Assume that matrix uα is two dimensional and contains elements that are paths.

For instance, element uαi would be a path starting from node i1 and ending at node

ik located at position (1, k) of the matrix. If matrix uβ also contains paths of the

same nodes, then we can define multiplication between two path matrices as:

if uα = (uαi) with uαi ∈ X*,

uβ = (uβj) with uβj ∈ X*,

then uα ⊗ uβ = (uαi ⊗ uβj).

25

3.3 A* Algorithm and Path Matrix Multiplication

The A* algorithm, algorithm 1, uses matrix multiplication theory and Latin Mul-

tiplication [29] to enumerate all possible paths in a network of nodes. Matrix A is

the adjacency matrix whose elements are the single link paths between nodes. Mul-

tiplying A with itself will result in matrix A(2) that contains all paths of length at

most three edges. Multiplying A with A(2) results in A(3), which contains all paths of

length at most four and so on. By continuing to multiply A with the newest result of

the series every time, say A(n), the algorithm is proven to terminate and eventually

produce a matrix containing all possible paths among all nodes.

Algorithm 1: A* Algorithm

Input: Adjacency Matrix A (single link paths)
Output: A(2)

1 initialization;
2 m = size(A)[1] ; // # of Rows for A

3 n = size(A)[2] ; // # of Columns for A

4 for i← 1 to m do
5 for j ← 1 to n do
6 for k ← 1 to n do

// If two nodes are equal

7 fA[i, j][end] == A[j, k][1] F = A[i, j];
8 S = A[j, k][2:end];

9 A(2)[i,k] = [F,S];

10 end

11 end

12 end

13 return A(2)

The A* algorithm can enumerate all possible paths of a network of nodes. In our

project, we use the matrix to represent network connection status and the relationship

between ASes. We implement the path matrix multiplication method based on the

A* algorithm.

Link Matrix L is the adjacency matrix whose elements are the single link paths

26

between the ASes. Path Matrix P is the incremental matrix whose elements are

routing paths between the ASes. Routing Table RT is the matrix that is used to save

our routing paths results. And elements of RT may be a set of the path between the

ASes.

According to A* algorithm, path matrix multiplication algorithm, algorithm 2,

multiplying L with P1 will get result P2, multiplying L with P2 results in P3 and so

on. In each iteration, we save result Pi to RT until we cannot find new path in Path

Matrix P which means Path Matrix P is the zero matrix.

Algorithm 2: Path Matrix Multiplication

Input: Path Matrix Pi

Input: Link Matrix L
Output: Routing Table RT

1 initialization;
2 RT = Path Matrix Pi

3 m = size(Pi)[1] ; // # of Rows for Pi

4 n = size(Pi)[2] ; // # of Columns for Pi

5 RT = Path Matrix Pi

6 flag = m * n ; // Stop iteration flag

7 iter = 0 ; // # of Iteration

8 while # of 0 in Pi+1 ̸= flag do
9 Pi+1 = A* Algorithm(Pi, L);

10 RT = RT + Pi+1 ;
11 iter = iter +1 ;

12 end
13 return RT

3.4 Autonomous System(AS) Relationship Policy

The Autonomous System(AS) relationship policies often imply rules on path valid-

ity and preference. In our example set of policies, we have implemented the valley-free

set of rules [28] to distinguish between valid and invalid paths. A path that does not

follow the valley-free rules is invalid.

The valley-free rules [28] define routing path patterns. Assuming n and m are

positive integers, a routing path is valley-free, if and only if it consists of links that

27

follow one of these two business relationship patterns:

n× c2p+m× p2c

n× c2p+ p2p+m× p2c

where n and m >0.

In other words, there should not be adjacent p2p links within a valid routing path,

and a c2p link should not follow a p2c link. Figure 3.5 shows a valley-free rule.

Figure 3.5: Relationship Policy - Valley Free

Our model allows one to define arbitrary policy rules, the valley free set being

just an example. We also mark a path as invalid if it contains the same node twice,

calling it a loop. A loop describes the case where a packet keeps getting routed in an

endless circle through the same nodes rather than reaching its intended destination.

The loop example is shown in Figure 3.6.

28

Figure 3.6: Relationship Policy - Loop

In our initial experiments, a path is valid if it obeys both the valley-free rules and

loop-free rule. In the pseudo-code, we can write AS relationship policy as following

algorithm 3.

Path Matrix P is the incremental matrix whose elements are routing paths between

the ASes. We perform the algorithm 3 during simulation process for every new Path

Matrix.

3.5 Router Level Network Generation

In the previous section, we discuss the Network model. The original network

model used the Julia Geometry2D to generate the AS level network topology. In this

section, we will discuss how to generate router-level network topology and how to

simulate router-level routing paths.

3.5.1 Router Generation for the Network Model

For the router generation, we use the Julia Geometry2D package to generate

random points within the ellipses(ASes), which represent the routers. Based on the

type of ASes, we generate the different number of routers for each ASes:

• Tier-1 AS: 5 routers

• Tier-X AS: 3 routers

29

Algorithm 3: AS Relationship Policy Check

Input: temp Path Matrix P
Input: Connection Matrix C
Input: Relationship Matrix R
Output: Valid Path Matrix P

1 initialization;
2 m = size(P)[1] ; // # of Rows for P

3 n = size(P)[2] ; // # of Columns for P

4 Valid Path Matrix P = Matrix[m,n] for i← 1 to m do
5 for j ← 1 to n do
6 if P[i, j] == union(P[i, j]) then

// Check Loop

7 temp = P[i, j] ;
8 if Relationship Patterns of P[i, j] is valley free then

// Check Valley Free

9 Valid Path Matrix P[i, j] = temp ;

10 else
11 Valid Path Matrix P[i, j] = 0 ;
12 end

13 else
14 Valid Path Matrix P[i, j] = 0 ;
15 end

16 end

17 end
18 return Valid Path Matrix P

• Stubs AS: 1 router

And for each router, we random generate local preference value between 1 to 6.

3.5.2 Border Router Selection Between Two ASes

The BGP border router selection process based on the router’s distance in different

ASes. The following Figure 3.7 shows the simple router level network model, AS-1

has three routers, and AS-2 has four routers.

We use the matrices to represent the distance data of two ASes. Each matrix

element indicates a distance between two routers between two ASes. For instance,

in the following distance matrix D, the d23 means the distance between Router-2 in

30

Figure 3.7: Simple Router Level Network.

AS-1 and Router-3 in AS-2

Distance Matrix D =



AS − 2

d11 d12 d13 d14

AS − 1 d21 d22 d23 d24

d31 d32 d33 d34


Based on the distance matrix between two ASes, we create the router pair matrix

for the whole network model which used to represent border router for each AS.

Single Router Pair Matrix

The Single Router Pair Matrix SP only choose the one distance value in distance

matrix D. If we choose same distance value in previous example. For instance, in the

following Single Router Pair Matrix SP, the SP12 element is [2,3], and it means that

Router-2 in AS-1 and Router-3 in AS-2 are selected (if AS-2 and AS-3 has connection

during simulation process).

31

Single Router Pair Matrix SP =



AS − 1 AS − 2 AS − 3

AS − 1 0 [2, 3] [1, 5]

AS − 2 [3, 2] 0 [3, 5]

AS − 3 [5, 1] [5, 3] 0



Multiple Router Pair Matrix

The Multiple Router Pair Matrix MP choose the multiple distance value in dis-

tance matrix D, For instance, in the following Multiple Router Pair Matrix MP, the

DP12 values are [2,3] and [1,4]. And [2,3] means Router-2 in AS-1 and Router-3 in

AS-2 are selected (if AS-2 and AS-3 has connection during simulation process). Sim-

ilarly, [1,4] means Router-1 in AS-1 and Router-4 in AS-2 are selected (if AS-2 and

AS-3 has connection during simulation process).

Multiple Router Pair Matrix MP =



AS − 1 AS − 2 AS − 3

AS − 1 0 [2, 3][1, 4] [1, 5][2, 4]

AS − 2 [3, 2][4, 1] 0 [3, 5][1, 2]

AS − 3 [5, 1][4, 2] [5, 3][2, 1] 0



3.5.3 Routing Policy

Border Gateway Protocol routers typically receive multiple paths to the same

destination. Policy-based routing is a technique used to make routing decisions based

on policies. This section will discuss the path selection algorithm that we used during

the router-level simulation process.

32

• Prefer Local Preference

Prefer local preference means to prefer the routing path with the highest local

preference.

• Prefer Shortest Distance

Prefer the shortest distance refers to finding a path through a network with a

minimum distance.

• Prefer Neighbor

Prefer neighbor means prefer the routing path with the closest neighbor router.

3.6 Monte Carlo Method

In the previous section, we discussed the Latin-Multiplication method and A*

algorithm to enumerate all possible paths with a given network. This section will

discuss the original Monte Carlo method [53, 36] in Section 3.6.1. And how to modify

the original Monte Carlo method to enumeration all possible path in Section 3.6.2.

3.6.1 Original Monte Carlo Method

The Monte Carlo method is a straightforward approach to simulation results.

Consider the simple 5-nodes network in Figure 3.8, and there are 64 paths for the

whole network and 4 path from origin node 1 to destination node 5.

Let P be set of all possible path, and |P | denote number of all possible path. With

a same example, from node 1 to node 5, P = {[1, 2, 4, 3, 5], [1, 4, 2, 5], [1, 2, 5], [1,

4, 3, 5]} and |P | = 4.

Following the same structure with the Latin Multiplication method, we use the

adjacency matrix A to represent the network, and the Aij means that a link between

node i and j. For instance, the network in Figure 3.8 can be rewritten in adjacency

matrix A as follows:

33

Figure 3.8: A simple network with 5 nodes.

Adjacency Matrix A =



0 1 0 1 0

1 0 0 1 1

0 0 0 1 1

1 1 1 0 0

0 1 1 0 0


Like in other Monte Carlo method [61], we need generate many samples to estimate

|P |. To illustrate this process, let’s use the network in Figure 3.8 to find all possible

paths between origin node 1 and destination node 5.

1. Start with origin node 1. Node 1 connects with node 2 and 4. Then ran-

domly choose a node with uniform distribution. Let’s say node 2 is chosen with

probability 1/2 , and current path is [1,2].

2. Next work with node 2. Node 2 connects with node 1, 4 and 5. Since node 1 is

already visited, so random choose node 4 or 5 with uniform distribution. Let’s

say node 4 is chosen with probability 1/2 , and the current path is [1,2,4].

3. Then works with node 4. Node 4 connects with 1, 2, and 3. Since node 1 and

2 are already visited, node 3 is chosen with probability 1 and the current path

[1,2,4,3].

34

4. At last, work with node 3. Node 3 connects with 4 and 5. Since node 4 is already

visited, node 5 is chosen with probability 1 and the current path [1,2,4,3,5].

5. Since we arrive at destination node 5, stop the iteration.

By above process, one sample path is generated. Let’s denote this sample path by

S1, and probability P for this sample path is P(S1) = 1/2 * 1/2 * 1 * 1 = 1/4. If we

repeat this process N times, we will get N sample paths. In each iteration, we stop if

either the destination node is reached or there is no more unvisited node connected

to the current node. We can obtain:

S1 S2 ... SN−1 SN

P(S1) P(S2) ... P(SN−1) P(SN)

To estimate the number of paths based on the above N samples, we compute in

the following equation:

|̂P | = 1

N

N∑
i=0

Si

P (Si)
(3.1)

If N is large enough, we have |̂P | ≈ |P |. The original Monte Carlo method can be

defined in following algorithm 4.

3.6.2 All Paris Monte Carlo Method

To estimate all possible paths just like the original Monte Carlo process, we need

to obtain the probability for each sample path, not just the sample path with a specific

origin and destination. To illustrate this process, let’s use the network in Figure 3.8.

1. Start with node 1. Node 1 connects with node 2 and 4. Then randomly choose a

node with uniform distribution. Node 2 is chosen with probability 1/2, so path

is [1,2] and its probability P[1,2] = 1/2. Node 4 is is chosen with probability 1/2,

so path is [1,4] and its probability P[1,4] = 1/2.

35

2. Next work with node 2 and 4. Node 2 connects with node 1, 4 and 5. Since node

1 is already visited, so random choose node 4 or 5 with uniform distribution.

Node 4 is chosen with probability 1/2, so path is [1,2,4] and its probability

P[1,2,4] = 1/2 * 1/2 = 1/4. Node 5 is chosen with probability 1/2, so path is

[1,2,5] and its probability P[1,2,5] = 1/2 * 1/2 = 1/4.

Node 4 connects with 1, 2 and 3. Since node 1 is already visited, so random

choose node 2 or 3 with uniform distribution. Node 2 is chosen with probability

1/2, so path is [1,4,2] and its probability P[1,4,2] = 1/2 * 1/2 = 1/4. Node 3 is

chosen with probability 1/2, so path is [1,4,3] and its probability P[1,4,3] = 1/2

* 1/2 = 1/4.

3. Next step, working with node 4, 5, 2, and 3 since we get path [1,2,4], [1,2,5],

[1,4,2], and [1,4,3]. Then repeat the last step to find each path with a non-visited

node and its probability.

4. Repeating the above step until the path length is same as the number of nodes.

Then stop the iteration.

By above process, in each iteration process we will generate multiple sample paths.

We use S[path] to represent generated sample path, and use P[path] to represent the

probability of this sample path. If we repeat this process N times, we will get more

than N sample paths. In each iteration, we stop if either the path is equal number

of nodes or there is no more unvisited node connected to the current node. We can

obtain:

S[1,2] S[1,4] S[1,2,4] S[1,2,5] S[1,4,2] S[1,4,3]
P[1,2] P[1,4] P[1,2,4] P[1,2,5] P[1,4,2] P[1,4,3]

To estimate the number of paths based on the above sample paths, we use the

same equation 3.1 to compute the result. Therefore, the all pairs Monte Carlo method

36

is defined in the following algorithm 5.

37

Algorithm 4: Original Monte Carlo Method

Input: Adjacency Matrix A
Input: Sample Size N
Input: Origin Node org
Input: Destination Node dest
Output: PathSample S

1 initialization
2 S = PathSample[]
3 for i← 1 to N do
4 path = [org]
5 g = 1
6 current = org
7 A[:,org] .= 0.
8 while current != dest do
9 V = []

10 m = of node
11 for j ← 1 to m do
12 if A[current,j] == 1 then
13 push!(V, j)
14 end

15 end
16 if length(V) == 0 then
17 Break
18 end
19 next = rand(V)
20 path = [path; next]
21 current = next
22 A[:,next] .= 0
23 g = g / length(V)

24 end
25 if path[end] == dest then
26 thissample = PathSample(path, g)
27 push!(S, thissample)

28 end
29 return S

30 end

38

Algorithm 5: All Pairs Monte Carlo Method

Input: Adjacency Matrix A
Input: Sample Size N
Input: Number of node M
Output: PathSample S

1 initialization
2 S = PathSample[]
3 for i← 1 to N do
4 for origin← 1 to M do
5 path = [origin]
6 g = 1
7 current = origin
8 A[:, origin] .= 0
9 while length(path) != M do

10 V = []
11 m = of node
12 for j ← 1to m do
13 if A[current,j] == 1 then
14 push!(V, j)
15 end

16 end
17 if length(V) == 0 then
18 Break
19 end
20 next = rand(V)
21 path = [path; next]
22 current = next
23 A[:,next] .= 0
24 g = g / length(V)
25 thissample = PathSample(path, g)push!(S, thissample)

26 end

27 end
28 return S

29 end

39

Chapter4

SYSTEM COMPONENTS

In the previous chapter, we provided the background on the A* algorithm we

use for path enumeration. We also discussed our network topology, AS relationship

policy, router level network topology, and Monte Carlo method.

In this chapter, we have concluded by describing the interactions among our sys-

tem components and the path prefix attack.

4.1 Routing Path Solver

To enumerate all possible valid routing paths, we have enhanced the A* algorithm

and path matrix multiplication method described in Section 3.3 with an additional

rule regarding the concatenation of paths. The Latin-Multiplication uαi⊗ uβj results

in the non-empty path, if both ik = j1 and the resulting path is valid according to

the AS relationship rules described in Section 3.4.

4.1.1 General Path Solver

We have implemented three versions of the routing path solver based on the A*

algorithm and path matrix multiplication method in the high-performance program-

ming language Julia:

1. Serial Implementation with Julia Build in Array

2. Parallel Implementation with Julia Build in Array

3. Parallel Implementation with Julia Shared-Array

The Julia built-in array is an ordered collection of elements. Julia Shared Arrays

use system shared memory to map the same array across many processes [49]. Im-

40

plementing the Shared Array data structure takes advantage of the shared memory

parallel programming model across all processes.

In Julia, only “isbits” elements are supported in a Shared-Array. Each element of

the Shared-Array must be of Bit type, which is a Julia “plain data” type, meaning it

is immutable and contains no references to other values [49].

To represent the path in our path solver, we use arrays of the array with Julia

Build in Array. For instance, path P = [[1,2,3],[1,4,3]]. But in the Julia Shared-Array,

arrays of the array is not allowed since arrays are not the Bit type.

The common elements of all three implementations are depicted in the following

Figure 4.1.

Figure 4.1: Flowchart of the Path Solver.

With the simple network from Figure 4.2, the connection matrix C and relation-

ship matrix R are:

41

Figure 4.2: Simple Network.

Connection Matrix C =



0 1 2 3

1 0 2 4

2 4 0 0

3 1 0 0



Relationship Matrix R =



0 2 1 3

1 0 1 1

2 2 0 0

3 2 0 0


In the data preparation process, we construct the Link Matrix L and the Path

Matrix Pi from connection matrix C and relationship matrix R. The link matrix

contains the adjacent links of the topology and does not change. Therefore, the link

matrix is:

L = P0 =



0 [1, 2] [1, 3] [1, 4]

[2, 1] 0 [2, 3] [2, 4]

[3, 1] [3, 2] 0 0

[4, 1] [4, 2] 0 0



42

At path enumeration step of the path solver performs A* algorithm between L

and Pi to construct Pi+1. As mentioned, we have modified the original A* algorithm

so that we eliminate from Pi those paths that do not conform to the AS relationship

policy rules. For instance, P1 does not contain any loops or paths that are not valley

free:

L ⊗ P0 = P1 =



0 0 [1, 2, 3] [1, 2, 4]

0 0 [2, 1, 3] 0

[3, 2, 1] [3, 1, 2] 0 [3, 2, 4]

[4, 2, 1] 0 [4, 2, 3] 0


The routing table RT at a given time is produced by adding the Pi matrices

calculated up to that point. Note that matrix Pi+1 contains paths that are longer by

one link compared to the paths of matrix Pi.

RT = RT + P0 =



0 [1, 2] [1, 3] [1, 4]

[2, 1] 0 [2, 3] [2, 4]

[3, 1] [3, 2] 0 0

[4, 1] [4, 2] 0 0



RT = RT + P1 =



0 [1, 2] [1, 3][1, 2, 3] [1, 4][1, 2, 4]

[2, 1] 0 [2, 3][2, 1, 3] [2, 4]

[3, 1][3, 2, 1] [3, 2][3, 1, 2] 0 [3, 2, 4]

[4, 1][4, 2, 1] [4, 2] [4, 2, 3] 0



It is essential to note an important feature of our path solver solution with the A*

algorithm. The element at position (l,m) of the routing table RT matrix contains a

set of paths rather than a single path: it contains all paths from node l to node m

43

that are acceptable under given policies.

4.1.2 Shared-Array Path Solver

In Section 4.1.1, we have learned that arrays of Shared-Array is not allowed. To

use the advantage of the Shared-Array, we need to declare the Bit-type data structure

to replace arrays.

Our new Bit-type data structure Path is defined as:

s t r u c t Path{N}

o : : Int64 #Orig in Node

d : : Int64 #Dest inat i on Node

p : : NTuple{N, Int64 } #Path

end

With Bit type Shared-Array, we construct the Link Matrix L and the Path Matrix

Pi by using the Bit type Path. Using the same example in Section 4.1.1, the simulation

process looks like this:

At the data preparation step:

L = P0 =



P (0, 0, (0, 0)) P (1, 2, (1, 2)) P (1, 3, (1, 3)) P (1, 4, (1, 4))

P (2, 1, (2, 1)) P (0, 0, (0, 0)) P (2, 3, (2, 3)) P (2, 4, (2, 4))

P (3, 1, (3, 1)) P (3, 2, (3, 2)) P (0, 0, (0, 0)) P (0, 0, (0, 0))

P (4, 1, (4, 1)) P (4, 2, (4, 2)) P (0, 0, (0, 0)) P (0, 0, (0, 0))


where P = Path{Int64,Int64,Tuple{}}.

At the path enumeration step:

L ⊙ P0 = P1



0 0 P (1, 3, (1, 2, 3)) P (1, 4, (1, 2, 4))

0 0 P (2, 3, (2, 1, 3)) 0

P (3, 1, (3, 2, 1)) P (3, 2, (3, 1, 2)) 0 P (3, 4, (3, 2, 4))

P (4, 1, (4, 2, 1)) 0 P (4, 3, (4, 2, 3)) 0


where P = Path{Int64,Int64,Tuple{}}.

The data type conversion from Julia Shared-Array to Julia Build-in Array during

44

the routing table calculation process.

RT = RT + P0 =



0 [1, 2] [1, 3] [1, 4]

[2, 1] 0 [2, 3] [2, 4]

[3, 1] [3, 2] 0 0

[4, 1] [4, 2] 0 0



RT = RT + P1 =



0 [1, 2] [1, 3][1, 2, 3] [1, 4][1, 2, 4]

[2, 1] 0 [2, 3][2, 1, 3] [2, 4]

[3, 1][3, 2, 1] [3, 2][3, 1, 2] 0 [3, 2, 4]

[4, 1][4, 2, 1] [4, 2] [4, 2, 3] 0


4.1.3 Parallel Path Solver

The parallel A* implementation parallelizes the matrix multiplication dividing

column of Link matrix L among different threads that all share Path matrix Pi and

produce other rows of the matrix Pi+1. The parallel process is described in Figure 4.3.

45

Figure 4.3: Flowchart of the Parallel Path Solver.

If we use the same example from Section 4.1.1, the parallel simulation process

with two cores looks like this:

L = P0 =



0 [1, 2] [1, 3] [1, 4]

[2, 1] 0 [2, 3] [2, 4]

[3, 1] [3, 2] 0 0

[4, 1] [4, 2] 0 0



46

RT = RT + P0 =



0 [1, 2] [1, 3] [1, 4]

[2, 1] 0 [2, 3] [2, 4]

[3, 1] [3, 2] 0 0

[4, 1] [4, 2] 0 0


On the core-1:

Sub-P0-1 =

 0 [1, 2] [1, 3] [1, 4]

[2, 1] 0 [2, 3] [2, 4]



Sub-L-1 =



0 [1, 2]

[2, 1] 0

[3, 1] [3, 2]

[4, 1] [4, 2]



Sub-L-1 ⊗ Sub-P0-1 = Sub-P1 − 1 =

0 0 [1, 2, 3] [1, 2, 4]

0 0 [2, 1, 3] 0


On the core-2:

Sub-P0-2 =

[3, 1] [3, 2] 0 0

[4, 1] [4, 2] 0 0



Sub-L-2 =



[1, 3] [1, 4]

[2, 3] [2, 4]

0 0

0 0



47

Sub-L-2 ⊗ Sub-P0-2 = Sub-P1-2 =

[3, 2, 1] [3, 1, 2] 0 [3, 2, 4]

[4, 2, 1] 0 [4, 2, 3] 0


Reduce process:

Sub-P1-1 + Sub-P1-1 = P1 =



0 0 [1, 2, 3] [1, 2, 4]

0 0 [2, 1, 3] 0

[3, 2, 1] [3, 1, 2] 0 [3, 2, 4]

[4, 2, 1] 0 [4, 2, 3] 0



RT = RT + P1 =



0 [1, 2] [1, 3][1, 2, 3] [1, 4][1, 2, 4]

[2, 1] 0 [2, 3][2, 1, 3] [2, 4]

[3, 1][3, 2, 1] [3, 2][3, 1, 2] 0 [3, 2, 4]

[4, 1][4, 2, 1] [4, 2] [4, 2, 3] 0


4.1.4 Router Level Path Solver

The router-level path solver uses the Single Router Pair Matrix in Section 3.5.2 or

Multiple Router Pair Matrix in Section 3.5.2 during the general path solver process

to simulate router-level routing path and create a routing table between two specific

ASes with the routing policy mark.

For instance, we use the simple network model from Section 4.1.1. Based on AS

level network topology, we create a simple router-level network topology that shows

in the following Figure 4.4 if we ignore the type of AS.

48

Figure 4.4: Simple Router-Level Network

Based on the router-level network topology, we can create five distance matrix:

DAS2,AS1,DAS2,AS3,DAS2,AS4,DAS1,AS3,DAS1,AS4 used to select border router between

ASes. For instance, the distance matrix DAS2,AS1 used to select border router pairs

between AS-2 and AS-1, and he distance matrix DAS2,AS1 is shown in the following:

Distance Matrix DAS2,AS1 =



AS − 1

d11 d12 d13

AS − 2 d21 d22 d23

d31 d32 d33

d41 d42 d43


The next step is creating the Single Router Pair Matrix or Multiple Router Pair

Matrix based on the distance matrix. We use the router-level network in Figure 4.4.

49

We construct Single Router Pair Matrix SP, where the router pair is the minimum

distance between two ASes, and Multiple Router Pair Matrix MP, where the router

pair is the minimum and maximum distance between two ASes.

If the Single Router Pair Matrix SP is:

SP =



AS − 1 AS − 2 AS − 3 AS − 4

AS − 1 0 [3, 2] [3, 1] [3, 2]

AS − 2 [2, 3] 0 [2, 1] [2, 1]

AS − 3 [1, 3] [1, 2] 0 0

AS − 4 [2, 3] [1, 2] 0 0


The whole simulation process looks like this:

L = P0 =



0 [1, 2] [1, 3] [1, 4]

[2, 1] 0 [2, 3] [2, 4]

[3, 1] [3, 2] 0 0

[4, 1] [4, 2] 0 0


RT = RT + P0 + SP =

0 [AS1R3, AS2R2] [AS1R3, AS3R1] [AS1R3, AS4R2]

[AS2R2, AS1R3] 0 [AS2R2, AS3R1] [AS2R2, AS4R1]

[AS3R1, AS1R3] [AS3R1, AS2R2] 0 0

[AS4R2, AS1R3] [AS4R1, AS2R2] 0 0



L ⊗ P0 = P1 =



0 0 [1, 2, 3] [1, 2, 4]

0 0 [2, 1, 3] 0

[3, 2, 1] [3, 1, 2] 0 [3, 2, 4]

[4, 2, 1] 0 [4, 2, 3] 0



50

RT = RT + P1 + SP =

... ... [AS1R3, AS3R1][AS1R3, AS2R2, AS3R1] ...

... ... [AS2R2, AS3R1][AS2R2, AS1R3, AS3R1] ...

... ... 0 ...

... ... [AS4R1, AS2R2, AS3R1] ...


If the Multiple Router Pair Matrix MP is:

MP =



AS − 1 AS − 2 AS − 3 AS − 4

AS − 1 0 [3, 2][2, 1] [3, 1][2, 3] [3, 2][2, 1]

AS − 2 [2, 3][1, 2] 0 [2, 1][4, 2] [2, 1][1, 2]

AS − 3 [1, 3][3, 2] [1, 2][2, 4] 0 0

AS − 4 [2, 3][1, 2] [1, 2][2, 1] 0 0


The whole simulation process looks like this:

L = P0 =



0 [1, 2] [1, 3] [1, 4]

[2, 1] 0 [2, 3] [2, 4]

[3, 1] [3, 2] 0 0

[4, 1] [4, 2] 0 0


RT = RT + P0 + SP =

... [AS1R3, AS2R2][AS1R2, AS2R1]

... 0

... [AS3R1, AS2R2][AS3R2, AS2R4]

... [AS4R1, AS2R2][AS4R2, AS2R1]



51

L ⊗ P0 = P1 =



0 0 [1, 2, 3] [1, 2, 4]

0 0 [2, 1, 3] 0

[3, 2, 1] [3, 1, 2] 0 [3, 2, 4]

[4, 2, 1] 0 [4, 2, 3] 0


RT = RT + P1 + SP =(

... [AS1R3,AS2R2][AS1R2,AS2R1]

... 0

... [AS3R1,AS2R2][AS3R2,AS2R4][AS3R1,AS1R3,AS2R2,][AS3R2,AS1R2,AS2R1]

... [AS4R1,AS2R2][AS4R2,AS2R1]

)

Using the router-level path solver, we can generate a routing table between two

specific ASes. For the same example, the following two screenshots Figure 4.5 and

Figure 4.6 show the routing table with the routing policy mark between AS-2 and

AS-3.

Figure 4.5: Screenshot of Single Pair Routing Table.

Figure 4.6: Screenshot of Multiple Pair Routing Table.

From Figure 4.5, we find 2 router paths and 2 AS paths between AS-2 and AS-3.

But in Figure 4.6, we find 6 router paths and 2 AS paths between AS-2 and AS-3.

52

Let’s find router paths for AS path [2,3] in these two figures.

In Figure 4.5, we find only one router path: AS2−R2 −→ AS3−R1 for AS path

[2,3]. Because in the Single Router Pair Matrix SP, SP2,3 is [2,1]. In Figure 4.6, we

find two router paths: AS2−R2 −→ AS3−R1 and AS2−R4 −→ AS3−R2 for AS

path [2,3]. Because in the Multiple Router Pair Matrix MP, MP2,3 is [2,1] and [4,2].

4.2 Path Prefix Attack

In our original routing path solver, each node of the network announces a unique

IP prefix. In the path prefix attack model, we select a node to act maliciously and

pretend to be the origin of a prefix that belongs to a different node. The path prefix

attack process is depicted in Figure 4.7.

Figure 4.7: Process of Path Prefix Attack.

In order to explain this process, we use the same example in Section 4.1.1. And

we make a simple assumption that node 4 pretends its prefix belongs to node 3. In

other words, node 4 has the same prefix as node 3.

53

Link Matrix L =



0 [1, 2] [1, 3] [1, 4]

[2, 1] 0 [2, 3] [2, 4]

[3, 1] [3, 2] 0 0

[4, 1] [4, 2] 0 0



original Path Matrix P0 =



0 [1, 2] [1, 3] [1, 4]

[2, 1] 0 [2, 3] [2, 4]

[3, 1] [3, 2] 0 0

[4, 1] [4, 2] 0 0



new Path Matrix P0 =



0 [1, 2] [1, 3][1, 4] [1, 4]

[2, 1] 0 [2, 3][2, 4] [2, 4]

[3, 1] [3, 2] 0 0

[4, 1] [4, 2] 0 0


The only difference with the general path solver process, Link Matrix L does not

equal Path Matrix P0. We build a new Path Matrix P0 in the path prefix attack

process by inserting fake paths.

We analyze the network depicted to find the most vulnerable nodes for a path

origin attack. For each network node, we run experiments in which one of the other

network nodes performed a path origin attack impersonating it. We also counted

every node result and calculated the total attack percentage of the network. The

superficial result displays in the following Figure 4.8.

We also analyze the successful attack percentage based on the AS type. The

following Figure 4.9. shows an example of the attack statistics result.

54

Figure 4.8: Screenshot of Attack Result.

Figure 4.9: Screenshot of Attack Statistics.

55

Chapter5

TEST CASES AND SIMULATION RESULTS

In the previous chapters, we have presented the design and implementation of the

routing path solver, router-level path solver, path prefix attack, and All Pairs Monte

Carlo method. This chapter will present all the test cases we used in the project. The

hardware and software infrastructure that supports the running code is also described

in this chapter. We also summarized and visualized the results in Figure. At last, we

provide all simulation results in the Table listed in Appendix B.

5.1 All Test Cases

We tested our path solver on ten random network models of differing sizes, and

descriptions of these are shown in Table 5.1.

Table 5.1: Path Solver Test Cases

Case Network Size Number of Tier-1 Number of Tier-X Number of Stubs
1 38 1 5 32
2 94 5 10 79
3 219 10 25 184
4 406 15 50 341
5 688 10 100 578
6 1031 15 150 866
7 1656 15 250 1391
8 2281 15 350 1916
9 3281 25 500 2756
10 4844 25 75 4744

We also generated eight random network topologies of differing sizes with different

density to compare the All Pairs Monte Carlo method and the A* Algorithm. These

test cases are shown in Table 5.2 and the adjacency matrix is given in Appendix A.

The density of the network defines the ratio of connected nodes and total nodes.

56

Table 5.2: Monte Carlo Method Test Cases

Case Network Size Density
1 4 0.375
2 4 0.75
3 8 0.375
4 8 0.875
5 12 0.354
6 12 0.868
7 16 0.340
8 16 0.719

5.2 Hardware and Software Configuration

All programs are written in Julia language, and the hardware configuration used

in our experiments list in the following Table 5.3. The only required software is Julia.

For Julia, Software Version V1.0.1 or higher is required. We ran our experiments on

a macOS Mojave Version 10.14.5 system for the Local Machine, CentOS Linux 7 for

the Pascal, and Red Hat Enterprise Linux 8.3 for the Raj Server. But, there is no

specific OS requirement.

Raj Server is Marquette’s centrally managed HPC cluster to promote research and

scholarship. The Raj Server brought online in April 2021. Raj Server has three main

components: the nodes (or servers/computers), the storage system and the network.

Raj has several classes of nodes including a login node, a management node, general

compute nodes, large memory compute nodes, massive memory compute nodes, GPU

compute nodes and AI/ML nodes.[6] The general compute nodes are the backbone of

the system providing resources for traditional CPU intensive computations. We use

the general compute nodes to perform our program in our project.

The primary method for scheduling and executing tasks on Raj is Slurm (Simple

Linux Utility for Resource Management). Because Raj is a campus-wide resource with

a limited size of CPUs, users are not allowed to run programs or conduct simulations

directly on compute nodes as they might on a private cluster such as Pascal Server.

57

Table 5.3: Hardware Configuration

Local Pascal Server Raj Server
Processor Inter Core I5 Xeon(R) Gold 5118 AMD EPYC 7702

Processor Speed 3.1 GHz 2.3GHz 2.0GHz
Total Number of Cores 2 48 128

5.3 Path Solver Experiments Result

We deploy three different versions of the routing path solver in Julia, as we have

described in Section 4.1 on three different running environments. In the deployment,

we evaluate the execution time and memory usage. We also assess the performance

for two parallel versions when the number of cores is 4,8,16, and 32. In this section,

we visualize all results in figures.

5.3.1 Serial Version Result

This section shows the general routing path solver with the serial implementation

with Julia build-in array results on the different running environments. Figure 5.1

displays execution time and memory usage results on the local machine in the first

six test cases. Figure 5.2 presents execution time and memory usage results on Pascal

Server with a maximum topology of 2281 ASes. Figure 5.3 shows execution time and

memory usage results on Raj Server with a maximum topology of 3281 ASes.

These three figures indicated that execution time and memory usage increase as

the network size increases, no matter which running environment is used.

58

Figure 5.1: Serial Version Result on Local Machine.

Figure 5.2: Serial Version Result on Pascal Server.

Figure 5.3: Serial Version Result on Raj Server.

59

5.3.2 Parallel Version Result

This section shows the general routing path solver in the parallel implementation

with Julia build-in array results on the different running environments with 4,8,16,

and 32 cores. Figure 5.4 displays execution time and memory usage results on the

local machine in the first six test cases. Figure 5.5 and Figure 5.6 present execution

time and memory usage results on Pascal Server and Raj Server with a maximum

topology of 4844 ASes.

With these figures, we can see that memory usage is linearly related to network

size and core usage no matter which running environment is used. Execution time

result on Pascal Server and Raj Server has a linear relationship with network size and

core usage, but not on a local machine.

Figure 5.4: Parallel Version Result on Local Machine.

Figure 5.5: Parallel Version Result on Pascal Server.

60

Figure 5.6: Parallel Version Result on Raj Server.

5.3.3 Shared-Array Version Result

This section shows the general routing path solver in the parallel implementation

with Julia Shared-Array results on the different running environments with 4,8,16,

and 32 cores. Figure 5.7 displays execution time and memory usage results on the

local machine in the first five test cases. Figure 5.8 and Figure 5.9 present execution

time and memory usage results on Pascal Server and Raj Server with a maximum

topology of 4844 ASes.

From Figure 5.7 we can easily see that the best results are achieved when 4 cores

are used, and the worst effects are obtained when 32 cores are used. This is an

interesting result, and we will discuss this situation in section 6.2.

Figure 5.7: Shared-Array Version Result on Local Machine.

61

Figure 5.8: Shared-Array Version Result on Pascal Server.

Figure 5.9: Shared-Array Version Result on Raj Server.

5.4 Router Level Simulation Result

From the Figure 5.5, Figure 5.6, Figure 5.8, Figure 5.9 and Table B.5, Table B.7,

Table B.11, Table B.13, it is easy to find the parallel implementation using the Julia

built-in array performed significantly better than the shared-array parallel implemen-

tation on Raj Server with 16 cores or 32 cores. We will visualize the compare result

in following Section 6.

So, in this section, we performed the router level simulation on Raj Server with

16 cores using the Julia built-in array. The execution times with the first five test

cases are shown in Table 5.4. We also compared the result between the router level

path solver and general path solver and visualized the result in Figure 5.10.

62

Table 5.4: Router Level Simulation Result

Case Network Size
Execution
Time (Sec)

Router Table
Generation Time (Sec)

1 38 2.31 0.698
2 94 2.73 0.702
3 219 7.00 0.842
4 406 28.50 0.767
5 688 141.00 0.848

Figure 5.10: Compared with General Path Solver.

5.5 Path Prefix Attack Result

We analyzed the network depicted in Figure 5.11 to find the most vulnerable nodes

for a path prefix attack. For each of the nodes of the topology, which are represented

by one row in Table 5.5, we run seven experiments in which one of the other nodes of

the topology performed a path prefix attack impersonating it. We then measured how

many nodes changed their best path selection to select the malicious node instead of

the legitimate one. The aggregate result from all seven experiments represented by

one row in Table 5.5 is reported in the last column.

63

Figure 5.11: Eight node topology.

Table 5.5: Eight Node Network Change in Best Path

Without Malicious

Node Total Path

With Malicious

Node Total Path

Total Best

Path Change

Percentage of

Best Path Change

1 336 372 15 41.6%

2 336 372 11 30.5%

3 280 310 16 53.3%

4 168 186 14 77.7%

5 168 186 14 77.7%

6 112 124 11 91.6%

7 280 310 18 60.0%

8 336 372 15 41.6%

We also analyzed the first three small network models described in Table 5.1. The

execution times and attack statistics result are shown in Table 5.6.

Table 5.6: Attack Simulation Result

Network

Size

Execution

Time(Sec)
Toal of Attack Atack Succcessful

Atack Succcessful

Percentage

38 2.31 1406 796 0.567

94 804 8742 8399 0.960

219 96370 47742 47166 0.988

64

In the path prefix attack simulation process, we also analyzed path prefix attack

based on the AS type. The following Figure 5.12, Figure 5.13, and Figure 5.14 show

the origin attack statistics based on the AS type.

Figure 5.12: Origin Attack Statistics with 38 Node Network.

Figure 5.13: Origin Attack Statistics with 94 Node Network.

Figure 5.14: Origin Attack Statistics with 219 Node Network.

65

5.6 Monte Carlo Method Result

In this section, we performed our All Pairs Monte Carlo Method described in

Section 3.6.2 with the network model described in Table 5.2. The execution times

and estimated number of paths are shown in Table 5.7 and Table 5.8.

Table 5.7: Monte Carlo Simulation Execution Time Result

Case
Network

Size
Density

LM Method

Execution

Time(Sec)

All Pairs

Monte Carlo

Execution Time(Sec)

1 4 0.375 1.00 0.69

2 4 0.75 0.70 0.73

3 8 0.375 0.397 0.736

4 8 0.875 1.18 0.94

5 12 0.354 0.69 1.33

6 12 0.868 139111 228

7 16 0.340 2292 54.9

8 16 0.719 303910 321

66

Table 5.8: Monte Carlo Simulation Number of Path Result

Case
Network

Size
Density

Actual Number

of Path

Estimating

Number of Path

Estimating

Accuracy

1 4 0.375 12 11.98 99.9%

2 4 0.75 60 60 100%

3 8 0.375 554 554.84 99.8%

4 8 0.875 109592 109592.00 100%

5 12 0.354 58543 58475.95 99.8%

6 12 0.868 748355761 748458193 99.9%

7 16 0.340 59499502 59633331 99.7%

8 16 0.719 135305299183 135293363754 99.9%

67

Chapter6

SIMULATION RESULT DISCUSSION

This chapter compares different version path solver results with the same running

environments and discusses single version path solver in different running environ-

ments. This section used parallel performance metrics to analyze and investigate the

A* algorithm’s performance and scale-ability.

The parallel execution time is defined as the time that elapses from the moment a

parallel computation starts to when the last processor finishes execution. So, we use

Ts to represent the serial execution time and Tp to represent the parallel execution

time.

The speedup is defined as the ratio of the serial run time of the best sequential

algorithm for solving a problem to the time taken by the parallel algorithm to solve

the same problem on p processors.

6.1 Compare Different Running Environments

According to the results in Section 5.3, we visualized result in Figure 6.1, Figure 6.2

and Figure 6.3.

From Figure 6.1, we can find that Raj Server has better performance than Pascal

Server and Local at serial version. Raj Server performs better and better as the

network size grows. This result also reflects the hardware configuration in Table 5.3.

Figure 6.2 and Figure 6.3 show that Raj Server does not always have better

performance than Pascal Server and Local. Pascal Server performs better at parallel

and shared-array versions with 4 and 8 cores. The efficiency of the Pascal Server

decreases significantly with increased cores usage and network size. Raj Server has

better performance at 16 and 32 cores with a large network.

68

Figure 6.1: Serial Version Execution Time(Mins).

Figure 6.2: Parallel Version Execution Time(Mins) with different cores.

69

Figure 6.3: Shared-Array Version Execution Time(Mins) with different cores.

6.2 Two Parallel Version on Different Environments

According to the results in Section 5.3.2 and Section 5.3.3, we visualized two

parallel version result in Figure 6.4 and Figure 6.5

Figure 6.4 shows the parallel version with Julia build-in array results on different

running environments. Typically, the execution time decreases as increases of the

number of cores. In this figure, we prove this point.

70

Figure 6.4: Parallel Version Execution Time(Mins).

Figure 6.5 shows the parallel version with Julia shared-array results on different

running environments. In the figure, we find that on Pascal Server and Raj Server,

when the network size is 4844, the shared-array version with 32 cores speed more time

than other cores. We call this phenomenon overhead. To understand this overhead

phenomenon, we compute speedup for shared-array results.

71

Figure 6.5: Shared-Array Version Execution Time(Mins).

Figure 6.6 shows speedup result with 16 cores and 32 cores . The speedup de-

pend on problem size and number of processes. Typically, the speed up increases as

increases of problem size and number of processes. When the maximum speedup is

achieved, the speedup will decrease as number of processes increase. And we call this

is overhead.

Figure 6.6: Computed Speedup.

72

We find the overhead phenomenon is obvious on Raj Server at network size is

3281 and 4844 , the overhead arises because shared memory has to be used for com-

munication and synchronization.

In the Figure 6.7, it is clear that the sharp increase in memory usage at network

size is 3281 and 4844.

Figure 6.7: Shared Array Memory Usage on Raj

6.3 Two Parallel Version on Same Environments

In Section 6.2, we visualized two parallel version results on different running en-

vironments. So, in this section, we will compare two parallel version results in the

same environments.

Figure 6.8 and Figure 6.9 visualized two parallel version execution time compare

on the Pascal Server and Raj Server.

From Figure 6.8 and Figure 6.9, we find that only with 4 cores at a network size

is 4844, shared-array parallel implementation has better performance. So, we can say

that the parallel implementation using the Julia built-in array performed significantly

better than the shared-array parallel implementation.

The reason for this situation is because of Bit-type. In Section 4.1.2, we discussed

the Bit type and Shared-Array data structure. The original Shared-Array takes ad-

73

vantage of the shared memory parallel programming model across all processes, but

this advantage is not shown in our method.

To use Shared-Array, we declared a new Bit-type data structure Path, and we need

to do a type convert in every single iteration. That processes cost more resources

Figure 6.8: Two Parallel Execution Time(Mins) Compare on Pascal.

74

Figure 6.9: Two Parallel Execution Time(Mins) Compare on Raj.

75

Chapter7

CONCLUSION

In this project, we have presented a new BGP simulator and its implementation.

An experiment has been presented to show the performance with different test cases

and three different implementations. However, the experiment has not shown an

advantage of Shared-Array in Julia programming language.

7.1 Conclusion

To sum up, during this project, we have created an efficient routing simulator

for policy-based protocols that enumerates not only the best but all candidate paths

between all nodes of the topology. A path enumeration algorithm - A* algorithm

was created and used in this project. From the result, the new algorithm proves its

reliability and efficiency.

We have experimented with three different versions of the implementation and

identified the one with the best overall performance in the Julia programming lan-

guage. The Julia built-in array’s parallel implementation performed significantly

better than the shared-array parallel implementation and serial implementation.

We have performed AS level simulations with a maximum of 4844 nodes on three

different running environments with three different implementation versions. We

identified the one with the best overall performance for experiments from the result.

We have also performed router level simulations in a maximum topology of 1031

ASes many of which have 3-5 routers each. To maximize the performance of router-

level simulations, we choose the Raj Server as the running environment. We were

implementing a parallel version with the Julia built-in array method with 16 cores.

During the router level simulations process, we generated a router table with all

76

possible paths and identified paths with its business policy.

We have run experiments exploring the effect of a path prefix attack at the best

path selections of the nodes. We have also performed path prefix attack simulation

with a maximum topology of 219 ASes and calculated the attack success percentage

for each network topology. We also analyzed path prefix attacks based on the AS

type.

Finally, we have run Monte Carlo Method experiments with 6 test cases and

compared our All Pairs Monte Carlo method with the A* algorithm.

7.2 Future Work

As mentioned during this project, several features could be refined in this project

if there was more time. First of all, we plan to improve the performance of our

algorithm further to improve scalability. We will experiment on clusters with larger

networks and real-world cases.

Furthermore, try to run an experiment with more diverse sets of business policies.

In this project, we only run an experiment with a simple twob business relationship

policy: Valley-free and loop. We also performed three business policies at router level

simulations to make path selection.

Finally, We further plan to expand our model such that it is able to represent

greater policy diversity within an AS.

77

AppendixA

Adjacency Matrices of Test Cases

Case 1: (size = 4, Low Density)

Adjacency Matrix A =

(
0 1 1 0
1 0 0 0
1 0 0 1
0 0 1 0

)

Case 2: (size = 4, High Density)

Adjacency Matrix A =

(
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

)

Case 3: (size = 8, Low Density)

Adjacency Matrix A =


0 1 1 0 1 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1
1 0 1 0 0 1 1 0
0 0 0 0 1 0 1 1
0 0 0 1 1 1 0 1
0 0 0 1 0 1 1 0


Case 4: (size = 8, High Density)

Adjacency Matrix A =


0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0


Case 5: (size = 12, Low Density)

Adjacency Matrix A =


0 1 1 0 1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 1 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 1 1 0 1 1 1 1 0
1 0 0 0 0 0 1 0 1 1 1 0
0 0 0 1 0 0 1 1 0 1 1 1
0 0 0 0 1 0 1 1 1 0 1 0
0 0 0 0 0 0 1 1 1 1 0 1
0 0 1 0 0 0 0 0 1 0 1 0



78

Case 6: (size = 12, High Density)

Adjacency Matrix A =


0 1 1 1 1 1 1 0 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 0 1 1
1 1 1 0 1 1 1 1 1 1 0 1
1 1 1 0 0 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1 1 1 1 0
1 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 1 1 1 0 0


Case 7: (size = 16, Low Density)

Adjacency Matrix A =



0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1
1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1
1 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1
0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0
1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0
1 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0
1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 1 1 1 0 1 0 0 1 0 1 1 0 1
1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0


Case 8: (size = 16, High Density)

Adjacency Matrix A =



0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1
1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1
1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1
1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1
1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1
1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1
1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0



79

AppendixB

Simulation Results Tables

B.1 Serial Version Result

This section shows routing path solver in the serial version with Julia build-in

array results on the different running environments. Table B.1 and Table B.2 displays

execution time and memory usage result with its running environment with first 6

test case.

Table B.1: Execution Time in Seconds

Case Network Size Local Pascal Server Raj Server

1 38 0.685 0.723 0.968

2 94 1.220 1.100 1.560

3 219 8.400 8.210 8.980

4 406 61.400 53.600 62.10

5 688 455.000 421.000 438.000

6 1031 2733.000 2136.000 2006.000

80

Table B.2: Memory Usage in GiB

Case Network Size Local Pascal Server Raj Server

1 38 0.114 0.048 0.069

2 94 0.503 0.417 0.412

3 219 5.200 4.450 4.440

4 406 36.300 29.800 29.600

5 688 221.000 177.000 192.000

6 1031 1058.000 800.000 789.000

B.2 Parallel Version Result

This section shows routing path solver in the parallel version with Julia build-in

array results on the different running environments. Table B.3 and Table B.4 shows

the parallel first 6 test cases result on local machine with 4,8,16 and 32 cores. In the

Table B.5 and Table B.6, we display parallel result with 4,8,16 and 32 cores for all

test cases on Pascal Server. Raj server result with all test cases is shown in Table B.7

and Table B.8.

Table B.3: Execution Time in Seconds on Local Machine

Case Network Size 4 cores 8 cores 16 cores 32 cores

1 38 3.020 2.430 4.450 12.700

2 94 2.620 3.020 5.250 13.100

3 219 6.100 11.700 12.300 55.500

4 406 36.200 51.900 48.700 122.000

5 688 220.000 314.000 288.000 333.000

6 1031 1583.000 1505.000 1275.000 1967.000

81

Table B.4: Memory Usage in GiB on Local Machine

Case Network Size 4 cores 8 cores 16 cores 32 cores

1 38 0.038 0.038 0.040 0.042

2 94 0.047 0.051 0.059 0.073

3 219 0.129 0.153 0.193 0.269

4 406 0.511 0.606 0.784 1.130

5 688 1.820 2.330 2.790 3.650

6 1031 6.800 8.050 10.100 14.200

Table B.5: Execution Time in Seconds on Pascal Server

Case Network Size 4 cores 8 cores 16 cores 32 cores

1 38 1.920 1.870 2.140 2.060

2 94 2.270 2.190 2.170 2.640

3 219 6.060 5.050 5.560 7.270

4 406 23.300 18.200 16.700 23.000

5 688 135.000 84.900 65.100 69.700

6 1031 607.000 324.000 218.000 226.000

7 1656 2014.000 1103.000 685.000 692.000

8 2281 7469.000 4140.000 2539.000 2388.000

9 3281 31788.000 17678.000 11391.000 10490.000

10 4844 165927.000 76166.000 52394.000 55874.000

82

Table B.6: Memory Usage in GiB on Pascal Server

Case Network Size 4 cores 8 cores 16 cores 32 cores

1 38 0.036 0.039 0.040 0.043

2 94 0.049 0.053 0.058 0.073

3 219 0.128 0.154 0.193 0.274

4 406 0.485 0.620 0.778 1.130

5 688 1.980 2.280 2.910 3.630

6 1031 6.760 7.960 10.100 14.600

7 1656 14.500 16.900 21.100 29.600

8 2281 40.900 47.600 57.900 78.700

9 3281 118.000 134.000 163.000 223.000

10 4844 308.000 350.000 414.000 547.000

Table B.7: Execution Time in Seconds on Raj Server

Case Network Size 4 cores 8 cores 16 cores 32 cores

1 38 2.470 2.460 2.590 2.730

2 94 2.690 2.670 2.780 2.990

3 219 6.470 5.690 5.830 8.150

4 406 28.6 19.700 17.800 24.800

5 688 132.000 88.200 66.800 79.700

6 1031 573.000 385.000 228.000 207.000

7 1656 2130.000 1221.000 818.000 716.000

8 2281 7704.000 3963.000 2343.000 1625.000

9 3281 22599.000 12720.000 10641.000 8447.000

10 4844 160185.000 79419.000 38795.000 29786.000

83

Table B.8: Memory Usage in GiB on Raj Server

Case Network Size 4 cores 8 cores 16 cores 32 cores

1 38 0.039 0.040 0.041 0.042

2 94 0.048 0.052 0.060 0.068

3 219 0.128 0.161 0.195 0.276

4 406 0.483 0.611 0.781 1.070

5 688 1.940 2.180 2.630 3.690

6 1031 6.540 8.190 10.900 14.700

7 1656 14.400 17.200 21.600 30.500

8 2281 40.600 49.400 57.400 78.600

9 3281 118.000 134.000 163.000 223.000

10 4844 331.000 348.000 416.000 546.000

B.3 Shared-Array Version Result

This section shows routing path solver in the parallel version with Julia Shared-

Array results on the different running environments. Table B.9 and Table B.10 shows

the parallel first 5 test cases result on local machine with 4,8,16 and 32 cores. Pascal

server shared-array result with all test cases is shown in Table B.11 and Table B.12.

In the Table B.13 and Table B.14, we display shared-array result with 4,8,16 and 32

cores for all test cases on Raj Server.

84

Table B.9: Execution Time in Seconds on Local Machine

Case Network Size 4 cores 8 cores 16 cores 32 cores

1 38 7.360 10.200 16.700 57.800

2 94 8.940 11.600 18.000 64.300

3 219 21.200 20.400 36.900 135.000

4 406 45.600 41.200 59.500 188.000

5 688 162.000 218.000 282.000 515.000

Table B.10: Memory Usage in GiB on Local Machine

Case Network Size 4 cores 8 cores 16 cores 32 cores

1 38 0.596 0.597 0.599 0.602

2 94 0.745 0.681 0.688 0.767

3 219 1.240 1.170 1.130 1.180

4 406 2.090 2.060 2.320 2.580

5 688 5.720 6.490 6.490 7.270

6 1031 16.900 18.300 Error Error

85

Table B.11: Execution Time in Seconds on Pascal Server

Case Network Size 4 cores 8 cores 16 cores 32 cores

1 38 9.120 9.100 9.590 10.000

2 94 11.700 10.500 10.800 11.500

3 219 18.200 18.300 18.500 19.400

4 406 35.400 31.800 30.300 31.300

5 688 122.000 83.100 67.200 74.700

6 1031 459.000 298.000 208.000 217.000

7 1656 1390.000 779.000 571.000 592.000

8 2281 6114.000 3912.000 2800.000 2723.000

9 3281 28903.000 18949.000 15276.000 21878.000

10 4844 133964.000 91195.000 106104.000 140145.000

Table B.12: Memory Usage in GiB on Pascal Server

Case Network Size 4 cores 8 cores 16 cores 32 cores

1 38 0.521 0.522 0.522 0.525

2 94 0.660 0.603 0.606 0.616

3 219 0.990 1.070 1.100 1.170

4 406 1.970 2.060 2.200 2.480

5 688 5.760 5.620 5.930 7.110

6 1031 17.300 18.200 19.400 23.800

7 1656 35.600 37.000 40.900 47.300

8 2281 102.000 111.000 116.000 132.000

9 3281 314.000 330.000 350.000 401.000

10 4844 879.000 882.000 965.000 1062.000

86

Table B.13: Execution Time in Seconds on Raj Server

Case Network Size 4 cores 8 cores 16 cores 32 cores

1 38 10.800 11.200 10.900 13.100

2 94 14.800 14.100 13.300 13.100

3 219 20.800 19.500 19.800 24.800

4 406 41.400 36.900 35.300 35.500

5 688 135.000 96.900 76.100 84.100

6 1031 530.000 340.000 199.000 167.000

7 1656 1666.000 1249.000 687.000 494.000

8 2281 7332.000 3587.000 2111.000 2281.000

9 3281 24653.000 20695.000 17811.000 21810.000

10 4844 147082.000 124721.000 82347.000 102175.000

Table B.14: Memory Usage in GiB on Raj Server

Case Network Size 4 cores 8 cores 16 cores 32 cores

1 38 0.550 0.550 0.522 0.554

2 94 0.673 0.677 0.783 0.638

3 219 0.960 0.980 1.070 1.220

4 406 1.820 1.900 2.160 2.320

5 688 4.740 4.950 5.310 6.350

6 1031 15.600 15.500 18.100 20.700

7 1656 30.700 35.300 36.100 43.000

8 2281 88.100 92.300 102.000 122.000

9 3281 278.000 284.000 312.000 362.000

10 4844 774.000 794.000 848.000 960.000

87

Bibliography

[1] C-BGP. http://c-bgp.sourceforge.net/.

[2] Nist rpki monitor. https://rpki-monitor.antd.nist.gov/.

[3] Resource public key infrastructure (rpki). https://www.apnic.net/get-ip/

faqs/rpki/.

[4] Ris raw data. https://www.ripe.net/analyse/internet-measurements/

routing-information-service-ris/ris-raw-data.

[5] Routeviews. http://www.routeviews.org/routeviews/.

[6] System architecture. https://www.marquette.edu/

high-performance-computing/architecture.php.

[7] What is bgp hijacking? https://www.cloudflare.com/learning/security/

glossary/bgp-hijacking/.

[8] A Border Gateway Protocol 4 (BGP-4). RFC 1771, Mar. 1995.

[9] Experts detailed how China Telecom used BGP hijacking to redi-

rect traffic worldwide. https://www.cyberdefensemagazine.com/

experts-detailed-how-china-telecom-used-bgp-hijacking-to-redirect-traffic-worldwide/,

Nov. 2018.

[10] Abhashkumar, A., Gember-Jacobson, A., and Akella, A. Tiramisu:

Fast multilayer network verification. In 17th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 20) (Santa Clara, CA, Feb. 2020),

USENIX Association, pp. 201–219.

88

[11] Ballani, H., Francis, P., and Zhang, X. A study of prefix hijacking

and interception in the internet. SIGCOMM ’07, Association for Computing

Machinery, p. 265–276.

[12] Bellovin, S., Bush, R., and Ward, D. Security Requirements for BGP

Path Validation. RFC 7353, Aug. 2014.

[13] Bezanson, J., Karpinski, S., B. Shah, V., and Alan, E. WhyWe Created

Julia.

[14] Bezanson, J., Karpinski, S., and Edelman, A. The julia language. https:

//julialang.org/benchmarks/.

[15] Butler, K., Farley, T. R., McDaniel, P., and Rexford, J. A survey of

bgp security issues and solutions. Proceedings of the IEEE 98, 1 (2010), 100–122.

[16] Butler, K., McDaniel, P., and Aiello, W. Optimizing bgp security

by exploiting path stability. In Proceedings of the 13th ACM Conference on

Computer and Communications Security (New York, NY, USA, 2006), CCS ’06,

Association for Computing Machinery, p. 298–310.

[17] Cho, S., Fontugne, R., Cho, K., Dainotti, A., and Gill, P. Bgp hijack-

ing classification. In 2019 Network Traffic Measurement and Analysis Conference

(TMA) (2019), pp. 25–32.

[18] Chung, T., Aben, E., Bruijnzeels, T., Chandrasekaran, B.,

Choffnes, D., Levin, D., Maggs, B. M., Mislove, A., Rijswijk-Deij,

R. v., Rula, J., and Sullivan, N. Rpki is coming of age: A longitudinal

study of rpki deployment and invalid route origins. In Proceedings of the Internet

Measurement Conference (New York, NY, USA, 2019), IMC ’19, Association for

Computing Machinery, p. 406–419.

89

[19] Cohen, A., Gilad, Y., Herzberg, A., and Schapira, M. One hop for rpki,

one giant leap for bgp security. In Proceedings of the 14th ACM Workshop on

Hot Topics in Networks (New York, NY, USA, 2015), HotNets-XIV, Association

for Computing Machinery.

[20] Cohen, A., Gilad, Y., Herzberg, A., and Schapira, M. Jumpstarting

bgp security with path-end validation. In Proceedings of the 2016 ACM SIG-

COMM Conference (New York, NY, USA, 2016), SIGCOMM ’16, Association

for Computing Machinery, p. 342–355.

[21] Demchak, C. C., and Shavitt, Y. China’s maxim–leave no access point

unexploited: The hidden story of china telecom’s bgp hijacking. Military Cyber

Affairs 3, 1 (2018), 7.

[22] Dimitropoulos, X. A., and Riley, G. F. Efficient large-scale bgp simula-

tions. Computer Networks 50, 12 (Aug 2006), 2013–2027.

[23] Feamster, N., Winick, J., and Rexford, J. A model of bgp routing for

network engineering. SIGMETRICS Perform. Eval. Rev. 32, 1 (June 2004),

331–342.

[24] Fu, Y. RPKI Deployment Considerations: Problem Analysis and Alternative

Solutions. Tech. rep.

[25] Gao, L. On inferring autonomous system relationships in the internet.

IEEE/ACM Trans. Netw. 9, 6 (Dec. 2001), 733–745.

[26] Gilad, Y., Cohen, A., Herzberg, A., Schapira, M., and Shulman, H.

Are we there yet? on rpki’s deployment and security. IACR Cryptol. ePrint

Arch. 2016 (2017), 1010.

90

[27] Gilad, Y., Hlavacek, T., Herzberg, A., Schapira, M., and Shulman,

H. Perfect is the enemy of good: Setting realistic goals for bgp security. In

Proceedings of the 17th ACM Workshop on Hot Topics in Networks (New York,

NY, USA, 2018), HotNets ’18, Association for Computing Machinery, p. 57–63.

[28] Giotsas, V., and Zhou, S. Valley-free violation in internet routing - analy-

sis based on bgp community data. In 2012 IEEE International Conference on

Communications (ICC) (June 2012), pp. 1193–1197.

[29] Gondran, M., and Minoux, M. Graphs, Dioids and Semirings: New Models

and Algorithms (Operations Research/Computer Science Interfaces Series), 1 ed.

Springer Publishing Company, Incorporated, 2008.

[30] Goodin, D. Citing BGP hijacks and hack attacks, feds want China Telecom

out of the US, Apr. 2020.

[31] Haberman, B. K. Routing Information Verification Tool for Securing Inter-

Domain Routing Information. PhD thesis, USA, 2011. AAI3483282.

[32] Hawkinson, J., and Bates, T. Rfc1930: Guidelines for creation, selection,

and registration of an autonomous system (as), 1996.

[33] Hlavacek, T., Herzberg, A., Shulman, H., and Waidner, M. Prac-

tical experience: Methodologies for measuring route origin validation. In 2018

48th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN) (2018), IEEE, pp. 634–641.

[34] Hunt, C. TCP IP Network Administration. O’Reilly amp; Associates, 2002.

[35] Johnson, S. G. Introduction to julia:why are we doing this to you? University

Lecture, 2017.

91

[36] Kwon, C. Julia Programming for Operations Research. Changhyun Kwon.,

2019.

[37] Kwon, C., and Saba, E. Pathdistribution.jl. https://github.com/chkwon/

PathDistribution.jl, 2021.

[38] Laub, P. Crude monte carlo. https://www.youtube.com/watch?v=

YLOZ3eb7pqU.

[39] Levy, M. J. Rpki - the required cryptographic upgrade to bgp routing, Sep

2018.

[40] Lina Ding, Xingwei Wang, Fuliang Li, and Min Huang. A parallel

processing method for border gateway protocol update messages. In 2015 12th

International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)

(Aug 2015), pp. 2044–2048.

[41] Masip-Bruin, X., Yannuzzi, M., and Siddiqui, M. S. Inter Domain Rout-

ing Security: Securing BGP, 1 ed. Wiley-IEEE Press, 2014.

[42] McDaniel, P., and Butler, K. Testing large scale bgp security in replayable

network environments. In DETER Community Workshop on Cyber Security

Experimentation and Test (2006).

[43] Mitseva, A., Panchenko, A., and Engel, T. The state of affairs in bgp

security: A survey of attacks and defenses. Computer Communications 124

(2018), 45 – 60.

[44] Mohapatra, P., Scudder, J., Ward, D., Bush, R., and Austein, R.

BGP Prefix Origin Validation. RFC 6811, Jan. 2013.

[45] Murphy, S. Bgp security vulnerabilities analysis, 2006.

92

[46] Oryu, T., and Ishibashi, K. Simulation evaluation of rpki deployment based

on cost-benefit analysis. IEICE Proceedings Series 68, C1-2 (2021).

[47] Perouli, D., Griffin, T. G., Maennel, O., Fahmy, S., Pelsser, C.,

Gurney, A., and Phillips, I. Detecting unsafe bgp policies in a flexible

world. In Proceedings of the 2012 20th IEEE International Conference on Net-

work Protocols (ICNP) (Washington, DC, USA, 2012), ICNP ’12, IEEE Com-

puter Society, pp. 1–10.

[48] Premore, B. J., and Nicol, D. M. An Analysis of Convergence Properties

of the Border Gateway Protocol Using Discrete Event Simulation. PhD thesis,

USA, 2003. AAI3097799.

[49] Project, T. J. The julia language, January 2019.

[50] Quoitin, B., and Uhlig, S. Modeling the routing of an autonomous system

with c-bgp. Netwrk. Mag. of Global Internetwkg. 19, 6 (Nov. 2005), 12–19.

[51] Rekhter, Y., Hares, S., and Li, T. A Border Gateway Protocol 4 (BGP-4).

RFC 4271, Jan. 2006.

[52] Reuter, A., Bush, R., Cunha, I., Katz-Bassett, E., Schmidt, T. C.,

and Wählisch, M. Towards a rigorous methodology for measuring adoption of

rpki route validation and filtering. ACM SIGCOMM Computer Communication

Review 48, 1 (2018), 19–27.

[53] Roberts, B., and Kroese, D. Estimating the number of s-t paths in a graph.

J. Graph Algorithms Appl. 11 (01 2007), 195–214.

[54] Roughan, M. 2d computational geometry package for julia (programming

language), Oct 2014.

93

[55] Roughan, M., Willinger, W., Maennel, O., Perouli, D., and Bush,

R. 10 lessons from 10 years of measuring and modeling the internet’s autonomous

systems. IEEE Journal on Selected Areas in Communications 29, 9 (October

2011), 1810–1821.

[56] Ruan, L., and Susan-Varghese, J. Computing observed autonomous system

relationships in the internet. In Computer Science Technical Reports (2014).

[57] Sermpezis, P., Kotronis, V., Dainotti, A., and Dimitropoulos, X. A

survey among network operators on bgp prefix hijacking. SIGCOMM Comput.

Commun. Rev. 48, 1 (apr 2018), 64–69.

[58] Sobrinho, J. a. L. Network routing with path vector protocols: Theory and

applications. SIGCOMM ’03, Association for Computing Machinery, p. 49–60.

[59] Vervier, P.-A., Thonnard, O., and Dacier, M. Mind your blocks: On

the stealthiness of malicious bgp hijacks. In NDSS (2015).

[60] Wählisch, M., Maennel, O., and Schmidt, T. C. Towards detecting bgp

route hijacking using the rpki. SIGCOMM Comput. Commun. Rev. 42, 4 (aug

2012), 103–104.

[61] Yeh, W.-C. A new monte carlo method for the network reliability. In Proceed-

ings of First International Conference on Information Technologies and Appli-

cations (ICITA2002) (2002), Citeseer.

[62] Yoon, S., and Kim, Y. B. A design of network simulation environment using

ssfnet. In 2009 First International Conference on Advances in System Simulation

(Sep. 2009), pp. 73–78.

[63] Zhang, Z., Zhang, Y., Hu, Y. C., and Mao, Z. M. Practical defenses

against bgp prefix hijacking. In Proceedings of the 2007 ACM CoNEXT Con-

94

ference (New York, NY, USA, 2007), CoNEXT ’07, Association for Computing

Machinery.

	All Pairs Routing Path Enumeration Using Latin Multiplication and Julia
	tmp.1651165003.pdf.ZwbxO

