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Abstract 
We study some mathematical properties of a new generator of continuous distributions called the Odd 
Nadarajah-Haghighi (ONH) family. In particular, three special models in this family are investigated, namely 
the ONH gamma, beta and Weibull distributions. The family density function is given as a linear 
combination of exponentiated densities. Further, we propose a bivariate extension and various 
characterization results of the new family. We determine the maximum likelihood estimates of ONH 
parameters for complete and censored data. We provide a simulation study to verify the precision of these 
estimates. We illustrate the performance of the new family by means of a real data set. 

1. Introduction 
Statistical models are very useful in describing and predicting real world phenomena. Over 

the last decades, numerous extended distributions have been successfully used for modeling data 
obtained from applications in several areas. Recent developments aim to generate new families 
by extending well-known distributions and, at the same time, provide great flexibility in modeling 
data in practice. Thus, several classes distributions via generating new distributions by adding one 
or more parameters have been proposed in the statistical literature. Some well-known families 
are the exponentiated-G (exp-G) by Mudholkar and Srivastava ([14]), Marshall-Olkin-G by Marshall 
and Olkin ([13]), beta-G by Eugene et al. ([5]), gamma-G by Zografos and Balakrishnan ([21]), 
Kumaraswamy-G by Cordeiro and de Castro ([6]), McDonald-G by Alexander et al. ([1]), T-X family 
by Alzaatreh et al. ([3]), Weibull-G by Bourguignon et al. ([4]), beta odd log-logistic generalized by 
Cordeiro et al. ([8]), logistic-X family by Tahir et al. ([19]), Burr X generator by Yousof et al. ([20]) 
and odd-Burr generalized family by Alizadeh et al. ([2]). 

Recently, Nadarajah and Haghighi ([17]) proposed the Nadarajah-Haghighi (NH) 
distribution, which has cumulative distribution function (cdf) and probability density function (pdf) 
given by (for 𝑡𝑡 >  0) 

𝐹𝐹(𝑡𝑡) = 1− 𝑒𝑒1−(1+𝜆𝜆𝜆𝜆)𝛼𝛼  and 𝑓𝑓(𝑡𝑡) = 𝛼𝛼𝛼𝛼(1 + 𝛼𝛼𝑡𝑡)𝛼𝛼−1𝑒𝑒1−(1+𝜆𝜆𝜆𝜆)𝛼𝛼 , 

respectively, where 𝛼𝛼, 𝛼𝛼 >  0. The NH quantile function (qf) is given by (Nadarajah and Haghighi, 
2011) 

(1) 

𝑄𝑄(𝑝𝑝) = 𝛼𝛼−1 �[1− log(1− 𝑝𝑝)]
1
𝛼𝛼 − 1�. 

Such distribution has proved to be a good alternative to the gamma, Weibull and log-normal 
models. We denote the NH random variable by 𝑇𝑇~NH(𝛼𝛼, 𝛼𝛼). 

In this paper, we consider the problem in which the odds ratio (associated with a baseline 
cdf 𝐺𝐺(𝑥𝑥;  𝝃𝝃) depending on a parameter vector 𝝃𝝃) is represented by “𝐺𝐺(𝑥𝑥;  𝝃𝝃) 𝐺𝐺�(𝑥𝑥;  𝝃𝝃)⁄ ”, where 
𝐺𝐺�(𝑥𝑥;  𝝃𝝃) =  1 𝐺𝐺(𝑥𝑥;  𝝃𝝃). Setting 𝑝𝑝 =  𝐹𝐹 (𝑥𝑥;  𝛼𝛼, 𝛼𝛼, 𝝃𝝃) in Equation (1), the cdf of the proposed family is 
given by 

(2) 



𝐺𝐺(𝑥𝑥;  𝝃𝝃)
𝐺𝐺�(𝑥𝑥;  𝝃𝝃)

=
{1− log[1− 𝐹𝐹 (𝑥𝑥;  𝛼𝛼, 𝛼𝛼, 𝝃𝝃)]}1 𝛼𝛼⁄ − 1

𝛼𝛼
⇔ 

𝐹𝐹 (𝑥𝑥;  𝛼𝛼, 𝛼𝛼, 𝝃𝝃) = 1− 𝑒𝑒
1−�1+𝜆𝜆𝐺𝐺(𝑥𝑥; 𝝃𝝃)

𝐺𝐺�(𝑥𝑥; 𝝃𝝃)�
𝛼𝛼

 

where 𝛼𝛼, 𝛼𝛼 >  0 and 𝑥𝑥 ∈ 𝜒𝜒 ⫅ ℝ. For each baseline cdf 𝐺𝐺, the Odd NadarajahHaghighi-G (ONH-G 
for short) family is defined by the cdf (2). Equation (2) can be understood as the cdf of the random 
variable 𝑋𝑋 by solving the non-linear stochastic equation 

𝐺𝐺(𝑋𝑋; 𝝃𝝃)
𝐺𝐺�(𝑋𝑋; 𝝃𝝃) = 𝑇𝑇, where 𝑇𝑇~𝑁𝑁𝑁𝑁(𝛼𝛼𝛼𝛼) and 𝐺𝐺(⋅;𝝃𝝃) is the baseline cdf. 

Let X ONH-G(𝛼𝛼, 𝛼𝛼, 𝝃𝝃) be a random variable with cdf (2). The ONH-G distribution contains as special 
case the odd exponential-G family proposed by Bourguignon et al. ([4]) when 𝛼𝛼 =  1. Henceforth, 
𝐺𝐺(𝑥𝑥) =  𝐺𝐺(𝑥𝑥;  𝝃𝝃),𝐺𝐺�(𝑥𝑥) =  𝐺𝐺�(𝑥𝑥;  𝝃𝝃) and 𝑔𝑔(𝑥𝑥) =  𝑔𝑔(𝑥𝑥;  𝝃𝝃) and we omit the dependence on the 
parameters. 

This paper is organized as follows. In Section 2, we present the new family and its density, 
random number generator, three of its special cases and some of its asymptotes and shapes. 
Characterizations for the new family are given in Section 3. In Section 4, we demonstrate that the 
ONH-G pdf is given by a linear combination of exponentiated-G (exp-G) densities. In Section 5, we 
provide some mathematical and statistical properties of the ONH-G family. In Section 6, a new 
bivariate family is introduced. In Section 7, we discuss the maximum likelihood estimation 
procedure for the ONH-G parameters. Section 8 is devoted to a simulation study and an 
application. Section 9 offers some concluding remarks. 

2. The new family and its motivation 
The pdf corresponding to (2) is given by 

(3) 

𝑓𝑓(𝑥𝑥) =
𝛼𝛼𝛼𝛼𝑔𝑔(𝑥𝑥)
𝐺𝐺�(𝑥𝑥)2

�1 + 𝛼𝛼
𝐺𝐺(𝑥𝑥)
𝐺𝐺�(𝑥𝑥)

�
𝛼𝛼−1

𝑒𝑒
1−�1+𝜆𝜆𝐺𝐺(𝑥𝑥)

𝐺𝐺�(𝑥𝑥)�
𝛼𝛼

,𝑥𝑥 ∈ ℝ, 

where 𝑔𝑔(𝑥𝑥) is the baseline pdf. Further, the hazard rate function (hrf) of 𝑋𝑋 is given by 

(4) 

ℎ(𝑥𝑥) =
𝛼𝛼𝛼𝛼𝑔𝑔(𝑥𝑥)
𝐺𝐺�(𝑥𝑥)2

�1 + 𝛼𝛼
𝐺𝐺(𝑥𝑥)
𝐺𝐺�(𝑥𝑥)

�
𝛼𝛼−1

,𝑥𝑥 ∈ ℝ, 

By inverting equation (2), the ONH-G random variable can be easily generated as follows: 

1. Generate u as an outcome of U ∼ U (0, 1); 
2. Obtain 

(5) 



𝑥𝑥 = 𝐺𝐺−1 �
−1 + [1− log(1− 𝑢𝑢)]

1
𝛼𝛼

𝛼𝛼 − 1 + [1 − log(1− 𝑢𝑢)]
1
𝛼𝛼

; 𝝃𝝃�, 

as an outcome of X ∼ ONH-G(𝛼𝛼, 𝛼𝛼, 𝝃𝝃). 

Further, Theorem 1 provides some relations of some distributions with the ONH-G family. 

THEOREM 1. Let 𝑋𝑋 ∼  ONH − G(𝛼𝛼, 𝛼𝛼, 𝝃𝝃). 

(𝑎𝑎) 𝐼𝐼𝑓𝑓 𝑌𝑌 = 𝐺𝐺(𝑋𝑋; 𝛏𝛏), 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝐹𝐹𝑌𝑌(𝑦𝑦) = 1− 𝑒𝑒1−�1+
𝜆𝜆𝜆𝜆
1−𝜆𝜆�

𝛼𝛼
 𝑓𝑓𝑓𝑓𝑓𝑓 0<𝜆𝜆<1. 

(𝑏𝑏)𝐼𝐼𝑓𝑓 𝑌𝑌 =
𝐺𝐺(𝑋𝑋)
𝐺𝐺�(𝑋𝑋)

, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑌𝑌~𝑁𝑁𝑁𝑁(𝛼𝛼, 𝛼𝛼). 

The proof of this theorem is obtained by direct application of (2) along with the basic 
properties of the cdf. 

In what follows, we present three special cases of the ONH-G family. 

2.1. The ONH-gamma (ONH-Γ) distribution 
The ONHΓ density is given by (β1, β2 > 0) 

𝑓𝑓(𝑥𝑥) =
𝛼𝛼𝛼𝛼𝛽𝛽2

𝛽𝛽1

Γ(𝛽𝛽1)
𝑥𝑥𝛽𝛽1−1𝑒𝑒−𝛽𝛽2𝑥𝑥

[1− 𝛾𝛾1(𝛽𝛽1,𝛽𝛽2𝑥𝑥)] �1 + 𝛼𝛼
𝛾𝛾1(𝛽𝛽1,𝛽𝛽2𝑥𝑥)

1− 𝛾𝛾1(𝛽𝛽1,𝛽𝛽2𝑥𝑥)�
𝛼𝛼−1

× exp �1− �1 + 𝛼𝛼
𝛾𝛾1(𝛽𝛽1,𝛽𝛽2𝑥𝑥)

1− 𝛾𝛾1(𝛽𝛽1,𝛽𝛽2𝑥𝑥)�
𝛼𝛼

� ,𝑥𝑥 > 0, 

where 𝛾𝛾1(𝛼𝛼,𝛽𝛽𝑥𝑥) =  Γ(𝛼𝛼)−1 ∫ 𝑡𝑡𝛼𝛼−1d𝑡𝑡𝛽𝛽𝑥𝑥
0  is the incomplete gamma function ratio. Figure 1 displays 

some plots of the pdf and hrf of the ONH-Γ distribution for selected parameter values. 

 
Fig. 1. Density and hazard rate plots for the ONHΓ model. 
 
2.2. The ONH-Weibull (ONH-W) distribution 

The ONH-W density is given by (𝛽𝛽1,𝛽𝛽2  >  0) 

𝑓𝑓(𝑥𝑥) =
𝛼𝛼𝛼𝛼𝛽𝛽1
𝛽𝛽2
𝛽𝛽1

𝑥𝑥𝛽𝛽1−1 �1 + 𝛼𝛼�𝑒𝑒�
𝑥𝑥
𝛽𝛽2
�
𝛽𝛽1

− 1��
𝛼𝛼−1

× exp �1− �1 + 𝛼𝛼 �𝑒𝑒�
𝑥𝑥
𝛽𝛽2
�
𝛽𝛽1

− 1��
𝛼𝛼

� ,𝑥𝑥 > 0. 



Figure 2 provides some plots of the pdf and hrf of the ONH-W distribution for selected parameter 
values. 

 
Fig. 2. Density and hazard rate plots for the ONH-W model. 
 
2.3. The ONH-beta (ONH-β) distribution 

The ONH𝛽𝛽 density is given by (𝛽𝛽1,𝛽𝛽2  >  0) 

𝑓𝑓(𝑥𝑥) =
𝛼𝛼𝛼𝛼𝛽𝛽1
𝛽𝛽2
𝛽𝛽1

𝑥𝑥𝛽𝛽1−1 �1 + 𝛼𝛼
𝐼𝐼𝑥𝑥(𝛽𝛽1,𝛽𝛽2)

1− 𝐼𝐼𝑥𝑥(𝛽𝛽1,𝛽𝛽2)�
𝛼𝛼−1

× exp �1− �1 + 𝛼𝛼
𝐼𝐼𝑥𝑥(𝛽𝛽1,𝛽𝛽2)

1− 𝐼𝐼𝑥𝑥(𝛽𝛽1,𝛽𝛽2)�
𝛼𝛼

� ,𝑥𝑥 > 0. 

where 𝐼𝐼𝑥𝑥(𝛽𝛽1,𝛽𝛽2) = 𝐵𝐵(𝛽𝛽1,𝛽𝛽2)−1𝐵𝐵(𝑥𝑥;𝛽𝛽1,𝛽𝛽2) and 𝐵𝐵(𝑥𝑥;𝛽𝛽1,𝛽𝛽2) = ∫ 𝑡𝑡𝛽𝛽1−1(1− 𝑡𝑡)𝛽𝛽2−1𝑥𝑥
0 d𝑡𝑡 denotes 

the incomplete beta function. Figure 3 displays some plots of the ONH𝛽𝛽 pdf for selected 
parameter values. 

 
Fig. 3. Density plots for the ONHβ model. 

3. Characterizations 
In this section we present certain characterizations of ONH-G distribution. These 

characterizations are in terms of: 

i. the truncated moment involving two functions; 
ii. a simple relationship between two truncated moments and 

iii. the hazard function. 

One of the advantages of characterization (ii) is that the cdf is not required to have a closed form. 



We present our characterizations (i)–(iii) in three subsections. 

3.1. Characterizations based on truncated moment involving two functions 
Our first characterization is based on the following Proposition. 

PROPOSITION 1. Let 𝑋𝑋 ∶  Ω → ℝ be a continuous random variable with cdf 𝐹𝐹. Let 𝜓𝜓(𝑥𝑥) and 

𝜑𝜑(𝑥𝑥) be two differentiable functions on ℝ such that ∫ 𝜑𝜑′(𝜆𝜆)
𝜑𝜑(𝜆𝜆)−𝜓𝜓(𝜆𝜆)𝑑𝑑𝑡𝑡 = ∞.∞

−∞  Then 

(6) 

𝐸𝐸[𝜓𝜓(𝑋𝑋)|𝑋𝑋 ≥ 𝑥𝑥] = 𝜑𝜑(𝑥𝑥),𝑥𝑥 ∈ ℝ 

implies 

(7) 

𝐹𝐹(𝑥𝑥) = 1− exp �− �
𝜑𝜑′(𝑡𝑡)

[𝜑𝜑(𝑡𝑡) −𝜓𝜓(𝑡𝑡)]𝑑𝑑𝑡𝑡
𝑥𝑥

−∞

� ,𝑥𝑥 ∈ ℝ, 

PROOF. If (6) holds, then 

� 𝜓𝜓(𝑢𝑢)𝑓𝑓(𝑢𝑢)𝑑𝑑𝑢𝑢 = �1 − 𝐹𝐹(𝑥𝑥)�𝜑𝜑(𝑥𝑥).
∞

𝑥𝑥

 

Differentiating both sides of the above equation and rearranging terms, we arrive at 

𝑓𝑓(𝑥𝑥)
1− 𝐹𝐹(𝑥𝑥) =

𝜑𝜑′(𝑥𝑥)
𝜑𝜑(𝑥𝑥)−𝜓𝜓(𝑥𝑥) ,𝑥𝑥 ∈ ℝ.  

Integrating the last equation with respect to t from −∞ to x, we have 

− ln[1− 𝐹𝐹(𝑥𝑥)] = �
𝜑𝜑′(𝑡𝑡)

[𝜑𝜑(𝑡𝑡) −𝜓𝜓(𝑡𝑡)]𝑑𝑑𝑡𝑡,
𝑥𝑥

−∞

 

from which we obtain (7). 

 REMARK1. For 𝜓𝜓(𝑥𝑥) = 2𝜑𝜑(𝑥𝑥),𝜑𝜑(𝑥𝑥) = 𝑒𝑒1−�1+𝜆𝜆
𝐺𝐺(𝑥𝑥)
𝐺𝐺�(𝑥𝑥)�

𝛼𝛼

and the fact that lim𝑥𝑥→−∞𝜑𝜑(𝑥𝑥) =
1 , we have 

𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒
1−�1+𝜆𝜆𝐺𝐺(𝑥𝑥)

𝐺𝐺�(𝑥𝑥)�
𝛼𝛼

,𝑥𝑥 ∈ ℝ. 

which is cdf (2). 

3.2. Characterizations based on a simple relationship between two truncated 
moments 

In this subsection we present characterizations of ONH-G distribution in terms of the ratio 
of two truncated moments.  This characterization result employs a theorem due to Glänzel ([10]), 



see Theorem 2 of Appendix B. Note that the result holds also when the interval 𝑁𝑁 is not closed. 
Moreover, as mentioned above, it could also be applied when the cdf 𝐹𝐹 does not have a closed 
form. As shown in (Glänzel, 1990), this characterization is stable in the sense of weak 
convergence. 

PROPOSITION 2. Let 𝑋𝑋 ∶  Ω →  ℝ be a continuous random variable and let 𝑞𝑞1 ≡ and 

𝑞𝑞2(𝑥𝑥) = 𝑒𝑒1−�1+𝜆𝜆
𝐺𝐺(𝑥𝑥)
𝐺𝐺�(𝑥𝑥)�

𝛼𝛼

 for 𝑥𝑥 ∈  ℝ. The random variable 𝑋𝑋 has pdf (3) if and only if the function 𝜂𝜂 
defined in Theorem 2 has the form 

𝜂𝜂(𝑥𝑥) =
1
2
𝑒𝑒
1−�1+𝜆𝜆𝐺𝐺(𝑥𝑥)

𝐺𝐺�(𝑥𝑥)�
𝛼𝛼

,𝑥𝑥 ∈  ℝ. 

PROOF. Let X be a random variable with pdf (3), then 

�1− 𝐹𝐹(𝑥𝑥)�𝐸𝐸[𝑞𝑞1(𝑋𝑋)|𝑋𝑋 ≥ 𝑥𝑥] = 𝑒𝑒
1−�1+𝜆𝜆𝐺𝐺(𝑥𝑥)

𝐺𝐺�(𝑥𝑥)�
𝛼𝛼

,𝑥𝑥 ∈  ℝ. 

and 

�1 − 𝐹𝐹(𝑥𝑥)�𝐸𝐸[𝑞𝑞2(𝑋𝑋)|𝑋𝑋 ≥ 𝑥𝑥] =
1
2
𝑒𝑒
2�1−�1+𝜆𝜆𝐺𝐺(𝑥𝑥)

𝐺𝐺�(𝑥𝑥)�
𝛼𝛼
�

,𝑥𝑥 ∈  ℝ. 

and finally 

𝜂𝜂(𝑥𝑥)𝑞𝑞1(𝑥𝑥)− 𝑞𝑞2(𝑥𝑥) = −
1
2
𝑒𝑒
1−�1+𝜆𝜆𝐺𝐺(𝑥𝑥)

𝐺𝐺�(𝑥𝑥)�
𝛼𝛼

< 0  for 𝑥𝑥 ∈  ℝ. 

Conversely, if 𝜂𝜂 is given as above, then 

𝑠𝑠′(𝑥𝑥) =
𝜂𝜂′(𝑥𝑥)𝑞𝑞1(𝑥𝑥)

𝜂𝜂(𝑥𝑥)𝑞𝑞1(𝑥𝑥)− 𝑞𝑞2(𝑥𝑥) =
𝛼𝛼𝛼𝛼𝑔𝑔(𝑥𝑥)
𝐺𝐺�(𝑥𝑥)2

�1 + 𝛼𝛼
𝐺𝐺(𝑥𝑥)
𝐺𝐺�(𝑥𝑥)

�
𝛼𝛼−1

 𝑥𝑥 ∈  ℝ, 

and hence 

𝑠𝑠(𝑥𝑥) = �1 + 𝛼𝛼
𝐺𝐺(𝑥𝑥)
𝐺𝐺�(𝑥𝑥)

�
𝛼𝛼

,𝑥𝑥 ∈  ℝ. 

Now, in view of Theorem 2, 𝑋𝑋 has density (3). □ 

COROLLARY 1. Let 𝑋𝑋 ∶  Ω → ℝ be a continuous random variable and let 𝑞𝑞1(𝑥𝑥) be as in 
Proposition 2. The pdf of 𝑋𝑋 is (3) if and only if there exist functions 𝑞𝑞2 and 𝜂𝜂 defined in Theorem 2 
satisfying the differential equation 

(8) 

𝜂𝜂′(𝑥𝑥)𝑞𝑞1(𝑥𝑥)
𝜂𝜂(𝑥𝑥)𝑞𝑞1(𝑥𝑥)− 𝑞𝑞2(𝑥𝑥) =

𝛼𝛼𝛼𝛼𝑔𝑔(𝑥𝑥)
𝐺𝐺�(𝑥𝑥)2

�1 + 𝛼𝛼
𝐺𝐺(𝑥𝑥)
𝐺𝐺�(𝑥𝑥)

�
𝛼𝛼−1

,𝑥𝑥 ∈  ℝ. 

The general solution of the differential equation (8) is 



𝜂𝜂(𝑥𝑥) = 𝑒𝑒
�1+𝜆𝜆𝐺𝐺(𝑥𝑥)

𝐺𝐺�(𝑥𝑥)�
𝛼𝛼

− 1 �−�
𝛼𝛼𝛼𝛼𝑔𝑔(𝑥𝑥)
𝐺𝐺�(𝑥𝑥)2

�1 + 𝛼𝛼
𝐺𝐺(𝑥𝑥)
𝐺𝐺�(𝑥𝑥)

�
𝛼𝛼−1

𝑒𝑒
1−�1+𝜆𝜆𝐺𝐺(𝑥𝑥)

𝐺𝐺�(𝑥𝑥)�
𝛼𝛼

�𝑞𝑞1(𝑥𝑥)�
−1
𝑞𝑞2(𝑥𝑥) + 𝐷𝐷�, 

where D is a constant. 

Note that a set of functions satisfying the above differential equation is given in 
Proposition 2 with 𝐷𝐷 =  0. However, it should be also noted that there are other triplets 
(𝑞𝑞1,𝑞𝑞2,𝜂𝜂) satisfying the conditions of Theorem 2. 

 
3.3. Characterization based on hazard function 

It is known that the hazard function, ℎ𝐹𝐹, of a twice differentiable distribution function, 𝐹𝐹, 
satisfies the first order differential equation 

𝑓𝑓′(𝑥𝑥)
𝑓𝑓(𝑥𝑥) =

ℎ𝐹𝐹′ (𝑥𝑥)
ℎ𝐹𝐹(𝑥𝑥)− ℎ𝐹𝐹(𝑥𝑥). 

For many univariate continuous distributions, this is the only characterization available in 
terms of the hazard function. The following characterization establish a non-trivial 
characterization of ONH-G distribution, which is not of the above trivial form. 

PROPOSITION 3. Let 𝑋𝑋 ∶  Ω → ℝ be a continuous random variable. The pdf of 𝑋𝑋 is (3), if and 
only if its hazard function ℎ𝐹𝐹 (𝑥𝑥) satisfies the differential equation 

ℎ𝐹𝐹′ (𝑥𝑥) −
𝑔𝑔′(𝑥𝑥)
𝑔𝑔(𝑥𝑥) ℎ𝐹𝐹

(𝑥𝑥) = 𝛼𝛼𝛼𝛼𝑔𝑔(𝑥𝑥)
𝑑𝑑
𝑑𝑑𝑥𝑥

⎩
⎪
⎨

⎪
⎧�1 + 𝛼𝛼 𝐺𝐺(𝑥𝑥)

𝐺𝐺�(𝑥𝑥)�
𝛼𝛼−1

𝐺𝐺�(𝑥𝑥)2

⎭
⎪
⎬

⎪
⎫

,𝑥𝑥 ∈  ℝ.  

PROOF. If 𝑋𝑋 has pdf (3), then clearly the above differential equation holds. Now, if this 
differential equation holds, then 

𝑑𝑑
𝑑𝑑𝑥𝑥

{𝑔𝑔(𝑥𝑥)−1ℎ𝐹𝐹(𝑥𝑥)} = 𝛼𝛼𝛼𝛼
𝑑𝑑
𝑑𝑑𝑥𝑥

⎩
⎪
⎨

⎪
⎧�1 + 𝛼𝛼 𝐺𝐺(𝑥𝑥)

𝐺𝐺�(𝑥𝑥)�
𝛼𝛼−1

𝐺𝐺�(𝑥𝑥)2

⎭
⎪
⎬

⎪
⎫

,𝑥𝑥 ∈  ℝ, 

from which, we obtain 

ℎ𝐹𝐹(𝑥𝑥) =
𝛼𝛼𝛼𝛼𝑔𝑔(𝑥𝑥) �1 + 𝛼𝛼𝐺𝐺(𝑥𝑥)

𝐺𝐺�(𝑥𝑥)�
𝛼𝛼−1

𝐺𝐺�(𝑥𝑥)2
, 𝑥𝑥 ∈  ℝ, 

which is the hazard function of ONH-G distribution. 

REMARK 2. For 𝛼𝛼 =  1, we have the following simple differential equation 

ℎ𝐹𝐹′ (𝑥𝑥)−
𝑔𝑔′(𝑥𝑥)
𝑔𝑔(𝑥𝑥) ℎ𝐹𝐹

(𝑥𝑥) =
2𝛼𝛼𝑔𝑔(𝑥𝑥)2

𝐺𝐺�(𝑥𝑥)3
,𝑥𝑥 ∈  ℝ. 



4. Linear representations 
First, using Taylor expansion for every 𝑧𝑧 >  0, we can write 

𝑧𝑧𝛼𝛼 = �
(𝛼𝛼)𝑗𝑗
𝑗𝑗!

(𝑧𝑧 − 1)𝑗𝑗 ,
∞

𝑗𝑗=0

 

where (𝛼𝛼)𝑗𝑗 = 𝛼𝛼(𝛼𝛼 − 1)⋯ (𝛼𝛼 − 𝑗𝑗 + 1) is the falling factorial. Thus, we obtain 

𝐹𝐹(𝑥𝑥) = 1−�
(−1)𝑖𝑖

𝑖𝑖!

∞

𝑖𝑖=0

�1 +
𝛼𝛼𝐺𝐺(𝑥𝑥)
𝐺𝐺�(𝑥𝑥)

�
𝑖𝑖𝛼𝛼

= 1 − �
(−1)𝑖𝑖(𝑖𝑖𝛼𝛼)𝑗𝑗

𝑖𝑖!

∞

𝑖𝑖,𝑗𝑗=0

�
𝛼𝛼𝐺𝐺(𝑥𝑥)
𝐺𝐺�(𝑥𝑥)

�
𝑗𝑗

= 1− �
(−1)𝑖𝑖+𝑙𝑙(𝑖𝑖𝛼𝛼)𝑗𝑗𝛼𝛼𝑗𝑗

𝑖𝑖!

∞

𝑖𝑖,𝑗𝑗,𝑙𝑙=0

�
−𝑗𝑗
𝑙𝑙
�𝐺𝐺(𝑥𝑥)𝑗𝑗+𝑙𝑙. 

Second, we have 

(9) 

𝐹𝐹(𝑥𝑥) = 1−�𝑤𝑤𝑘𝑘𝐺𝐺(𝑥𝑥)𝑘𝑘
∞

𝑘𝑘=0

= �𝑣𝑣𝑘𝑘𝐺𝐺(𝑥𝑥)𝑘𝑘 = �𝑣𝑣𝑘𝑘𝑁𝑁𝑘𝑘(𝑥𝑥),
∞

𝑘𝑘=0

∞

𝑘𝑘=0

 

where 𝜐𝜐0  =  1 – 𝑤𝑤0, 𝜐𝜐𝑘𝑘  =  𝑤𝑤𝑘𝑘  for 𝑘𝑘 ≥  1, and (for 𝑘𝑘 ≥  0) 

𝑤𝑤𝑘𝑘 �  
∞

𝑗𝑗,𝑙𝑙∈𝐼𝐼𝑘𝑘

�
(−1)𝑖𝑖+𝑙𝑙(𝑖𝑖𝛼𝛼)𝑗𝑗𝛼𝛼𝑗𝑗

𝑖𝑖!

∞

𝑖𝑖=0

�
−𝑗𝑗
𝑙𝑙
� , 𝐼𝐼𝑘𝑘 = {(𝑗𝑗, 𝑙𝑙)|𝑘𝑘 = 𝑗𝑗 + 𝑙𝑙; 𝑗𝑗, 𝑙𝑙 = 0,1,2, … } 

and 𝑁𝑁𝛾𝛾  (𝑥𝑥) is the exp-G cdf with power parameter 𝛾𝛾. By differentiating (9), we obtain 

(10) 

𝑓𝑓(𝑥𝑥) = �𝑣𝑣𝑘𝑘+1ℎ𝑘𝑘+1(𝑥𝑥),
∞

𝑘𝑘=0

 

where ℎ𝛾𝛾 (𝑥𝑥) =  𝛾𝛾𝑔𝑔(𝑥𝑥)𝐺𝐺(𝑥𝑥)𝛾𝛾−1 denotes the exp-G family density with power parameter 𝛾𝛾 >  0. 
Equation (10) reveals that the ONH-G family density is a linear combination of exp-G densities. So, 
some mathematical properties of this family can be determined from those of the exp-G 
distribution. The properties of exp-G distributions have been studied by many authors in recent 
years, see Mudholkar and Srivastava ([14]) for exponentiated Weibull and Nadarajah ([15]) for 
exponentiated-type distributions, among others. Equations (9) and (10) are the main results of 
this section. 

5. Properties 
The formulae derived throughout this section can be easily handled in most symbolic 

computation software platforms such as Maple, Mathematica and Matlab. 

 



5.1. Moments and generating function 
Henceforth, let 𝑌𝑌𝑘𝑘+1 denote the exp-G distribution with power parameter (𝑘𝑘 +  1). The 

𝑟𝑟th moment of 𝑋𝑋, say µ𝑓𝑓′ , can be obtained from (10) as 

(11) 

µ𝑓𝑓′ = 𝐸𝐸(𝑋𝑋𝑓𝑓) = �𝑣𝑣𝑘𝑘+1𝐸𝐸(𝑌𝑌𝑘𝑘+1𝑓𝑓 )
∞

𝑘𝑘=0

. 

 For 𝛾𝛾 > 0, we have 𝐸𝐸�𝑌𝑌𝛾𝛾𝑓𝑓� = 𝛼𝛼 ∫ 𝑥𝑥𝑓𝑓𝑔𝑔(𝑥𝑥; 𝝃𝝃)𝐺𝐺(𝑥𝑥; 𝝃𝝃)𝛾𝛾−1𝑑𝑑𝑥𝑥∞
−∞ , which can be computed 

numerically in terms of the baseline qf 𝑄𝑄𝐺𝐺(𝑢𝑢; 𝝃𝝃) = 𝐺𝐺−1(𝑢𝑢; 𝝃𝝃) as 𝐸𝐸�𝑌𝑌𝛾𝛾𝑛𝑛� = 𝛾𝛾 ∫  𝑄𝑄𝐺𝐺(𝑢𝑢; 𝝃𝝃)𝑛𝑛1
0 𝑢𝑢𝛾𝛾−1𝑑𝑑𝑢𝑢. 

 Next, we provide two formulae for the moment generating function (mgf) 𝑀𝑀(𝑡𝑡) = 𝐸𝐸(𝑒𝑒𝜆𝜆𝑋𝑋) 
of 𝑋𝑋. Clearly, the first one can be derived from equation (10) as 

𝑀𝑀(𝑡𝑡) = �𝜐𝜐𝑘𝑘+1𝑀𝑀𝑘𝑘+1(𝑡𝑡)
∞

𝑘𝑘=0

, 

where 𝑀𝑀𝑘𝑘+1(𝑡𝑡) is the mgf of 𝑌𝑌𝑘𝑘+1. Hence, 𝑀𝑀(𝑡𝑡) can be determined from the exp-G generating 
function. A second formula for 𝑀𝑀(𝑡𝑡) follows from (10) as 𝑀𝑀(𝑡𝑡) = ∑ 𝜐𝜐𝑘𝑘+1𝜍𝜍(𝑡𝑡,𝑘𝑘)∞

𝑘𝑘=0 , where 
𝜍𝜍(𝑡𝑡, 𝑘𝑘) = ∫ exp[𝑡𝑡𝑄𝑄𝐺𝐺(𝑢𝑢; 𝝃𝝃)]𝑢𝑢𝑘𝑘𝑑𝑑𝑢𝑢1

0 . For the ONH-W model discussed in Section 2.2, we obtain the 
results (𝑟𝑟 >  −𝛽𝛽1): 

𝜇𝜇𝑓𝑓′ = 𝛽𝛽2𝑓𝑓Γ �1 +
𝑟𝑟
𝛽𝛽1
� �

(−1)ℎ(𝑘𝑘 + 1)𝜐𝜐𝑘𝑘+1
(ℎ + 1)(𝑓𝑓+𝛽𝛽1) 𝛽𝛽1⁄ �

𝑘𝑘
ℎ
�

∞

𝑘𝑘,ℎ=0

 

and 

𝑀𝑀(𝑡𝑡) = �
(−1)ℎ𝛽𝛽2𝑓𝑓(𝑘𝑘 + 1)𝜐𝜐𝑘𝑘+1𝑡𝑡𝑓𝑓

𝑟𝑟! (ℎ + 1)(𝑓𝑓+𝛽𝛽1) 𝛽𝛽1⁄ �
𝑘𝑘
ℎ
� Γ

∞

𝑘𝑘,𝑓𝑓,ℎ=0

�1 +
𝑟𝑟
𝛽𝛽1
�. 

5.2. Incomplete moments 
The sth incomplete moment, say 𝜑𝜑𝑠𝑠(𝑡𝑡), of X can be expressed from (10) as 

(12) 

𝜑𝜑𝑠𝑠(𝑡𝑡) = �𝑥𝑥𝑠𝑠𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝜆𝜆

−∞

= �𝜐𝜐𝑘𝑘+1

∞

𝑘𝑘=0

� 𝑥𝑥𝑠𝑠ℎ𝑘𝑘+1(𝑥𝑥)𝑑𝑑𝑥𝑥
𝜆𝜆

−∞

. 

For the ONH-W model, we obtain (for 𝑠𝑠 >  −𝛽𝛽1) 

𝜑𝜑𝑠𝑠(𝑡𝑡) = 𝛽𝛽2𝑠𝑠𝛾𝛾 �1 +
𝑠𝑠
𝛽𝛽1

, �
1
𝛽𝛽2𝑡𝑡

�
𝛽𝛽1
� �

(−1)ℎ(𝑘𝑘 + 1)𝜐𝜐𝑘𝑘+1
(ℎ + 1)(𝑠𝑠+𝛽𝛽1) 𝛽𝛽1⁄ �

𝑘𝑘
ℎ
� ,

∞

𝑘𝑘,ℎ=0

 

where 𝛾𝛾 (·,·) is the lower incomplete gamma function. 



The mean deviations about the mean [𝛿𝛿1  =  𝐸𝐸(|𝑋𝑋 −  µ1′ |)] and about the median 
[𝛿𝛿2  =  𝐸𝐸 (|𝑋𝑋 –  𝑀𝑀|)] of 𝑋𝑋 are given by 

𝛿𝛿1 = 2𝜇𝜇1′ 𝐹𝐹(𝜇𝜇1′ ) − 2𝜑𝜑1(𝜇𝜇1′ ) and  𝛿𝛿2  =  𝜇𝜇1′ − 2𝜑𝜑1(𝑀𝑀), 

respectively, where 𝜇𝜇1′ = 𝐸𝐸(𝑋𝑋), 𝑀𝑀 = 𝑀𝑀𝑒𝑒𝑑𝑑𝑖𝑖𝑎𝑎𝑒𝑒(𝑋𝑋) = 𝑄𝑄(0.5) is the median, 𝐹𝐹(𝜇𝜇1′ ) is easily 
calculated from (2) and 𝜑𝜑1(𝑡𝑡) is the first incomplete moment given by (12) with 𝑠𝑠 =  1. 
Expressions for 𝜑𝜑1(𝑡𝑡) can be derived from 𝜑𝜑𝑠𝑠(𝑡𝑡) as 

𝜑𝜑1(𝑡𝑡) = �𝜐𝜐𝑘𝑘+1𝛿𝛿𝑘𝑘+1(𝑥𝑥)
∞

𝑘𝑘=0

= �𝜐𝜐𝑘𝑘+1𝜂𝜂𝑘𝑘+1(𝑡𝑡),
∞

𝑘𝑘=0

 

where 𝛿𝛿𝑘𝑘+1(𝑥𝑥) = ∫ 𝑥𝑥ℎ𝑘𝑘+1(𝑥𝑥)𝑑𝑑𝑥𝑥𝜆𝜆
−∞  is the first incomplete moment of the exp-G distribution and 

𝜂𝜂𝑘𝑘+1(𝑡𝑡) = (𝑘𝑘 +  1)∫ 𝑄𝑄𝐺𝐺(𝑢𝑢)𝑢𝑢𝑘𝑘𝑑𝑑𝑢𝑢𝐺𝐺(𝜆𝜆)
0  can be computed numerically. These equations for 𝜑𝜑1(𝑡𝑡) 

can be applied to construct Bonferroni and Lorenz curves defined for a given probability 𝜋𝜋 by 
𝐵𝐵(𝜋𝜋) = 𝜑𝜑1(𝑞𝑞) 𝜋𝜋𝜇𝜇1′⁄  and 𝐿𝐿(𝜋𝜋) = 𝜑𝜑1(𝑞𝑞) 𝜇𝜇1′⁄ , respectively, where 𝜇𝜇1′ = 𝐸𝐸(𝑋𝑋) and 𝑞𝑞 =  𝑄𝑄(𝜋𝜋) is the 
qf of 𝑋𝑋 at 𝜋𝜋. 

5.3. Moment residual life and reversed residual life 
The nth moment of the residual life is defined by (for 𝑡𝑡 >  0) 

𝑧𝑧𝑛𝑛(𝑡𝑡) = 𝐸𝐸[(𝑋𝑋 − 𝑡𝑡)𝑛𝑛|𝑋𝑋 > 𝑡𝑡] =
1

1− 𝐹𝐹(𝑡𝑡)
�(𝑥𝑥 − 𝑡𝑡)𝑛𝑛𝑑𝑑𝐹𝐹(𝑥𝑥)
∞

𝜆𝜆

, for  𝑒𝑒 =  1, 2, . . ., 

and determines 𝐹𝐹(𝑥𝑥) uniquely. One can show that 𝑧𝑧𝑛𝑛(𝑡𝑡) is given by 

𝑧𝑧𝑛𝑛(𝑡𝑡) =  
1

1 − 𝐹𝐹(𝑡𝑡)
�𝜐𝜐𝑘𝑘+1⋆
∞

𝑘𝑘=0

� 𝑥𝑥𝑓𝑓𝜋𝜋𝑘𝑘+1(𝑥𝑥)
∞

𝜆𝜆

𝑑𝑑𝑥𝑥, 

where 𝜐𝜐𝑘𝑘+1⋆ = 𝜐𝜐𝑘𝑘+1(1 –  𝑡𝑡)𝑛𝑛. In particular, the mean residual life function or the life expectation at 
age 𝑡𝑡 is given by 𝑧𝑧1(𝑡𝑡), which represents the expected additional life length for a unit which is 
alive at age 𝑡𝑡. 

On the other hand, the nth moment of the reversed residual life, say 𝑍𝑍1(𝑡𝑡), is defined by 
(for 𝑡𝑡 > 0)  

𝑍𝑍𝑛𝑛(𝑡𝑡) = 𝐸𝐸[(𝑡𝑡 − 𝑋𝑋)𝑛𝑛|𝑋𝑋 ≤ 𝑡𝑡] =
1

𝐹𝐹(𝑡𝑡)
�(𝑡𝑡 − 𝑥𝑥)𝑛𝑛𝑑𝑑𝐹𝐹(𝑥𝑥)
𝜆𝜆

0

, for  𝑒𝑒 = 1, 2, . . ., 

and also determines 𝐹𝐹(𝑥𝑥) uniquely. The last quantity can be expressed as 

𝑍𝑍𝑛𝑛(𝑡𝑡) =  
1

𝐹𝐹(𝑡𝑡)
�𝜐𝜐𝑘𝑘+1⋆
∞

𝑘𝑘=0

�𝑥𝑥𝑓𝑓𝜋𝜋𝑘𝑘+1(𝑥𝑥)
𝜆𝜆

0

𝑑𝑑𝑥𝑥. 



The mean reversed residual life function, also called the mean inactivity time given by 𝑍𝑍1(𝑡𝑡), 
represents the waiting time elapsed since the failure of an item on condition that this failure had 
occurred in (0, 𝑡𝑡). 

5.4. Order statistics 
Suppose 𝑋𝑋1, . . . ,𝑋𝑋𝑛𝑛 is a random sample from the ONH-G model. Let 𝑋𝑋𝑖𝑖:𝑛𝑛 denote the ith 

order statistic. The pdf of 𝑋𝑋𝑖𝑖:𝑛𝑛 is given by 

(13) 

𝑓𝑓𝑖𝑖:𝑛𝑛(𝑥𝑥) =
𝑓𝑓(𝑥𝑥)

𝐵𝐵(𝑖𝑖,𝑒𝑒 − 𝑖𝑖 + 1)�
(−1)𝑗𝑗

𝑛𝑛−𝑖𝑖

𝑗𝑗=0

�
𝑒𝑒 − 𝑖𝑖
𝑗𝑗
�𝐹𝐹 (𝑥𝑥)𝑗𝑗+𝑖𝑖−1. 

Following similar algebraic developments of Nadarajah et al. ([18]), we can write the density 
function of 𝑋𝑋𝑖𝑖:𝑛𝑛 as 

(14) 

𝑓𝑓𝑖𝑖:𝑛𝑛(𝑥𝑥) = � 𝑏𝑏𝑓𝑓,𝑘𝑘 𝜋𝜋𝑓𝑓+𝑘𝑘+1(𝑥𝑥),
∞

𝑓𝑓,𝑘𝑘=0

  

where 

𝑏𝑏𝑓𝑓,𝑘𝑘 =
𝑒𝑒! (𝑟𝑟 +  1)(𝑖𝑖 −  1)!𝑤𝑤𝑓𝑓+1

(𝑟𝑟 + 𝑘𝑘 + 1)  �
(−1)𝑗𝑗𝑓𝑓𝑗𝑗+𝑖𝑖−1,𝑘𝑘

(𝑒𝑒 − 𝑖𝑖 − 𝑗𝑗)! 𝑗𝑗!

𝑛𝑛−𝑖𝑖

𝑗𝑗=0

, 

𝑤𝑤𝑓𝑓+1 and 𝑣𝑣𝑓𝑓 are given in Section 3 (𝑟𝑟 ≥  0) and the quantities 𝑓𝑓𝑗𝑗+𝑖𝑖−1,𝑘𝑘 can be determined (with 

𝑓𝑓𝑗𝑗+𝑖𝑖−1,0  =  𝜐𝜐0
𝑗𝑗+𝑖𝑖−1 ) recursively (for 𝑘𝑘 ≥  1) by 

𝑓𝑓𝑗𝑗+𝑖𝑖−1,𝑘𝑘 = (𝑘𝑘𝜐𝜐0)−1 � [𝑚𝑚(𝑗𝑗 +  𝑖𝑖) −  𝑘𝑘]𝜐𝜐𝑚𝑚𝑓𝑓𝑗𝑗+𝑖𝑖−1,𝑘𝑘−𝑚𝑚

𝑘𝑘

𝑚𝑚=1

 . 

Equation (14) is the main result of this section. It reveals that the pdf of the ONH-G order statistics 
is a linear combination of exp-G densities. Therefore, some mathematical quantities of the ONH-G 
order statistics such as the ordinary, incomplete and factorial moments, mean deviations and 
several others can be determined from those quantities of the exp-G distribution. 

5.5. Quantile power series 
In this section, we derive a power series for 𝑄𝑄(𝑢𝑢) =  𝐹𝐹−1(𝑢𝑢) of 𝑋𝑋 by expanding equation 

(5). If 𝑄𝑄𝐺𝐺(𝑢𝑢) does not have a closed-form expression, it can be written as a power series 

(15) 

𝑄𝑄𝐺𝐺(𝑢𝑢) = �𝑎𝑎𝑖𝑖𝑢𝑢𝑖𝑖
∞

𝑖𝑖=0

, 



whose coefficients 𝑎𝑎𝑖𝑖′𝑠𝑠 are suitably chosen real numbers. They depend on the parameters of the G 
distribution. For several important distributions, such as the normal, Student 𝑡𝑡, gamma and beta 
distributions, 𝑄𝑄𝐺𝐺(𝑢𝑢) does not have explicit expressions but it can be expanded as in equation (15). 

According to the discussion of Appendix A, the argument, say 𝐴𝐴, of 𝑄𝑄𝐺𝐺(⋅) 

(16) 

𝐴𝐴 = �𝛿𝛿𝑘𝑘𝑢𝑢𝑘𝑘
∞

𝑘𝑘=0

, 

where 𝛿𝛿0  = 𝑎𝑎0
𝑏𝑏0

 and, for 𝑘𝑘 ≥  1, we obtain 

𝛿𝛿𝑘𝑘 = 𝑏𝑏0−1 �𝑎𝑎𝑘𝑘 − 𝑏𝑏0−1�𝑏𝑏𝑓𝑓𝛿𝛿𝑘𝑘−𝑓𝑓

𝑘𝑘

𝑓𝑓=1

�. 

Then, the qf of 𝑋𝑋 can be expressed as 

(17) 

𝑄𝑄(𝑢𝑢) = 𝑄𝑄𝐺𝐺 ��𝛿𝛿𝑘𝑘𝑢𝑢𝑘𝑘
∞

𝑘𝑘=0

�. 

For any baseline G distribution, we combine (15) and (17) and write 

𝑄𝑄(𝑢𝑢) = 𝑄𝑄𝐺𝐺 �� 𝛿𝛿𝑚𝑚𝑢𝑢𝑚𝑚
∞

𝑚𝑚=0

� = �𝑎𝑎𝑖𝑖

∞

𝑖𝑖=0

�� 𝛿𝛿𝑚𝑚𝑢𝑢𝑚𝑚
∞

𝑚𝑚=0

�
𝑖𝑖

, 

and then, using (10) and (11), we have 

(18) 

𝑄𝑄(𝑢𝑢) = � 𝑒𝑒𝑚𝑚𝑢𝑢𝑚𝑚
∞

𝑚𝑚=0

, 

where 𝑒𝑒𝑚𝑚 = ∑ 𝑎𝑎𝑖𝑖𝑑𝑑𝑖𝑖,𝑚𝑚∞
𝑖𝑖=0 , and, for 𝑖𝑖 =  0, 1, . . . ,𝑑𝑑𝑖𝑖,0  =  𝛿𝛿0𝑖𝑖  and (for 𝑚𝑚 ≥  1) 

𝑑𝑑𝑖𝑖,𝑚𝑚 = (𝑚𝑚𝛿𝛿0)−1�[𝑒𝑒(𝑖𝑖 + 1) −𝑚𝑚]𝛿𝛿𝑛𝑛𝑑𝑑𝑖𝑖,𝑚𝑚−𝑛𝑛.
𝑚𝑚

𝑛𝑛=1

 

Equation (18) reveals that the qf of the ONH-G family can be expressed as a power series. 
Then, several mathematical quantities of X can be reduced to integrals over (0, 1) based on this 
power series. 

Let 𝑊𝑊 (·) be any integrable function on the real line. We can write 

(19) 



� 𝑊𝑊(𝑥𝑥)𝑓𝑓(𝑥𝑥)d𝑥𝑥
∞

−∞

= �𝑊𝑊
1

0

�� 𝑒𝑒𝑚𝑚𝑢𝑢𝑚𝑚
∞

𝑚𝑚=0

�𝑑𝑑𝑢𝑢. 

Equations (18) and (19) are the main results of this section since we can obtain from them 
various ONH-G mathematical properties. In fact, they can follow by using the integral on the right-
hand side for special 𝑊𝑊 (·) functions, which are usually simpler than if they were based on the 
left-hand integral. For the great majority of these quantities, we can adopt twenty terms in this 
power series. 

6. Bivariate extension 
In this section, we introduce a bivariate version of model (2), whose joint cdf is given by 

𝐹𝐹 (𝑥𝑥,𝑦𝑦;  𝛼𝛼, 𝛼𝛼, 𝝃𝝃) =  1 −  𝑒𝑒1−�1+𝜆𝜆
𝐺𝐺(𝑥𝑥,𝜆𝜆;𝝃𝝃)

1−𝐺𝐺(𝑥𝑥,𝜆𝜆;𝝃𝝃)�
𝛼𝛼

, (𝑥𝑥,𝑦𝑦) ∈ ℝ2, 

where 𝐺𝐺(𝑥𝑥,𝑦𝑦;  𝝃𝝃) is a bivariate continuous distribution with marginal cdf’s 𝐺𝐺1(𝑥𝑥;  𝝃𝝃) and 𝐺𝐺2(𝑦𝑦;  𝝃𝝃). 
We denote this distribution by the bivariate Odd Nadarajah-Haghighi -G (BONH-G) distribution. 
The marginal cdf’s are given by 

𝐹𝐹𝑋𝑋(𝑥𝑥) = 1 −  𝑒𝑒1−�1+𝜆𝜆
𝐺𝐺1(𝑥𝑥;𝝃𝝃)
𝐺𝐺1(𝑥𝑥;𝝃𝝃)�

𝛼𝛼

 and 𝐹𝐹𝑌𝑌(𝑦𝑦) = 1 −  𝑒𝑒1−�1+𝜆𝜆
𝐺𝐺2(𝜆𝜆;𝝃𝝃)
𝐺𝐺2(𝜆𝜆;𝝃𝝃)�

𝛼𝛼

. 

The joint pdf of (X, Y ) is 

𝑓𝑓𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦) =
𝛼𝛼𝛼𝛼𝐴𝐴(𝑥𝑥,𝑦𝑦;  𝛼𝛼, 𝛼𝛼, 𝝃𝝃)
[1− 𝐺𝐺(𝑥𝑥,𝑦𝑦; 𝝃𝝃)]4

�1 + 𝛼𝛼
𝐺𝐺(𝑥𝑥,𝑦𝑦; 𝝃𝝃)

1 − 𝐺𝐺(𝑥𝑥,𝑦𝑦; 𝝃𝝃)�
𝛼𝛼−1

𝑒𝑒1−�1+𝜆𝜆
𝐺𝐺(𝑥𝑥;𝝃𝝃)

1−𝐺𝐺(𝑥𝑥,𝜆𝜆;𝝃𝝃)�
𝛼𝛼

, 

where 

𝐴𝐴(𝑥𝑥,𝑦𝑦;𝛼𝛼, 𝛼𝛼, 𝝃𝝃) = 𝑔𝑔(𝑥𝑥,𝑦𝑦; 𝝃𝝃) +
2

1 − 𝐺𝐺(𝑥𝑥,𝑦𝑦; 𝝃𝝃)
𝜕𝜕𝐺𝐺(𝑥𝑥,𝑦𝑦;  𝝃𝝃)

𝜕𝜕𝑥𝑥
 
𝜕𝜕𝐺𝐺(𝑥𝑥,𝑦𝑦;  𝝃𝝃)

𝜕𝜕𝑦𝑦

 +
𝛼𝛼(𝛼𝛼 − 1)

[1− 𝐺𝐺(𝑥𝑥,𝑦𝑦; 𝝃𝝃)]2 �1 + 𝛼𝛼 𝐺𝐺(𝑥𝑥,𝑦𝑦; 𝝃𝝃)
1− 𝐺𝐺(𝑥𝑥,𝑦𝑦; 𝝃𝝃)�

𝜕𝜕𝐺𝐺(𝑥𝑥,𝑦𝑦;  𝝃𝝃)
𝜕𝜕𝑥𝑥

 
𝜕𝜕𝐺𝐺(𝑥𝑥,𝑦𝑦;  𝝃𝝃)

𝜕𝜕𝑦𝑦

+
𝛼𝛼(𝛼𝛼 − 1)

[1− 𝐺𝐺(𝑥𝑥,𝑦𝑦; 𝝃𝝃)]2 �1 + 𝛼𝛼
𝐺𝐺(𝑥𝑥,𝑦𝑦; 𝝃𝝃)

1 − 𝐺𝐺(𝑥𝑥,𝑦𝑦; 𝝃𝝃)�
𝛼𝛼−1 𝜕𝜕𝐺𝐺(𝑥𝑥,𝑦𝑦;  𝝃𝝃)

𝜕𝜕𝑥𝑥
 
𝜕𝜕𝐺𝐺(𝑥𝑥,𝑦𝑦;  𝝃𝝃)

𝜕𝜕𝑦𝑦
.

 

In order to illustrate the proposed bivariate extension, we use as baseline the McKay’s bivariate 
gamma distribution (see Nadarajah and Gupta, 2006), whose pdf is given by 

𝑔𝑔(𝑢𝑢, 𝜐𝜐) =
𝑢𝑢𝑎𝑎−1(1− 𝑢𝑢)𝑏𝑏−1

𝐵𝐵(𝑎𝑎,𝑏𝑏)
𝜐𝜐𝑎𝑎+𝑏𝑏−1𝑒𝑒−

𝜐𝜐
𝜇𝜇

𝜇𝜇𝑎𝑎+𝑏𝑏Γ(𝑎𝑎 + 𝑏𝑏) . 

Figure 4 displays plots of the McKay’s model (Figure 4(a)) and those of its BONH-McKay 
transformation (Figure 4(b)). It is observed from level curves that the extend bivariate model may 
produce more flexible distributions. 



 
Fig. 4. Plots of the pdfs and level curves. 

7. Estimation 
This section addresses estimation procedures for the ONH parameters under two perspectives: 
uncensored and censored likelihoods. For both cases, the estimators cannot be expressed in 
closed-forms which imposes the use of numerical interactive methods (such as Newton-Raphson, 
BFGS and Nelder-Mead, among others). To this end, possible users of our proposal can employ 
standard routines implemented in softwares such as R, 𝑂𝑂𝑥𝑥 and SAS to maximize the likelihoods 
directly. 

7.1. Uncensored maximum likelihood estimation 
In this section, we determine the maximum likelihood estimates (MLEs) of 𝛼𝛼 and 𝛼𝛼 (additional 
parameters) and 𝝃𝝃 (parameter vector of the baseline G) in the ONH-G family. Let 𝑥𝑥1, . . . ,  𝑥𝑥𝑛𝑛 be an 

observed sample from X ∼ONH-G and 𝜽𝜽 = �𝛼𝛼, 𝛼𝛼,  𝝃𝝃⟙ �
⟙

 be the parameter vector of dimension 
𝑟𝑟 × 1. The total log-likelihood function for 𝜽𝜽, say ℓ𝑛𝑛  =  ℓ𝑛𝑛(𝜽𝜽), is given by                 

ℓ𝑛𝑛 = 𝑒𝑒[log(𝛼𝛼𝛼𝛼) + 1] + � log[𝑔𝑔(𝑥𝑥𝑖𝑖; 𝝃𝝃)]
𝑛𝑛

𝑖𝑖=1

− 2� log[𝐺𝐺�(𝑥𝑥𝑖𝑖; 𝝃𝝃)]
𝑛𝑛

𝑖𝑖=1

+(𝛼𝛼 − 1)� log �1 +  𝛼𝛼
𝐺𝐺(𝑥𝑥𝑖𝑖; 𝝃𝝃)
𝐺𝐺�(𝑥𝑥𝑖𝑖;  𝝃𝝃)

�
𝑛𝑛

𝑖𝑖=1

+ ��1 − �1 +  𝛼𝛼
𝐺𝐺(𝑥𝑥𝑖𝑖; 𝝃𝝃)
𝐺𝐺�(𝑥𝑥𝑖𝑖;  𝝃𝝃)

�
𝛼𝛼

�
𝑛𝑛

𝑖𝑖=1

.

 

The MLE 𝜽𝜽� can be defined as 𝜽𝜽� = arg max𝜽𝜽∈𝚯𝚯[ℓ𝑛𝑛(𝜽𝜽)], where 𝚯𝚯 ⊆ ℝ𝑓𝑓  denotes the parametric 
space associated to the ONH-G family. The MLEs are obtained by solving the nonlinear system of 
equations 

𝑼𝑼(𝜽𝜽) = 𝟎𝟎 ⇔ �𝑈𝑈𝛼𝛼,𝑈𝑈𝜆𝜆,𝑼𝑼𝝃𝝃
⟙ � = 𝟎𝟎 ⇔ �

𝜕𝜕ℓ𝑛𝑛
𝜕𝜕𝛼𝛼

,
𝜕𝜕ℓ𝑛𝑛
𝜕𝜕𝛼𝛼

, �
𝜕𝜕ℓ𝑛𝑛
𝜕𝜕𝝃𝝃

�
⟙

� = 𝟎𝟎, 

where 



𝑈𝑈𝛼𝛼 =
𝑒𝑒
𝛼𝛼

+� log �1 +  𝛼𝛼
𝐺𝐺(𝑥𝑥𝑖𝑖; 𝝃𝝃)
𝐺𝐺�(𝑥𝑥𝑖𝑖;  𝝃𝝃)

�
𝑛𝑛

𝑖𝑖=1

−��1 +  𝛼𝛼
𝐺𝐺(𝑥𝑥𝑖𝑖; 𝝃𝝃)
𝐺𝐺�(𝑥𝑥𝑖𝑖;  𝝃𝝃)

�
𝛼𝛼𝑛𝑛

𝑖𝑖=1

log �1 +  𝛼𝛼
𝐺𝐺(𝑥𝑥𝑖𝑖; 𝝃𝝃)
𝐺𝐺�(𝑥𝑥𝑖𝑖;  𝝃𝝃)

� ,

 

𝑈𝑈𝜆𝜆 =
𝑒𝑒
𝛼𝛼

+ (𝛼𝛼 − 1)�
𝐺𝐺(𝑥𝑥𝑖𝑖; 𝝃𝝃)

𝐺𝐺�(𝑥𝑥𝑖𝑖;  𝝃𝝃) + 𝛼𝛼𝐺𝐺(𝑥𝑥𝑖𝑖; 𝝃𝝃)

𝑛𝑛

𝑖𝑖=1

−𝛼𝛼�
𝐺𝐺(𝑥𝑥𝑖𝑖; 𝝃𝝃)
𝐺𝐺�(𝑥𝑥𝑖𝑖;  𝝃𝝃)

𝑛𝑛

𝑖𝑖=1

�1 +  𝛼𝛼
𝐺𝐺(𝑥𝑥𝑖𝑖; 𝝃𝝃)
𝐺𝐺�(𝑥𝑥𝑖𝑖;  𝝃𝝃)

�
𝛼𝛼−1

,

 

𝑼𝑼𝜉𝜉𝑟𝑟 = �
𝑔𝑔(𝑓𝑓)(𝑥𝑥𝑖𝑖; 𝝃𝝃)
𝑔𝑔(𝑥𝑥𝑖𝑖;  𝝃𝝃)

𝑛𝑛

𝑖𝑖=1

+ 2�
𝐺𝐺(𝑓𝑓)(𝑥𝑥𝑖𝑖; 𝝃𝝃)
𝐺𝐺�(𝑥𝑥𝑖𝑖;  𝝃𝝃)

𝑛𝑛

𝑖𝑖=1

+𝛼𝛼(𝛼𝛼 − 1)�
𝐺𝐺(𝑓𝑓)(𝑥𝑥𝑖𝑖; 𝝃𝝃)

𝐺𝐺�(𝑥𝑥𝑖𝑖;  𝝃𝝃)[𝐺𝐺�(𝑥𝑥𝑖𝑖;  𝝃𝝃) + 𝛼𝛼𝐺𝐺(𝑥𝑥𝑖𝑖;  𝝃𝝃)]

𝑛𝑛

𝑖𝑖=1

−𝛼𝛼𝛼𝛼�
𝐺𝐺(𝑓𝑓)(𝑥𝑥𝑖𝑖; 𝝃𝝃)
𝐺𝐺�(𝑥𝑥𝑖𝑖;  𝝃𝝃)2

𝑛𝑛

𝑖𝑖=1

�1 +  𝛼𝛼
𝐺𝐺(𝑥𝑥𝑖𝑖; 𝝃𝝃)
𝐺𝐺�(𝑥𝑥𝑖𝑖;  𝝃𝝃)

�
𝛼𝛼−1

 

and 𝐺𝐺(𝑓𝑓)(𝑥𝑥𝑖𝑖; 𝝃𝝃) denotes the derivative of 𝐺𝐺(𝑥𝑥𝑖𝑖; 𝝃𝝃) with respect to 𝜉𝜉𝑓𝑓, etc. 

7.2. Multi-censored maximum likelihood estimation 
Often with lifetime data, we encounter censored observations. There are different forms of 

censoring: type I censoring, type II censoring, etc. Here, we consider the general case of multi-
censored data: there are 𝑚𝑚 subjects of which 𝑚𝑚0 are known to have failed at the times 
𝑥𝑥1, . . . ,𝑥𝑥𝑚𝑚0 ;𝑚𝑚1 are known to have failed in the interval �𝑠𝑠𝑗𝑗−1, 𝑠𝑠𝑗𝑗�, 𝑗𝑗 = 1, . . . ,𝑚𝑚1;  𝑚𝑚2 survived to a 
time 𝑟𝑟𝑗𝑗  𝑗𝑗 = 1, . . . ,𝑚𝑚2, but not observed any longer. Note that 𝑚𝑚 =  𝑚𝑚0  +  𝑚𝑚1  + 𝑚𝑚2 and that 
type I censoring and type II censoring are special cases of multi-censoring. The log-likelihood 
function for 𝜽𝜽 is given by 

ℓ𝑚𝑚(𝜽𝜽) = 𝑚𝑚0[log(𝛼𝛼𝛼𝛼) + 1] + (𝛼𝛼 − 1)� log �1 +  𝛼𝛼
𝐺𝐺(𝑥𝑥𝑖𝑖; 𝝃𝝃)
𝐺𝐺�(𝑥𝑥𝑖𝑖;  𝝃𝝃)

�
𝑚𝑚0

𝑖𝑖=1

+� log[𝑔𝑔(𝑥𝑥𝑖𝑖; 𝝃𝝃)] + ��1 − �1 +  𝛼𝛼
𝐺𝐺(𝑥𝑥𝑖𝑖; 𝝃𝝃)
𝐺𝐺�(𝑥𝑥𝑖𝑖;  𝝃𝝃)

�
𝛼𝛼

�  
𝑚𝑚0

𝑖𝑖=1

𝑚𝑚0

𝑖𝑖=1

+��1 − �1 +
𝛼𝛼𝐺𝐺(𝑟𝑟𝑖𝑖; 𝝃𝝃)
𝐺𝐺�(𝑟𝑟𝑖𝑖;  𝝃𝝃)

�
𝛼𝛼

�  
𝑚𝑚2

𝑖𝑖=1

− 2� log [𝐺𝐺�(𝑥𝑥𝑖𝑖;  𝝃𝝃)]  
𝑚𝑚0

𝑖𝑖=1

+� log ��1 − exp �1 − �1 +
𝛼𝛼𝐺𝐺(𝑠𝑠𝑖𝑖; 𝝃𝝃)
𝐺𝐺�(𝑠𝑠𝑖𝑖;  𝝃𝝃)

�
𝛼𝛼

�� − �1− exp �1 − �1 +
𝛼𝛼𝐺𝐺(𝑠𝑠𝑖𝑖−1; 𝝃𝝃)
𝐺𝐺�(𝑠𝑠𝑖𝑖−1;  𝝃𝝃)

�
𝛼𝛼

���  
𝑚𝑚1

𝑖𝑖=1

.

 

The likelihood equations can be obtained from the authors upon request. 



8. Numerical results 
In this section, we fit some models under the proposed class for both empirical and real 

data. First, a Monte Carlo simulation study is performed in order to check the influence of the 
variation of the baseline parameters on the additional ones. Second, an application is performed 
in synthetic aperture radar data. 

8.1. Monte Carlo simulation 
We carry out a Monte Carlo simulation study (with 1,000 replications) to quantify some 

asymptotic properties of the MLEs of the model parameters. To that end, we consider the ONH𝛽𝛽, 
ONHΓ and ONH-W models presented in Section 2 under a parametric variation 𝑘𝑘 [𝛼𝛼, 𝛼𝛼,𝛽𝛽1,𝛽𝛽2] =
 𝑘𝑘 × [0.3, 0.5, 0.3, 0.5], where 𝑘𝑘 =  1, 5, 10 and for sample sizes 𝑒𝑒 =  50, 100, 200. For each 
parametric point, we obtain from the simulations three assessment measures: (i) the averages of 
the MLEs, (ii) the Kolmogorov-Smirnov distance and (iii) the Mean Square Errors (MSEs). 

Table 1 lists the values obtained for the criteria (1)–(3). In general, as expected, one can 
note that both asymptotic biases and MSEs decrease when the sample size increases. In 
particular, with respect to the effects of parameter variation, larger MSEs are associated to larger 
parameters. This fact suggests the use of robust adjustment methods for the ONH-G model with 
high magnitude parameters. 



Table 1. Simulation results 
Factors MLEs     MSEs    
 𝛼𝛼 𝛼𝛼  𝛽𝛽1  𝛽𝛽1 K 𝛼𝛼 𝛼𝛼  𝛽𝛽1  𝛽𝛽1 
ONH−  Γ 0.459 0.436 0.354 0.329 0.076 0.023 0.081 0.019 0.083 
ONH −  𝛽𝛽 0.495 0.409 0.342 0.331 0.075 0.025 0.069 0.018 0.074 
ONH−W 0.251 0.301 0.289 0.319 0.075 0.027 0.131 0.011 0.149 
(𝑒𝑒,𝛼𝛼,𝛼𝛼,  𝛽𝛽1,𝛽𝛽2) =  (100, 0.3, 0.5, 0.3, 0.5)          
 0.435 0.419 0.323 0.346 0.055 0.022 0.062 0.015 0.072 
 0.423 0.435 0.326 0.386 0.053 0.023 0.052 0.015 0.067 
 0.242 0.362 0.292 0.278 0.053 0.024 0.101 0.009 0.141 
(𝑒𝑒,𝛼𝛼,𝛼𝛼,  𝛽𝛽1,𝛽𝛽2) =  (200, 0.3, 0.5, 0.3, 0.5)          
 0.366 0.442 0.308 0.407 0.038 0.018 0.046 0.010 0.061 
 0.387 0.462 0.316 0.407 0.037 0.020 0.033 0.010 0.052 
 0.264 0.402 0.291 0.222 0.037 0.022 0.080 0.006 0.131 
(𝑒𝑒,𝛼𝛼, 𝛼𝛼,  𝛽𝛽1,𝛽𝛽2) =  (50, 1.5, 2.5, 1.5, 2.5)          
 1.313 2.027 1.547 3.844 0.076 0.705 2.474 0.236 1.588 
 1.210 2.287 1.607 4.124 0.076 0.686 2.386 0.266 1.567 
 1.306 3.052 1.601 1.658 0.077 0.955 2.980 0.277 1.594 
(𝑒𝑒,𝛼𝛼,𝛼𝛼,  𝛽𝛽1,𝛽𝛽2) =  (100, 1.5, 2.5, 1.5, 2.5)          
 1.304 2.211 1.547 3.317 0.054 0.550 1.836 0.151 1.333 
 1.228 2.301 1.578 3.602 0.054 0.571 1.829 0.170 1.513 
 1.358 2.841 1.551 1.930 0.054 0.793 2.350 0.152 1.446 
(𝑒𝑒,𝛼𝛼,𝛼𝛼,  𝛽𝛽1,𝛽𝛽2) =  (200, 1.5, 2.5, 1.5, 2.5)          
 1.355 2.141 1.534 3.132 0.039 0.443 1.506 0.075 1.411 
 1.395 2.228 1.507 3.139 0.039 0.438 1.434 0.080 1.480 
 1.511 2.816 1.530 2.238 0.038 0.715 1.691 0.071 1.373 
(𝑒𝑒,𝛼𝛼, 𝛼𝛼,  𝛽𝛽1,𝛽𝛽2) =  (50, 3, 5, 3, 5)          
 3.619 4.952 3.124 5.909 0.080 2.794 7.561 0.761 6.955 
 3.570 4.672 3.114 6.064 0.079 2.699 7.913 0.741 7.675 
 3.713 5.127 3.086 3.820 0.079 4.147 11.872 0.709 4.888 
(𝑒𝑒,𝛼𝛼,𝛼𝛼,  𝛽𝛽1,𝛽𝛽2) =  (100, 3, 5, 3, 5)          
 3.164 4.633 3.066 5.534 0.056 2.203 6.995 0.440 5.765 
 3.411 4.556 3.043 5.417 0.056 2.172 7.148 0.454 6.524 



 3.143 5.722 3.048 4.616 0.056 3.291 8.911 0.404 3.820 
(𝑒𝑒,𝛼𝛼,𝛼𝛼,  𝛽𝛽1,𝛽𝛽2) =  (200, 3, 5, 3, 5)          
 3.177 5.137 3.015 5.157 0.040 1.708 6.422 0.221 4.581 
 3.066 5.020 3.017 5.278 0.040 1.721 6.015 0.210 5.371 
 2.870 5.123 3.032 4.831 0.040 2.855 7.331 0.180 3.260 

 



8.2. Intensities in (dB) of radar data 
We carry out an application to a real data larger set. We use a database extracted from an 

image of Foulum (Denmark) obtained by the EMISAR sensor (Lee and Pottier, 2009) operated at 
Cand L-bands (though not simultaneously) with quad-polarizations. 

The data are obtained at http://earth.eo.esa.int/polsarpro/datasets.html by means of the 
polSARpro software and, for each geographic position, each one of its element consists in norm 
squared of a complex number, which represents the information of the polarization channel 
resulting of a pulse both transmitted and recorded in horizontal direction. These informations are 
known as intensities and are given in Alizadeh et al. ([2]). 

Table 2. MLEs and their estimated SEs for the current data 
 

Model 𝜽𝜽�[MLEs (SEs)]    
ONHβ 0.145 (0.010) 20.765(7.090) 3.695(0.365) 33.059(1.382) 
ONHΓ 0.148(0.013) 12.490(6.890) 3.811(0.508) 42.647(1.533) 
ONH-W 0.164(0.028) 54.255(14.823) 2.548(0.100) 0.165(0.021) 
BW 0.561 (0.290) 0.735 (0.447) 2.162 (0.753) 5.951 (1.766) 

 

Here, the special models presented in Section 2 are employed to describe the EMISAR 
intensities. They are compared with the four-parameter beta Weibull (BW) model discussed by 
Cordeiro et al. ([7]), whose pdf is given by (for 𝑥𝑥 >  0) 

𝑓𝑓(𝑥𝑥) =
𝑐𝑐𝛼𝛼𝑐𝑐

𝐵𝐵(𝑎𝑎,𝑏𝑏)𝑥𝑥
𝑐𝑐−1𝑒𝑒−𝑏𝑏(𝜆𝜆𝑥𝑥)𝑐𝑐�1− 𝑒𝑒−(𝜆𝜆𝑥𝑥)𝑐𝑐�

𝑎𝑎−1
, 

where 𝑎𝑎,𝑏𝑏, 𝑐𝑐, 𝛼𝛼 >  0. Table 2 gives the MLEs of the parameters of the ONH−{𝛽𝛽,Γ,𝑊𝑊} and BW 
distributions fitted to the current data. In order to perform a previous quality comparison, Figure 
5 displays both empirical and estimated ONH{𝛽𝛽,Γ,𝑊𝑊} and BW pdfs and their counterpart cdfs. In 
general, the estimated pdfs are close to the histogram for all cases. Further, with respect to the 
quality of to the empirical cdf, the ONH-G models outperform the BW model. 

For presenting a quantitative base to analyze Figure 5, we use four goodness-of-fit (GoF) 
measures: (a) Akaike information criterion (AIC), (b) corrected AIC (AICc), (c) Bayesian information 
criterion (BIC) and (d) Kolmogorov Smirnov statistic (and its associated p-value). Table 3 presents 
their values for the radar intensities. We note that the ONH𝛽𝛽 distribution yields the best fit 
according to all GoFs. 

http://earth.eo.esa.int/polsarpro/datasets.html


 
Fig. 5. Application to Radar Intensities. 
 

Table 3. Values of the GoF measures 

Model Depend on the pdf   Depend on the cdf  
 AIC AICc BIC KS p-value 
ONHβ −234.2379 −233.8212 −223.7774 0.0777 0.5753 
ONHΓ −232.9728 −232.5561 −222.5123 0.0837 0.4785 
ONH-W −233.6043 −233.1876 −223.1438 0.0796 0.5435 
β-W −222.7629 −222.3462 −212.3024 0.222 < 9.5 × 10−5 

 

9. Conclusion 
We propose a new class of continuous distributions, called the Odd Nadarajah-Haghighi 

(ONH) family, and investigate some of its mathematical properties. Three special ONH models are 
presented, namely: the ONHgamma, -beta and -Weibull distributions. We introduce a bivariate 
version of the ONH-G family and one special case called the McKay’s bivariate gamma distribution 
is discussed. Further, we also developed a collection of characterization results for the proposed 
family. The maximum likelihood estimation for the ONH parameters is addressed. The 
performance of the maximum likelihood estimates is quantified for some parametric points. 
Finally, an application to SAR data is conducted and, according to four goodness-of-fit statistics, 
the results indicate that the ONH𝛽𝛽 model provides a better fit to SAR intensities, when compared 
with the classical BW, ONHΓ and -W models. 
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A. Mathematical support for representing quantile function 
We use throughout the paper a result of Gradshteyn and Ryzhik ([11]) for a power series 

raised to a positive integer n 

(20) 

𝑄𝑄𝐺𝐺(𝑢𝑢)𝑛𝑛  = ��𝑎𝑎𝑖𝑖𝑢𝑢𝑖𝑖
∞

𝑖𝑖=0

�
𝑛𝑛

= �𝑐𝑐𝑛𝑛,𝑖𝑖𝑢𝑢𝑖𝑖
∞

𝑖𝑖=0

, 

where 𝑐𝑐𝑛𝑛,0  =  𝑎𝑎0𝑛𝑛 and the coefficients 𝑐𝑐𝑛𝑛,𝑖𝑖 (for 𝑖𝑖 =  1, 2, . ..) can be determined from the 
recurrence equation 

(21) 

𝑐𝑐𝑛𝑛,𝑖𝑖 = (𝑖𝑖𝑎𝑎0)−1 � [𝑚𝑚(𝑒𝑒 + 1) − 𝑖𝑖]𝑎𝑎𝑚𝑚𝑐𝑐𝑛𝑛,𝑖𝑖−𝑚𝑚

𝑖𝑖

𝑚𝑚=1

. 

Next, we derive an expansion for the argument of 𝑄𝑄𝐺𝐺(·) in (5): 

𝐴𝐴 =
−1 + [1− log(1− 𝑢𝑢)]1 𝛼𝛼⁄

𝛼𝛼 − 1 + [1− log(1− 𝑢𝑢)]1 𝛼𝛼⁄ . 

Using MATHEMATICA, we have 

(22) 

−1 + [1− log(1− 𝑢𝑢)]1 𝛼𝛼⁄ = �𝑎𝑎𝑘𝑘𝑢𝑢𝑘𝑘
∞

𝑘𝑘=0

, 

where 

𝑎𝑎0 = 0,𝑎𝑎1 =
1
𝛼𝛼

,𝑎𝑎2 =
1

2𝛼𝛼2
,𝑎𝑎3 =

𝛼𝛼2 + 1
6𝛼𝛼3

,𝑎𝑎4 =
𝛼𝛼3 + 4𝛼𝛼2 + 1

24𝛼𝛼4
, . .. 

And then 

(23) 

𝛼𝛼 − 1 + [1− log(1− 𝑢𝑢)]1 𝛼𝛼⁄ = �𝑏𝑏𝑘𝑘𝑢𝑢𝑘𝑘
∞

𝑘𝑘=0

, 

where 

𝑏𝑏0 = 0,𝑏𝑏1 =
1
𝛼𝛼

,𝑏𝑏2 =
1

2𝛼𝛼2
,𝑏𝑏3 =

𝛼𝛼2 + 1
6𝛼𝛼3

, 𝑏𝑏4 =
𝛼𝛼3 + 4𝛼𝛼2 + 1

24𝛼𝛼4
, . .. 

By using the quotient of two power series, we can write 

(24) 



𝐴𝐴 =
∑ 𝑎𝑎𝑘𝑘𝑢𝑢𝑘𝑘∞
𝑘𝑘=0

∑ 𝑏𝑏𝑘𝑘𝑢𝑢𝑘𝑘∞
𝑘𝑘=0

= �𝑏𝑏𝑘𝑘𝑢𝑢𝑘𝑘
∞

𝑘𝑘=0

, 

where 𝛿𝛿0  = 𝑎𝑎0 𝑏𝑏0⁄  and, for 𝑘𝑘 ≥  1, we obtain 

𝛿𝛿𝑘𝑘 = 𝑏𝑏0−1 �𝑎𝑎𝑘𝑘 − 𝑏𝑏0−1�𝑏𝑏𝑓𝑓𝛿𝛿𝑘𝑘−𝑓𝑓

𝑘𝑘

𝑓𝑓=1

�. 

B. Mathematical support for Section 3 
Theorem 2. Let (Ω,ℱ,𝐏𝐏) be a given probability space and let 𝑁𝑁 =  [𝑎𝑎,𝑏𝑏] be an interval for 

some 𝑑𝑑 < 𝑏𝑏(𝑎𝑎 = −∞ ,𝑏𝑏 = ∞ might as well be allowed). Let 𝑋𝑋:Ω → 𝑁𝑁 be a continuous random 
variable with the distribution function 𝐹𝐹 and let 𝑞𝑞1 and 𝑞𝑞2 be two real functions defined on 𝑁𝑁 such 
that 

𝐄𝐄[𝑞𝑞2(𝑋𝑋)|𝑋𝑋 ≥ 𝑥𝑥] = 𝐄𝐄[𝑞𝑞1(𝑋𝑋)|𝑋𝑋 ≥ 𝑥𝑥]𝜂𝜂(𝑥𝑥),   𝑥𝑥 ∈ 𝑁𝑁, 

is defined with some real function 𝜂𝜂. Assume that 𝑞𝑞1,𝑞𝑞2  ∈ 𝐶𝐶1(𝑁𝑁),𝜂𝜂 ∈ 𝐶𝐶2(𝑁𝑁) and 𝐹𝐹 is twice 
continuously differentiable and strictly monotone function on the set 𝑁𝑁. Finally, assume that the 
equation 𝜂𝜂𝑞𝑞1  =  𝑞𝑞2 has no real solution in the interior of 𝑁𝑁. Then 𝐹𝐹 is uniquely determined by the 
functions 𝑞𝑞1, 𝑞𝑞2  and 𝜂𝜂, particularly          

𝐹𝐹(𝑥𝑥) = �𝐶𝐶 �
𝜂𝜂′(𝑢𝑢)

𝜂𝜂(𝑢𝑢)𝑞𝑞1(𝑢𝑢)− 𝑞𝑞2(𝑢𝑢)�
𝑥𝑥

𝑎𝑎

 exp�−𝑠𝑠(𝑢𝑢)�𝑑𝑑𝑢𝑢, 

where the function 𝑠𝑠 is a solution of the differential equation 𝑠𝑠′ = 𝜂𝜂′𝑞𝑞1

𝜂𝜂𝑞𝑞1−𝑞𝑞2
 and 𝐶𝐶 is the 

normalization constant, such that ∫𝐻𝐻𝑑𝑑𝐹𝐹 =  1. 
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