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ABSTRACT 
DEEP LEARNING APPROACH FOR DYNAMIC SAMPLING 

FOR HIGH-THROUGHPUT NANO-DESI MSI 

David Steven Helminiak 

Marquette University 2021 

Mass Spectrometry Imaging (MSI) extracts molecular mass data to form 
visualizations of molecular spatial distributions. The involved scanning procedure is 
conducted by moving a probe across and around a rectilinear grid, as in the case of 
nanoscale Desorption Electro-Spray Ionization (nano-DESI) MSI, where singular 
measurements can take up to ~5 seconds to acquire high-resolution (better than 10 𝜇𝜇m) 
results. This temporal expense creates a high inefficiency in sample processing and 
throughput. For example, in a high-resolution nano-DESI study, a single mouse uterine 
tissue section (2.5 mm by 1.7 mm) had an acquisition time of ~4 hours to acquire 
104,400 pixels. Anywhere from ~25-30% of those pixels were outside the actual tissue, 
and a further portion of those locations lacked relevant information.  

 
An existing method, a Supervised Learning Approach for Dynamic Sampling 

(SLADS), utilizes information obtained during an active scan to infer, using a least-
squares regression, regions of interest that most likely contain meaningful information, 
and a computationally inexpensive weighted mean interpolation to perform sparse sample 
reconstruction. This approach could potentially be used to significantly improve 
throughput in this and other biological tissue scanning applications. However, existing 
SLADS implementations were neither designed nor optimized for leveraging or handling 
the 3rd dimension in MSI of molecular spectra. Further, integrating more recent advances 
in machine learning since the last SLADS publication issuance, such as Convolutional 
Neural Network (CNN) architectures, offers additional performance gains. The objective 
of this research is the updating, re-design, and optimization of the SLADS methodology, 
to form a Deep Learning Approach for Dynamic Sampling (DLADS) for high-resolution 
biological tissues and integration with nano-DESI MSI instrumentation.  
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CHAPER 1 
INTRODUCTION 

1.1 Motivation 

 

   
Figure 1: Traditional rectilinear scanning pattern (left) overlaid on an optical view of a 
mouse uterine section, and Otsu thresholding applied to the FOV (right), showing 53% of 
sampling locations occupy the foreground (green) and 47% in the background (red)  
 

Traditional spectroscopy and microscopy scanning technologies typically require 

around ~5-10 seconds per pixel for high-fidelity acquisitions. Rectilinear (Fig. 1) 

scanning remains the preferred industry standard, as it ensures that all of the desired data 

is obtained. However, high-resolution samples (with precisions of <10 𝜇𝜇m) can take 

hours to scan. There exists the potential to spend a majority of scanning time on acquiring 

non-relevant information. Such data could be as simple as the locations around the 

intended sample, but within the acquisition equipment’s Field of View (FOV), or more 

broadly, any information not relevant to an experimentalist’s scanning objective. Simply 

preventing scanning in the background, as shown in Figure 1, can double throughput 

without loss of any meaningful information. Specifically, within a biological context, if a 

researcher is solely interested in a tissue’s internal distribution of epithelium, then it 
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would be unnecessary to also scan locations unlikely to contain it. Overall, there results a 

high inefficiency for throughput, particularly for Mass Spectrometry Imaging (MSI).  

A general approach that has seen growing adoption has been performing limited 

random sparse sampling, then relying on deep learning to perform reconstruction of a 

low-error estimation of the ground-truth. However, the analysis of these models’ 

reasoning and determinations remains problematic to reverse-engineer. Improved levels 

of understanding are necessary for highly regulated or precision applications, such as in 

material and biological research, to increase general adoption of deep learning models in 

areas where it would prove most beneficial.  

Alternatively, there exist dynamic sampling algorithms, which optimize 

subsequent measurement locations through statistical models based on previous 

measurements obtained during a live-scan. This does not preclude the use of deep 

learning as a potential for enhanced post-processing. Rather, it ensures that the only 

locations obtained are probabilistically expected to contain desired information. An 

approach, based on this methodology, was previously created in the form of the 

Supervised Learning Approach for Dynamic Sampling (SLADS) algorithm, that 

addresses the aforementioned issues through the incorporation of stochastic processes 

into a compressed sensing method. Statistical features, extracted from a reconstruction of 

the sample (generated and updated throughout the acquisition process based on data 

obtained during the scan), are used to regularly estimate the potential entropy reduction 

for currently unmeasured locations. This dynamic determination of optimized scanning 

locations maximizes scanning throughput, minimizes the computational expense of deep 
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learning reconstruction (produced instead through Inverse Distance Weighted (IDW) 

mean interpolation), and removes the need for detailed analysis for result explanation.  

SLADS has primarily seen application and development for CT, as well as Raman 

and Electron Back Scatter Diffraction (EBSD) microscopy. However, it has potential to 

improve throughput for similar technologies, such as nanoscale Desorption Electro-Spray 

Ionization (nano-DESI) MSI, where the high resolution scan of a mouse uterine section 

(Figure 1), with a size of only 2.4x1.7 mm (with 104,400 individual scanning locations), 

required ~4 hours to acquire [1]. Given its high spatial resolution, relative low-cost, and 

ability to be performed at regular intervals on a single sample, MSI has largely become 

popular in clinical and research settings for examining the spatial distributions 

(localization) of biomolecules and their progressive interactions. This makes MSI in 

general, a prime target for integration with dynamic sampling algorithms for improved 

throughput, as offered by the SLADS methodology.  

This thesis’ development was further motivated by its funding, as provided by the 

National Institutes of Health (NIH) Common fund, through the Office of the Strategic 

Coordination/Office of the NIH Director under award UG3HL145593. This award was 

provided under the Human BioMolecular Atlas Program (HUBMAP) consortium [2] for 

Transformative Technology Development (TTD). HUBMAP’s overall goal is to map 

human tissues at single cell resolution, a subset of which focuses on providing proof-of-

principle for developing technologies. While the hardware and procedural aspects of 

nano-DESI MSI continues to be developed by Purdue University, there is an opportunity 

to improve its throughput beyond other existing MSI methods, through an integration of a 

dynamic sampling algorithm.  
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1.2 History and Review  

1.2.1 DESI MSI 

DESI MSI deposits a charged solvent and then extracts it from a sample surface 

(typically biological) for the ionization and desorption of hundreds of molecules 

simultaneously, up to ~2000 Da (Daltons). Extracting information from the acquired 

spectra allows for a 2D (two-dimensional) visualization of specific molecular 

distributions. DESI is historically challenged with regards to its spatial resolution, as 

compared with other MSI methods including MALDI (Matrix-Assisted Laser Desorption 

Ionization) and SIMS (Secondary Ion Mass Spectroscopy), which can operate in the 1-2 

𝜇𝜇m range. SIMS has the disadvantage of being a destructive method and only operating 

up to ~1,000 Da, while MALDI typically requires a high level of tissue preparation to 

prevent sample degradation, as well as operations being performed within a vacuum [3].  

Recent advances in DESI produced from Purdue University, labeled as nano-

DESI MSI [1], are rapidly allowing for spatial fidelity levels (the minimum distance 

between identifiably distinct features) similar to SIMS and MALDI, with acquisitions 

demonstrated at better than 10 𝜇𝜇m. DESI does not require complicated pre-treatment and 

imparts minimal damage to the sample, which allows for additional complementary 

analyses, as might be possible with subsequent MALDI scans. This particular 

implementation currently relies on XCalibur software, produced by Thermo Fisher 

Scientific Inc. (Waltham, MA), to control the sampling probe positioning, speeds, and the 

actual acquisition of location spectra. Sample locations are scanned line-by-line through 

either custom or commercial hardware platforms, with the resulting information stored in 

a proprietary “RAW” format.  
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1.2.2 Deep Learning 

Deep learning exists as a subset of Machine Learning (ML) and is derived from 

the broader field of Artificial Intelligence (AI). AI concerns the creation of intelligent 

entities developed by understanding methods through which humans interact with the 

world. ML focuses more strongly on aspects of thinking and acting rationally, basing 

decisions on experience to maximize a measure of performance [4]. The procedures for 

producing these decisions for a specific problem are formalized in algorithms, that is 

computational procedures for processing inputs [5]. Success with ML largely depends on 

the ability of an employed model to capture the complexity of the involved concepts, as 

well as the quality and quantity of data to be analyzed (or rather experienced). More 

specific to this work is the process of supervised learning, where data used for training a 

model has known labels and evaluation of relative performance is conducted over 

separate datasets [6]. This allows for an evaluation of a model’s ability to generalize, or 

perform well when presented with previously unseen inputs. Deep learning uses models 

created from artificial neural networks with multiple layers (the network depth) to 

progressively represent high-level, abstract features. Generally speaking, deeper and 

broader networks can represent increasingly complex data and transformations. The 

resultant model representation can be leveraged to encode (learn) features from an input 

and map, or decode the information to a desired, trained output.  

1.2.3 U-Net Architecture 

A particularly successful model for processing 2-dimensional (2D) information 

(such as images) is the Convolutional Neural Network (CNN). CNN models use 

convolutional layers, as inspired by biological visual cortices, to capture information in a 
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receptive field, forming representative features, or activation maps. CNN models are 

commonly used for classification, encoding increasingly abstract representations by 

decreasing spatial dimensions through pooling operations and proportionately increasing 

the number of representative convolutional filters.  

The U-Net architecture is a CNN variant first published in 2015 for the 

segmentation of biomedical images [7]. U-Net comprises symmetric encoding and 

decoding halves, giving the architecture a distinctive U-shape when visualized. The 

encoding section compresses spatial dimensions and increases depth, as in a typical CNN. 

The decoding section then upscales its inputs, progressively halving the number of 

convolutional filters and re-combining with the encoded feature maps through skip 

connections. When used for classification, the final layer(s) use a 1x1 convolutional layer 

to map channels to a given number of desired output classes.  

U-Net allows for the architecture’s output to have the same spatial dimensions as 

the input. Further, since only convolutional operations are performed (in contrast to 

Multi-Layer Perceptron (MLP) or “Dense” neural networks), the U-Net can be 

constructed to handle arbitrarily sized inputs and outputs. This makes U-Nets ideal 

candidates for image-to-image translation tasks such as denoising, coloration, and depth 

estimation, where the inputs are generally geometrically representative of the outputs.  

1.2.4 Sparse Sampling 

In existing scholarly literature, there exist a variety of sparse sampling methods 

that may be broadly separated into static and dynamic categories. The static approaches 

perform scans with entirely pre-determined locations, these can be generated uniformly, 

randomly, or through stochastic models [8, 9, 10]. There also exist static patterns where 
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the sample geometry is sufficiently understood that a manually created mask can be 

consistently relied upon to only capture desired information [11]. Dynamic methods [12, 

13] employ information obtained during the scanning process to inform future locations 

and generally are based in compressed sensing techniques and machine learning.  

One of the more successful dynamic methods is SLADS, which selects scan 

locations based on those which maximize a Reduction in Distortion (RD) measured 

between a ground-truth and reconstruction. The formalized SLADS framework was 

introduced in 2016 by Godaliyadda et al. [14], based on the authors’ earlier work in 2014 

[15], comprising the Model-Based Dynamic image Sampling (MBDS) algorithm. MBDS 

was based on a Monte Carlo method, but was demonstrated to be a slower and less 

precise predecessor to SLADS.  

SLADS was then employed in 2017 by Scarborough et al. [16] for dynamic X-ray 

crystalline protein acquisition, seeking to lower the amount of damage imposed onto a 

sample by exposure to high energy X-rays. Only 9.0% of a sample was required to be 

obtained synthetically and ~5% experimentally for a Normalized Distortion (ND) level of 

~10−3%; effectively, this means a 20-fold reduction in applied radiation dosage. In 

addition, new location selections within 1-10 ms were achieved, meaning that the 

computational times during implementation became negligible. The technique was 

applied again in 2018 by Zhang et al. [17] in the context of confocal Raman microscopy, 

yielding a 6-fold improvement in the number of pixel measurements needed to result in a 

~0.1% image difference, relative to full raster scans.  

SLADS was also used in 2018 [18] to provide a significant reduction in the 

number of measurements needed for Electron Back Scatter Diffraction (EBSD) 
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microscopy. The implementation roughly reduced traditional acquisition times on the 

order of ~60-95%, depending on acceptable reconstruction error. SLADS was able to 

achieve below 10−5 ND levels with only 6.94% of scanned locations in a synthetic 

image. Experimentally, it achieved ND levels less than 10−4 with 13% of a sampled 

image. Its produced reconstructions were additionally shown as superior to random and 

low-discrepancy sampling, which for the synthetic image (sampled up to 20%) attained 

higher ND levels by 3 orders of magnitude.  

SLADS can be modified through training to be more effective according to 

specific application contexts. A 2018 study by Zhang et. al. [19] used SLADS to reduce 

the total required sampling locations for Energy Dispersive X-ray Spectroscopy (EDS) up 

to 90% without noticeable degradation of resulting scan fidelity. Another study also by 

Zhang et al. in 2018 [20] performed the first multi-model study for the approach. 

Training methods, including least-square and support vector regression, as well as a 

Multi-Layer Perceptron (MLP) network named SLADS-Net were examined. SLADS-Net 

was shown to provide improved performance when training images dissimilar to those 

within a testing set, offering increased ability to generalize. When training and testing 

images are similar, non-linear learning methods were observed to have equivalent 

performance to the least-squares implementation. Zhang et. al additionally published in 

2018: U-SLADS [21], employing Hierarchical Gaussian Mixture Models (HGMMs) to 

produce feature sets, allowing improvements to dynamic dendrite sampling procedures.  

A slightly contrasting approach, Probabilistic Approach to Dynamic Image 

Sampling (PADIS), was published in 2020 by Grosche et al. [22]. PADIS was designed 

for single-channel SEM (Scanning Electron Microscope) images, relying on a probability 
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mass function. Therein exists specific mention of overcoming the tendency of SLADS 

and SLADS-Net to under-sample regions with apparent homogeneity and issues with 

non-linear scaling runtimes, with respect to image sizes and sampling densities. When 

considering samples with fine details and textures, PADIS was shown to outperform 

SLADS and SLADS-Net, where they were observed to overfocus on acquisition of 

locations along the edges of sample structures.  

Although the limited number of publications on SLADS have shown notable 

improvements over traditional and even more complex, modern machine learning 

approaches, it has not yet seen either widespread adoption or extensive research. The 

initial released SLADS code relied on a simple Least-Squares (SLADS-LS) regression. 

The only major update produced on this methodology, SLADS-Net, used a simple MLP 

network. Therein, the model’s performance was nearly identical to that of the original 

SLADS, with only a marginal improvement to generalization capability. Both SLADS-

LS and SLADS-Net used only consistently sized, often synthetically generated images, 

with very similar information content. Perhaps the most significant limitation to be 

considered is the problem of dimensionality. While SLADS has been shown to reduce 

needed measurements in 2D scenarios, a third-dimension causes a significant increase in 

computational overhead, data sparsity, and the risk of obfuscating data with dimensional 

reduction strategies [23].  

1.3 Objectives 

This research aims to update the SLADS methodology for experimental 

integration with nano-DESI MSI to maximize throughput (building on preliminary work 

[24]). This adaption of a dynamic sampling algorithm intends to leverage the multiple 
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mass-per-charge (m/z), or molecular spectral distributions to determine locations where 

scanning should be performed. The algorithm should have the ability to be calibrated 

with respect to equipment’s spatial resolution, equipment FOV, and function for multiple 

tissue types. While a method for direct integration with physical hardware should be 

created, evaluation of the resultant algorithms should be performed with simulated 

scanning of available nano-DESI MSI scans, realizing low-error estimations of the 

ground-truth visualizations of multiple m/z. The SLADS methodology should be further 

advanced through implementation of a more advanced deep learning neural network 

architecture, in a Deep Learning Approach for Dynamic Sampling, or DLADS. Ideally 

for ease of use, hyperparameters (as many as possible) should be removed, optimized in 

advance, or automatically selected. 

Nano-DESI data is unique in that individual locations being scanned are not 

necessarily consistent in horizontal and vertical dimensionality. Further, the acquired 

lines are not necessarily consistent in terms of start/end position, sampling frequency, or 

specifically measured mass/intensity pairs. The design and function for updated 

implementation(s) of SLADS must be able to dynamically account for these variations.  

It must also be considered that SLADS was designed to choose measurement 

locations point-by-point in a predefined 2D-coordinate system for a single channel of 

information. As mentioned in Section 1.2.1, the XCalibur software employed in nano-

DESI MSI, acquires data line-by-line and cannot be straightforwardly modified for point-

by-point scanning. While the vendor could modify this behavior in future, to ensure that a 

physical proof-of-concept for integration is presently achievable, line-by-line or linewise 

operational modes should be developed and evaluated against pointwise scanning.  
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1.4 Development Steps 

The methods used during over the course of development firstly focused on the 

integration of DESI MSI data and the SLADS methodology, both in simulation and for 

potential real-world implementation. Secondly, simulation was performed and compared 

with both previously published models and a more advanced machine learning 

architecture. More specific milestones for the project are described as follows: 

1) A previously published SLADS implementation was first deconstructed and rebuilt 

into DLADS, which employed a CNN with deep learning.  

2) Both SLADS and DLADS models were adjusted to accommodate and integrate nano-

DESI MSI data, treating each molecular spatial distribution as an independent sample. At 

this stage, the data could be heavily pre-processed (normalized by collaborators, imported 

as image files, resized as needed, etc.), in advance of employing the models, in order to 

judge the merits of further development and the direction of research efforts.  

3) SLADS and DLADS models were modified to incorporate average multiple m/z’s 

spatial distribution information into a single representative image. The data could still be 

heavily pre-processed in advance of training/testing the models, but the m/z images could 

no longer be treated independently.  

4) Conjunctive efforts were conducted with experimentalist collaborators, in the 

formation of an approach for direct integration of SLADS/DLADS models, with physical 

nano-DESI MSI instrumentation.  

5) A new method was employed for the determination of sampling locations, given the 

MSI equipment’s probe movement constraints (e.g. a group-based acquisition method 

limited to single lines/rows).  
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6) The DLADS model was optimized, through integration of multiprocessing libraries, 

vectorization of array calculations, removal/automation of hyperparameters, and light 

model ablation studies. 

7) MSI files should be read directly with SLADS and DLADS, with all molecular 

visualizations handled internally to their coded implementations. At this stage, 

experimentalists became able to use configuration files to specify how the data should be 

processed during the scan (normalization methods, specific ion mass/charge 

ranges/values, etc.).  

8) An alternate method for producing ground-truth RD images for training was created, 

taking into account the multiple m/z spatial distributions obtained during scans.  

9) A final model ablation study should be performed, showing direct comparison with 

prior published SLADS and SLADS-Net models.   
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Chapter 2 
DATA 

2.1 Hardware and Software 

SLADS and DLADS development was conducted on a dual-socket Intel Xeon-

2650v2 2.5 GHz platform (overclocked to 3.0 GHz) with 16 cores (32 threads through 

hyperthreading) assigned to parallelizable tasks, 128 GB DDR3, and an NVIDIA GTX 

1080TI with 11 GB GDDR5X. Implementation of the constructed models for physical 

integration was planned, performed and verified to function (in simulation) with an Intel 

i5-8500 3.0 GHz system with 8 GB DDR4 and no discrete GPU. Operation on this latter 

computer was only possible when configured to disable multiprocessing and utilize pre-

trained models. An up-to-date list of third-party packages/libraries, along with the code 

utilized for this project are available through an online Github repository at the time of 

publication, under the version 0.8.6: https://github.com/Yatagarasu50469/SLADS. 

2.2 Datasets 

The primary datasets employed for model development were provided by the 

Purdue University Department of Chemistry and acquired with nano-DESI MSI on a 

Thermo Fisher Scientific Q-Exactive HF-X Orbitrap mass spectrometer. These datasets 

include 10 mouse uterine samples, randomly divided using an 60/20/20% 

training/validation/testing split. Figure 2 shows visualizations of the samples’ Total Ion 

Chromatograms (TIC), which simply sums all intensities within a spectrum for any given 

sample location. 

 

https://github.com/Yatagarasu50469/SLADS
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Figure 2: TIC of uterine samples acquired through nano-DESI MSI with reference names 
available from Table 1, in left-right, top-down order  
 

Several of the provided uterine samples were missing MSI files, thereby lacking 

entire lines of information. The provided FOV vertical dimensions were therefore 

adjusted to compensate for the absent lines (Table 1). While undesirable, such data can 

still be accepted for training, validation, and testing cases within the created/updated 

algorithms. However, it should be noted that for actual implementation, it is not possible 

for manual manipulation/obfuscation of acquired MSI files.  

 

Table 1: Provided sample dimensions and information with modified height to account 
for missing information 

Sample Name Set Final Width 
(mm) 

Height 
(mm) 

# Missing 
Lines 

Final Height 
(mm) 

Sampling 
Rate (𝜇𝜇m/s) 

Slide1-Wnt-3 Test 3.1 2.400 3 2.304 15 
Slide5-RR-2 Train 3.9 2.135 4 1.995 15 
Slide6-V2-2 Test 2.6 1.953 1 1.922 10 
Slide6-WT-1 Train 2.6 1.530 0 1.530 10 
Slide6-WT-2 Train 3.2 1.333 0 1.333 10 
Slide6-Wnt-1 Train 2.6 1.980 2 1.920 10 
Slide9-RR-1 Train 3.6 2.450 5 2.275 15 
Slide9-V2-3 Train 2.0 1.290 0 1.290 10 
Slide9-WT-2 Val. 3.0 2.310 1 2.277 15 
Slide9-Wnt-2 Val. 3.0 2.542 1 2.511 15 
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CHAPTER 3 
DEVELOPMENT 

3.1 Data Pre-Processing 

3.1.1 m/z Visualization 

Principally, MSI obtains spectra of measured intensities against mass-per-charge 

(m/z), for specified locations (Fig. 3). Integrating the obtained spectra values within a 

given precursor mass tolerance window allows for 2D representation of a molecule’s 

spatial distribution. The window size depends on the physical MSI hardware mass error 

rating, determined through instrument calibration and ideally taking into account the 

potential for overlap between molecular isotopes. The instrument mass error is specified 

in parts-per-million (ppm) and should be known by experimentalists prior to sample 

acquisitions. The resulting window range in units of m/z, for a given instrument error (Δ) 

and central m/z value (𝑚𝑚𝑚𝑚), is found through Eq. 1. An example of a visualized m/z 

window centered on an m/z of 219.02664 can be seen in Figure 3.  

[𝑚𝑚𝑚𝑚 ∗ (1 − Δ ∗ 10−6),𝑚𝑚𝑚𝑚 ∗ (1 + Δ ∗ 10−6)]  (1) 

 

 
Figure 3: Example spectrum for a scanned position within a uterine sample (left), with a 
post-processed image (described in Section 3.1.2), extracted 20 ppm m/z visualization, 
centered on 219.02664 m/z across all spectra (right) 
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3.1.2 Alignment and Rescaling 

Dynamic sampling algorithms require prior knowledge regarding the type of data 

intended for acquisition. This information can be split into two categories: (1) sample-

specific details and (2) sample type. The first includes: the maximum number of lines that 

are going to be acquired within the equipment’s FOV, the FOV’s physical width and 

height, the intended equipment sampling rate, the option of a single representative 

monoisotopic (or internal standard based) m/z value, the minimum and maximum m/z 

values expected to be acquired for any location’s spectrum, a precursor mass tolerance, 

and the Fourier transform resolution (used in the production of the spectrum during 

acquisition). The second refers to a list of m/z values, representative of the molecules 

desired for acquisition, given a specific tissue type.  

As noted in Section 1.2, locations scanned with nano-DESI are not necessarily 

symmetric in their dimensionality, rather more often existing in an asymmetric coordinate 

system. Further, these locations neither have the same number of spectra/locations 

acquired per line, nor are they predictably consistent when location sampling actually 

occurs. This latter point has been visualized in Figure 4, where the misaligned rows of a 

uterine sample are re-aligned through linear interpolation to 1,000 new positions, as was 

done in the initial versions of the provided datasets. This procedure was updated to map 

original position measurement times according to a set of new times generated according 

to the originally intended instrument sampling rate and FOV width. The final FOV width 

is defined by the sample width divided by the scanning rate, rounded to the nearest 

integer. The final aligned grid for interpolation stretches from 0 to the final width, with 

regular spacing specified by the scan rate.  
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Figure 4: Misaligned visualization of a m/z (left) for a uterine sample (2.6x1.333 mm), 
early re-alignment with 1000 new values (middle), and its final re-aligned version 
according to sampling rate 
 

The former issue of non-symmetric (or asymmetric) scanning location 

dimensionality created issues where, as with the underlying assumption of location size 

consistency, there was a demonstrated tendency towards sampling along the vertical axis 

primarily due to the employed reconstruction and RD generation methods. First, IDW 

mean reconstruction uses the distances between measured and unmeasured locations to 

inform its resultant values. The vertical distances were shorter in internal representation, 

compared to their actual physical dimensions, causing a discrepancy. Second, the ground-

truth RD is based on the absolute difference between the ground-truth and a 

reconstruction, thereby more emphasis was placed on scanning vertically, since 

neighboring horizontal values tended to be less varied in intensity, being physically 

closer to one another. This ultimately produced “stretching” artifacts in sampling masks 

and reconstructions, an example of which can be seen in Figure 5.  

This behavior was also quite inconsistent, as the vertical spacing between lines 

and intended horizontal sampling rates (noted in Section 2.2.2) also varied between 

provided samples. The specified FOV dimensions and intended equipment sampling rate 

were therefore used to rescale m/z visualizations to ensure scanned locations had 

symmetric dimensionality, or hereafter described as being in a square coordinate system 
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(Fig. 6). This rescaling is performed along the vertical axis, in order to preserve the 

horizontal resolution.  

 

 
Figure 5: An average of multiple m/z images (rows re-aligned to 1,000 values) for a 
uterine sample in the original, asymmetric coordinate system (left) with a derived, early 
SLADS pointwise measurement mask (right), with 40% measured FOV 
 

 

 
Figure 6: An average of multiple m/z images for a uterine sample in the symmetric, 
square coordinate system (left) with a derived, early SLADS pointwise measurement 
mask (right), with 40% measured FOV 
 

3.1.3 m/z Selection 

The dynamic sampling algorithms have two primary use cases for MSI 

applications, where an experimentalist desires to either 1) only obtain data particular to 

specific molecules, or 2) limit acquisition to the tissue data in the equipment FOV. 
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Regardless, the experimentalist must possess knowledge of either the m/z corresponding 

with the desired molecules, or those m/z values commonly representative of the tissue 

geometry. However, even without the requisite domain knowledge regarding what m/z 

might be of interest, the second tissue geometry case did provide a straightforward 

approach for verifying algorithm performance. By calculating the overlap between 

different visualized spectra and using a foreground mask, a list of representative m/z 

values could be created and then further compared to isolate m/z common to all samples.  

The samples did not possess markers for registration of the MSI data against 

corresponding optical images and hand-generated binary masks, by domain experts, of 

the sample foregrounds could not be provided. Therefore, the creation of these masks had 

to be automated (for consistency) and derived solely from information within the 

samples’ spectra. Within the metadata contained for each of the MSI RAW files, a 

variable named the “Calculated Monoisotopic m/z” was stored (if determined by the 

vendor through their proprietary “Xtract algorithm” to have been reliably calculated and 

enabled by the experimentalist) at the sample acquisition time, which when used to 

normalize the TIC, appears representative of the foreground. The monoisotopic m/z was 

not stored for every RAW file, nor identified as the same value even in the same sample. 

Although the exact algorithm for the value’s determination and confidence of its veracity 

is proprietary, it is defined in documentation as: “The mass-to-charge ratio of the 

monoisotopic mass that the Xtract algorithm calculated from the isotopic peak envelope 

for a specific charge state,” where the monoisotopic mass is “The weighted average of 

the monoisotopic masses of each charge state” [25].  
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A simplified approach for a reliable determination of this value was developed 

and verified to be within 20 ppm of the averaged, monoisotopic m/z listed in the uterine 

MSI files. While supporting evidence for this procedure and observations was not found 

in existing publications [26, 27], there were two cases observed in the available samples. 

The monoisotopic m/z was the higher value of either 1) the most commonly occurring 

(the mode) peak in all sample spectra, or 2) the m/z with the highest intensity among the 

sum of all spectra. The most common non-zero monoisotopic m/z for all MSI files for 

each sample, as compared with the values determined by this research approach, are seen 

in Table 2, with the visualizations shown in Figure 7.  

 

Table 2: Determined monoisotopic m/z for uterine samples 
Sample Name Tissue Mode from RAW Determined 
Slide1-Wnt3 Uterine 560.3673 560.36731 
Slide5-RR-2 Uterine 560.3697 560.36969 
Slide6-V2-2 Uterine 560.3688 560.36877 
Slide6-WT-1 Uterine 560.3711 560.37115 
Slide6-WT-2 Uterine 560.3694 560.36945 
Slide6-Wnt-1 Uterine 560.3709 560.37085 
Slide9-RR-1 Uterine 560.3694 560.36945 
Slide9-V2-3 Uterine 560.3698 560.36981 
Slide9-WT-2 Uterine 560.3684 560.36841 
Slide9-Wnt-2 Uterine 560.3694 560.36932 

 

 
Figure 7: Determined monoisotopic m/z visualized with 20 ppm windows, with reference 
names available from Table 2, in left-right, top-down order  
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Since manually produced ground-truth masks could not be provided, nor 

confidently produced without domain specific knowledge, a combination of image 

processing techniques was employed to consistently produce foreground masks. The 

specified parameters are arbitrary, but were empirically found to successfully isolate the 

primary tissue region of all the uterine samples. Any values less than the 1st percentile 

were removed to prevent overly expanded values during division. The TIC was 

normalized by the visualized monoisotopic m/z, with the resultant values biased for 

cleaner thresholding by setting values lower/equal to the 40th percentile to zero and 

placing an upper limit at the 70th percentile. Successive operations were applied in the 

form of Otsu thresholding, morphological closing (dilation followed by erosion), binary 

dilations to fill small enclosed regions, a Gaussian blur (𝜎𝜎=1), a final binary thresholding 

to values above 0.5, whereupon the largest cohesive area was extracted as the final mask. 

The resultant binary masks for each of the uterine samples are shown in Figure 8.  

 

 
Figure 8: Binary masks of the foreground for each of the uterine samples, with names 
referentially available from Table 2, in left-right, top-down order 
 

For each sample in a given tissue dataset, the spectra for all scanned locations 

were merged, summing intensities at identical locations. Starting at the m/z with the 

highest intensity, any measurements made within its mass tolerance window (20 ppm) 
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were removed from consideration. This process was continued until all points within the 

spectra had been examined, thereby removing all overlap between the remaining m/z 

values’ isotopic envelopes. These m/z were visualized and compared against the 

corresponding foreground masks. Each m/z was scored according to the difference 

between the Intersection Over Union (IOU) with respect to the foreground and the 

background (Eq. 2). m/z with a score equal/greater than an empirically chosen value of 

0.5 were “chosen” for the sample, those lesser/or equal to 0 were labeled as “very 

rejected” locations, and all else were noted as “rejected.” An example of this distribution, 

in combination with visualized chosen locations, is shown in Figure 9. The chosen m/z 

values of all samples with overlapping mass tolerance windows were averaged together 

to generate a final set of m/z commonly representative of the foreground tissue 

geometries. The distribution of chosen m/z for each sample can be seen in Figure 10, 

with visualizations of the common 11 m/z for the uterine dataset shown in Figure 11.   

𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)   (2) 

 

 
Figure 9: Score distribution of m/z values for the uterine sample Slide1-Wnt3 
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Figure 10: Distribution of chosen m/z values identified for the uterine samples as 
representative of their underlying geometry 
 

 
Figure 11: Ground-truth m/z images, normalized by the monoisotopic m/z, found to be 
commonly characteristic of the underlying uterine sample tissue geometry 
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3.2 Methods 

3.2.1 Sampling Overview 

Regardless of particular operational mode or application, an overview of the 

sampling procedure for SLADS can be seen in Figure 12. First, an initial set of 

predetermined measurement locations is established with a random 1% of the total FOV 

area for pointwise and a full line at half of the sample height for linewise. After an initial 

scan of these locations, a trained model is used to determine an Expected Reduction in 

Distortion (ERD) for unmeasured locations. Location(s) which maximize the ERD are 

chosen and passed to the physical scanning equipment. After acquisition has been 

completed, the sparse measurements are used to perform a reconstruction of the ground-

truth using computationally efficient IDW mean interpolation. This process is repeated 

until pre-specified stopping criteria are met.  

 

 
Figure 12: Procedural sampling framework implemented with SLADS and DLADS  
 

Figure 13 shows the overall procedure for training the SLADS-LS, SLADS-Net, 

and DLADS models. Random pointwise masks, at sampling densities from 1% to 40% of 

the scanning area, are created for each sample. These masks are applied to the ground-

truth image(s), across the m/z channels in the case of nano-DESI MSI data. 
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Reconstructions are generated from only the measured values and used in combination 

with the ground-truth data to produce RD (Section 3.3.3). This information, in addition to 

extracted feature vectors (from the reconstruction produced for the averaged measured 

m/z) for SLADS-LS and SLADS-Net, constitutes the training and validation datasets, 

then used to train models for the production of ERD.  

 

 
Figure 13: Model training procedure, referencing variables defined in Section 3.2.2 
 

3.2.2 Pointwise Acquisition 

Given a ground-truth image 𝑋𝑋 with width 𝑚𝑚 and height 𝑛𝑛, where Ω is the set of all 

locations therein, there exists a set 𝑆𝑆 with 𝑘𝑘 measured locations (𝑆𝑆 = {𝑠𝑠(1), 𝑠𝑠(2), … , 𝑠𝑠(𝑘𝑘)}) 

and corresponding values 𝑋𝑋(𝑆𝑆). The remaining 𝑞𝑞 unmeasured locations are defined in the 

set 𝑇𝑇 (𝑇𝑇 = {𝑡𝑡(1), 𝑡𝑡(2), … , 𝑡𝑡(𝑞𝑞)}). A reconstruction of the ground-truth image 𝑋𝑋� consists of 

the measured values (𝑋𝑋�(𝑆𝑆) = 𝑋𝑋(𝑆𝑆)) and reconstruction values for unmeasured locations 

(𝑋𝑋�(𝑇𝑇)), determined through IDW mean interpolation.  
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The dynamic sampling procedure maximizes acquisition of locations where the 

reconstruction is the most incorrect. The improvement to the reconstruction produced for 

scanning an unmeasured location is captured in a RD array/image, notated as 𝑅𝑅, 

possessing matching dimensions to 𝑋𝑋. The 𝑅𝑅 value for measured locations (𝑅𝑅(𝑆𝑆)) is 0 and 

for unmeasured locations (𝑅𝑅(𝑇𝑇)) may be found through Equation 3. Therein, 𝐷𝐷(⋅,⋅) 

consists of the absolute difference between two given images. During actual 

implementation, 𝑋𝑋 cannot be known, meaning an ERD 𝑅𝑅� for unmeasured locations 𝑅𝑅�(𝑇𝑇) 

must be determined based on the currently available information (Eq. 4).  

𝑅𝑅(𝑇𝑇) = 𝐷𝐷�𝑋𝑋,𝑋𝑋�(𝑆𝑆)� − 𝐷𝐷�𝑋𝑋,𝑋𝑋�(𝑆𝑆+𝑇𝑇)�     (3) 

𝑅𝑅�(𝑇𝑇) = 𝔼𝔼�𝑅𝑅(𝑇𝑇)�𝑋𝑋(𝑆𝑆)]       (4) 

SLADS-LS determines the ERD as the product (Eq. 5) of a feature set for 

unmeasured locations 𝑉𝑉(𝑇𝑇), extracted from 𝑋𝑋�, and parameters 𝜃𝜃� (Eq. 6), determined 

through least-squares regression. 𝑉𝑉(𝑇𝑇) consists of measures of gradient, standard 

deviation, and density as described in the SLADS-LS publication [14].  

𝑅𝑅�(𝑇𝑇) = 𝑉𝑉(𝑇𝑇)𝜃𝜃�        (5) 

𝜃𝜃� = argmin
𝜃𝜃∈ℝ(𝑇𝑇)

�𝑅𝑅(𝑇𝑇) − 𝑉𝑉(𝑇𝑇)𝜃𝜃�
2
      (6) 

SLADS-Net uses a MLP network (50 neurons in 5 layers), represented as a function 

𝑔𝑔(⋅) to produce 𝑅𝑅�(𝑇𝑇) (Eq. 7). The network weights 𝑤𝑤 are converged upon using an Adam 

solver with Learning Rate (LR) of 1e-3, minimizing a squared loss (Eq. 8).  

𝑅𝑅�(𝑇𝑇) = 𝑔𝑔𝑤𝑤(𝑉𝑉(𝑇𝑇))       (7) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 1
2
∑ �𝑅𝑅(𝑇𝑇) − 𝑔𝑔𝑤𝑤�𝑉𝑉(𝑇𝑇)��

2
     (8) 
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DLADS further updates 𝑔𝑔(⋅) with a modified U-Net CNN architecture (Section 

3.3.2) for the determination of the whole 𝑅𝑅� image, though 𝑅𝑅�(𝑆𝑆)are set to 0 in operation. 

Applying DLADS with MSE (Eq. 9), or MAE (Eq. 10) losses with only the reconstruction 

image as input would produce an ERD through Equation 11. Determination of the final 

inputs, hyperparameters, optimizer, and loss are performed in Section 4.2.  

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑚𝑚𝑚𝑚

∑ �𝑅𝑅 − 𝑔𝑔𝑤𝑤�𝑋𝑋���
2
    (9) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑚𝑚𝑚𝑚

∑�𝑅𝑅 − 𝑔𝑔𝑤𝑤�𝑋𝑋���
2
    (10) 

𝑅𝑅� = 𝑔𝑔𝑤𝑤(𝑋𝑋�)      (11) 

Given the computational cost of determining a reconstruction after the acquisition 

of every pointwise position, a group-based pointwise acquisition method was developed. 

This allows a user to specify a percentage of the total scannable area that should be 

acquired between reconstruction steps. The algorithm temporarily uses reconstruction 

values as measured values, then recalculates the ERD, or updates only regions of the RD 

that are affected.  

3.2.3 Linewise Acquisition 

Besides the sets of measured and unmeasured points, there exists a set 𝐿𝐿 of 

horizontal lines/rows in 𝑋𝑋 (𝐿𝐿 = {𝑙𝑙(1), 𝑙𝑙(2), … , 𝑙𝑙(𝑛𝑛)}), comprised of lines with measured 

points 𝐽𝐽 ⊂ 𝐿𝐿 = {𝑙𝑙 ∈ 𝐿𝐿: (∃𝑠𝑠 ∈ 𝑙𝑙 )} and lines with only unmeasured points 𝐾𝐾 ⊂ 𝐿𝐿 = {𝑙𝑙 ∈

𝐿𝐿: (∄𝑠𝑠 ∈ 𝑙𝑙)}. For the scope of this research, the ability to revisit lines, after any points 

have been scanned on them, was disabled, though this remains a configurable option. The 

next line to scan is chosen by finding the line with maximal sum ERD, (i.e. 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑙𝑙∈𝐾𝐾(∑𝑅𝑅�𝑡𝑡∈𝑙𝑙)). The points to be scanned on that line are then either (as specified 

by the user during configuration) sparsely determined, or selected between a determined 
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start and stop position. The sparse determination sorts the unmeasured locations on the 

chosen line and then selects a top percentage (user-defined) of them for acquisition. The 

start/end point method performs the same operations, but selects all points between the 

minimum and maximum position for acquisition. These methods are referred to as 

percent-linewise and segment-linewise respectively. A safety mechanism to ensure the 

timely completion of a linewise scan was included in this procedure, where if less than 

1% of Ω are chosen, then all points on the chosen line are scanned.  

3.2.4 c Value Regularization 

Determination of the actual RD for use in model training was notably 

problematic, in terms of computational expense, both within the original SLADS-LS and 

SLADS-Net publications. Both in the original publications and herein, the regression 

models are constructed based on a training database, where for each training sample, 

random sampling masks are produced at ℎ densities in the predefined set: 𝑃𝑃 =

{𝑝𝑝1,𝑝𝑝2, … 𝑝𝑝ℎ}. For every potential unmeasured point, at every considered density, a 

reconstruction has to be generated, considering if that point had been measured. For 

nano-DESI data, where multiple m/z are being considered, this becomes an even greater 

concern, requiring additional calculations and time proportional to the number of m/z. In 

order to make the generation of a training database more tractable, SLADS uses an 

approximated RD, by only considering a local region of influence for each unmeasured 

point, and limiting the strength of that influence by a regularization parameter 𝑐𝑐. This 

method has also been adapted in DLADS and the updated SLADS algorithms.  

Given an unmeasured location 𝑡𝑡(1), a weighted factor 𝜎𝜎 can be calculated for it 

(Eq. 12) as the distance to the nearest measured value, divided by a c value. 𝑅𝑅(𝑡𝑡(1)) then 
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can be approximated (Eq. 13) according to 𝜎𝜎(𝑡𝑡(1)), applied to the distortion between the 

reconstruction (𝑋𝑋�(𝑆𝑆)), without having measured 𝑡𝑡(1) and 𝑋𝑋.  

𝜎𝜎𝑡𝑡(1) =
min
𝑠𝑠∈𝑆𝑆

�𝑠𝑠−𝑡𝑡(1)�

𝑐𝑐
         (12) 

𝑅𝑅(𝑡𝑡(1)) ≈ ∑ exp �− 1

2�𝜎𝜎𝑡𝑡(1)�
2 �𝑠𝑠 − 𝑡𝑡(1)�

2
�𝑠𝑠∈𝑆𝑆 𝐷𝐷(𝑋𝑋,𝑋𝑋�𝑆𝑆)   (13) 

Originally, a window 𝑊𝑊 was used in SLADS, manually set at an optimized static 

size of 15x15 to bound the considered region for each unmeasured location, further 

reducing computational overhead. This research includes an option for a dynamic 

variation, with a radius set at 3 times the sigma value of each unmeasured point. The 

radius is doubled and rounded up to the nearest odd integer to ensure that the produced 

Gaussian signal is centered on the specified location. Zero padding is then used for 

locations where the radius overlaps with the image dimensions.  

The parameter 𝑐𝑐 still needs to be optimized for each application, with 𝑜𝑜 possible 

values in a user defined set: 𝐶𝐶 = {𝑐𝑐1, 𝑐𝑐2, … 𝑐𝑐𝑜𝑜}. Original SLADS variations trained 

multiple models, one for each potential optimization parameter 𝑐𝑐. The model and 𝑐𝑐 value, 

which minimized the total distortion between ground-truth and reconstruction 𝐷𝐷(𝑋𝑋,𝑋𝑋�), 

over a simulated scan’s progression, was selected for testing and implementation.  

This research updated the implementation of SLADS and DLADS to determine 

an optimal parameter prior to any model training, by simulating the use of each potential 

𝑐𝑐 with an oracle, determining the approximated 𝑅𝑅(𝑈𝑈) to guide measurements. Rather than 

the relative distortion, the Peak Signal to Noise Ratio (PSNR) (Eq. 14), based on the 

Mean Squared Error (MSE) (Eq. 15) was considered. The parameter, which maximizes 

the averaged PSNR of all m/z image reconstructions over the course of simulated 
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scanning, is selected for training the indicated regression model. Particularly for the 

neural network implementations of DLADS and SLADS-Net, this reduces the required 

training time according to the number of possible 𝑐𝑐 values.  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 log10
max𝑋𝑋2

𝑀𝑀𝑀𝑀𝑀𝑀
        (14) 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑚𝑚𝑚𝑚

∑�𝑋𝑋 − 𝑋𝑋��
2
        (15) 

3.3 Updated SLADS and DLADS 

3.3.1 Code Design and Notes 

The updated form of SLADS and the new DLADS architecture are combined in a 

single program for ease of comparison and configuration, all run within a single “root” 

directory. A link to a repository containing this program can be found in Section 2.1.1, 

therein exists more details regarding configuration, third-party package requirements, and 

operation for versions produced during this project’s development.  

Overall, there are 3 principal operating modes: training, testing, and 

implementation, which can be enabled in a configuration file, or files to be run in 

sequence. Every sample must have a set of prior knowledge included with it, as discussed 

in Section 3.1.2. While it is recommended that the specified sampling rate matches that 

specified for the actual scanning equipment, a higher sampling rate could be specified to 

allow for greater horizontal position specificity. This may be desired if the physical 

equipment becomes capable of varying the precision of movement/speeds.  

The vendors for a number of MSI platforms, including the hardware used to 

acquire the nano-DESI samples herein, have released dynamic linked libraries for 

allowing external programs to read their proprietary file formats. Python bindings to 

these libraries have been published in the third-party library, Multiplerz [28]. This 
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reliance on vendor-provided libraries generally limits functionality to only the Windows 

operating system, though a workaround (the procedure for which is described in the 

linked repository) was determined for the RAW files used for this project, enabling 

functionality on mainstream Linux distributions, including CentOS 7-8 and Ubuntu 

18.04-20.04. The ability for the updated SLADS and DLADS to directly read MSI files, 

removes an early source of significant computational overhead, where MSI files had to be 

processed externally, saved onto disk, and then re-read into memory for actual use.  

For the training mode, samples placed in the appropriate subdirectory are read in 

and split into training and validation sets as the user configures. When information is read 

from the MSI files, for calculation of m/z reconstructions, RD, and ERD, square 

dimensionality (discussed in Section 3.1) must be maintained to prevent stretching 

artifacts. However, actual measurement locations must be determined and stored in the 

original “asymmetric” dimensionality for compatibility with physical equipment.  

Both training and validation samples are passed to the optimization routine for 𝑐𝑐 

values. If only a single 𝑐𝑐 was provided, then it is automatically returned as the optimal 

parameter. Otherwise, simulated pointwise scanning of the samples is performed, with a 

random 1% of all possible locations measured before using an oracle and the approximate 

RD to inform future scanning locations. The PSNR of the reconstructions for all m/z 

images at each measurement step is stored, with the resulting curves averaged across all 

samples for a given 𝑐𝑐 value. Integrating the area under the curves, the 𝑐𝑐 value with the 

highest corresponding value is chosen as optimal (performed for different configurations 

in Section 3.4). This value is passed to a method for generation of the training and 
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validation databases. The resulting information is stored to disk for consistency during 

potential model ablation studies.  

The training and validation datasets then pass to the actual model training 

routines. Only the training database is used for training SLADS, SLADS-Net, and 

DLADS models, with the validation set reserved for use in early stopping criteria in 

DLADS (Section 3.3.2), as well as for optimizing hyperparameters and choosing optimal 

models for final evaluations (Section 4.2). The produced model is saved to disk allowing 

for easy distribution and use in actual deployments.  

3.3.2 DLADS Architecture 

The fundamental structure of the employed neural network is a version of the U-

Net architecture (Fig. 14) [29], modified to take in single or multiple channels of 2D data 

and produce a single 2D ERD image with spatial dimensions corresponding to the 

input(s). While different combinations of inputs were simulated (Section 4.2.1), 

ultimately this network uses the reconstructions of the 11 chosen m/z images (Section 

3.1.3), each split into 2 images, one containing the measured values and the other with 

the reconstruction values (for a total of 22 channels with 𝑚𝑚 by 𝑛𝑛 dimensions), as inputs.  

The inputs are first passed through 2 back-to-back 2D convolutional layers and 

then another 2D convolutional layer with a stride of 2, in order to halve the width/height. 

Doubling the number of filters at each “depth”, this process is repeated until reaching a 

bottleneck layer, whereupon the data is progressively upscaled with bilinear interpolation 

(in combination with another 2D convolutional layer) and run through another 2 back-to-

back 2D convolutional layers. This continues until reaching the original input 

dimensions. After each upscaling, a skip connection is used to combine the progressed 
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output with the corresponding outputs produced during the downsampling half of the 

network. All of the convolutional layers use 3x3 kernels, He initialization (following 

common practice), and ReLU activations, with the exception of the final 3 which use 1x1 

kernels. Bilinear upscaling is used to avoid checkerboard artifacts [30] during upscaling, 

produced by the original U-Net’s usage of convolutional transposition layers. Dropout 

layers with a rate of 0.5 are used on the bottleneck and preceding layer to additionally 

regularize the network, reducing overfit. Batch sizes were kept to 1 in order to allow 

dynamically sized input/outputs without resizing, or padding.  

 

 
Figure 14: U-Net architecture modified for a image-to-image translation task, taking 
single or multiple 2D m/z visualizations/features as input(s) and producing a single-
channel 2D ERD image with spatial dimensions matching with the input(s) 
 

This architecture was also designed with configurable early stopping criteria, kept 

consistent throughout all simulations run herein. A minimum of 10 epochs are performed 

before starting to consider the early termination criteria and saving the best-found 

weights. If a model's validation loss fails to be reduced within 50 epochs, training is 

stopped, with the model weights restored where the validation loss was minimal. 

An optional data augmentation stage was also implemented for application to and 

supplementation of the input training data. If enabled, this step will create additional 
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variations of the input set (number of times is a user-configurable option), randomly 

performing the following operations: horizontal and vertical flips, width and height 

adjustments within 25% of the input dimensions, rotation within 45 degrees, and 

translation within 25% of the starting position. A random sampling of a demonstration 

image [31] passed through these steps is shown in Figure 15.  

 

  
Figure 15: An image of a color wheel (left) passed through the data augmentation stage 
to create additional random variations (right)  
 

3.3.3 Reduction in Distortion 

Section 3.2.3 describes the process by which the RD is approximated in order to 

make its calculation tractable for practical implementation with 2D images. However, as 

noted in Section 1.2.4 and similarly deducted during development, the use of a third 

dimension presents the risk of obfuscating data when compressing the data through 

dimensional reduction. Figure 16 shows two different procedures for handling the 3D 

MSI data, where the 3rd dimension comprises different m/z windows. Starting with what 

is called the original averaging RD generation method, this averages together the m/z 

channels together into singular 2D images. Thereafter, the same approach used in the 
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original SLADS and SLADS-Net publications are used to produce the approximated RD: 

taking the difference between the reconstructed and ground truth images, applying 

Gaussian windows to the regions centered on unmeasured locations, and then summing 

the resultant values.  

 

 
Figure 16: Overview of the original RD generation method (left) and new summation 
RD generation method (right) 
 

Since the m/z images may hold geometrically diverse patterns or large variations 

in value intensities, some subset of channels or even a single one could dominate the 

determination of the RD for the whole sample. In order to overcome this limitation and 

remove the potential for bias towards any particular m/z channel (based on geometry or 

values), an alternative sum of the differences, or summation RD generation method, was 

devised. Reconstructions are performed for each m/z image/channel independently and 

the difference taken with respect to their ground-truth counterparts. This 3D set of 

differences is then summed together to produce a single 2D image, after which the 

multiplication by (a) Gaussian window(s) and final RD generation steps are performed.  
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3.4 c Value Optimization  

Simulated pointwise scanning was performed on the training and validation 

samples for potential c values in the set: [1, 2, 4, 8, 16, 32, 64, 128, 256]. The average 

PSNR of the IDW reconstructions generated for the chosen m/z (Section 3.1.3) were then 

averaged across the samples. The c value with the greatest Area Under the resulting 

Curves (AUC) was selected as the optimal value. Three studies were performed to 

consider: 1) RD generated with the static 15x15 window and original RD generation 

method (used in the original SLADS-LS and SLADS-Net), 2) the dynamic window 

paired with the original RD generation method, and 3) the dynamic window paired with 

the new summation RD generation method. The results for these studies are shown in 

Figures 18, 19, and 20 respectively, with the corresponding AUC distributions shown in 

Table 3 and Figure 17. Regardless of the window type and RD generation method used, 

the best 𝑐𝑐 value was found to be 16. When using the original RD generation, the dynamic 

window was comparable in performance to the optimized static window. The summation 

RD showed an improvement in the resulting AUC over both original variants.  

 

Table 3: AUC for varying c values with static and dynamic windows with original and 
summation RD generation methods 

 
 AUC 

Window Static Dynamic Dynamic 
RD Method Original Original Summation 

𝒄𝒄 Value 

1 1157.424 1176.046 1173.251 
2 1172.115 1179.733 1181.947 
4 1192.439 1194.218 1201.159 
8 1205.932 1207.109 1216.138 
16 1220.652 1220.411 1231.677 
32 1219.602 1219.602 1231.569 
64 1217.172 1217.172 1229.845 

128 1217.537 1217.537 1229.18 
256 1217.537 1217.537 1229.18 
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Figure 17: Distribution of AUC for varying 𝒄𝒄 values with different window and RD 
generation methods 
 

 
Figure 18: Progression of average PSNR (dB) of m/z IDW reconstructions with a static 
window and original RD generation method for varying c values 
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Figure 19: Progression of average PSNR (dB) of m/z IDW reconstructions with a 
dynamic window and original RD generation method varying c values 
 

 
Figure 20: Progression of average PSNR (dB) of m/z IDW reconstructions with a 
dynamic window and summation RD generation method varying c values 
 

3.5 Physical Integration 

In preparation for actual integration with physical nano-DESI MSI hardware (Fig. 

21), software mechanisms have been implemented and validated in simulation. Due to the 

proprietary nature of the MSI platforms, there cannot be direct message passing between 
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the dynamic sampling algorithms and the actual hardware. However, this project’s 

collaborators devised a LabVIEW interface to provide a limited degree of control 

allowing for the selection of a position in the vertical axis, along with horizontal positions 

to start and stop measuring. In order to maximize potential for future integration with a 

variety of scanning platforms, a simple system was devised to signal the equipment. 

Enabling the implementation flag during configuration, SLADS/DLADS will wait for a 

file to be placed in a specific location, which triggers the algorithm to read any data files. 

This information is processed into awaiting data structures, constructed based on 

information provided to the program prior to initialization. The measured information 

then passes through a SLADS/DLADS model to produce an ERD, whereby positions to 

scan are determined and saved to a new file, signaling the equipment. This process 

repeats until the algorithm reaches its specified termination criteria. 

 

 
Figure 21: Overarching view of the proposed integration between SLADS and DLADS 
algorithms with physical nano-DESI MSI hardware  
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CHAPTER 4 
RESULTS 

4.1 Metrics 

Trained SLADS and DLADS models are evaluated through simulated scanning of 

the testing samples for final evaluation and through the validation samples for 

optimization/ablation of different models. Principal metrics considered are: the averaged 

PSNR (Eq. 14) scores of IDW reconstructions for each m/z channel (Section 3.1.3), the 

average percent measured for a validation/testing set to reach 33 dB PSNR, and the best 

Mean Absolute Error (MAE) (Eq. 16) or MSE (Eq. 15) loss.  

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑚𝑚𝑚𝑚

∑�𝑋𝑋 − 𝑋𝑋��
2
        (16) 

The 33 dB PSNR threshold for IDW reconstruction of the m/z visualizations was 

specified empirically, as providing reasonable reconstructions of the tissue structures, 

though values between 35-40 dB were seen to be visually indistinguishable from the 

ground-truth. PSNR was chosen as the principal evaluation metric due to its prior use in 

the original SLADS-LS and SLADS-Net publications. It should also be noted that the 

ERD and RD are rescaled to between 0 and 1 before evaluation, principally because 

interest should be focused on the relative variation between them (i.e. the difference 

between which position(s) the ERD and RD indicate should be scanned next).  

4.2 Ablation Studies 

For all simulations within this section, the initialization follows the sampling 

procedure (Section 3.2.1), with a consistent seed used for initial mask generation. The 

summation RD method (Section 3.3.3) with a consistent 𝑐𝑐 value of 16 (Section 3.4) was 

employed to generate the ground-truth RD throughout this section and Section 4.3.  
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4.2.1 DLADS Inputs 

Different inputs with a standard version of the modified U-Net are evaluated to 

find which produces an ERD useful during scanning. This network comprises the 

structure in Section 3.2.2 with a Nadam optimizer, Mean Absolute Error (MAE), a LR of 

1e-4, summation RD, dynamic window, no additional augmentation, and simulation with 

pointwise acquisition (termination at 40% measured). Results are tabulated in Table 4 

and the progressive average PSNR of the m/z reconstructions shown in Figure 22. The 

best set of inputs was the reconstruction and measured values for each m/z. A model with 

reconstruction and measured values had the least training time needed to reach the 33 dB 

PSNR, was the first to reach that threshold, produced the highest PSNR, and required the 

least training relative to that final PSNR.  

 

Table 4: Results for varying inputs to a standardized version of the modified U-Net 

Ref. Inputs 
[# of Channels] 

Val. 
Loss 

Best 
Epoch 
(BE) 

Avg. % to 
33 dB 
PSNR 
(AdB) 

AdB-1 

*BE-1 

Final Avg. 
PSNR (dB) of 
m/z Recons. 

(FdB) 

FdB/BE 

0 
Reconstruction values 

for each m/z 
[11] 

0.0858 10 23.887 0.00419 35.247 3.525 

1 
Measured values for 

each m/z 
[11] 

0.09876 116 26.526 0.00032 35.598 0.307 

2 
Reconstruction and 
measured values for 

each m/z 
[22] 

0.08233 10 21.894 0.00457 36.645 3.665 

3 
Averaged 

reconstruction values 
across all m/z 

[1] 
0.08002 26 23.326 0.00165 35.673 1.372 

4 
Averaged measured 
values across all m/z 

[1] 
0.09801 110 29.294 0.00031 34.834 0.317 

5 

Averaged 
reconstruction and 
measured values 

across all m/z 
[2] 

0.0784 18 22.100 0.00251 36.634 2.035 
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Figure 22: Progressive average PSNR (dB) of m/z reconstructions for simulated 
pointwise scanning of the uterine validation set, referencing labels in Table 4 
 

4.2.2 DLADS Model Parameters 

Using the reconstruction and measured values for each m/z as input, a secondary 

study was similarly conducted to find which combination of network parameters would 

produce the most effective ERD, with the least amount of training. This was 

accomplished by varying the model’s loss function (considering MAE and MSE), 

optimizer (considering Adam, Nadam, and RMS Propagation), and LR (considering 1e-3, 

1e-4, and 1e-5). The results are tabulated in Table 5 and the progressive average PSNR of 

the m/z reconstructions with MAE and MSE shown in Figures 23 and 24 respectively. 

DLADS trained with a Nadam optimizer and LR of 1e-3 failed to remain stable for both 

MAE and MSE losses. The Adam optimizer with a LR of 1e-4 and MAE loss provided 

the best overall training time (best epoch) to performance ratios, both in terms of final 

PSNR and ability to reach the 33 dB PSNR threshold. 
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Table 5: Results for varying loss, optimizer, and LR with the modified U-Net 

Ref. Optimizer LR Val. 
Loss 

Best 
Epoch 
(BE) 

Avg. % to 
33 dB 
PSNR 
(AdB) 

AdB-1 

*BE-1 

Final Avg. 
PSNR (dB) of 
m/z Recons. 

(FdB) 

FdB/BE 

Loss MAE 
0 Adam 

1e-3 
0.08176 39 20.726 0.00124 36.756 0.942 

1 Nadam N/A N/A N/A N/A N/A N/A 
2 RMSProp 0.08305 108 21.531 0.00043 36.774 0.341 
3 Adam 

1e-4 
0.07914 13 21.464 0.00358 36.793 2.830 

4 Nadam 0.08097 29 21.783 0.00158 36.529 1.260 
5 RMSProp 0.08365 25 23.492 0.00170 36.444 1.458 
6 Adam 

1e-5 
0.08042 132 22.013 0.00034 36.563 0.277 

7 Nadam 0.07982 114 22.912 0.00038 36.715 0.322 
8 RMSProp 0.08454 65 21.906 0.00070 36.444 0.561 

Loss MSE 
9 Adam 

1e-3 
0.09315 33 20.312 0.00149 36.845 1.117 

10 Nadam N/A N/A N/A N/A N/A N/A 
11 RMSProp 0.07758 65 21.959 0.00070 36.800 0.566 
12 Adam 

1e-4 
0.07482 107 21.347 0.00044 36.869 0.345 

13 Nadam 0.07582 30 21.302 0.00156 36.590 1.220 
14 RMSProp 0.07709 113 21.687 0.00041 36.686 0.325 
15 Adam 

1e-5 
0.07399 201 23.271 0.00021 36.419 0.181 

16 Nadam 0.0883 307 23.811 0.00014 35.278 0.115 
17 RMSProp 0.09603 51 30.115 0.00065 34.656 0.680 

 

 
Figure 23: Progressive average PSNR (dB) of m/z reconstructions for the uterine 
validation set using the MAE loss function, referencing labels in Table 5 
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Figure 24: Progressive average PSNR (dB) of m/z reconstructions for the uterine 
validation set using the MSE loss function, referencing labels in Table 5 
 

4.2.3 DLADS Augmentation 

Another study was conducted examining use of the augmentation functionality 

(Section 3.3.2). Again using the reconstruction and measured values of the m/z images as 

inputs), with a Adam optimizer, MAE loss, and a LR of 1e-4, 3 models (doubling, 

tripling, and quadrupling the training dataset) were compared against the previous 

simulation without augmentation, each run possessing 240, 480, 720, and 960 training 

images respectively. Table 6 summarizes the results and Figure 25 illustrates the 

progressive average PSNR of the m/z reconstructions. Although there are gains at 

increased levels of augmentation, there is a steep drop, in terms of computational 

expense, relative to the number of involved training steps (i.e. the best epoch found times 

the number of training images), to yielded performance. The best relative performance 

was achieved without dataset augmentation, though this strongly indicates that more 

varied initial data could lead to further advancements.  
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Table 6: Results for augmenting input image set for training the modified U-Net 

Ref. Input/Output 
Pairs 

Val. 
Loss 

Best 
Epoch 
[# of 

Steps] 

Avg. % to 
33 dB 
PSNR 
(AdB) 

AdB-1 

*Steps-1 

Final Avg. 
PSNR (dB) of 
m/z Recons. 

(FdB) 

FdB/Steps 

0 240 0.07914 13 
[3120] 24.464 0.000013 36.793 0.012 

1 480 0.07706 45 
[21600] 22.072 0.000002 36.614 0.002 

2 720 0.0757 40 
[28800] 20.187 0.000002 37.144 0.001 

3 960 0.07728 38 
[36480] 21.492 0.000001 37.078 0.001 

 

 
Figure 25: Progressive average PSNR of m/z reconstructions with augmentation for the 
uterine validation set, referencing labels in Table 6 
 

4.2.4 SLADS 

In order to examine the relative merit of the introduced dynamic window and 

summation RD generation method, variations considering the static window and original 

RD generation method were simulated with the SLADS-LS and SLADS-Net models. An 

additional simulation was conducted using only a single chosen m/z (219.02664) as an 

input, with evaluation performed over the multiple common m/z, to highlight the 

advantage of considering multiple channels. Table 7 summarizes the results and Figures 
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26 and 27 illustrate the progressive average PSNR of the m/z reconstructions for SLADS-

LS and SLADS-Net respectively. Both models performed very similarly, though the 

former was able to be the first to 33 dB with summation RD generation and a dynamic 

window and had the highest final PSNR with original RD generation paired with a static 

window. Given an emphasis on maximizing throughput, the summation RD with 

dynamic window model is found to be the optimal SLADS implementation.  

 

Table 7: Results for varying the input, window, and RD generation in SLADS models 
Ref. m/z RD Window Avg. % to 33 dB 

PSNR 
Final Avg. PSNR (dB) of m/z 

Recons. 
Model SLADS-LS 

0 Single 
Original Static 29.871 34.935 

1 
Multiple 

23.359 36.374 
2 Dynamic 23.278 36.357 
3 Summation 22.717 36.336 

Model SLADS-Net 
0 Single 

Original Static 28.347 34.879 
1 

Multiple 
22.854 36.120 

2 Dynamic 23.081 36.080 
3 Summation 23.498 36.182 

 

 
Figure 26: Progressive average PSNR of m/z reconstructions for the uterine validation 
set using SLADS-LS, referencing labels in Table 7 
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Figure 27: Progressive average PSNR of m/z reconstructions for the uterine validation 
set using SLADS-Net, referencing labels in Table 7 
 

4.3 Simulations 

Final simulations were performed with the testing dataset (Fig. 28) with DLADS 

(reconstruction and measured values as inputs, MAE loss, 1e-4 LR, and no 

augmentation), the legacy SLADS-LS, and SLADS-LS with dynamic window and 

summation RD. Linewise acquisition was additionally simulated for the DLADS model. 

The average m/z reconstruction results are shown in Tables 8 and 9, progression of PSNR 

visualized in Figures 29 and 30, and progressive PSNR between the ERD and RD 

presented in Figures 31 and 32 for pointwise and linewise acquisition modes respectively. 

Visualizations of the measured masks and reconstructions for the testing samples are 

shown in Figures 33 and 34 with averaged PSNR of the m/z reconstructions presented in 

Table 10. The optimized SLADS-LS model was the fastest to reach 33 dB PSNR across 

the m/z reconstructions with DLADS producing the highest final PSNR at ~40%. The 

DLADS model was also the most successful at producing ERD similar to the RD, 

outperforming SLADS even when using a linewise acquisition mode.  
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Figure 28: Ground-truth averaged m/z images (normalized by monoisotopic m/z), for the 
uterine testing samples Slide1-Wnt3 (left) and Slide6-V2-2 (right) 
 

Table 8: Results for simulation of the uterine testing set for SLADS and DLADS models 
with pointwise acquisition 
Ref. Model m/z RD Window Avg. % to 33 dB 

PSNR 
Final Avg. PSNR (dB) 

of m/z Recons. 
0 SLADS-LS 1 Original Static 13.860 37.952 
1 SLADS-LS 11 Summation Dynamic 11.032 38.453 
2 DLADS 11 Summation Dynamic 11.516 38.991 

 

Table 9: Results for simulation of the uterine testing set for DLADS with linewise 
acquisition, 11 m/z, summation RD, and use of dynamic windows 

Ref. Mode m/z Avg. 
Final % 

Avg. % to 33 dB 
PSNR 

Final Avg. PSNR (dB) of m/z 
Recons. 

0 Percent 11 35.453 32.385 33.804 
1 Segment 11 69.640 51.694 40.466 
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Figure 29: Progressive average PSNR of m/z reconstructions for the uterine testing set 
acquired with pointwise acquisition, referencing labels in Table 8 
 

 
Figure 30: Progressive average PSNR of m/z reconstructions for the uterine testing set 
acquired with linewise acquisition, referencing labels in Table 9 
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Figure 31: Progressive average PSNR between ERD and RD for the uterine testing set 
acquired with pointwise acquisition, referencing labels in Table 8 
 
 

 
Figure 32: Progressive average PSNR between ERD and RD for the uterine testing set 
acquired with linewise acquisition, referencing labels in Table 9 
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Figure 33: Progressive measurement masks and associated averaged m/z reconstructions 
for the uterine testing sample Slide1-Wnt-3  
 

 
Figure 34: Progressive measurement masks and associated averaged m/z reconstructions 
for the uterine testing sample Slide6-V2-2 
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Table 10: Progressive PSNR of m/z reconstructions at varying percentages for uterine 
testing sample Slide1-Wnt3 

 
PSNR (dB) of m/z 

Reconstructions at ~% 
Measured 

Ref. Model Mode m/z RD Window 10 20 30 
Sample Slide1-Wnt3 

0 SLADS-LS Pointwise 1 Original Static 31.58 33.52 35.75 
1 SLADS-LS Pointwise 11 Summation Dynamic 32.47 34.80 36.59 
2 DLADS Pointwise 11 Summation Dynamic 31.11 34.70 36.90 

3 DLADS Percent-
Linewise 11 Summation Dynamic 28.33 30.90 33.82 

4 DLADS Segment-
Linewise 11 Summation Dynamic 27.05 28.42 29.23 

Sample Slide6-V2-2 
0 SLADS-LS Pointwise 1 Original Static 32.65 34.85 36.61 
1 SLADS-LS Pointwise 11 Summation Dynamic 32.78 35.07 36.77 
2 DLADS Pointwise 11 Summation Dynamic 32.96 35.61 37.56 

3 DLADS Percent-
Linewise 11 Summation Dynamic 26.45 29.21 31.40 

 DLADS Segment-
Linewise 11 Summation Dynamic 24.95 26.63 27.07 
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CHAPTER 5 
CONCLUSIONS 

5.1 Discussion 

The SLADS methodology has been successfully modified for simulation and 

integration with nano-DESI MSI data and equipment. These modifications include the 

dynamic and automatic determination of effective window sizes for approximated 

ground-truth RD generation, compensation for DESI’s characteristic asymmetrical 

coordinate system and unpredictable sampling rate, creation of line-bounded acquisition 

modes, consideration of multiple molecular channels (both in model architecture and RD 

generation), as well as improving the employed machine learning architectures. This 

work has produced updated forms of the SLADS-LS and SLADS-Net implementations 

and a CNN neural network architecture, more specifically a modified U-Net, culminating 

in formation of the DLADS algorithm. A primary limitation of prior SLADS 

implementations, the lack of ability to incorporate a third-dimension [23] has now been 

addressed, with evidenced advantages to doing so.  

The updated, multichannel SLADS-LS and SLADS-Net models are demonstrated 

to outperform their single-channel predecessors respectively by averages of 34.467% and 

21.457% in reaching a 33 dB PSNR target during pointwise testing. DLADS advances on 

the best SLADS-LS model by an average 0.538 dB and on the legacy SLADS-LS model 

by 1.039 dB at ~40% measured FOV. DLADS further had consistently higher average 

PSNR of m/z image reconstructions beyond ~12% measured FOV compared with the 

best SLADS-LS model. While the simulation performance between multichannel SLADS 

and DLADS models may be viewed as relatively insignificant, the ERD produced by 
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DLADS during testing was noteworthy with an average 19.686 dB PSNR above that 

produced for the best SLADS-LS network. All pointwise acquisitions demonstrated 

reductions in the number of required measurements for a reasonable estimation of the 

ground-truth m/z images by ~85-90%. The percent-linewise and segment-linewise 

acquisition methods were able to reach the 33 dB threshold, with decreases in the number 

of required measurements between ~50-70%.  

There was sometimes a slight advantage shown to using the new automated 

dynamic window method to produce approximated RD ground-truth images. During 

simulation of the validation set, there was a decrease in the number of epochs needed to 

reach an average 33 dB PSNR in m/z image reconstructions by 0.347% for SLADS-LS, 

but an increase of 0.988% for SLADS-Net. This could be further improved in the future 

by increasing the multiple of 𝜎𝜎, up from 3, when calculating a window size to employ. 

There was a consistent improvement to reach the 33 dB mark in simulation of the 

validation set when using the summation RD generation, decreasing 2.349% for SLADS-

LS and 1.791% for SLADS-Net. These figures are also underrepresented in this case, 

since the scenario presented in this work, where the chosen m/z are all represent-9ative of 

the same geometry, may be considered uncommon. Alternate combinations of non-

complimentary m/z, where the resultant visualizations may obfuscate geometrical 

features during averaging, would additionally suffer in the original RD generation. For 

multiple channels, the RD should be descriptive across all of them, as done in the 

summation approach.  

One of the primary criticisms of the SLADS methodology [22] is the tendency to 

oversample structural edges. This clustering behavior can be clearly seen in Figure 29. 
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SLADS-LS and SLADS-Net both rely on extracting representative feature vectors from a 

reconstructed image and only consider unmeasured locations in isolation from each other. 

The DLADS architecture’s use of convolutional layers to learn, not only values for 

specific locations, but also local and global spatial relationships, leads to a reduction in 

measurement clustering and better coverage of the sample foreground.  

5.2 Future Work 

Nano-DESI MSI presented a number of difficulties peculiar to DESI scanning, 

which will prevent it fully benefiting from SLADS and DLADS potential performance 

gains. Most notably was the arbitrary limitation by equipment vendors to scanning line-

by-line in a static raster pattern. While the nano-DESI research being conducted at 

Purdue has indicated that selection of a start and end point (segmented-linewise) for each 

line can be implemented, this work has shown a clear reduction in performance relative 

to the percent-linewise acquisition mode, allowing singular locations on a chosen line, 

and even more so relative to pointwise operation. Even in simulation, there were 

additional and continual challenges inherent to the provided data, particularly 

inconsistencies in which and how many positions were scanned on each line, the non-

square asymmetric coordinate system, and proprietary MSI file format. While there 

remains, a clear advantage shown in simulations to its integration with nano-DESI 

workflows, there may be more benefit when combined with alternative forms of MSI. In 

particular MALDI MSI acquires data point-by-point and can be generally seen to have 

more flexibility in terms of modification to its operation, making it a prime target for 

future development. The allowance for 3D data and improved performance despite low 

availability of data, could also easily extend this work beyond just MSI technologies. 
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The ability to verify hardware integration was constrained by collaborator access 

to hardware and their confidence regarding algorithm functionality for the proposed 

application. While it was strongly desired that actual verification, rather than simply 

simulation, of compatibility with hardware be completed in time for this publication, this 

did not come to fruition. However, this goal remains a primary objective for this research. 

This study limited itself from the employment of more advanced, adversarial 

networks in the interest of demonstrating applicability to integration with nano-DESI 

MSI and consideration for development beyond the original SLADS-LS and SLADS-Net 

publications. However, the relative performance gains of Generative Adversarial 

Networks (GANs), particularly for image-to-image translation tasks, as demonstrated by 

CycleGAN, Pix2Pix, and StyleGAN networks [32, 33, 34] shows great promise for 

integration with the SLADS and DLADS methodologies.  

Another major limitation in this study has been the availability of high-resolution 

nano-DESI MSI data. Since the technology has only recently been capable of performing 

acquisitions with spatial fidelity at <10 𝜇𝜇m, there exists very little data to use in training 

machine learning models in general, let alone deep learning networks. Although it was 

strongly desired to perform a cross-tissue study, there was insufficient overlap between 

the available tissue types, in terms of m/z commonly representative of the tissues’ 

foregrounds. Should domain specific knowledge of molecules common to both become 

available, then such a study would be straightforward to perform. Further, this possibility 

will become more realizable, as greater quantities of high-resolution DESI data become 

available, allowing for further enhancement of SLADS and DLADS.  
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A more practical examination of RD generation should be should be considered, 

more specifically when domain specific knowledge of potentially overlapping, yet 

geometrically diverse m/z becomes available. It remains hypothesized that there exist 

scenarios where the averaging procedure, used in the original RD generation procedure, 

will obfuscate relevant features and impair the sampling process, where the implemented 

summation method can function regardless.  

5.3 Concluding Remarks 

The SLADS methodology has been shown in prior work to significantly reduce 

the number of required measurements for X-ray crystalline scanning, Raman microscopy, 

EDS, EBSD, and SEM technologies. This research has advanced prior machine learning 

models developed with this approach to perform dynamic sparse sampling with 

consideration for a third dimension, which will enable integration with other imaging 

modalities in future. Further, methods were engineered to compensate for the 

characteristics and limitations of present-day nano-DESI MSI technology. A more 

advanced machine learning based CNN was optimized in the form of the DLADS 

algorithm, leading to improved predictions on the order of 20 dB PSNR, simulated 

reductions in required measurements of ~85-90% for pointwise and between ~50-70% for 

line-by-line acquisitions of uterine tissue samples acquired with nano-DESI MSI.  

  



58 
 

 

BIBLIOGRAPHY 

[1] R. Yin, K. Burnum-Johnson, X. Sun, et al., “High spatial resolution imaging of 
biological tissues using nanospray desorption electrospray ionization mass 
spectrometry,” Nature Protocols 14, 3445–3470 (2019). 

 
[2] “The human body at cellular resolution: the NIH human biomolecular atlas program,” 

Nature 574, 187–192 (2019).  
 
[3] E. Gemperline, B. Chen, and L. Li, “Challenges and recent advances in mass 

spectrometric imaging of neurotransmitters,” Bioanalysis 6, 525–540 (2014).  
 
[4] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 

Upper Saddle River, New Jersey (2010).  
 
[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, et al., Introduction to Algorithms, MIT 

Press, Cambridge, Mass (2009).  
 
[6] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning, 

The MIT Press, Cambridge, Massachusetts (2018).  
 
[7] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for 

biomedical image segmentation,” (2015).  
 
[8] K. Hujsak, B. Myers, E. Roth, et al., “Suppressing electron exposure artifacts: An 

electron scanning paradigm with bayesian machine learning,” Microscopy and 
Microanalysis 22(4), 778––788 (2016). 

 
[9] H. Anderson, J. Ilic-Helms, B. Rohrer, et al., “Sparse imaging for fast electron 

microscopy,” in Computational Imaging XI, C. Bouman, I. Pollak, and P. Wolfe, 
Eds., 8657, 94–105, International Society for Optics and Photonics, SPIE (2013). 

 
[10] R. Ohbuchi and M. Aono, “Quasi-Monte Carlo rendering with adaptive sampling,” 

(1996). 
 
[11] Z. Wang and G. Arce, “Variable density compressed image sampling, “IEEE 

Transactions on Image Processing 19, 264–270 (2010). 
 
[12] T. Merryman and J. Kovacevic, “An adaptive multirate algorithm for acquisition of 

fluorescence microscopy data sets,” IEEE Transactions on Image Processing 14, 
1246–1253 (2005). 

 
[13] C. Jackson, R. F. Murphy, and J. Kovacevic, “Intelligent acquisition and learning of 

fluorescence microscope data models,” IEEE Transactions on Image Processing 18, 
2071–2084 (2009). 



59 
 

 

 
[14] G. Godaliyadda, D. Ye, M. Uchic, et al., “A supervised learning approach for 

dynamic sampling,” Electronic Imaging 2016(19), 1–8 (2016). 
 
[15] G. Godaliyadda, G. Buzzard, and C. Bouman, “A model-based framework for fast 

dynamic image sampling,” in 2014 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), 1822–1826 (2014). 

 
[16] N. Scarborough, G. Godaliyadda, D. Ye, et al., “Dynamic x-ray diffraction sampling 

for protein crystal positioning,” Journal of Synchrotron Radiation 24, 188–195 
(2017). 

 
[17] S. Zhang, Z. Song, G. Godaliyadda, et al., “Dynamic sparse sampling for confocal 

raman microscopy,” Analytical Chemistry 90, 4461–4469 (2018). 
 
[18] G. Godaliyadda, D. Ye, M. Uchic, et al., “A framework for dynamic image sampling 

based on supervised learning,” IEEE Transactions on Computational Imaging 4, 1–
16 (2018). 

 
[19] Y. Zhang, G. Godaliyadda, N. Ferrier, et al., “Reduced electron exposure for energy-

dispersive spectroscopy using dynamic sampling,” Ultramicroscopy 184, 90 – 97 
(2018). 

 
[20] Y. Zhang, G. Godaliyadda, N. Ferrier, et al., “Slads-net: Supervised learning 

approach for dynamic sampling using deep neural networks,” (2018). 
 
[21] Y. Zhang, X. Huang, N. Ferrier, et al., “U-slads: Unsupervised learning approach for 

dynamic dendrite sampling,” (2018). 
 
[22] S. Grosche, M. Koller, J. Seiler, et al., “Dynamic image sampling using a novel 

variance based probability mass function,” IEEE Transactions on Computational 
Imaging 6, 1440–1450 (2020). 

 
[23] H. M. Cartwright, Ed., Machine Learning in Chemistry, Theoretical and 

Computational Chemistry Series, The Royal Society of Chemistry (2020). 
 
[24] D. Helminiak, H. Hu, J. Laskin, et al., “Deep learning approach for dynamic sparse 

sampling for high-throughput mass spectrometry imaging,” Electronic Imaging 
(2021). 

 
[25] Thermo Fisher Scientific Inc., Thermo FreeStyle User Guide Software Version 1.4. 
 
[26] Z.-F. ei Yuan, C. Liu, H.-P. Wang, et al., “pParse: A method for accurate 

determination of monoisotopic peaks in high-resolution mass spectra,” 
PROTEOMICS 12, 226–235 (2011). 

 



60 
 

 

[27] S. Carr, A. Burlingame, and M. Baldwin, Mass Spectrometry in Biology Medicine, 
Humana Press, Totowa, NJ (2000). 

 
[28] W. M. Alexander, S. B. Ficarro, G. Adelmant, et al., “multiplierz v2.0: A python-

based ecosystem for shared access and analysis of native mass spectrometry data,” 
PROTEOMICS 17, 1700091 (2017). 

 
[29] G. Mandlburger, M. Kolle, H. Nubel, et al., “BathyNet: A deep neural network for 

water depth mapping from multispectral aerial images,” PFG – Journal of 
Photogrammetry, Remote Sensing and Geoinformation Science 89, 71–89 (2021). 

 
[30] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard artifacts,” 

Distill 1 (2016).  
 
[31] S. Van der Walt, J. L. Schonberger, J. Nunez-Iglesias, et al., “scikit-image: image 

processing in python,” PeerJ 2, e453 (2014). 
 
[32] J.-Y. Zhu, T. Park, P. Isola, et al., “Unpaired image-to-image translation using cycle-

consistent adversarial networks,” (2020). 
 
[33] P. Isola, J.-Y. Zhu, T. Zhou, et al., “Image-to-image translation with conditional 

adversarial networks,” (2018). 
 
[34] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative 

adversarial networks,” (2019) 


	Deep Learning Approach for Dynamic Sampling for High-Throughput Nano-DESI MSI
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	1.1 Motivation
	1.2 History and Review
	1.2.1 DESI MSI
	1.2.2 Deep Learning
	1.2.3 U-Net Architecture
	1.2.4 Sparse Sampling

	1.3 Objectives
	1.4 Development Steps

	DATA
	2.1 Hardware and Software
	2.2 Datasets

	DEVELOPMENT
	3.1 Data Pre-Processing
	3.1.1 m/z Visualization
	3.1.2 Alignment and Rescaling
	3.1.3 m/z Selection

	3.2 Methods
	3.2.1 Sampling Overview
	3.2.2 Pointwise Acquisition
	3.2.3 Linewise Acquisition
	3.2.4 c Value Regularization

	3.3 Updated SLADS and DLADS
	3.3.1 Code Design and Notes
	3.3.2 DLADS Architecture
	3.3.3 Reduction in Distortion

	3.4 c Value Optimization
	3.5 Physical Integration

	RESULTS
	4.1 Metrics
	4.2 Ablation Studies
	4.2.1 DLADS Inputs
	4.2.2 DLADS Model Parameters
	4.2.3 DLADS Augmentation
	4.2.4 SLADS

	4.3 Simulations

	CONCLUSIONS
	5.1 Discussion
	5.2 Future Work
	5.3 Concluding Remarks

	BIBLIOGRAPHY

