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Acute White Matter Integrity
Post-trauma and Prospective
Posttraumatic Stress Disorder
Symptoms
Carissa N. Weis1* , Ashley A. Huggins1, Tara A. Miskovich2, Jacklynn M. Fitzgerald3,
Kenneth P. Bennett4‡, Jessica L. Krukowski3‡, E. Kate Webb1‡, Terri A. deRoon-Cassini5†‡

and Christine L. Larson1†

1 Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States, 2 Sacramento VA Medical
Center (VHA), Sacramento, CA, United States, 3 Department of Psychology, Marquette University, Milwaukee, WI,
United States, 4 Montana VA Health Care System, Helena, MT, United States, 5 Division of Trauma and Acute Care Surgery,
Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States

Background: Little is known about what distinguishes those who are resilient after
trauma from those at risk for developing posttraumatic stress disorder (PTSD). Previous
work indicates white matter integrity may be a useful biomarker in predicting PTSD.
Research has shown changes in the integrity of three white matter tracts—the cingulum
bundle, corpus callosum (CC), and uncinate fasciculus (UNC)—in the aftermath of
trauma relate to PTSD symptoms. However, few have examined the predictive utility
of white matter integrity in the acute aftermath of trauma to predict prospective PTSD
symptom severity in a mixed traumatic injury sample.

Method: Thus, the current study investigated acute brain structural integrity in 148
individuals being treated for traumatic injuries in the Emergency Department of a
Level 1 trauma center. Participants underwent diffusion-weighted magnetic resonance
imaging 2 weeks post-trauma and completed several self-report measures at 2-weeks
(T1) and 6 months (T2), including the Clinician Administered PTSD Scale for DSM-V
(CAPS-5), post-injury.

Results: Consistent with previous work, T1 lesser anterior cingulum fractional
anisotropy (FA) was marginally related to greater T2 total PTSD symptoms. No other
white matter tracts were related to PTSD symptoms.

Conclusions: Results demonstrate that in a traumatically injured sample with
predominantly subclinical PTSD symptoms at T2, acute white matter integrity after
trauma is not robustly related to the development of chronic PTSD symptoms. These
findings suggest the timing of evaluating white matter integrity and PTSD is important
as white matter differences may not be apparent in the acute period after injury.

Keywords: PTSD, DTI, trauma, white matter, brain structure
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INTRODUCTION

In the United States, nearly 90% of people experience a
traumatic event in their lives (Kilpatrick et al., 2013). While
most individuals are resilient after trauma, a substantial subset of
trauma-exposed individuals go on to develop posttraumatic stress
disorder (PTSD) (Cloitre et al., 2019). PTSD is characterized
by symptoms that include re-experiencing the traumatic event
through intrusive thoughts, nightmares, and flashbacks, avoiding
trauma-related stimuli, general hyperarousal, and experiencing
negative thoughts or emotions that begin or worsen after the
event (American Psychiatric Association, 2013).

Critically, at this point in time, clinicians do not have an
accurate method of predicting who is at risk of developing
PTSD after a traumatic event. Ideally, psychological and/or
biological markers measured early after trauma exposure could
be used to identify those at risk for chronic distress so that
appropriate interventions could be administered (Bryant, 2003;
Shalev et al., 2019). Localizing disruptions in the brain that
underlie maladaptive behaviors and cognitions is important
so that targeted interventions can be implemented to prevent
symptom development without disrupting unrelated and intact
neural processes.

Structural integrity studies using diffusion tensor imaging
(DTI) have repeatedly yielded results suggesting the utility
of white matter integrity as a biomarker of PTSD (Bremner,
2005; Karl et al., 2006; Alexander et al., 2007; Pitman et al.,
2012). DTI is a neuroimaging technique that can non-invasively
characterize structural integrity of white matter tracts in the brain
by measuring the signal attenuation of water movement within
brain tissue (Mori and Tournier, 2014). White matter tracts are
the myelinated axons of neurons within the brain that facilitate
the efficient neural transfer of information. Fractional anisotropy
(FA) is an approximation of the spatial coherence of white matter
tissue (Mori and Tournier, 2014). Prior research has shown that
FA, a measure of disruption of white matter integrity, of the
cingulum, corpus callosum, and uncinate fasciculus is repeatedly
linked with PTSD symptom severity and diagnosis (Abe et al.,
2006; Jackowski et al., 2008; Bierer et al., 2015; Fani et al., 2015;
Kennis et al., 2015; Hu et al., 2016; Saar-Ashkenazy et al., 2016;
Weis et al., 2018).

The cingulum interconnects fronto-limbic regions along the
cingulate gyrus (Schmahmann et al., 2007), and the corpus
callosum connects many prefrontal and parietal cortical regions
between cerebral hemispheres (Hofer and Frahm, 2006). The
structural connectivity of both the cingulum and corpus callosum
has been hypothesized to underlie dysregulated emotions and
memory processes (e.g., re-experiencing symptoms) present
in PTSD (Mahan and Ressler, 2012; Pitman et al., 2012;
Sanjuan et al., 2013; Reuveni et al., 2016; Akiki et al.,
2017; Siehl et al., 2018). Finally, the uncinate fasciculus, a
white matter tract which connects the temporal and frontal
cortices through the limbic region, has also been implicated
in aberrant extinction learning processes leading to avoidance
behaviors in PTSD (Jovanovic and Ressler, 2010; Von Der
Heide et al., 2013; Olson et al., 2015; Koch et al., 2017;
Harnett et al., 2018).

Cross-sectional studies in a variety of trauma samples have
shown that lesser integrity (e.g., lower FA) of the cingulum (Abe
et al., 2006; Fani et al., 2012, 2015; Sanjuan et al., 2013; Bierer
et al., 2015; Reuveni et al., 2016), corpus callosum (Jackowski
et al., 2008; Li et al., 2016; Saar-Ashkenazy et al., 2016), and
uncinate fasciculus (Hanson et al., 2015; Koch et al., 2017) are
related to greater PTSD symptoms. Meta-analytic work also notes
the integrity of these three white matter tracts in relation to
PTSD (Daniels et al., 2013; Jenkins et al., 2016; Siehl et al., 2018;
Ju et al., 2020).

Longitudinal research has yielded some insights into the
structural changes that accompany PTSD, indicating that
increased integrity over time of the cingulum (Zhang et al.,
2012; Kennis et al., 2015), corpus callosum (Sun et al., 2015),
and uncinate (Fani et al., 2017) are related to less severe
PTSD symptoms. In one notable example, Kennis et al. (2015)
demonstrated increased cingulum integrity (FA) 6–8 months
after treatment for PTSD and up to 4 years later corresponded
with concurrent improved PTSD symptoms.

However, relatively few studies (Fani et al., 2012; Sun et al.,
2015; Hu et al., 2016; Li et al., 2016; Saar-Ashkenazy et al.,
2016; Harnett et al., 2020) have investigated the predictive utility
of acute white matter structural integrity in conferring risk for
prospective PTSD, particularly in traumatically injured civilian
samples. Notably, in a mixed-sample of acute trauma survivors,
lower FA in the uncinate 1-month post-trauma was significantly
related to greater posttraumatic anhedonia (PTA), 6 months post-
trauma (Fani et al., 2017). Similarly, when compared to trauma-
exposed controls, motor vehicle crash (MVC) victims had lesser
integrity in the cingulum, corpus callosum, and uncinate 2 days
after their accident that correlated with greater PTSD symptom
severity 6-month later (Sun et al., 2015; Hu et al., 2016). Still,
there are some limitations to these few prospective studies
including, fairly small sample sizes (n < 62), homogenous trauma
populations, and comparing diagnostic groups.

Therefore, the current study adds to this body of literature
aiming to assess whether acute post-trauma white matter
integrity relates to prospective PTSD symptom severity by
examining a large and diverse traumatically injured sample. In
keeping with the few studies of acute trauma survivors to date, we
predicted that lesser integrity of the cingulum, corpus callosum,
and uncinate after traumatic injury will be related to greater
PTSD symptom severity 6 months later.

MATERIALS AND METHODS

Participants
Nine-hundred sixty-nine individuals treated for traumatic
injuries in the Emergency Department (ED) of a Level 1
Trauma Center in Southeastern Wisconsin were recruited
directly from the ED or by phone following ED discharge for
the Imaging Study on Trauma and Resilience (iSTAR study: Bird
et al., 2021; Webb et al., 2021a,b; Weis et al., 2021a,b). After
expressed interest in study participation the participant received
a complete verbal overview of the study and were screened
to ensure eligibility. Participants provided written informed
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consent, and all procedures were approved by the Medical
College of Wisconsin Institutional Review Board. Though 969
individuals were recruited for study participation, only 524 met
eligibility criteria of which 279 were discontinued or withdrawn
before the first study (i.e., first visit unable to be scheduled,
visit scheduled but participant no-showed, discontinued interest
in study participation). Thus, 215 eligible participants were
enrolled in the study.

Inclusion criteria include those who met criterion A of PTSD
diagnosis as defined by the Diagnostic and Statistical Manual-
5th edition (DSM-V). Individuals then completed the Predicting
PTSD Questionnaire (Rothbaum et al., 2014) to evaluate 5 risk
factors to chronic PTSD development including evidence of prior
trauma, current trauma severity, dissociation during current
trauma, childhood trauma exposure, and family history of
psychopathology (max score = 5; all 5 risk factors). Those with a
minimum score of 3, indicating greater risk of developing chronic
PTSD, were considered eligible. This inclusion criteria means our
sample represents a subset of trauma-exposed individuals who
are at elevated risk of PTSD development. In addition, individuals
were eligible if they were between the ages of 18–60, English
speaking, and able to schedule their first research visit within
30 days of the trauma.

Exclusion criteria included head injury more severe than a
mild traumatic brain injury (score of less than 13 on the Glasgow
Coma Scale; Sternbach, 2000; Teasdale et al., 2014), spinal
cord injury with neurological deficit or any condition affecting
brain structure or function, self-inflicted injury, severe vision or
hearing impairments, history of psychotic or manic symptoms,
currently on antipsychotic medications, clear substance abuse
noted in medical record, on police hold following their injury,
contraindications for MRI scanning including metal objects or
fragments in the body, claustrophobia, and pregnancy or planned
pregnancy within the next 6 months.

Procedure
Participants came to research visits at two time points, within
2–4 weeks (T1; range = 3–33 days, mean = 18 days) and 6-
months (T2; range = 157–231 days, mean = 187 days) following
the trauma that resulted in their ED admission. At both visits, a
large battery of behavioral, cognitive, self-report questionnaires,
and neuroimaging data were collected. Herein, we report select
measures from both time points and the structural and diffusion
MRI (DTI) data from T1. As part of this larger study participants
were scanned on two consecutive days within the acute post-
trauma period (T1). Of the 215 enrolled participants, 208 were
scanned in the MRI environment on Day 1, and 185 were
scanned on Day 2 when the DTI protocol was completed. Of
the 185 scanned, a total of N = 171 participants had complete
diffusion weighted imaging scans. After visual inspection, four
participants were removed for marked distortions in the DTI
scans (N = 167). Of the 167 participants with usable DTI scans at
T1, 148 had T2 PTSD data.

There were no differences in age, sex, or T1 (PCL-5) or T2
PTSD symptoms (assessed with Clinician Administered PTSD
Scale; CAPS-5; see Section “Measures”) between individuals with
usable scan data included in all subsequent analyses and those

who were enrolled in the study but did not complete or have
usable scans. Although, those enrolled in the study without scan
data had significantly lower screened risk of PTSD as measured
by the Predicting PTSD Questionnaire (Rothbaum et al., 2014)
than those included in the current analysis, t(248) = −8.32,
p < 0.001. See Table 1 for characteristics of the final sample
(N = 148).

Measures
Prior trauma history is a significant risk factor in chronic trauma-
related outcomes (Karam et al., 2014), therefore, to assess past
traumatic/stressful experiences, we used the Life Events Checklist

TABLE 1 | Sample characteristics (N = 148).

M (SD)

Age 33.12 (10.48)

Sex 65 male, 83 female

Race % of sample

Asian <5%

Black 60%

Pacific Islander <5%

White 26%

More than one 6%

Unknown/not reported 6%

Annual income % of sample

Less than $40,000 58%

$40,000–60,000 16%

$60,000–80,000 14%

Greater than $80,000 12%

Educational attainment % of sample

Some high school 7%

High school graduate or GED 33%

Some college 28%

Associate degree 16%

Bachelor degree 14%

Master degree or higher <5%

Mechanism of injury Percent (# male, # female)

Assault 15% (8 M, 15 F)

Fall 1% (0 M, 2 F)

MVC 69% (47 M, 56 F)

Pedestrian struck 4% (4 M 2 F)

Other 11% (6 M, 8 F)

Days since injury M (SD)

T1 17.83 (5.79)

T2 183.64 (11.89)

Prior trauma history (weighted LEC) 31.39 (16.37)

PTSD symptoms M (SD)

PCL-5 (T1) 26.78 (17.29)

CAPS-5 severity (T2) 12.70 (11.25)

CAPS-5 Dx (T2) 27+/121−

MVC, motor vehicle crash; LEC, life events checklist; PTSD, posttraumatic stress
disorder; PCL-5, PTSD checklist for DSM-5; CAPS-5, Clinician Administered PTSD
Scale for DSM-5; T1, 2-weeks post traumatic injury; T2, 6-months post traumatic
injury; M, mean; SD, standard deviation; Dx, diagnosis. Small sample sizes for
select racial groups are reported as <5% to ensure participant anonymity, thus
cumulative percentages exceed 100%.
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(LEC; Gray et al., 2004). The LEC assesses occurrence of 17
major life events (e.g., natural disaster, assault, combat, life-
threatening illness, or injury) that a person may have experienced,
witnessed, or learned about happening to someone close to them.
To capture the greater PTSD risk conferred by experiencing an
event as compared to learning about an event (Gray et al., 2004),
a newly developed weighted summary score was used (Weis et al.,
2021a). Items experienced firsthand were weighted by a factor
of 3, items witnessed weighted with a factor of 2, and items
learned about were weighted with a factor of 1. After weighting,
all items were summed (maximum score = 102). Higher
scores therefore indicate more events experienced with close
proximity to the individual (descriptive information presented in
Table 1).

Posttraumatic Stress Disorder Symptom
Measurement
The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5)
was used to assess chronic PTSD symptoms at T2 (Weathers
et al., 2013). The CAPS-5 is an interview consisting of 18
questions corresponding to PTSD criterion in the DSM-5.
Frequency and intensity of PTSD symptoms are assessed by
the interviewer and a single severity rating is designated for
each item. Total symptom severity is derived from the sum of
severity ratings on all questions. The interview was administered
by trained senior study personnel and audio-recorded for each
participant. A random selection of interviews (∼20%) were
reviewed and reevaluated by licensed clinical psychologists in
the study team to establish good reliability across interviewer
administration within the study (Cohen’s Kappa = 0.95). At T2,
the sample had predominantly subclinical symptoms (M= 12.70,
SD = 11.25), as only 18% of participants (13 male and 14
female) met criteria for PTSD diagnosis according to the CAPS-5
(Weathers et al., 2013).

To assess baseline PTSD symptoms, we used total scores
from the PTSD Checklist for DSM-5 (PCL-5) administered at
T1 (Blevins et al., 2015; U.S. Department of Affairs, 2017). The
PCL-5 is a 20-item self-report measure that assesses symptoms of
PTSD according to the DSM-5 criteria. A sum score is generated
reflecting symptom severity ranging from 0 to 80, with a higher
scoring indicating greater symptom severity. Note, the PCL-5
was also administered at T2, however, the CAPS-5 is viewed as
a more valid and objective measure of PTSD, therefore we used
the CAPS-5 as the outcome variable of interest at T2 for all
analyses rather than the PCL-5. Both measures of PTSD were
highly correlated at T2, r2

= 0.44, p < 0.001.

Depression Symptom Measurement
Given the high degree of comorbidity of PTSD and depression
after traumatic injury (Rytwinski et al., 2013; Flory and Yehuda,
2015), and in particular the relationship of depression and
DTI after trauma (Isaac et al., 2015), we included depression
symptoms as a covariate in the analysis. Depressive symptoms
were assessed at T1 using the Depression, Anxiety and Stress
Scale (DASS; Lovibond P.F. and Lovibond, 1995; Lovibond
S.H. and Lovibond, 1995; Henry and Crawford, 2005). The
DASS is a 21-item self-report measure divided into 3-subscales
(7-items per subscale), depression, anxiety, and stress. Total

scores from the depression subscale were used to evaluate
depressive symptoms over the prior week relative to the time of
administration. On the depression subscale total scores between
0 and 9 suggest asymptomatic depression, 10–13 indicate mild
depression, 14–20 moderate depression, 21–27 severe depression,
and scores greater than 28 correspond with extremely severe
depression (Lovibond P.F. and Lovibond, 1995; Lovibond S.H.
and Lovibond, 1995; Henry and Crawford, 2005). On average, the
current sample had asymptomatic depression (T1: M = 8.50) but
with considerable variability up to extremely severe depression
(range= 0–40) at T1.

MRI Acquisition
The MRI was collected on a 3.0T short bore GE Signa Excite
system. High resolution T1 spoiled gradient recalled (SPGR)
images were acquired in a sagittal orientation (TR = 8.2 ms;
TE = 3.2 ms; FOV = 24 cm; flip angle = 12◦; voxel
size = 1 mm × 0.9375 mm × 0.9375 mm). Diffusion
weighted images (DWI) were collected using an echoplanar
pulse sequence with 70 contiguous 2 mm axial slices and 38
non-collinear diffusion gradients (TR = 10 s; TE = 77.99 ms;
b-value = 800 s/mm2; FOV = 25.6 cm; flip angle = 90◦; voxel
size= 2 mm× 2 mm× 2 mm).

Diffusion Tensor Imaging Image
Processing
Anatomical T1 scans were processed using the recon-all pipeline
in FreeSurfer v5.3 and reconstructions were visually inspected for
quality control (Fischl, 2012). Diffusion weighted images (DWI)
were preprocessed using a standardized pipeline in TRACULA
(Yendiki et al., 2011). First, DWIs were corrected for image
and eddy current distortions then registered to anatomical T1
scans using FreeSurfer’s bbregister affine transformation. T1
scans were then registered to a standard template (MNI152)
for group comparison. Head motion (translation and rotation)
was calculated within TRACULA and used as a nuisance
covariate in subsequent analyses. For tract reconstruction, FSL’s
bedpost method was used to fit the ball-and-stick model with
two anisotropic compartments at every voxel to account for
crossing fibers. TRACULA then conducts global probabilistic
tractography to reconstruct the pathways of interest. An atlas
of 33 healthy individuals’ manually reconstructed pathways is
referenced for pathway reconstruction.

For the tracts of interest in the current study TRACULA
segments the cingulum into anterior and posterior segments,
and the CC into forceps major and minor. In all, 5
tracts—anterior cingulum (CCG), posterior cingulum (CAB),
forceps major (FMAJOR), forceps minor (FMINOR), and
uncinate (UNC)—were reconstructed and FA metrics extracted
for analysis (see Figure 1 for tracts from a representative
subject). Path reconstruction failed or was poor quality (i.e.,
fragmented tracts) for a handful of subjects in select tracts:
left (n = 29) and right CAB (n = 44), and left (n = 11)
and right UNC (n = 16). Thus, the smallest sample for
any tract comparison was n = 104, as there was no further
missing data for any of the covariates. For completeness,
the remaining tracts constructed by TRACULA were also
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FIGURE 1 | Tracts of interest as reconstructed in TRACULA for a representative participant. UNC, uncinate fasciculus; CCG, anterior cingulum; CAB, posterior,
FMAJOR, forceps major; FMNIOR, forceps minor.

evaluated; however, since they were not of interest to the
specific aims of the current study, results are presented in the
Supplementary Material.

Statistical Analysis
Fractional anisotropy values were extracted from TRACULA
and used in separate general linear models (GLM) for each
tract and hemisphere (8 GLMs: left and right uncinate, left
and right anterior cingulum, left and right posterior cingulum,
forceps major, and forceps minor) using R (R Core Team, 2020).
A Benjamini–Hochberg correction was applied to correct for
multiple comparisons (α= 0.05, Benjamini and Hochberg, 1995).
For each regression, T2 PTSD symptom severity from the CAPS-
5 was the outcome variable and T1 FA was the predictor while
controlling for additional covariates. Head motion parameters
were included as covariates along with sex (dummy coded:
0 = male, 1 = female) and age to account for potential sex
and age differences that have been well documented in the
literature (Hsu et al., 2008; Lebel and Beaulieu, 2011; Averill
et al., 2018). Prior trauma history (weighted LEC total) was also
included as a covariate.

Head motion parameters (average rotation and translation)
were calculated within TRACULA. Pearson correlations were
used to assess relationships between head motion and FA.
Average translation at T1 was related to right (r = −0.21,
p= 0.02) and left uncinate FA, r=−0.22, p= 0.01. In the current
study, at T1, males had significantly greater FA than females
in the right uncinate (t = 2.44, p = 0.01) and right anterior
cingulum (t = 2.26, p = 0.02). Females had significantly greater
FA in the left posterior cingulum (t =−2.00, p= 0.04). Bivariate
correlations of T1 tract integrity and T1 PCL-5 scores were also
examined. While there were no significant correlations between
T1 FA and T1 PCL-5 total severity (all p > 0.05), T1 PCL-5 scores
were included in the regression models to control for baseline
PTSD symptoms at the time of the DTI scan.

Here is an example of the full GLM with all covariates for the
right hemisphere UNC:

CAPS (T2) ∼ RH_UNC_FA (T1) + head motion
(T1)+ age+ sex + PCL-5 (T1)+ LEC (T1)+ DASS Dep (T1).

RESULTS

Bivariate Correlations
See Figure 2 for a visual representation of all pairwise correlations
for all variables of interest. T1 PTSD scores were significantly
related with T2 PTSD (r2

= 0.13, p < 0.001). Lifetime trauma
exposure was significantly related to T1 (r2

= 0.09, p < 0.001)
and T2 PTSD (r2

= 0.02, p = 0.05), and T1 depression
(r2
= 0.05, p < 0.01). Age was not significantly related to T2 PTSD

(p’s > 0.05), and there were no sex differences in T1 or T2 PTSD
or T1 depression (all p’s > 0.05). Age was negatively related to T1
depression (r2

= 0.04, p < 0.01). Depression and PCL scores at T1
were highly correlated (r2

= 0.47, p < 0.001), and T1 depression
and T2 PTSD were moderately correlated (r2

= 0.13, p < 0.001).
Men had significantly higher FA than women in the right UNC

[t(122) = 2.29, p = 0.02], right CCG [t(142) = 2.54, p = 0.01],
left CCG [t(132) = 2.14, p = 0.03], FMINOR [t(132) = 2.15,
p = 0.03]. Age was negatively related to FMINOR (r2

= 0.02,
p= 0.04).

Tract Analysis Results
Given the variability in time between index trauma and time of
scanning (Table 1), bivariate correlations between T1 FA and
days since injury at T1 scanning were evaluated. There were no
significant relationships between T1 FA and days since injury
at T1 scanning, and thus the variability in T1 FA cannot be
attributed to variability in time since trauma.

With the high comorbidity of PTSD and depression in trauma
samples, we ran the GLMs including the T1 DASS depression
scores as a covariate, however, the results did not differ from if
the DASS was excluded. This may stem from the high degree
of correlation of depression and PCL-5 scores at T1 as well as
moderate correlation of T1 depression and T2 CAPS. Therefore,
to avoid multicollinearity and for parsimony, we present the
results of the GLMs excluding T1 depression as a covariate below.

After correction for multiple comparisons, results of the
tract-based analysis showed a marginal negative relationship
between anterior cingulum FA at T1 and total CAPS-5 at
T2 (adjusted p = 0.06), e.g., lower left anterior cingulum
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FIGURE 2 | Correlation heatmap of pairwise Pearson correlations between all
variables of interest. Warm colors indicate positive correlations and cool colors
represent negative correlations. White cells represent non-significant pairwise
correlations (p > 0.05). T1, 2-weeks post-injury; T2, 6-months post-injury;
DASS, depression symptom subscale from DASS; LEC, weighted total LEC;
PCL, PTSD Checklist; CAPS, Clinician Administered PTSD Scale; FMAJOR,
forceps major; FMINOR, forceps minor; CAB, posterior cingulum; CCG,
anterior cingulum; UNC, uncinate fasciculus; LH, left hemisphere; RH, right
hemisphere.

FIGURE 3 | Lesser left anterior cingulum FA at T1 is related to greater total
PTSD symptoms at T2 (β = –48.13, p = 0.003). FA, fractional anisotropy;
CAPS, Clinician Administered PTSD Scale; T1, 2-weeks post-trauma; T2,
6-months post-trauma.

FA was related to greater total CAPS-5 symptoms (see
Figure 3 and Table 2). No other tract results survived
correction for multiple comparisons using the Benjamini–
Hochberg method (all adjusted p > 0.09). Not surprisingly,
in all models, T1 PCL-5 symptoms were significantly

related to T2 CAPS-5. No other covariates (e.g., age, sex,
head motion parameters, T1 LEC) significantly related
to T2 CAPS-5.

As a follow-up, we also ran the GLM’s with head motion as
the only covariate (excluding age, sex, and T1 PCL-5, T1 LEC),
and the results were identical, indicating the results are robust
with and without theoretically relevant covariates. Furthermore,
we repeated the whole analysis with the PCL-5 at T2 as the
outcome variable rather than CAPS-5, and still the results did
not change, though this result was not surprising due to the
high correlation of T2 PCL-5 and CAPS-5 in the current sample
r = 0.51, p < 0.001.

DISCUSSION

The current study investigated the relationship of acute white
matter integrity post-trauma and chronic PTSD symptoms.
Based on previous literature, we expected a negative relationship
between the cingulum, CC, and UNC integrity at T1 and overall
PTSD symptom severity at T2. Our results partially support these
hypotheses, in that lesser integrity of the anterior cingulum at T1
was marginally related to greater total PTSD symptoms at T2.
However, there was no relationship between CC or UNC integrity
at T1 and PTSD symptoms at T2.

The marginal results in the current study align with a
large body of previous work implicating a negative relationship
between integrity of the anterior cingulum and PTSD symptoms
(Daniels et al., 2013; Jenkins et al., 2016; Siehl et al., 2018;
Ju et al., 2020), and further show that integrity is related
to chronic non-remitting PTSD symptoms following trauma
exposure. The anterior cingulum runs the length of the
cingulate gyrus connecting medial prefrontal cortices (mPFC)
with the posterior cingulate cortex (PCC). The mPFC coordinates
responsivity to salience in an adaptive way, based on previous
experiences (Euston et al., 2012). The PCC is a critical structure
in the default mode network, where it is implicated in internally-
focused thought (Leech and Sharp, 2014). Therefore, lesser
structural connectivity between the mPFC and PCC in the acute
aftermath of trauma may indicate unregulated and maladaptive
activity that over time may result in re-experiencing or intrusive
PTSD symptoms (Siehl et al., 2018). Degradation of this tract
may lead to a reduction in top-down control of the prefrontal
cortices over the PCC, leaving the PCC unregulated and free
to engage in activity that enables symptom development and
prevents recovery.

Previous work has demonstrated the left and right cingulum
have unique microstructural properties that can be detected using
DTI (Jones et al., 2013). In addition, a slight bias toward changes
within left hemisphere structure and function in relation to PTSD
symptomology has been previously reported (Bremner, 2006).
These observations lend support for the current finding that
specifically left, but not right, cingulum integrity was marginally
related to PTSD symptoms.

Though the anterior cingulum finding aligns with the
literature, the relationship demonstrated in the current sample
was not robust. Further, no other T1 tract integrity, even in the
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TABLE 2 | General linear models with all covariates (T1 DTI predicting T2 total CAPS symptoms).

Left hemisphere Right hemisphere

β CI p β CI p

Uncinate fasciculus Intercept −11.31 −30.80 – 8.18 0.25 −4.31 −28.94 – 20.32 0.73

FA 42.36 3.74 – 80.99 0.03# 19.75 −30.15 – 69.64 0.43

Age −0.08 −0.26 – 0.10 0.38 −0.07 −0.26 – 0.11 0.42

Sex 0.64 −3.09 – 4.38 0.73 0.31 −3.55 – 4.16 0.87

T1 PCL-5 0.24 0.13 – 0.35 <0.001* 0.25 0.14 – 0.37 <0.001*

T1 LEC 0.05 −0.07 – 0.16 0.42 0.02 −0.10 – 0.14 0.75

T1 translation 6.17 −0.17 – 12.50 0.05 5.22 −1.24 – 11.68 0.11

T1 rotation −1156.31 −2073.85 − –238.77 0.01#
−684.20 −1834.97 – 466.56 0.24

Anterior cingulum Intercept 33.51 8.07 – 58.95 0.01 23.09 −1.27 – 47.45 0.06

FA −53.28 −94.69 − −11.87 0.01#
−35.88 −76.90 – 5.14 0.08

Age −0.06 −0.22 – 0.11 0.49 −0.06 −0.23 – 0.10 0.46

Sex −0.99 −4.52 – 2.54 0.58 −0.73 −4.31 – 2.85 0.68

T1 PCL-5 0.25 0.14 – 0.36 <0.001* 0.24 0.13 – 0.35 <0.001*

T1 LEC 0.01 −0.10 – 0.12 0.87 0.02 −0.09 – 0.13 0.65

T1 translation 4.34 −1.63 – 10.32 0.15 4.93 −1.11 – 10.98 0.11

T1 rotation −771.95 −1607.28 – 63.37 0.07 −812.71 −1659.03 – 33.61 0.066

Posterior cingulum Intercept −5.57 −27.34 – 16.19 0.61 −3.32 −28.27 – 21.64 0.79

FA 16.07 −31.67 – 63.81 0.51 16.37 −34.76 – 67.49 0.53

Age −0.01 −0.20 – 0.19 0.94 −0.01 −0.23 – 0.22 0.94

Sex 0.01 −4.07 – 4.10 0.99 −1.41 −6.02 – 3.20 0.55

T1 PCL-5 0.24 0.12 – 0.37 <0.001* 0.26 0.13 – 0.39 <0.001*

T1 LEC 0.08 −0.05 – 0.20 0.22 0.04 −0.10 – 0.18 0.57

T1 translation 5.55 −1.92 – 13.01 0.14 6.21 −1.35 – 13.77 0.11

T1 rotation −764.99 −1991.61 – 461.63 0.22 −904.55 −2214.89 – 405.79 0.17

Forceps minor Intercept 8.99 −12.93 – 30.90 0.42

FA −9.43 −49.51 – 30.66 0.64

Age −0.03 −0.20 – 0.14 0.75

Sex −0.64 −4.26 – 2.98 0.73

T1 PCL-5 0.23 0.12 – 0.34 <0.001*

T1 LEC −0.00 −0.11 – 0.11 0.99

T1 translation 4.49 −1.72 – 10.71 0.15

T1 rotation −760.61 −1618.91 – 97.69 0.08

Forceps major Intercept −0.52 −28.45 – 27.42 0.97

FA 10.21 −31.06 – 51.49 0.62

Age −0.08 −0.29 – 0.13 0.47

Sex 0.27 −3.98 – 4.51 0.90

T1 PCL-5 0.21 0.08 – 0.33 0.002*

T1 LEC 0.05 −0.08 – 0.19 0.44

T1 translation 6.07 −1.08 – 13.23 0.09

T1 rotation −1063.73 −2030.91 – −96.55 0.03

T1, 2-weeks post-trauma; T2, 6-months post-trauma; CAPS, Clinician Administered PTSD Scale; LEC, life events checklist total weighted score; FA, fractional anisotropy.
p-values presented are uncorrected, bolded values with * indicates results that survived Benjamini–Hochberg correction (α = 0.05). # indicates marginal results after
correction (p adjusted < 0.10).

supplemental analysis, demonstrated a relationship with chronic
PTSD symptoms. These results were unexpected, but we offer up
a few explanations. First, only 18% of participants (13 male and 14
female) met criteria for PTSD diagnosis according to the CAPS-
5 at T2. Thus, there may not be sufficient variability in PTSD
symptom severity or this sample may not have severe enough
symptoms (M = 12.70, SD = 11.25) to effectively see differences
in white matter. Especially in the acute stages after traumatic
injury white matter integrity differences may not be apparent so

early after injury. Alternatively, white matter integrity may not be
significantly related to subclinical PTSD.

Though our results trended toward lesser anterior cingulum
related to greater PTSD symptom severity, many mixed findings
of white matter integrity and symptoms in PTSD have
been reported in the literature including other null results.
These mixed findings could reflect how tract differences may
differentially relate to symptoms based on whether you’re
examining them as an acute post-trauma marker of risk or for
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chronic symptoms (when someone may have had symptoms for
years). Most research of white matter integrity in PTSD has
been done cross-sectionally, often after individuals have been
diagnosed with PTSD, and compared across diagnostic groups
rather than examining symptom severity as a continuous variable
(Siehl et al., 2018; Dennis et al., 2019; Suo et al., 2019; Ju et al.,
2020). The current study extends the literature by examining
acute integrity of white matter pathways related to chronic PTSD
symptom severity and subclinical symptoms, rather than PTSD
diagnosis, a more clinically relevant approach to early treatment
intervention targeting specific symptoms in trauma survivors.

It is important to note that patterns or changes in white
matter integrity in the acute aftermath of trauma likely do not
reflect structural brain changes that result directly from the index
trauma. Rather, the integrity at this time point may reflect a
general biological vulnerability or the preexisting accumulation
of life stress and/or traumatic experiences prior to and in addition
to the index trauma. It is near impossible to adequately separate
prior trauma and stress from the index trauma or to effectively
evaluate the relationship between the index trauma and its
effect on the brain. Nonetheless, we believe evaluation of brain
structure and function in the acute period after trauma still has
predictive utility as it likely reflects biological vulnerability to
the effects of trauma, possibly as a result of stress by providing
a baseline measurement to then evaluate changes over time.
To clarify these nuances, there is clear need to examine how
changes in tract integrity post-trauma may provide better context
of risk conference and symptom development through the use
of longitudinal study designs with MRI scans at several time
points post-trauma.

Limitations
The current study is not without limitations. The requirement
to score at least a three on the Predicting PTSD Questionnaire
resulted in this study over-sampling individuals with high
PTSD risk. Consequently, the results may not generalize to
all traumatically injured samples. Similarly, mechanisms of
injury varied across the sample. Various trauma types (i.e.,
assaultive or non-assaultive) may confer different likelihoods
of trauma-related psychopathology (Conrad et al., 2017;
Jakob et al., 2017); however, the sample was underpowered
to adequately assess for these differences. In addition, the
sample had moderate exposure to previous trauma, measured
by the LEC, (M = 31.29, SD = 15.83) which has been shown
to increase risk for PTSD and other psychopathology (Karam
et al., 2014; Shalev et al., 2019) and may have confounded
measurement of structural integrity and symptomology.
Furthermore, self-reported symptomology (i.e., PCL-5) may
be confounded by proximity to trauma, particularly at T1.
Future research should continue to examine white matter as
a predictor of psychopathology in the aftermath of trauma
in a larger sample where variability in sample characteristics
can be more appropriately accounted. Finally, owing to the
sensitive population (e.g., recently injured trauma victims), we
experienced loss of data due to head motion, likely a result of
individual’s physical conditions making it difficult to lie still
during MRI scanning.

General Conclusion
In a traumatically injured sample with predominantly subclinical
PTSD, the current study found no robust relationship between
acute white matter integrity and chronic PTSD symptoms. These
findings highlight the importance of timing when evaluating
brain structure as a predictor of post-trauma outcomes. Despite
the null findings, examination of brain structure and function in
the acute post-trauma period is a critical for understanding risk
of PTSD that may ultimately inform more effective treatments for
trauma survivors.
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