Marquette University

Numerical Studies of a Superelastic Nickel-Titanium Rhombic Dodecahedron Structure Using the Finite Element Method

Ian Patrick Morrissey
Marquette University

Follow this and additional works at: https://epublications.marquette.edu/theses_open
Part of the Engineering Commons

Recommended Citation

Morrissey, Ian Patrick, "Numerical Studies of a Superelastic Nickel-Titanium Rhombic Dodecahedron Structure Using the Finite Element Method" (2022). Master's Theses (2009 -). 700.
https://epublications.marquette.edu/theses_open/700

NUMERICAL STUDIES OF A SUPERELASTIC NICKEL-TITANIUM RHOMBIC

 DODECAHEDRON STRUCTURE USING THE FINITE ELEMENT METHODBy Ian P. Morrissey, B.S.

A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering

Milwaukee, WI

May 2022

ABSTRACT
 NUMERICAL STUDIES OF A SUPERELASTIC NICKEL-TITANIUM RHOMBIC DODECAHEDRON STRUCTURE USING THE FINITE ELEMENT METHOD

Ian P. Morrissey, B.S.

Marquette University, 2022

Energy dissipation is an important material property for materials used in applications such as armor, airplane wings, and automotive vehicle crumple zones. superelastic Nickel-Titanium (NiTi) and compliant under-dense materials both have excellent energy dissipation properties. Current research suggests that compliant underdense materials made of superelastic NiTi have desirable energy dissipation properties. A rhombic dodecahedron Lattice Structured Material (LSM) is an example of a compliant under-dense Material which has potential to exhibit desirable energy dissipation properties when manufactured from superelastic NiTi. In this work, finite element modeling of a superelastic NiTi rhombic dodecahedron Lattice Structured Material is performed and an optimum for energy dissipation based solely on geometric modification is found.

ACKNOWLEDGEMENTS

Ian P. Morrissey, B.S.

I would like to acknowledge the funding and support I received from Marquette University Graduate School and Dr. Moore that was used to complete this research. I would like to acknowledge my advisor Dr. Moore for his truly tested and seemingly unlimited patience and support, and for the advice and the challenge I was provided throughout my experience in academia thus far. I would like to thank Dr. Murray for her continued moral and academic support, advice, and many enjoyable conversations. I would like to acknowledge Dr. Zhou for taking the time out of his busy schedule and going out on a limb to serve on my committee.

I would like to acknowledge Dr. Rice and Dr. Schimmels for their patience, advice, and support. I am looking forward to working under your advisory.

I would like to acknowledge Jacob Rusch and Allison Goetz whose support has been immeasurable and whose friendship I cherish deeply. I would like to acknowledge my friend Collin Shale for listening to me when everything seemed impossible. I would like to acknowledge Dr. Bowman, Tim Fair, and Waqar Khan for their advice and many engaging conversations. I would like to acknowledge Dr. Park for saying hello and asking why I am still here every time I see him, despite him knowing exactly why I am still here.

I would like to acknowledge my father, Christopher, my mother, Kathryn, my sister, Hannah, my brother, Alexander, and my sister-in-law, Echo, for their continued
support. I would like to acknowledge my Aunt Meghan and Uncle Bob for their support and for providing me with feedback. I would like to acknowledge Rocco, Chris, Tom, and Mike for being lifelong friends. I would like to acknowledge everyone else who has helped me along the way.

The support I have received from friends, family, faculty, and colleagues has been immeasurable. Immeasurable is a word I have used too many times to describe the support, and still not enough to describe how much I appreciate it. I hope to never take for granted all of these truly wonderful and patient individuals. I hope I have not forgotten anyone, but I know I will never forget the kindness that others have shown me. It takes a village.

DEDICATION

I would like to dedicate this thesis to the teachers that believed in me when I did not and who provided an ear when I needed it most:

Mr. Nieman - Math
Ms. Caduto - Physics
Mr. Dupuis - Chemistry
Mr. Cleland - Design
Dr. Myslinski - Scripture Class \& Philosophy Club Coordinator
Mr. Sneed - Guidance Counselor
Paul Caldwell - Choir Director

I would also like to dedicate this to my late friend Max Marischen. We all miss you. You were my brother, and you always will be.
"I love deadlines, I love the whooshing noise they make as they go by." - Douglas Adams

TABLE OF CONTENTS

LIST OF TABLES vii
LIST OF FIGURES viii
LIST OF ABBREVIATIONS xi
INTRODUCTION 1
BACKGROUND 4
I. Shape Memory Alloy Background 4
II. Superelasticity Material Model 6
III. Under-Dense Material Background 11
IV. Damping and Energy Dissipation 16
SIMULATION SET-UP AND STUDIES 18
I. Overview 18
II. Meshing 19
III. Mechanical Behavior Study. 21
IV. Energy Dissipation Studies 24
RESULTS AND DISCUSSION 28
I. Overview 28
II. Mechanical Behavior Study Results 28
III. Energy Dissipation and Radii Variation Study 36
IV. Energy Dissipation and Relative Density Study 39
V. Energy Dissipation Combined Study 43
CONCLUSION 47
FUTURE WORK 48
BIBLIOGRAPHY 49
APPENDIX A 52
APPENDIX B 65
I. writeinput.py 65
II. inpAbaqusRunAll.py 92
III. post_tensor.py 92
IV. odbMaxMises.py [20] 95
V. PVM.py 98
VI. indBuck.py 98
VII. writeRunPost.py 99
APPENDIX C 100
I. PlotresultsD1DNSBeam.m 100
II. plotresults1cont.m. 102

LIST OF TABLES

Table 1: Material Parameters from [11, pp. 33-34] used in these analyses. 10

LIST OF FIGURES

Figure 1: Typical stress-strain curves of the (a) SME and (b) SEE based on the plots in [8,
\qquad
Figure 2: Example of a typical superelasticity stress-strain curve indicating material parameters adapted from [15, Fig. 1]. 8
Figure 3: Depiction of superelastic NiTi stress-induced phase transformation with straight and slanted lines indicating austenite and martensite phases, respectively, adapted from [9, Fig. 2]. 9
Figure 4: Open-cell rhombic dodecahedron structure with dimensions adapted from [8, Fig. 1] 13
Figure 5: The rhombic dodecahedron unit cell rendered in Abaqus CAE from multiple viewpoints. 14
Figure 6: Energy dissipation shown as the difference between the energy of the loading path in blue and the unloading path in blue on a typical compression curve of an SMA adapted from [4, Fig. 11]. 16
Figure 7: Beam model mesh using B31 beam elements with 480 elements and 1430 nodes20
Figure 8: DNS model mesh of the rhombic dodecahedron unit cell using C3D10 elements with 21683 elements and 38303 nodes 20
Figure 9: Boundary conditions for the unit cell analyses performed for the (a) DNS model and (b) Beam model. 23
Figure 10: (a) Upper and (b) lower bound of the Horizontal Radius 25
Figure 11: (a) Upper and (b) lower bound of the Relative Density 26
Figure 12: Force-Displacement Curve of Beam and DNS Model in x-Direction 29
Figure 13: Force-Displacement Curve of Beam and DNS Model for y-direction 30
Figure 14: Equivalent Von-Mises Stress (MPa) contour plots for compression in the x - direction for the DNS (left) and Beam Model (right). The colored legend changes with each displacement. 32
Figure 15: Equivalent Von-Mises Stress (MPa) contour plots for tension in the x - direction for the DNS (left) and Beam Model (right). The colored legend changes with each displacement. 33
Figure 16: Equivalent Von-Mises Stress (MPa) contour plots for compression in y- direction for the DNS (left) and Beam Model (right). The colored legend changes with each displacement. 34
Figure 17: Equivalent Von-Mises Stress (MPa) contour plots for tension in the y - direction for the DNS (left) and Beam Model (right). The colored legend changes with each displacement. 35
Figure 18: Energy dissipated vs horizontal radius for loading in x-direction. 37
Figure 19: Energy dissipation coefficient vs horizontal radius for loading in x-direction.
Figure 20: Energy dissipation vs horizontal radius for loading in y-direction. Simulations that indicated buckling were not included in this plot. 38
Figure 21: Energy dissipation coefficient vs horizontal radius for loading in y-direction. Simulations that indicated buckling were not included in this plot. 39
Figure 22: Energy dissipation vs relative density for loading in x-direction. 40
Figure 23: Energy dissipation coefficient vs relative density for loading in x-direction. 41
Figure 24: Energy dissipated vs relative density for loading in y-direction. Simulations that indicated buckling were not included in this plot. 42
Figure 25: Energy dissipation coefficient vs relative density for loading in y-direction. Simulations that indicated buckling were not included in this plot. 43
Figure 26: Energy Dissipated plotted against Rvar and relative density for 4\% displacement in x-direction. 44
Figure 27: Energy Dissipation Coefficient, η, plotted against Rvar and relative density for 4% displacement in x-direction. 45
Figure 28: Energy Dissipated plotted against Rvar and relative density for 4\% displacement in y-direction. Simulations that exceed stress limit or that indicated buckling were not included in this plot. 45
Figure 29: Energy Dissipation Coefficient, η, plotted against Rvar and relative density for 4% displacement in y-direction. Simulations that exceed stress limit or that indicated buckling were not included in this plot 46
Figure 30: Energy Dissipated plotted against Rvar and relative density for 8% displacement in x-direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot 52
Figure 31: Energy Dissipated plotted against Rvar and relative density for 7\% displacement in x-direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot. 53
Figure 32: Energy Dissipated plotted against Rvar and relative density for 6\% displacement in x-direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot 53
Figure 33: Energy Dissipated plotted against Rvar and relative density for 5\% displacement in x-direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot 54
Figure 34: Energy Dissipated plotted against Rvar and relative density for 3\% displacement in x-direction 54
Figure 35: Energy Dissipated plotted against Rvar and relative density for 2\% displacement in x-direction. 55
Figure 36: Energy Dissipated plotted against Rvar and relative density for 2% displacement in x-direction.55
Figure 37: Energy Dissipation Coefficient plotted against Rvar and relative density for 8% displacement in x-direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot 56
Figure 38: Energy Dissipation Coefficient plotted against Rvar and relative density for 7% displacement in x-direction 56
Figure 39: Energy Dissipation Coefficient plotted against Rvar and relative density for 6\% displacement in x-direction 57
Figure 40: Energy Dissipation Coefficient plotted against Rvar and relative density for 5% displacement in x-direction 57
Figure 41: Energy Dissipation Coefficient plotted against Rvar and relative density for 3% displacement in x-direction 58
Figure 42: Energy Dissipation Coefficient plotted against Rvar and relative density for 2% displacement in x-direction 58
Figure 43: Energy Dissipation Coefficient plotted against Rvar and relative density for 1% displacement in x-direction. All values of η are effectively zero 59
Figure 44: Energy Dissipated plotted against Rvar and the relative density for 6% displacement in y-direction 59
Figure 45: Energy Dissipated plotted against Rvar and relative density for 5\% displacement in y-direction 60
Figure 46: Energy Dissipated plotted against Rvar and relative density for 3\% displacement in y-direction 60
Figure 47: Energy Dissipated plotted against Rvar and relative density for 2% displacement in y-direction 61
Figure 48: Energy Dissipated plotted against Rvar and relative density for 1% displacement in y-direction 61
Figure 49: Energy Dissipation Coefficient plotted against Rvar and relative density for 6% displacement in y-direction 62
Figure 50: Energy Dissipation Coefficient plotted against Rvar and relative density for 5% displacement in y-direction 62
Figure 51: Energy Dissipation Coefficient plotted against Rvar and relative density for 3% displacement in y-direction 63
Figure 52: Energy Dissipation Coefficient plotted against Rvar and relative density for 2% displacement in y-direction 63
Figure 53: Energy Dissipation Coefficient plotted against Rvar and relative density for 1% displacement in y-direction 64

LIST OF ABBREVIATIONS

SMA - Shape Memory Alloy
SME - Shape Memory Effect
SEE - Superelastic Effect
UDM - Under-dense material
LSM - Lattice Structured Material
SLM - Selective Laser Melting
EBM - Electron Beam Melting
NiTi - Nickel-Titanium
DNS - Direct Numerical Simulation

INTRODUCTION

Under-dense material (UDM) describes material in which deliberate void space exists within a volume of a given material which may or may not be filled with other material. UDM take several forms and names like cellular materials, metal foams, and Lattice Structured Materials (LSM) [1], [2]. The use of UDM for impact absorption and energy dissipation is well documented with uses such as armors [3] and airplane wings [1]. A LSM is a porous material usually made up of periodic cells of structural members. In [2], Messner describes them as akin to the beams and trusses of bridges and skyscrapers, but at a reduced scale. These materials are advantageous as they reduce the mass density of a given volume of a material and allow for the modification and customization of the mechanical behavior. LSMs can be manufactured through a variety of processes such as wire-weaving [4] and additive manufacturing processes like Selective Laser Melting (SLM) [5] and Electron Beam Melting (EBM)[6]. Bending dominated LSMs are compliant structures whose structural members are dominated by bending behavior [7]. A rhombic dodecahedron lattice is a bending dominated lattice made up of 12 rhombic faces for which the edges are the structural members of the LSM [8].

A Shape-Memory Alloy (SMA) is a class of material characterized by its unique mechanical property the Shape Memory Effect (SME) [9]-[11]. SME is the property of shape memory alloys in which a specimen of a SMA appears to be plastically deformed and, upon heating, that deformation is recovered. The Superelastic Effect (SEE) is another mechanical property that is characteristic of certain SMAs and can be described
as the large, elastically recoverable deformation that occurs during a solid-state, "stressinduced" $[10$, p. 176] phase change. Nickel-Titanium (NiTi) is the nearly equiatomic nickel and titanium shape memory alloy. NiTi is also commonly referred to as Nitinol, as it is a NiTi alloy that was researched at the Naval Ordnance Laboratory (NOL) [12]. Superelastic NiTi wire is known for its damping properties as shown in [13]. Superelastic NiTi can accommodate strains in excess of 8%, making it a considerably compliant material relative to other metal alloys as shown in [9],[13].

SMA UDMs have been shown to be capable of providing desirable energy dissipation properties given the strain accommodation that can be provided with UDMs and SMAs as illustrated in [4]. A superelastic NiTi rhombic dodecahedron LSM could provide considerable energy dissipation properties due to the compliant mechanical behavior of both superelastic NiTi and the rhombic dodecahedron lattice structure.

Unit cell modeling of a periodic UDM is a computationally efficient means of analysis for generalizing the behavior of a UDM to a larger global structure. However, there are some limitations to unit cell modeling, namely higher stiffness than modeling an entire structure. The geometry and base materials of LSMs can be modified to in order to optimized the LSMs to a chosen application as noted in [2]. Adjusting the cross section of the members parallel and perpendicular to loading while keeping the relative density and volume of the unit cell constant may allow for better material performance, such as increased capacity for energy dissipation while maintaining the periodicity of the LSM. Adjusting the relative density of the structure will show how the energy dissipated changes with an increase in mass density. Finding a geometric optimum for maximum energy dissipation using a finite element analysis of a SMA LSM unit cell can be
computationally expensive and time intensive for large numbers of simulations. Utilizing simplified beam element models allows for reduced computational time so that an optimal geometry for the LSM unit cell can be found. This thesis will find such an optimum using simplified beam element models of a superelastic NiTi rhombic dodecahedron LSM. It will provide the background of the aforementioned subjects, the methodology of these studies, and the results of the studies with pertinent discussion of geometric optimums for energy dissipation of a superelastic NiTi rhombic dodecahedron LSM.

BACKGROUND

I. Shape Memory Alloy Background

As noted earlier, SMA is a classification of metal alloys that exhibit the shape memory effect, a thermo-mechanical property. The SMA NiTi has been the subject of numerous studies, some of which will be outlined here. NiTi exhibits the SME as well as the SEE depending on temperature and alloy composition. The SME is the property of shape memory alloys in which a specimen of a SMA appears to be plastically deformed and, upon heating, that deformation is recovered. SEE is the property of some SMAs in which large recoverable deformations, typically uncharacteristic of metals, occur due to a "stress-induced" [10, p. 176] phase change [9]-[11]. Figure 1 shows typical stress-strain curves of the (a) SME with loading in blue and unloading in red with heat induced strain recovery in green and (b) SEE with loading in blue and unloading in red. These plots were created with color and labels for clarity based on the plots in [8, Fig. 1].

Figure 1: Typical stress-strain curves of the (a) SME and (b) SEE based on the plots in [8,
Fig. 1].

Solid-state phase change are responsible for the SME and SEE in NiTi.
Martensite is the lower temperature phase of NiTi and austenite is the higher temperature, "parent" [9, p. 230] phase of NiTi [9]. Martensite has the monoclinic crystalline structure $B 19^{\prime}$ [14]. Austenite has the crystalline structure $B 2$ [14]. Unstressed low-temperature martensitic NiTi has several variants of martensite whose "crystallographic equivalence" [9, p. 230] induces twinning of related martensite variants which accommodates any transformation strain caused by phase transformation from austenite to martensite upon cooling[9, p. 230].

When stressed sufficiently, all the twinned martensite variants detwin, accommodating strain inelastically. This provides the appearance of plastic deformation. The inelastically deformed, low-temperature detwinned martensitic NiTi transforms to austenite upon heating and the inelastic deformation is recovered. When the NiTi cools, the austenite transforms to the low-temperature martensite phase and the martensite
retwins [9]. This is the basis for the SME for which Shape Memory Alloys are named, however, this effect will not be considered in this thesis.

If NiTi is loaded in the high temperature austenite phase, NiTi transitions to a single-variant martensite due to transformation strain induced by stress. When a critical stress is reached during loading, the austenite begins to transform to single-variant martensite. This transformation during loading can be seen in the plateau during loading in Figure 1(b). During unloading, the "stress-induced" [10, p. 176] single variant martensite transforms to austenite. This can be seen in Figure 1(b), represented by the lower plateau during unloading. Single-variant martensite transforms entirely to austenite when unloaded entirely. This is the basis for the SEE [9]. The stress-strain response of the SEE of NiTi is utilized in this thesis.

II. Superelasticity Material Model

From the Abaqus Theory Manual on Superelasticity [15], the Abaqus Material Model Library contains a superelastic material model that is based on the uniaxial stressstrain response of superelastic NiTi. The superelasticity material model requires the use of the elastic material model in conjunction to define the material properties. The material model works similarly to an elastoplastic material model using a Drucker-Prager based flow rule to calculate the transformation strain increment. The plateau in the stress-strain curve of superelastic NiTi, as shown in Figure 2, is representative of this transformation flow. An effective modulus of elasticity and Poisson's ratio are calculated by the material model at every increment based on the fraction of martensite that has transformed from
austenite and the elastic properties of the austenite and martensite phases. From [15], the elastic properties are represented by

$$
\begin{gather*}
E=E_{A}+\zeta\left(E_{M}-E_{A}\right) \tag{1}\\
v=v_{A}+\zeta\left(v_{M}-v_{A}\right) \tag{2}
\end{gather*}
$$

where E is the calculated modulus of elasticity, ζ is fraction of martensite, E_{A} is the elastic modulus of austenite, E_{M} is the elastic modulus of martensite, v is the calculated Poisson's ratio, v_{A} is the Poisson's ratio of austenite, and v_{M} is the Poisson's ratio of martensite. Figure 3 illustrates NiTi under load before and after its full transformation from austenite to martensite. The unstressed cubic austenite phase, represented by vertical lines, which is loaded until the stress is greater than $\sigma_{t L}^{E}$ and all the austenite is transformed into single-variant martensite as represented by slanted lines. This figure was adapted from [8, Fig. 2]. From [15], the total strain increment, $\Delta \boldsymbol{\varepsilon}$, is given by equation (3) below

$$
\begin{equation*}
\Delta \varepsilon=\Delta \varepsilon^{e l}+\Delta \varepsilon^{t r} \tag{3}
\end{equation*}
$$

where $\Delta \varepsilon^{e l}$ is the elastic component of strain increment and $\Delta \varepsilon^{t r}$ is the transformation component of the strain increment.

Figure 2: Example of a typical superelasticity stress-strain curve indicating material parameters adapted from [15, Fig. 1].

$$
\sigma<\sigma_{t L}^{S}
$$

$$
\sigma \geq \sigma_{t L}^{E}
$$

$$
\zeta=0
$$

$$
\zeta=1
$$

$$
E=E_{A}
$$

$$
E=E_{M}
$$

Figure 3: Depiction of superelastic NiTi stress-induced phase transformation with straight and slanted lines indicating austenite and martensite phases, respectively, adapted from [9, Fig. 2].

The material input parameters of the material model in [15] will now be described. ε^{L} is the transformation strain. $\sigma_{t L}^{S}$ is the stress where austenite begins transformation to single-variant martensite during tensile loading. $\sigma_{t L}^{E}$ is the stress where all austenite has transformed into single-variant martensite during tensile loading where $\zeta=1 . \sigma_{t U}^{S}$ is the stress during tensile unloading where single-variant martensite begins transformation into austenite. $\sigma_{t U}^{E}$ is the stress during tensile unloading where singlevariant martensite finishes transformation into austenite where $\zeta=0 . \sigma_{c L}^{S}$ is the stress where austenite begins transformation to single-variant martensite during compressive loading and is different from $\sigma_{t L}^{S}$ [15]. Figure 2 shows these material parameters in relation to the stress-strain curve of the SMA.

The parameter α defined in Equation (4) describes the relationship between the initial values of $\sigma_{c L}^{S}$ and $\sigma_{t L}^{S}$ [11, Eq. 82], shown as.

$$
\begin{equation*}
\alpha=\sqrt{\frac{2}{3}} \frac{\sigma_{c L}^{S}-\sigma_{t L}^{S}}{\sigma_{c L}^{S}+\sigma_{t L}^{S}} \tag{4}
\end{equation*}
$$

$\alpha=0$ was used for the analyses in this thesis, as the initial compressive and tensile austenite to martensite starting transformation stresses during loading are assumed to be equal. The material parameters in [11] were used for evaluations of the material model in [11, pp. 33-34] and for the analyses in this thesis.

Table 1: Material Parameters from [11, pp. 33-34] used in these analyses.

$E_{M}(M P a)$	60000	$T_{0}\left({ }^{\circ} \mathrm{C}\right)$	0
v_{M}	0.3	$\left(\frac{\delta \sigma}{\delta T}\right)_{L}\left(\frac{M P a}{{ }^{\circ} \mathrm{C}}\right)$	0
ε_{L}	0.075	$\left(\frac{\delta \sigma}{\delta T}\right)_{U}\left(\frac{M P a}{{ }^{\circ} \mathrm{C}}\right)$	0
$\sigma_{t L}^{S}(M P a)$	520	Shape Set Parameter	0
$\sigma_{t L}^{E}(M P a)$	600	$E_{A}(M P a)$	60000
$\sigma_{t U}^{S}(M P a)$	300	v_{a}	0.3
$\sigma_{t U}^{E}(M P a)$	200	$\rho\left(\frac{k g}{m^{3}}\right)$	$6.50\left(10^{-6}\right)$
$\sigma_{c L}^{S}(M P a)$	520		

III. Under-Dense Material Background

As noted earlier, under-dense material (UDM) describes material in which deliberate void space exists within a volume of a given material which may or may not be filled with other material. This can be periodic or non-periodic in nature. These materials reduce the relative density of a given volume of material and modify the mechanical behavior. The relative density, $\bar{\rho}$, is a term used to relate the density of a bulk material and the space that is occupied by that material in a finite volume or a unit cell of the UDM. Relative density is generally given by

$$
\begin{equation*}
\bar{\rho}=\frac{V_{\text {Bulk Material }}}{V_{\text {Total }}} \tag{5}
\end{equation*}
$$

Where $V_{\text {Bulk Material }}$ is the volume of the bulk material and $V_{\text {Total }}$ is the total volume of occupied space. Relative density for a unit cell is given by

$$
\begin{equation*}
\bar{\rho}_{\text {Unit Cell }}=\frac{V_{\text {Bulk Material }}}{V_{\text {Unit Cell }}} \tag{6}
\end{equation*}
$$

where $\bar{\rho}_{\text {Unit Cell }}$ represents the relative density, $V_{\text {Bulk Material }}$ is the volume of bulk material within the unit cell, and $V_{\text {Unit Cell }}$ is the volume of the entire unit cell [8].

LSMs are periodic UDMs made up of beam-like or truss-like members. LSMs achieve modification of the mechanical behavior of a given base material such as the stiffness, density, and isotropy by the deliberate arrangement of the structural members [2], [7]. LSM can be characterized by the dominating mechanical behavior of the lattice members as "bending-dominated" or "stretching-dominated" [7, p. 1035]. The macroscale mechanical behavior of bending-dominated lattices is relatively compliant while the mechanical behavior of stretching-dominated lattices is relatively stiff. The
dominating mechanical behavior of these lattices is a spectrum of these as noted in [7]. The "Maxwell Criterion" [7, p. 1036] describes the dominating behavior of a LSM based on an algebraic rule. For 3D space from [7, Eq. 2], it is represented by

$$
\begin{equation*}
M=s-3 n+6 \tag{7}
\end{equation*}
$$

where M is the Maxwell number, s is the number of struts, and n is the number of joints. Maxwell numbers less than 0 are considered bending-dominated. Maxwell numbers equal to zero are considered stretching-dominated. Maxwell numbers greater than zero are considered mostly stretch-dominated [5].

Rhombic dodecahedron lattices are bending-dominated structures. It is made up of 12 faces of rhombuses whose edges are the members of the unit cell. [8] describes the mechanical properties of the rhombic dodecahedron unit cell as orthotropic with equivalent elastic moduli in the y-direction and z-direction and a more compliant elastic modulus in the x-direction. Figure 4 shows the rhombic dodecahedron structure based off of [8, Fig. 1]. Figure 4(a) shows the structural members in blue and the vertices as red dots. Figure 4(b) shows the rhombic dodecahedron face has side lengths of L and internal angles of 2α and 2Θ. Figure 4(c) shows top, side, and front views of the rhombic dodecahedron unit cell with overall unit cell dimensions. Figure 5 shows 3-Dimensional renderings of the rhombic dodecahedron structure created in Abaqus CAE.

Evaluation of the rhombic dodecahedron unit cell by Maxwell's Criterion finds the structure to be bending-dominated. There are 14 joints of the rhombic dodecahedron Unit Cell and 24 members, and therefore the Maxwell number is -12 . The rhombic
dodecahedron structure is a bending-dominated lattice by this rule. A circular-cross section was selected for the analyses in this thesis.

Figure 4: Open-cell rhombic dodecahedron structure with dimensions adapted from [8, Fig. 1]

Figure 5: The rhombic dodecahedron unit cell rendered in Abaqus CAE from multiple viewpoints.

The relative density of the rhombic dodecahedron unit cell with a circular cross-section for the structural members is represented by

$$
\begin{equation*}
\bar{\rho}_{R h D}=\frac{27 \sqrt{3} \pi r^{2}}{4 L^{2}} \tag{8}
\end{equation*}
$$

where $\bar{\rho}_{R h D}$ is the relative density of the rhombic dodecahedron unit cell, r is the radius of the cross-section, and L is the side length of the rhombus.

Manufacturing of a superelastic NiTi rhombic dodecahedron LSM could be manufactured via a variety of methods. Wire-woven methods were used to produce a

SMA truss as shown in [4]. These structures could also be created by an additive manufacturing method such as 4D printing [16].

IV. Damping and Energy Dissipation

Materials capable of high energy dissipation are of interest for their damping properties when considering a need to absorb and control high energy impacts and intense vibrational loading [1], [3], [4], [13]. Energy dissipation is shown to be desirable for applications such as composite armor in [1] and for an impact absorber on an airplane wing in [3]. Superelastic NiTi has desirable energy dissipation properties based on the work in [13]. Energy is dissipated as a result of the "stress-induced" [10, p. 176] solid state phase change as the unloading path has lower energy than the loading path [4], [13].

Figure 6: Energy dissipation shown as the difference between the energy of the loading path in blue and the unloading path in blue on a typical compression curve of an SMA adapted from [4, Fig. 11].

Energy dissipation can be quantified by the difference in potential energy input during loading and the potential energy output during unloading. [4] calculated the dissipated energy from the difference of energy in the loading and unloading paths of wire-woven SMA trusses in compression. From [4, Eq. 1], the energy dissipated is calculated by

$$
\begin{equation*}
E_{d i s p}=E_{1}-E_{2} \tag{9}
\end{equation*}
$$

where loading energy, the unloading energy, and energy dissipated are represented by E_{1}, E_{2}, and $E_{\text {disp }}$, respectively. Figure 6 shows E_{1}, E_{2}, and $E_{\text {disp }}$ with respect to the loading paths. From [4, Eq. 2] and [4, Eq. 3], the energy dissipation coefficient, η, which for the purposes of this thesis represents a normalization of the energy dissipated, is calculated by

$$
\begin{equation*}
\eta=\frac{E_{\text {disp }}}{\pi\left(E_{1}-\frac{E_{\text {disp }}}{2}\right)} \tag{10}
\end{equation*}
$$

where η is the energy dissipation coefficient [4, p. 2288].

SIMULATION SET-UP AND STUDIES

I. Overview

The superelastic NiTi rhombic dodecahedron structure unit cell was modeled using two methods. The first model, which will be referred to as the Direct Numerical Simulation (DNS) model, uses a mesh of tetrahedral elements. The second model, which will be referred to as the Beam model, was created using beam finite elements [17, pp. 535-596] for computational efficiency. The DNS is the more precise model of behavior at the expense of computational efficiency. A study to evaluate the mechanical behavior of the unit cell was carried out in which the unit cell was displaced in tension and compression along the x-direction and y-direction. This study was carried out using both the DNS model and the Beam model to evaluate how well the Beam model can model the mechanical behavior of the unit cell. The Beam model was then used for two studies to evaluate the unit cell for its capacity for energy dissipation given changes in geometry and relative density, respectively. A third study was then carried out to evaluate the unit cell for its capacity for energy dissipation when combining the changes in geometry and relative density while also scaling up the unit cell.

II. Meshing

Both the DNS model and the Beam Model used elements from the Abaqus Element Library [18][19]. The DNS model was meshed using C3D10 tetrahedral elements. The unit cell was modeled in PTC CREO Parametric 4.0 Academic and meshed in Abaqus CAE. The DNS Model used 21683 elements and 38303 nodes. The Beam model was meshed using $B 31$ beam elements. The unit cell was also modeled in Abaqus CAE with line segments between vertex points on which $B 31$ beam elements were meshed on. B31 beam elements model beam bending behavior based on Timoshenko beam theory[17, pp. 535-596]. B31 elements have a single-integration point and were used for analyses in this thesis. The Beam model had 480 elements and 1430 nodes. Figure 7 and Figure 8 show the meshes of the rhombic dodecahedron unit cell for the Beam model and the DNS model, respectively.

Figure 7: Beam model mesh using B31 beam elements with 480 elements and 1430 nodes

Figure 8: DNS model mesh of the rhombic dodecahedron unit cell using C3D10 elements with 21683 elements and 38303 nodes

III. Mechanical Behavior Study

A study on the mechanical behavior of the superelastic NiTi rhombic dodecahedron unit cell was carried out. The force-displacement responses of the unit cell in the x-direction and the y-direction were evaluated. The structural members of the unit cell had a length of 1 mm and a radius of 0.087 mm . Figure 9 shows the boundary conditions used for this analysis for displacement-controlled loading in tension and compression along the x-direction and y-direction, respectively. Figure 9(a) and Figure 9 (b) shows the boundary conditions used on the DNS model and the Beam model, respectively. Both show the top, front, and side views of the unit cell. The applied displacements in the x-direction and y-direction are shown in green and orange, respectively. The DNS model is shown with the displacements on the highlighted areas of application. The Beam model is shown with the displacements applied at the nodes. Both the DNS model and the Beam Model were used for this study. The edge planes of the unit cell were displacement constrained in the direction perpendicular to the direction of loading as shown by the rollers. The unit cell was displaced along the x-direction and y direction as denoted in green and orange, respectively, at the opposite edge planes edges to $2 \%, 4 \%, 6 \%$, and 8% of the side length, and then unloaded to 0% displacement. Force and displacement parallel to the loading direction was extracted from the nodes of the loading plane. The mean average of the force and displacement of these nodes was calculated at every increment. It should be noted that the displacement-controlled loading in the x-direction and y-direction occurred as two independent loading conditions; displacement-controlled loading in the x-direction and y-direction did not occur simultaneously.

Quasi-static loading conditions were assumed for both models. No contact analysis or post-buckling analysis was performed in both models. Both the DNS Model and the Beam Model used a full Newton-Raphson solution and nonlinear geometry was accounted for. The Beam model had an initial step size (unitless) of 0.01 , a maximum step size of 0.01 , and a minimum step-size of 0.00001 over an interval of 1 . The DNS model had an initial step size of 0.001 , a maximum step size of 0.05 , and a minimum step-size of 0.00001 over an interval of 1 .

Figure 9: Boundary conditions for the unit cell analyses performed for the (a) DNS model and (b) Beam model.

IV. Energy Dissipation Studies

Three studies were carried out to find an energy dissipation optimum using the Beam model. Only the beam model was used for these studies due to its computational efficiency. Only the compression loading regime was used to calculate the energy dissipated and the energy dissipation coefficient. The trapezoid rule was used to calculate the energy of loading and unloading from the force-displacement curves. This was used to calculate the energy dissipated and the energy dissipation coefficient. The loading and boundary conditions of the Beam model in compression used in the mechanical behavior study were used for the energy dissipation studies.

For the first study, the relative density was kept constant while the radii of the members lying parallel to the $x z$-plane and $x y$-plane were varied. The members parallel to the $x z$-plane and $x y$-plane are referred to as the horizontal group and the vertical group, respectively. The radius of the horizontal group was changed while the unit cell volume remained constant, so the vertical group radii changed with it. The choice of varying the radii of members in perpendicular planes was deliberate as periodicity can be maintained while the geometry is modified. Figure 10 shows the unit cell with the horizontal radius at its upper and lower bounds of 0.039 mm and 0.120 mm . A step-size of .003 mm was used. When loading the unit cell as if it were in a "sandwich structure" [4, p. 2285] or in a "Sandwich Panel Configuration" [8, p. 2881], structural members of the rhombic dodecahedron unit cell perpendicular to loading behave primarily in uniaxial tension and compression. The energy dissipated and the energy dissipation coefficient are plotted against the horizontal radius.

Figure 10: (a) Upper and (b) lower bound of the Horizontal Radius

For the second study, the relative density, $\bar{\rho}_{u}$, (unitless) was varied between 0.0372 and 0.3526 . The relative density was calculated from radius values of 0.039 mm to 0.12 mm with a step-size of 0.03 . The energy dissipated and the energy dissipation
coefficient are plotted against the relative density. Figure 11 shows the unit cell of the rhombic dodecahedron with the upper and lower bounds of the relative density.

Figure 11: (a) Upper and (b) lower bound of the Relative Density

The third study combined the concepts of the first and second study. The length of the strut members was changed to 5 mm . The relative density, $\bar{\rho}_{u}$, was varied between 0.03 and 0.045 at a resolution of 0.03 . The horizontal radius was changed by a factor named $R_{v a r}$ between $0.5-1.25$ at a resolution of 0.05 . The load was varied between 1-8\% of the unit cell length in the x-direction and y-direction. Energy Dissipation and the Energy Dissipation Coefficient were calculated. A peak von-Mises stress limit of 700 MPa was chosen using engineering judgement based on the upper limits of stresses of numerical studies and experimental data in [4], [10], [11] as to not include any simulations with stresses where fracture may occur. Any simulation exceeding this vonMises stress or that provided a warning indicating buckling behavior was not included in plots. The third study was done to be thorough and to demonstrate that $\bar{\rho}_{u}$ and $R_{v a r}$ are independent.

RESULTS AND DISCUSSION

I. Overview

This chapter will show and discuss the results of the three studies. Python scripts were used to extract force, displacement, and stress values from the ABAQUS .odb (output database) files and warning messages from the ABAQUS .msg (message) files. These values and warning messages were then post-processed and plots were created using MATLAB. Stress contour plots were generated in the Visualization Module of Abaqus CAE then processed and arranged for clarity and conciseness using Inkscape. Samples of the source code utilized in this work can be found in the appendices.

II. Mechanical Behavior Study Results

Figure 12 and Figure 13 show the force-displacement curve of the superelastic rhombic dodecahedron unit cell in the x-direction and the y-direction, respectively. The DNS model and the beam model are shown plotted together with varying displacements. The qualitative shape of the force-displacement plots show that the models exhibit similar mechanical behavior, although the response of the beam model is stiffer. The unit cell of the DNS model only includes volume of the material within the boundary of the unit cell; the cross-section is a semi-circle for the structural members which lie on the border of the unit cell, whereas the cross-section of the beam model is a full circle. The Beam model does not model the behavior of stress-concentrations from the geometry at the vertices of the structure. The force-displacement response of the y-direction is stiffer than the x direction. This is consistent with the mechanical behavior of the rhombic dodecahedron
structure in [8] that showed a stiffer modulus of elasticity in the y-direction than in the x direction.

Figure 12: Force-Displacement Curve of Beam and DNS Model in x-Direction

Figure 13: Force-Displacement Curve of Beam and DNS Model for y-direction

Figure 14-17 show the equivalent von-Mises Stress contour plots of the rhombic dodecahedron unit cell in compression in the x-direction, tension in the x-direction, compression in the y-direction, and tension in the y-direction, respectively, on the deformed model. In both models and for all displacements, stresses are similarly distributed along the structural members with higher stresses closer to the vertices of the LSM. The DNS model shows higher stresses at the vertices than the Beam model. The elements used in the Beam model only model beam bending behavior of the and do not model the complex geometry at the vertices where stress concentrations occur. The stress of the outermost structural members is higher in the DNS model, as the full cross section of each member was not used in the unit cell of the DNS model.

Some of the stresses in the models would exceed the stress where fracture would occur are shown for the 6% and 8% displacement loading conditions of the displacement.

These results show that the predicted stresses are consistent between the DNS and Beam models.

Figure 14: Equivalent Von-Mises Stress (MPa) contour plots for compression in the x direction for the DNS (left) and Beam Model (right). The colored legend changes with each displacement.

Figure 15: Equivalent Von-Mises Stress (MPa) contour plots for tension in the x direction for the DNS (left) and Beam Model (right). The colored legend changes with each displacement.

Figure 16: Equivalent Von-Mises Stress (MPa) contour plots for compression in y direction for the DNS (left) and Beam Model (right). The colored legend changes with each displacement.

Figure 17: Equivalent Von-Mises Stress (MPa) contour plots for tension in the y direction for the DNS (left) and Beam Model (right). The colored legend changes with each displacement.

III. Energy Dissipation and Radii Variation Study

Simulation results indicating buckling behavior were not included. These points are omitted from the plots in Figures 20-21. Figure 18 shows the energy dissipated versus horizontal radius for loading in the x-direction. Figure 19 shows the energy dissipation coefficient versus the horizontal radius for loading in the x-direction. The variation of geometry is symmetric relative to loading which may cause the bimodal response. There are local maximums centered about the nominal radius for the energy dissipated and the energy dissipation coefficient in both Figure 18 and Figure 19. There is a local minimum where the horizontal and vertical radii are equal at 0.087 mm in both Figure 18 and Figure 19. Figure 20 shows the energy dissipation versus horizontal radius for loading in the y-direction. Figure 21 shows the energy dissipation coefficient versus horizontal radius for loading in the y-direction. As the horizontal radius increases, the energy dissipation and energy dissipation coefficient decrease. The energy dissipated and energy dissipation coefficient increased with larger displacements for loading in the x-direction and the y-direction, which is consistent with the results found in [4].

The local maxima indicate that there is a geometric optimum for energy dissipation by varying the radii. The optimum occurs when the horizontal radii are less than the vertical radii at around 0.07 mm . This can be used to find an energy dissipation optimum for a given relative density. For non-additively manufactured structures, this result could be used in conjunction with tabulated nominal wire sizes to find a wirewoven optimal structure using existing wire sizes.

Figure 18: Energy dissipated vs horizontal radius for loading in x-direction.

Figure 19: Energy dissipation coefficient vs horizontal radius for loading in x-direction.

Figure 20: Energy dissipation vs horizontal radius for loading in y-direction. Simulations that indicated buckling were not included in this plot.

Figure 21: Energy dissipation coefficient vs horizontal radius for loading in y-direction. Simulations that indicated buckling were not included in this plot.

IV. Energy Dissipation and Relative Density Study

Figure 22 and Figure 24 shows the energy dissipated versus the relative density for loading in the x-direction and the y-direction, respectively. Figure 23 and Figure 25 shows the energy dissipation coefficient versus the relative density for loading in the x direction and y-direction, respectively. All figures show that as the relative density increases, the energy dissipated and the energy dissipation coefficient increase. An increase in the energy dissipated and the energy dissipation coefficient with an increase in displacement remains consistent with the results in [4]. As the relative density increases, the energy dissipated appears to increase exponentially. As the relative density increases, the energy dissipation coefficient appears to increase logarithmically. In other words, there are diminishing returns as the density of the structure is increased with respect to using more material, namely an increase in mass density and financial cost.

Figure 22: Energy dissipation vs relative density for loading in x-direction.

Figure 23: Energy dissipation coefficient vs relative density for loading in x-direction.

Figure 24: Energy dissipated vs relative density for loading in y-direction. Simulations that indicated buckling were not included in this plot.

$$
\begin{array}{|ll|}
\hline+ & 2 \% \text { Compression } \\
+ & 4 \% \text { Compression } \\
+ & 6 \% \text { Compression } \\
+ & 8 \% \text { Compression } \\
\hline
\end{array}
$$

Figure 25: Energy dissipation coefficient vs relative density for loading in y-direction. Simulations that indicated buckling were not included in this plot.

V. Energy Dissipation Combined Study

Figure 26 and Figure 28 shows the energy dissipated plotted against the $R_{v a r}$ and the relative density for a displacement of 4% of height in the x-direction and y-direction, respectively. Figure 27 and Figure 29 shows the Energy Dissipation Coefficient plotted against the $R_{v a r}$ and the relative density for a displacement of 4% of height in the x direction and y-direction, respectively. Only the 4% displacement data in this section as presenting the other plots does not provide additional meaning information these results Plots for other displacements, 1-8\%, can be found in Appendix A. Peaks can be seen in the plots of Figure 26 and Figure 27. As the relative density increases, the Energy dissipation appears to increase exponentially, and the Energy Dissipation Coefficient appears to increase logarithmically and approach a plateau. As $R_{v a r}$ increases, the energy
dissipation and Energy Dissipation Coefficient decrease for the y-direction loading condition. These are the same trends for relative density and a change in the horizontal radius is found in the plots in the other energy dissipation studies. These plots show that the energy dissipation and the Energy Dissipation Coefficient can be controlled when manipulating the relative density and $R_{v a r}$. These results show that utilizing the Beam model is an efficient method of providing information on the energy dissipation properties of a superelastic NiTi rhombic dodecahedron LSM and its use in a design space. These results need to be verified with a DNS model. This model could be used with existing tabulated wire sizes to create a wire-woven design for a given relative density, which could be modeled using a Beam model and verified with a DNS model.

Figure 26: Energy Dissipated plotted against $R_{v a r}$ and relative density for 4\% displacement in x-direction

Figure 27: Energy Dissipation Coefficient, η, plotted against $R_{v a r}$ and relative density for 4% displacement in x-direction

Figure 28: Energy Dissipated plotted against $R_{v a r}$ and relative density for 4% displacement in y-direction. Simulations that exceed stress limit or that indicated buckling were not included in this plot.

Figure 29: Energy Dissipation Coefficient, η, plotted against $R_{v a r}$ and relative density for 4% displacement in y-direction. Simulations that exceed stress limit or that indicated buckling were not included in this plot.

CONCLUSION

These studies show that an optimum for energy dissipation can be found by manipulating the geometry by changing the relative density and the horizontal radius of the superelastic NiTi rhombic dodecahedron LSM. The Beam model provides information about the mechanical behavior of the superelastic NiTi RhombiDodecahedron LSM at a reduced computational expense compared to the DNS model. The Beam model was used to efficiently create the plots of the energy dissipation studies. The information provided by Figures 26-29 about the sensitivities of energy dissipation and the Energy Dissipation Coefficient to manipulation of the geometry of the LSM can be used as a tool to understand the design and implementation of these structures. It can also be used to weigh performance versus cost. The numerical studies shown in Figures 26-29 could be efficiently reproduced using other material parameters or other material models for NiTi without incurring the cost of using more computationally expensive DNS.

FUTURE WORK

This model could be expanded to other material parameters and superelastic materials. The studies in this thesis utilized the material parameters used to verify the original material model. Future simulations could utilize a wide scope of SMA material models of varying properties. These results should be validated with a DNS model before any experimentation. From there, these structures could be created via AM or a wirewoven process and validated experimentally. These concepts could be applied to other bending-dominated structures and other superelastic materials. This work only provided information on relatively small deformations of the structure as compared to full compaction of the LSM, however, DNS with contact and post-buckling analysis as well as experimental work would provide information for higher displacements. These results and methods could be utilized in a wide variety of applications such as noise suppression from the rapid expansion of gas, e.g., a firearm suppressor or a car muffler. They could also be used in the design space of mediating a sonic boom in aerospace applications.

BIBLIOGRAPHY

[1] J. Marx, M. Portanova, and A. Rabiei, "Performance of composite metal foam armors against various threat sizes," J. Compos. Sci., vol. 4, no. 4, 2020.
[2] M. C. Messner, "Optimal lattice-structured materials," J. Mech. Phys. Solids, vol. 96, pp. 162-183, 2016.
[3] C. G. Ferro, S. Varetti, G. De Pasquale, and P. Maggiore, "Lattice structured impact absorber with embedded anti-icing system for aircraft wings fabricated with additive SLM process," Mater. Today Commun., vol. 15, no. February, pp. 185-189, 2018.
[4] Z. Rao et al., "Experimental and numerical studies on a novel shape-memory alloy wire-woven trusses capable of undergoing large deformation," J. Intell. Mater. Syst. Struct., vol. 30, no. 15, pp. 2283-2298, 2019.
[5] M. Mazur, M. Leary, S. Sun, M. Vcelka, D. Shidid, and M. Brandt, "Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM)," Int. J. Adv. Manuf. Technol., vol. 84, no. 5-8, pp. 13911411, 2016.
[6] L. E. Murr et al., "Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies," J. Mater. Sci. Technol, vol. 28, no. 1, pp. 1-14, 2012.
[7] V. S. Deshpande, M. F. Ashby, and N. A. Fleck, "Foam topology: Bending versus
stretching dominated architectures," Acta Mater., vol. 49, no. 6, pp. 1035-1040, 2001.
[8] S. Babaee, B. H. Jahromi, A. Ajdari, H. Nayeb-Hashemi, and A. Vaziri, "Mechanical properties of open-cell rhombic dodecahedron cellular structures," Acta Mater., vol. 60, no. 6-7, pp. 2873-2885, 2012.
[9] L. C. Brinson, "One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable," J. Intell. Mater. Syst. Struct., vol. 4, no. 2, pp. 229242, 1993.
[10] F. Auricchio and R. L. Taylor, "Shape-memory alloys: Modelling and numerical simulations of the finite-strain superelastic behavior," Comput. Methods Appl. Mech. Eng., pp. 175-194, 1997.
[11] F. Auricchio, R. L. Taylor, and J. Lubliner, "SHAPE-MEMORY ALLOYS: macromodelling and numerical simulations of the superelastic behavior," Comput. Methods Appl. Mech. Engrg, vol. 146, pp. 281-312, 1997.
[12] H. U. Schuerch, "Certain Physical Properties and Applications of Nitinol," 1968.
[13] M. C. Piedboeuf and R. Guavin, "Damping Behaviour of Shape Memory Alloys: Strain Amplitude, Frequency and Temperature Effects," J. Sound Vib., vol. 214, no. 5, pp. 885-901, 1998.
[14] Y. Gao, L. Casalena, M. L. Bowers, R. D. Noebe, M. J. Mills, and Y. Wang, "An origin of functional fatigue of shape memory alloys," Acta Mater., vol. 126, pp.

389-400, Mar. 2017.
[15] Dassault-Systèmes, ABAQUS Theory Manual: Superelasticity. United States: Dassault Systèmes Simulia Corp, 2018.
[16] A. Ahmed, S. Arya, V. Gupta, H. Furukawa, and A. Khosla, "4D printing: Fundamentals, materials, applications and challenges," Polymer (Guildf)., vol. 228, Jul. 2021.
[17] T. Belytschko, W. K. Kam, B. Moran, and K. I. Elkhodary, "Beams and Shells," in Nonlinear Finite Elements For Continua and Structures, Second Edi., West Sussex, UK: John Wiley \& Sons, Ltd., 2014, pp. 535-596.
[18] Dassault-Systèmes, ABAQUS Theory Manual: Beam Elements. United States: Dassault Systèmes Simulia Corp, 2018.
[19] Dassault-Systèmes, ABAQUS Theory Manual: Three-dimensional solid element library. United States: Dassault Systèmes Simulia Corp, 2018.
[20] Dassault-Systèmes, "ABAQUS Theory Manual: Finding the Maximum Value of Von Mises Stress," 2018. [Online]. Available:
https://help.3ds.com/2018/english/dssimulia_established/simacaecmdrefmap/simac md-c-odbintroexamaxmisespyc.htm?contextscope=all.

APPENDIX A

This appendix shows all the plots from the third energy dissipation study for all displacements used. Omitted data points in plots are the simulations where buckling is indicated or the peak von-Mises Stress exceeds the limit set. All simulations for loading in the y-direction for displacements greater than 5% were not included as either the peak von-Mises stress was exceed or the simulation indicated buckling.

Figure 30: Energy Dissipated plotted against $R_{v a r}$ and relative density for 8% displacement in x-direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot.

Figure 31: Energy Dissipated plotted against $R_{v a r}$ and relative density for 7\% displacement in x-direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot.

Figure 32: Energy Dissipated plotted against $R_{v a r}$ and relative density for 6\% displacement in x-direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot.

Figure 33: Energy Dissipated plotted against $R_{v a r}$ and relative density for 5\% displacement in x-direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot.

Figure 34: Energy Dissipated plotted against $R_{v a r}$ and relative density for 3\% displacement in x-direction.

ED for Displacement = 2\%

Figure 35: Energy Dissipated plotted against $R_{v a r}$ and relative density for 2% displacement in x-direction.

Figure 36: Energy Dissipated plotted against $R_{v a r}$ and relative density for 2\% displacement in x-direction.

Figure 37: Energy Dissipation Coefficient plotted against $R_{v a r}$ and relative density for 8% displacement in x-direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot.

Figure 38: Energy Dissipation Coefficient plotted against $R_{\text {var }}$ and relative density for 7% displacement in x-direction

Figure 39: Energy Dissipation Coefficient plotted against $R_{v a r}$ and relative density for 6% displacement in x-direction

Figure 40: Energy Dissipation Coefficient plotted against $R_{\text {var }}$ and relative density for 5% displacement in x-direction

Figure 41: Energy Dissipation Coefficient plotted against $R_{v a r}$ and relative density for 3% displacement in x-direction

Figure 42: Energy Dissipation Coefficient plotted against $R_{v a r}$ and relative density for 2% displacement in x-direction

Figure 43: Energy Dissipation Coefficient plotted against $R_{v a r}$ and relative density for 1% displacement in x-direction. All values of η are effectively zero.

Figure 44: Energy Dissipated plotted against $R_{v a r}$ and the relative density for 6\% displacement in y-direction

Figure 45: Energy Dissipated plotted against $R_{v a r}$ and relative density for 5\% displacement in y-direction

Figure 46: Energy Dissipated plotted against $R_{v a r}$ and relative density for 3\% displacement in y-direction

Energy Dissipated for Displacement = 2\%

Figure 47: Energy Dissipated plotted against $R_{v a r}$ and relative density for 2\% displacement in y-direction

Figure 48: Energy Dissipated plotted against $R_{v a r}$ and relative density for 1% displacement in y-direction

Figure 49: Energy Dissipation Coefficient plotted against $R_{v a r}$ and relative density for 6% displacement in y-direction

Figure 50: Energy Dissipation Coefficient plotted against $R_{\text {var }}$ and relative density for 5% displacement in y-direction

Figure 51: Energy Dissipation Coefficient plotted against $R_{v a r}$ and relative density for 3% displacement in y-direction

Figure 52: Energy Dissipation Coefficient plotted against $R_{\text {var }}$ and relative density for 2% displacement in y-direction

Figure 53: Energy Dissipation Coefficient plotted against $R_{v a r}$ and relative density for 1% displacement in y-direction

APPENDIX B

This appendix shows examples of the python scripts that were used to write and submit input decks (.inp files), vary parameters, and post-process from outputs (.odb and .msg files) with ABAQUS.

I. writeinput.py

```
# Author: Ian P. Morrissey
# Description: writes ABAQUS .inp files for a range of
displacements, relative density, and radius variation
import math
import numpy
# displacement magnitude
d1L=5.7735 # direction 1 or x-direction
dispMag=d1L*numpy.linspace(-.08,-.01, 8)
# relative density
rd=numpy.linspace(0.03,0.45,15)
print('rd='+str(rd))
# calculate nominal radius based on r
r=numpy.sqrt ((rd*2*pow (5,2))/(3*numpy.pi*numpy.sqrt (3)))
print('r='+str(r))
    # calculate total volume for unit cell
    totVol=32/9*numpy.sqrt (3)*pow (5,3)
    print('totVol='+str(totVol))
    # calculate volume of occupied
    volume=24*pow(r,2)*numpy.pi*5
    print('volume='tstr(volume))
    # radius variation coefficient
    rvar=numpy.linspace(0.5,1.25,16)
    print('rvar='+str(rvar))
    # number of loads to index by
    numLoads=len(dispMag)
    print('numLoads=' +str(numLoads))
    # number of relative desnities to index by
    numrd=len(rd)
    print('numrd='+str(numrd))
```

```
# number of radius variation coefficient to vary by
numrvar=len(rvar)
    print('numrvar='+str(numrvar))
    # index over number of loads/displacements, relative densities,
    and radius variations
    for j in range(numLoads):
        for i in range(numrd):
            for k in range(numrvar):
                rh=r[i]*rvar[k] #calculate horizontal radius
            rv=numpy.sqrt((volume[i]-
    12*5*numpy.pi*pow(rh,2))/(12*5*numpy.pi)) #calculate vertical
    radius
    #inp file name
        filename='D1B-'+str(j+1)+'-''str(i+1)+'-'+str(k+1)
    #write inp file
            fileOutput = open(filename + '.inp','w')
            fileOutput.write("""*Heading
    ** Job name: BD1ex Model name: BD1ex
    ** Generated by: Abaqus/CAE 2019
    *Preprint, echo=NO, model=NO, history=NO, contact=NO
    **
    ** PARTS
    **
    *Part, name=PART-1
    *Node
        1, 2.887000145, 4.08250004, 0
        2,5.7735002,4.08250004,4.08250004
        3, 2.887000145, 0, 4.08250004
        4, 0, 0, 8.1650001
        5, 2.887000145, 4.08250004, 8.1650001
        6, 2.887000145, 8.1650001, 4.08250004
        7, 0, 8.1650001, 8.1650001
        8, 0, 0, 0
        9, 0, 8.1650001, 0
        10, -2.887000145, 4.08250004, 0
        11, -2.887000145, 0, 4.08250004
        12,-5.7735002, 4.08250004, 4.08250004
        13, -2.887000145, 4.08250004, 8.1650001
        14, -2.887000145, 8.1650001, 4.08250004
        15, 3.03132504, 4.08250004, 0.204124991
        16, 3.17564994, 4.08250004, 0.4082499815
        17, 3.31997514, 4.08250004, 0.61237499
        18, 3.464300035, 4.08250004,0.816499965
        19, 3.608624935, 4.08250004, 1.02062501
        20, 3.75295013, 4.08250004, 1.22474998
        21, 3.89727503, 4.08250004, 1.42887503
        22,4.04159993, 4.08250004, 1.632999925
        23,4.185925125, 4.08250004, 1.837124975
        24,4.330250025,4.08250004, 2.04125002
        25,4.474574925,4.08250004, 2.245375065
        26,4.61890012, 4.08250004, 2.449499965
        27,4.76322502, 4.08250004, 2.65362501
        28,4.90754992,4.08250004, 2.85775006
        29, 5.0518751, 4.08250004, 3.061875105
        30, 5.1962,4.08250004, 3.265999855
```

92	$31,5.3405249,4.08250004,3.4701249$
93	$32,5.4848498,4.08250004,3.674249945$
94	$33,5.6291747,4.08250004,3.878374995$
95	$34,5.6291747,3.878374995,4.08250004$
96	$35,5.4848498,3.674249945,4.08250004$
97	$36,5.3405249,3.4701249,4.08250004$
98	$37,5.1962,3.265999855,4.08250004$
99	$38,5.0518751,3.061875105,4.08250004$
100	$39,4.90754992,2.85775006,4.08250004$
101	$40,4.76322502,2.65362501,4.08250004$
102	$41,4.61890012,2.449499965,4.08250004$
103	$42,4.474574925,2.245375065,4.08250004$
104	$43,4.330250025,2.04125002,4.08250004$
105	$44,4.185925125,1.837124975,4.08250004$
106	$45,4.04159993,1.632999925,4.08250004$
107	$46,3.89727503,1.42887503,4.08250004$
108	$47,3.75295013,1.22474998,4.08250004$
109	$48,3.608624935,1.02062501,4.08250004$
110	$49,3.464300035,0.816499965,4.08250004$
111	$50,3.31997514,0.61237499,4.08250004$
112	$51,3.17564994,0.4082499815,4.08250004$
113	$52,3.03132504,0.204124991,4.08250004$
114	$53,2.742649915,0,4.286625085$
115	$54,2.59829998,0,4.490750135$
116	$55,2.453950045,0,4.694874885$
117	$56,2.309599965,0,4.89899993$
118	$57,2.165250035,0,5.103125$
119	$58,2.02089995,0,5.30725$
120	$59,1.87655002,0,5.51137505$
121	$60,1.732199935,0,5.7155001$
122	$61,1.587850005,0,5.91962515$
123	$62,1.44350007,0,6.1237502$
124	$63,1.29914999,0,6.32787525$
125	$64,1.154799985,0,6.5319997$
126	$65,1.010449975,0,6.73612475$
127	$66,0.86609997,0,6.9402498$
128	$67,0.721750035,0,7.14437485$
129	$68,0.57739999,0,7.3484999$
130	$69,0.4330499845,0,7.55262495$
131	$70,0.2886999955,0,7.75675$
132	$71,0.144349998,0,7.96087505$
133	$72,2.742649915,3.878374995,8.1650001$
134	$73,2.59829998,3.674249945,8.1650001$
135	$74,2.453950045,3.4701249,8.1650001$
136	$75,2.309599965,3.265999855,8.1650001$
137	$76,2.165250035,3.061875105,8.1650001$
138	$77,2.02089995,2.85775006,8.1650001$
139	$78,1.87655002,2.65362501,8.1650001$
140	$79,1.732199935,2.449499965,8.1650001$
141	$80,1.587850005,2.245375065,8.1650001$
142	$81,1.44350007,2.04125002,8.1650001$
143	$82,1.29914999,1.837124975,8.1650001$
144	$83,1.154799985,1.632999925,8.1650001$
145	$84,1.010449975,1.42887503,8.1650001$
146	$85,0.86609997,1.22474998,8.1650001$
147	$86,0.721750035,1.02062501,8.1650001$
148	$87,0.57739999,0.816499965,8.1650001$

149	$88,0.4330499845,0.61237499,8.1650001$
150	$89,0.2886999955,0.4082499815,8.1650001$
151	$90,0.144349998,0.204124991,8.1650001$
152	$91,3.03132504,4.08250004,7.96087505$
153	$92,3.17564994,4.08250004,7.75675$
154	$93,3.31997514,4.08250004,7.55262495$
155	$94,3.464300035,4.08250004,7.3484999$
156	$95,3.608624935,4.08250004,7.14437485$
157	$96,3.75295013,4.08250004,6.9402498$
158	$97,3.89727503,4.08250004,6.73612475$
159	$98,4.04159993,4.08250004,6.5319997$
160	$99,4.185925125,4.08250004,6.32787525$
161	$100,4.330250025,4.08250004,6.1237502$
162	$101,4.474574925,4.08250004,5.91962515$
163	$102,4.61890012,4.08250004,5.7155001$
164	$103,4.76322502,4.08250004,5.51137505$
165	$104,4.90754992,4.08250004,5.30725$
166	$105,5.0518751,4.08250004,5.103125$
167	$106,5.1962,4.08250004,4.89899993$
168	$107,5.3405249,4.08250004,4.694874885$
169	$108,5.4848498,4.08250004,4.490750135$
170	$109,5.6291747,4.08250004,4.286625085$
171	$110,3.03132504,7.96087505,4.08250004$
172	111, $3.17564994,7.75675,4.08250004$
173	$112,3.31997514,7.55262495,4.08250004$
174	$113,3.464300035,7.3484999,4.08250004$
175	$114,3.608624935,7.14437485,4.08250004$
176	$115,3.75295013,6.9402498,4.08250004$
177	$116,3.89727503,6.73612475,4.08250004$
178	$117,4.04159993,6.5319997,4.08250004$
179	$118,4.185925125,6.32787525,4.08250004$
180	$119,4.330250025,6.1237502,4.08250004$
181	$120,4.474574925,5.91962515,4.08250004$
182	$121,4.61890012,5.7155001,4.08250004$
183	$122,4.76322502,5.51137505,4.08250004$
184	$123,4.90754992,5.30725,4.08250004$
185	$124,5.0518751,5.103125,4.08250004$
186	$125,5.1962,4.89899993,4.08250004$
187	$126,5.3405249,4.694874885,4.08250004$
188	$127,5.4848498,4.490750135,4.08250004$
189	$128,5.6291747,4.286625085,4.08250004$
190	129, $2.742649915,8.1650001,4.286625085$
191	$130,2.59829998,8.1650001,4.490750135$
192	$131,2.453950045,8.1650001,4.694874885$
193	$132,2.309599965,8.1650001,4.89899993$
194	$133,2.165250035,8.1650001,5.103125$
195	$134,2.02089995,8.1650001,5.30725$
196	$135,1.87655002,8.1650001,5.51137505$
197	$136,1.732199935,8.1650001,5.7155001$
198	137, 1.587850005, 8.1650001, 5.91962515
199	$138,1.44350007,8.1650001,6.1237502$
200	139, 1.29914999, 8.1650001, 6.32787525
201	$140,1.154799985,8.1650001,6.5319997$
202	$141,1.010449975,8.1650001,6.73612475$
203	$142,0.86609997,8.1650001,6.9402498$
204	$143,0.721750035,8.1650001,7.14437485$
205	$144,0.57739999,8.1650001,7.3484999$

206	$145,0.4330499845,8.1650001,7.55262495$
207	$146,0.2886999955,8.1650001,7.75675$
208	$147,0.144349998,8.1650001,7.96087505$
209	$148,2.742649915,4.286625085,8.1650001$
210	$149,2.59829998,4.490750135,8.1650001$
211	$150,2.453950045,4.694874885,8.1650001$
212	$151,2.309599965,4.89899993,8.1650001$
213	$152,2.165250035,5.103125,8.1650001$
214	153, 2.02089995, 5.30725, 8.1650001
215	154, 1.87655002, 5.51137505, 8.1650001
216	155, 1.732199935, 5.7155001, 8.1650001
217	156, 1.587850005, 5.91962515, 8.1650001
218	$157,1.44350007,6.1237502,8.1650001$
219	158, 1.29914999, 6.32787525, 8.1650001
220	159, 1.154799985, 6.5319997, 8.1650001
221	$160,1.010449975,6.73612475,8.1650001$
222	$161,0.86609997,6.9402498,8.1650001$
223	$162,0.721750035,7.14437485,8.1650001$
224	$163,0.57739999,7.3484999,8.1650001$
225	$164,0.4330499845,7.55262495,8.1650001$
226	$165,0.2886999955,7.75675,8.1650001$
227	$166,0.144349998,7.96087505,8.1650001$
228	167, 0.144349998, 0.204124991, 0
229	$168,0.2886999955,0.4082499815,0$
230	$169,0.4330499845,0.61237499,0$
231	$170,0.57739999,0.816499965,0$
232	$171,0.721750035,1.02062501,0$
233	$172,0.86609997,1.22474998,0$
234	173, 1.010449975, 1.42887503, 0
235	174, 1.154799985, 1.632999925, 0
236	175, 1.29914999, 1.837124975, 0
237	176, 1.44350007, 2.04125002, 0
238	177, 1.587850005, 2.245375065, 0
239	178, 1.732199935, 2.449499965, 0
240	179, 1.87655002, 2.65362501, 0
241	180, 2.02089995, 2.85775006, 0
242	181, 2.165250035, 3.061875105, 0
243	182, 2.309599965, 3.265999855, 0
244	183, $2.453950045,3.4701249,0$
245	$184,2.59829998,3.674249945,0$
246	185, 2.742649915, 3.878374995, 0
247	$186,0.144349998,7.96087505,0$
248	$187,0.2886999955,7.75675,0$
249	188, 0.4330499845, 7.55262495, 0
250	189, 0.57739999, 7.3484999, 0
251	$190,0.721750035,7.14437485,0$
252	191, $0.86609997,6.9402498,0$
253	192, 1.010449975, 6.73612475, 0
254	193, 1.154799985, 6.5319997, 0
255	194, 1.29914999, 6.32787525, 0
256	195, 1.44350007, 6.1237502, 0
257	$196,1.587850005,5.91962515,0$
258	197, 1.732199935, 5.7155001, 0
259	198, 1.87655002, 5.51137505, 0
260	199, $2.02089995,5.30725,0$
261	200, 2.165250035, 5.103125, 0
262	201, $2.309599965,4.89899993,0$

263	202, 2.453950045, 4.694874885, 0
264	$203,2.59829998,4.490750135,0$
265	204, 2.742649915, 4.286625085, 0
266	$205,-2.742649915,4.286625085,0$
267	206, -2.59829998, 4.490750135, 0
268	$207,-2.453950045,4.694874885,0$
269	$208,-2.309599965,4.89899993,0$
270	209, -2.165250035, 5.103125, 0
271	210, -2.02089995, 5.30725, 0
272	211, -1.87655002, 5.51137505, 0
273	212, -1.732199935, 5.7155001, 0
274	213, -1.587850005, 5.91962515, 0
275	$214,-1.44350007,6.1237502,0$
276	$215,-1.29914999,6.32787525,0$
277	$216,-1.154799985,6.5319997,0$
278	$217,-1.010449975,6.73612475,0$
279	218, -0.86609997, 6.9402498, 0
280	219, -0.721750035, 7.14437485, 0
281	$220,-0.57739999,7.3484999,0$
282	$221,-0.4330499845,7.55262495,0$
283	222, -0.2886999955, 7.75675, 0
284	$223,-0.144349998,7.96087505,0$
285	224, -0.144349998, 0.204124991, 0
286	$225,-0.2886999955,0.4082499815,0$
287	$226,-0.4330499845,0.61237499,0$
288	$227,-0.57739999,0.816499965,0$
289	228, -0.721750035, 1.02062501, 0
290	$229,-0.86609997,1.22474998,0$
291	230, -1.010449975, 1.42887503, 0
292	$231,-1.154799985,1.632999925,0$
293	232, -1.29914999, 1.837124975, 0
294	233, -1.44350007, 2.04125002, 0
295	$234,-1.587850005,2.245375065,0$
296	$235,-1.732199935,2.449499965,0$
297	$236,-1.87655002,2.65362501,0$
298	$237,-2.02089995,2.85775006,0$
299	$238,-2.165250035,3.061875105,0$
300	$239,-2.309599965,3.265999855,0$
301	$240,-2.453950045,3.4701249,0$
302	$241,-2.59829998,3.674249945,0$
303	$242,-2.742649915,3.878374995,0$
304	$243,-0.144349998,0,0.204124991$
305	$244,-0.2886999955,0,0.4082499815$
306	$245,-0.4330499845,0,0.61237499$
307	$246,-0.57739999,0,0.816499965$
308	$247,-0.721750035,0,1.02062501$
309	$248,-0.86609997,0,1.22474998$
310	$249,-1.010449975,0,1.42887503$
311	$250,-1.154799985,0,1.632999925$
312	$251,-1.29914999,0,1.837124975$
313	$252,-1.44350007,0,2.04125002$
314	$253,-1.587850005,0,2.245375065$
315	$254,-1.732199935,0,2.449499965$
316	$255,-1.87655002,0,2.65362501$
317	$256,-2.02089995,0,2.85775006$
318	$257,-2.165250035,0,3.061875105$
319	$258,-2.309599965,0,3.265999855$

320	259, -2.453950045, 0, 3.4701249
321	$260,-2.59829998,0,3.674249945$
322	$261,-2.742649915,0,3.878374995$
323	$262,-3.03132504,0.204124991,4.08250004$
324	$263,-3.17564994,0.4082499815,4.08250004$
325	$264,-3.31997514,0.61237499,4.08250004$
326	$265,-3.464300035,0.816499965,4.08250004$
327	$266,-3.608624935,1.02062501,4.08250004$
328	$267,-3.75295013,1.22474998,4.08250004$
329	$268,-3.89727503,1.42887503,4.08250004$
330	$269,-4.04159993,1.632999925,4.08250004$
331	$270,-4.185925125,1.837124975,4.08250004$
332	$271,-4.330250025,2.04125002,4.08250004$
333	$272,-4.474574925,2.245375065,4.08250004$
334	$273,-4.61890012,2.449499965,4.08250004$
335	$274,-4.76322502,2.65362501,4.08250004$
336	$275,-4.90754992,2.85775006,4.08250004$
337	$276,-5.0518751,3.061875105,4.08250004$
338	$277,-5.1962,3.265999855,4.08250004$
339	$278,-5.3405249,3.4701249,4.08250004$
340	$279,-5.4848498,3.674249945,4.08250004$
341	$280,-5.6291747,3.878374995,4.08250004$
342	$281,-5.6291747,4.08250004,3.878374995$
343	$282,-5.4848498,4.08250004,3.674249945$
344	$283,-5.3405249,4.08250004,3.4701249$
345	$284,-5.1962,4.08250004,3.265999855$
346	$285,-5.0518751,4.08250004,3.061875105$
347	$286,-4.90754992,4.08250004,2.85775006$
348	$287,-4.76322502,4.08250004,2.65362501$
349	$288,-4.61890012,4.08250004,2.449499965$
350	$289,-4.474574925,4.08250004,2.245375065$
351	$290,-4.330250025,4.08250004,2.04125002$
352	$291,-4.185925125,4.08250004,1.837124975$
353	$292,-4.04159993,4.08250004,1.632999925$
354	293, $-3.89727503,4.08250004,1.42887503$
355	$294,-3.75295013,4.08250004,1.22474998$
356	$295,-3.608624935,4.08250004,1.02062501$
357	$296,-3.464300035,4.08250004,0.816499965$
358	$297,-3.31997514,4.08250004,0.61237499$
359	$298,-3.17564994,4.08250004,0.4082499815$
360	$299,-3.03132504,4.08250004,0.204124991$
361	$300,0.144349998,0,0.204124991$
362	$301,0.2886999955,0,0.4082499815$
363	$302,0.4330499845,0,0.61237499$
364	$303,0.57739999,0,0.816499965$
365	$304,0.721750035,0,1.02062501$
366	$305,0.86609997,0,1.22474998$
367	$306,1.010449975,0,1.42887503$
368	$307,1.154799985,0,1.632999925$
369	$308,1.29914999,0,1.837124975$
370	$309,1.44350007,0,2.04125002$
371	$310,1.587850005,0,2.245375065$
372	$311,1.732199935,0,2.449499965$
373	$312,1.87655002,0,2.65362501$
374	$313,2.02089995,0,2.85775006$
375	$314,2.165250035,0,3.061875105$
376	$315,2.309599965,0,3.265999855$

377	$316,2.453950045,0,3.4701249$
378	$317,2.59829998,0,3.674249945$
379	$318,2.742649915,0,3.878374995$
380	$319,-2.742649915,3.878374995,8.1650001$
381	$320,-2.59829998,3.674249945,8.1650001$
382	$321,-2.453950045,3.4701249,8.1650001$
383	$322,-2.309599965,3.265999855,8.1650001$
384	$323,-2.165250035,3.061875105,8.1650001$
385	$324,-2.02089995,2.85775006,8.1650001$
386	$325,-1.87655002,2.65362501,8.1650001$
387	$326,-1.732199935,2.449499965,8.1650001$
388	$327,-1.587850005,2.245375065,8.1650001$
389	$328,-1.44350007,2.04125002,8.1650001$
390	$329,-1.29914999,1.837124975,8.1650001$
391	$330,-1.154799985,1.632999925,8.1650001$
392	$331,-1.010449975,1.42887503,8.1650001$
393	$332,-0.86609997,1.22474998,8.1650001$
394	$333,-0.721750035,1.02062501,8.1650001$
395	$334,-0.57739999,0.816499965,8.1650001$
396	$335,-0.4330499845,0.61237499,8.1650001$
397	$336,-0.2886999955,0.4082499815,8.1650001$
398	$337,-0.144349998,0.204124991,8.1650001$
399	$338,-0.144349998,7.96087505,8.1650001$
400	$339,-0.2886999955,7.75675,8.1650001$
401	$340,-0.4330499845,7.55262495,8.1650001$
402	$341,-0.57739999,7.3484999,8.1650001$
403	$342,-0.721750035,7.14437485,8.1650001$
404	$343,-0.86609997,6.9402498,8.1650001$
405	$344,-1.010449975,6.73612475,8.1650001$
406	$345,-1.154799985,6.5319997,8.1650001$
407	$346,-1.29914999,6.32787525,8.1650001$
408	$347,-1.44350007,6.1237502,8.1650001$
409	$348,-1.587850005,5.91962515,8.1650001$
410	$349,-1.732199935,5.7155001,8.1650001$
411	$350,-1.87655002,5.51137505,8.1650001$
412	$351,-2.02089995,5.30725,8.1650001$
413	$352,-2.165250035,5.103125,8.1650001$
414	$353,-2.309599965,4.89899993,8.1650001$
415	$354,-2.453950045,4.694874885,8.1650001$
416	$355,-2.59829998,4.490750135,8.1650001$
417	$356,-2.742649915,4.286625085,8.1650001$
418	$357,0.144349998,8.1650001,0.204124991$
419	$358,0.2886999955,8.1650001,0.4082499815$
420	$359,0.4330499845,8.1650001,0.61237499$
421	$360,0.57739999,8.1650001,0.816499965$
422	$361,0.721750035,8.1650001,1.02062501$
423	$362,0.86609997,8.1650001,1.22474998$
424	$363,1.010449975,8.1650001,1.42887503$
425	$364,1.154799985,8.1650001,1.632999925$
426	$365,1.29914999,8.1650001,1.837124975$
427	$366,1.44350007,8.1650001,2.04125002$
428	$367,1.587850005,8.1650001,2.245375065$
429	$368,1.732199935,8.1650001,2.449499965$
430	$369,1.87655002,8.1650001,2.65362501$
431	$370,2.02089995,8.1650001,2.85775006$
432	$371,2.165250035,8.1650001,3.061875105$
433	$372,2.309599965,8.1650001,3.265999855$

434	$373,2.453950045,8.1650001,3.4701249$
435	$374,2.59829998,8.1650001,3.674249945$
436	$375,2.742649915,8.1650001,3.878374995$
437	$376,-0.144349998,8.1650001,0.204124991$
438	$377,-0.2886999955,8.1650001,0.4082499815$
439	$378,-0.4330499845,8.1650001,0.61237499$
440	$379,-0.57739999,8.1650001,0.816499965$
441	$380,-0.721750035,8.1650001,1.02062501$
442	$381,-0.86609997,8.1650001,1.22474998$
443	$382,-1.010449975,8.1650001,1.42887503$
444	$383,-1.154799985,8.1650001,1.632999925$
445	$384,-1.29914999,8.1650001,1.837124975$
446	$385,-1.44350007,8.1650001,2.04125002$
447	$386,-1.587850005,8.1650001,2.245375065$
448	$387,-1.732199935,8.1650001,2.449499965$
449	$388,-1.87655002,8.1650001,2.65362501$
450	$389,-2.02089995,8.1650001,2.85775006$
451	$390,-2.165250035,8.1650001,3.061875105$
452	$391,-2.309599965,8.1650001,3.265999855$
453	$392,-2.453950045,8.1650001,3.4701249$
454	$393,-2.59829998,8.1650001,3.674249945$
455	$394,-2.742649915,8.1650001,3.878374995$
456	$395,-5.6291747,4.286625085,4.08250004$
457	$396,-5.4848498,4.490750135,4.08250004$
458	$397,-5.3405249,4.694874885,4.08250004$
459	$398,-5.1962,4.89899993,4.08250004$
460	$399,-5.0518751,5.103125,4.08250004$
461	$400,-4.90754992,5.30725,4.08250004$
462	$401,-4.76322502,5.51137505,4.08250004$
463	$402,-4.61890012,5.7155001,4.08250004$
464	$403,-4.474574925,5.91962515,4.08250004$
465	$404,-4.330250025,6.1237502,4.08250004$
466	$405,-4.185925125,6.32787525,4.08250004$
467	$406,-4.04159993,6.5319997,4.08250004$
468	$407,-3.89727503,6.73612475,4.08250004$
469	$408,-3.75295013,6.9402498,4.08250004$
470	$409,-3.608624935,7.14437485,4.08250004$
471	$410,-3.464300035,7.3484999,4.08250004$
472	$411,-3.31997514,7.55262495,4.08250004$
473	$412,-3.17564994,7.75675,4.08250004$
474	$413,-3.03132504,7.96087505,4.08250004$
475	$414,-3.03132504,4.08250004,7.96087505$
476	$415,-3.17564994,4.08250004,7.75675$
477	$416,-3.31997514,4.08250004,7.55262495$
478	$417,-3.464300035,4.08250004,7.3484999$
479	$418,-3.608624935,4.08250004,7.14437485$
480	$419,-3.75295013,4.08250004,6.9402498$
481	$420,-3.89727503,4.08250004,6.73612475$
482	$421,-4.04159993,4.08250004,6.5319997$
483	$422,-4.185925125,4.08250004,6.32787525$
484	$423,-4.330250025,4.08250004,6.1237502$
485	$424,-4.474574925,4.08250004,5.91962515$
486	$425,-4.61890012,4.08250004,5.7155001$
487	$426,-4.76322502,4.08250004,5.51137505$
488	$427,-4.90754992,4.08250004,5.30725$
489	$428,-5.0518751,4.08250004,5.103125$
490	$429,-5.1962,4.08250004,4.89899993$

491	430,	$-5.3405249,4.08250004,4.694874885$
492	431,	$-5.4848498,4.08250004,4.490750135$
493	432,	$-5.6291747,4.08250004,4.286625085$
494	433,	$-2.742649915,8.1650001,4.286625085$
495	434 ,	$-2.59829998,8.1650001,4.490750135$
496	435 ,	$-2.453950045,8.1650001,4.694874885$
497	436,	$-2.309599965,8.1650001,4.89899993$
498	437,	$-2.165250035,8.1650001,5.103125$
499	438,	-2.02089995, 8.1650001, 5.30725
500	439,	$-1.87655002,8.1650001,5.51137505$
501	440,	$-1.732199935,8.1650001,5.7155001$
502	441,	$-1.587850005,8.1650001,5.91962515$
503	442,	$-1.44350007,8.1650001,6.1237502$
504	443,	$-1.29914999,8.1650001,6.32787525$
505	444,	-1.154799985, 8.1650001, 6.5319997
506	445 ,	$-1.010449975,8.1650001,6.73612475$
507	446,	$-0.86609997,8.1650001,6.9402498$
508	447 ,	-0.721750035, 8.1650001, 7.14437485
509	448,	-0.57739999, 8.1650001, 7.3484999
510	449,	-0.4330499845, 8.1650001, 7.55262495
511	450,	-0.2886999955, 8.1650001, 7.75675
512	451,	-0.144349998, 8.1650001, 7.96087505
513	452,	$-2.742649915,0,4.286625085$
514	453,	$-2.59829998,0,4.490750135$
515	454,	$-2.453950045,0,4.694874885$
516	455,	$-2.309599965,0,4.89899993$
517	456,	$-2.165250035,0,5.103125$
518	457,	$-2.02089995,0,5.30725$
519	458,	$-1.87655002,0,5.51137505$
520	459 ,	$-1.732199935,0,5.7155001$
521	460 ,	$-1.587850005,0,5.91962515$
522	461 ,	$-1.44350007,0,6.1237502$
523	462 ,	$-1.29914999,0,6.32787525$
524	463 ,	$-1.154799985,0,6.5319997$
525	464,	$-1.010449975,0,6.73612475$
526	465 ,	$-0.86609997,0,6.9402498$
527	466 ,	$-0.721750035,0,7.14437485$
528	467 ,	-0.57739999, 0, 7.3484999
529	468 ,	-0.4330499845, 0, 7.55262495
530	469,	$-0.2886999955,0,7.75675$
531	470	-0.144349998, 0, 7.96087505
532	*Element, t	type=B31
533	1, 1,	15
534	2, 15,	16
535	3, 16,	17
536	4, 17,	18
537	5, 18,	19
538	6, 19,	20
539	7, 20,	21
540	8, 21,	22
541	9, 22,	23
542	10, 23,	24
543	11, 24,	25
544	12, 25,	26
545	13, 26,	27
546	14, 27,	28
547	15, 28,	29

548	16,	29,	30
549	17,	30,	31
550	18,	31,	32
551	19,	32,	33
552	20,	33,	2
553	21,	2,	34
554	22,	34,	35
555	23,	35,	36
556	24,	36,	37
55	25,	37,	38
558	26,	38,	39
559	27,	39,	40
560	28,	40,	41
561	29,	41,	42
562	30,	42,	43
563	31,	43,	44
56	32,	44,	45
565	33,	45,	46
566	34,	46,	47
567	35,	47,	48
568	36,	48,	49
569	37,	49,	50
570	38,	50,	51
571	39,	51,	52
572	40,	52,	3
573	41,	3,	53
574	42,	53,	54
575	43,	54,	55
576	44,	55,	56
577	45,	56,	57
578	46,	57,	58
579	47,	58,	59
580	48,	59,	60
581	49,	60,	61
582	50,	61,	62
583	51,	62,	63
58	52,	63,	64
585	53,	64,	65
586	54,	65,	66
587	55,	66,	67
588	56,	67,	68
589	57,	68,	69
590	58,	69,	70
591	59,	70,	71
592	60,	71,	4
593	61,	5,	72
594	62,	72,	73
595	63,	73,	74
596	64,	74,	75
597	65,	75,	76
598	66,	76,	77
599	67,	77,	78
600	68,	78,	79
601	69,	79,	80
602	70,	80,	81
603	71,	81,	82
604	72,	82,	83

605	73,	83,	84
606	74,	84,	85
607	75,	85,	86
608	76,	86,	87
609	77,	87,	88
610	78,	88,	89
611	79,	89,	90
612	80,	90,	4
613	81,	5,	91
614	82,	91,	92
615	83,	92,	93
616	84,	93,	94
617	85,	94,	95
618	86,	95,	96
619	87,	96,	97

620
621 89, 98, 99
622 90, 99, 100
623 91, 100, 101
624 92, 101, 102
625 93, 102, 103
626 94, 103, 104
627 95, 104, 105
628 96, 105, 106
629 97, 106, 107
630 98, 107, 108
631 99, 108, 109
632 100, 109, 2
$633101,6,110$
$634102,110,111$
$635103,111,112$
$636104,112,113$
637 105, 113, 114
638 106, 114, 115
$639107,115,116$
$640108,116,117$
641 109, 117, 118
642 110, 118, 119
643 111, 119, 120
644 112, 120, 121
$645113,121,122$
$646114,122,123$
647 115, 123, 124
648 116, 124, 125
$649117,125,126$
$650118,126,127$
651 119, 127, 128
652 120, 128, 2
653 121, 6, 129
654 122, 129, 130
655 123, 130, 131
656 124, 131, 132
657 125, 132, 133
658 126, 133, 134
659 127, 134, 135
$660128,135,136$
661 129, 136, 137

```
662 130, 137, 138
663 131, 138, 139
664 132, 139, 140
665 133, 140, 141
666 134, 141, 142
667 135, 142, 143
668 136, 143, 144
669 137, 144, 145
670 138, 145, 146
671 139, 146, 147
672 140, 147, 7
673 141, 5, 148
674 142, 148, 149
675 143, 149, 150
676 144, 150, 151
677 145, 151, 152
678 146, 152, 153
679 147, 153, 154
680 148, 154, 155
681 149, 155, 156
682 150, 156, 157
683 151, 157, 158
684 152, 158, 159
685 153, 159, 160
686 154, 160, 161
687 155, 161, 162
688 156, 162, 163
689 157, 163, 164
690 158, 164, 165
691 159, 165, 166
692 160, 166, 7
693 161, 8, 167
694 162, 167, 168
695 163, 168, 169
696 164, 169, 170
697 165, 170, 171
698 166, 171, 172
699 167, 172, 173
700 168, 173, 174
701 169, 174, 175
702 170, 175, 176
703 171, 176, 177
704 172, 177, 178
705 173, 178, 179
706 174, 179, 180
707 175, 180, 181
708 176, 181, 182
709 177, 182, 183
710 178, 183, 184
711 179, 184, 185
712 180, 185, 1
713 181, 9, 186
714 182, 186, 187
715 183, 187, 188
716 184, 188, 189
717 185, 189, 190
718 186, 190, 191
```

```
719 187, 191, 192
720 188, 192, 193
721 189, 193, 194
722 190, 194, 195
723 191, 195, 196
724 192, 196, 197
725 193, 197, 198
726 194, 198, 199
727 195, 199, 200
728 196, 200, 201
729197, 201, 202
730 198, 202, 203
731 199, 203, 204
732 200, 204, 1
733 201, 10, 205
734202, 205, 206
735 203, 206, 207
736204, 207, 208
737 205, 208, 209
738 206, 209, 210
739207, 210, 211
740 208, 211, 212
741 209, 212, 213
742 210, 213, 214
743 211, 214, 215
744 212, 215, 216
745 213, 216, 217
746214, 217, 218
747 215, 218, 219
748 216, 219, 220
749217, 220, 221
750 218, 221, 222
751 219, 222, 223
752 220, 223, 9
753 221, 8, 224
754 222, 224, 225
755 223, 225, 226
756 224, 226, 227
757 225, 227, 228
758 226, 228, 229
759227, 229, 230
760 228, 230, 231
761 229, 231, 232
762 230, 232, 233
763 231, 233, 234
764 232, 234, 235
765 233, 235, 236
766 234, 236, 237
767 235, 237, 238
768236, 238, 239
769237, 239, 240
770 238, 240, 241
771 239, 241, 242
772 240, 242, 10
773 241, 8, 243
774 242, 243, 244
775 243, 244, 245
```

```
776244, 245,246
777 245, 246, 247
```

778 246, 247, 248
$779247,248,249$
$780248,249,250$
781 249, 250, 251
782 250, 251, 252
783 251, 252, 253
784 252, 253, 254
785 253, 254, 255
$786254,255,256$
787 255, 256, 257
788 256, 257, 258
$789257,258,259$
$790258,259,260$
791 259, 260, 261
792 260, 261, 11
793 261, 11, 262
$794262,262,263$
795 263, 263, 264
796264, 264, 265
$797265,265,266$
798 266, 266, 267
799 267, 267, 268
$800268,268,269$
801 269, 269, 270
802 270, 270, 271
803 271, 271, 272
$804272,272,273$
805 273, 273, 274
$806274,274,275$
807 275, 275, 276
808 276, 276, 277
$809277,277,278$
$810278,278,279$
811 279, 279, 280
812 280, 280, 12
813 281, 12, 281
814 282, 281, 282
815 283, 282, 283
816284, 283, 284
817 285, 284, 285
$818286,285,286$
819 287, 286, 287
820 288, 287, 288
821 289, 288, 289
822 290, 289, 290
823 291, 290, 291
824 292, 291, 292
825 293, 292, 293
826294, 293, 294
827295, 294, 295
828 296, 295, 296
829 297, 296, 297
$830298,297,298$
831 299, 298, 299
$832300,299,10$

```
833 301, 8, 300
834 302, 300, 301
835 303, 301, 302
836 304, 302, 303
837 305, 303, 304
```

$838306,304,305$
$839307,305,306$
$840308,306,307$
$841309,307,308$
842 310, 308, 309
$843311,309,310$
$844312,310,311$
845 313, 311, 312
$846314,312,313$
847 315, 313, 314
$848316,314,315$
$849317,315,316$
$850318,316,317$
$851319,317,318$
$852320,318,3$
853 321, 13, 319
$854322,319,320$
$855323,320,321$
$856324,321,322$
857 325, 322, 323
$858326,323,324$
$859327,324,325$
$860328,325,326$
$861329,326,327$
$862330,327,328$
$863331,328,329$
$864332,329,330$
$865333,330,331$
$866334,331,332$
$867335,332,333$
$868336,333,334$
$869337,334,335$
$870338,335,336$
871 339, 336, 337
872 340, 337, 4
$873341, \quad 7,338$
$874342,338,339$
$875343,339,340$
$876344,340,341$
$877345,341,342$
$878346,342,343$
$879347,343,344$
$880348,344,345$
$881349,345,346$
$882350,346,347$
$883351,347,348$
$884352,348,349$
$885353,349,350$
886354,350 , 351
$887355,351,352$
$888356,352,353$
$889357,353,354$
$890358,354,355$
$891359,355,356$
$892360,356,13$
$893361,9,357$
894 362, 357, 358
$895363,358,359$
$896364,359,360$
$897365,360,361$
$898366,361,362$
$899367,362,363$
$900368,363,364$
$901369,364,365$
$902370,365,366$
903 371, 366, 367
$904372,367,368$
905 373, 368, 369
$906374,369,370$
$907375,370,371$
$908376,371,372$
$909377,372,373$
$910378,373,374$
$911379,374,375$
$912380,375,6$
913 381, 9,376
$914382,376,377$
$915383,377,378$
$916384,378,379$
$917385,379,380$
$918386,380,381$
$919387,381,382$
$920388,382,383$
$921389,383,384$
$922390,384,385$
923 391, 385, 386
$924392,386,387$
$925393,387,388$
$926394,388,389$
927 395, 389, 390
$928396,390,391$
$929397,391,392$
$930398,392,393$
$931399,393,394$
$932400,394,14$
$933401,12,395$
$934402,395,396$
$935403,396,397$
$936404,397,398$
$937405,398,399$
$938406,399,400$
$939407,400,401$
$940408,401,402$
941409, 402, 403
$942410,403,404$
$943411,404,405$
$944412,405,406$
$945413,406,407$
$946414,407,408$
$947415,408,409$
$948416,409,410$
$949417,410,411$
$950418,411,412$
951 419, 412, 413
952 420, 413, 14
953 421, 13, 414
$954422,414,415$
$955423,415,416$
$956424,416,417$
$957425,417,418$
$958426,418,419$
$959427,419,420$
$960428,420,421$
961 429, 421, 422
962 430, 422, 423
963 431, 423, 424
964 432, 424, 425
$965433,425,426$
$966434,426,427$
$967435,427,428$
$968436,428,429$
$969437,429,430$
$970438,430,431$
$971439,431,432$
$972440,432,12$
$973441,14,433$
$974442,433,434$
$975443,434,435$
$976444,435,436$
$977445,436,437$
$978446,437,438$
979 447, 438, 439
$980448,439,440$
981449, 440, 441
$982450,441,442$
$983451,442,443$
$984452,443,444$
$985453,444,445$
$986454,445,446$
$987455,446,447$
$988456,447,448$
$989457,448,449$
$990458,449,450$
$991459,450,451$
$992460,451,7$
$993461,11,452$
$994462,452,453$
$995463,453,454$
$996464,454,455$
$997465,455,456$
$998466,456,457$
$999467,457,458$
$1000468,458,459$
$1001469,459,460$
$1002470,460,461$
$1003 \quad 471,461,462$

```
1004 472, 462, 463
1006 474, 464, 465
1007 475, 465,466
1008 476, 466, 467
1009 477, 467, 468
1010 478, 468, 469
1011 479, 469, 470
1012 480, 470, 4
1013 *Nset, nset=WIRE-2-SET-1
1014 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
    12, 13, 14, 15, 16
1015 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
    28, 29, 30, 31, 32
1016 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
    44, 45, 46, 47, 48
1017 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
    60, 61, 62, 63,64
1018 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
    76, 77, 78, 79, 80
1019 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
    92, 93, 94, 95, 96
1020 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
    108, 109, 110, 111, 112
1021 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,
    124, 125, 126, 127, 128
1022 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
    140, 141, 142, 143, 144
1023 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155,
    156, 157, 158, 159, 160
1024 161, 162, 163, 164, 165, 166, 243, 244, 245, 246, 247,
    248, 249, 250, 251, 252
1025 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263,
    264, 265, 266, 267, 268
1026 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279,
    280, 281, 282, 283, 284
1027 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295,
    296, 297, 298, 299, 300
1028 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311,
    312, 313, 314, 315, 316
1029 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327,
    328, 329, 330, 331, 332
1030 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343,
    344, 345, 346, 347, 348
1031 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359,
    360, 361, 362, 363, 364
1032 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375,
    376, 377, 378, 379, 380
1033 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391,
    392, 393, 394, 395,396
1034 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407,
    408, 409, 410, 411, 412
1035 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423,
    424, 425,426, 427,428
1036 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439,
    440,441,442,443,444
```

```
1037 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455,
1038 461,462, 463,464, 465,466, 467,468,469,470
1039 *Elset, elset=WIRE-2-SET-1
1040 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
    12, 13, 14, 15, 16
1041 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
    28, 29, 30, 31, 32
1042 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
    44, 45, 46, 47, 48
1043 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
    60,61, 62, 63, 64
1044 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
    76, 77, 78, 79, 80
1045 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
    92, 93, 94, 95, 96
1046 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
    108, 109, 110, 111, 112
1047 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,
    124, 125, 126, 127, 128
1048 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
    140, 141, 142, 143, 144
1049 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155,
    156, 157, 158, 159, 160
1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,
    252, 253, 254, 255, 256
1051 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267,
    268, 269, 270, 271, 272
1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283,
    284, 285, 286, 287, 288
1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299,
    300, 301, 302, 303, 304
1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315,
    316, 317, 318, 319, 320
1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331,
    332, 333, 334, 335, 336
1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347,
    348, 349, 350, 351, 352
1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363,
    364, 365, 366, 367, 368
1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379,
    380, 381, 382, 383, 384
1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395,
    396, 397, 398, 399, 400
1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411,
    412, 413, 414, 415, 416
1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427,
    428, 429, 430, 431, 432
1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443,
    444, 445, 446, 447,448
1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459,
    460, 461, 462, 463,464
1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475,
    476, 477, 478, 479, 480
1065 *Nset, nset=SET-2, generate
1066 1, 470, 1
1067 *Elset, elset=SET-2, generate
```



```
1070 1, 470, 1
1071 *Elset, elset=SET-4, generate
1072 1, 480, 1
1073 *Nset, nset=SET-7
1074 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
    12, 13, 14, 15, 16
1075 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
    28, 29, 30, 31, 32
1076 33, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
    63, 64, 65, 66, 67
1077 68, 69, 70, 71, 91, 92, 93, 94, 95, 96, 97,
    98, 99, 100, 101, 102
1078 103, 104, 105, 106, 107, 108, 109, 129, 130, 131, 132,
    133, 134, 135, 136, 137
1079 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 243,
    244, 245, 246, 247, 248
1080 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,
    260, 261, 281, 282, 283
1081 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294,
    295, 296, 297, 298, 299
1082 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310,
    311, 312, 313, 314, 315
1083 316, 317, 318, 357, 358, 359, 360, 361, 362, 363, 364,
    365, 366, 367, 368, 369
1084 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380,
    381, 382, 383, 384, 385
1085 386, 387, 388, 389, 390, 391, 392, 393, 394, 414, 415,
    416, 417, 418, 419, 420
1086 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431,
    432, 433, 434, 435,436
1087 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447,
    448, 449, 450, 451, 452
1088 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463,
    464, 465, 466, 467, 468
1089 469, 470
1090 *Elset, elset=SET-7
1091 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
    12, 13, 14, 15, 16
1092 17, 18, 19, 20, 41, 42, 43, 44, 45, 46, 47,
    48, 49, 50, 51, 52
1093 53, 54, 55, 56, 57, 58, 59, 60, 81, 82, 83,
    84, 85, 86, 87, 88
1094 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
    100, 121, 122, 123, 124
1095 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,
    136, 137, 138, 139, 140
1096 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,
    252, 253, 254, 255, 256
1097 257, 258, 259, 260, 281, 282, 283, 284, 285, 286, 287,
    288, 289, 290, 291, 292
1098 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303,
    304, 305, 306, 307, 308
1099 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319,
    320,361,362,363,364
```

```
1100 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375,
    376, 377, 378, 379, 380
1101 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391,
    392, 393, 394, 395, 396
1102 397, 398, 399, 400, 421, 422, 423, 424, 425, 426, 427,
    428, 429, 430, 431, 432
1103 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443,
    444, 445, 446, 447, 448
1104 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459,
    460, 461, 462, 463,464
1105 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475,
    476, 477, 478, 479, 480
1106 *Nset, nset=AVERTICAL
1107 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
    12, 13, 14, 34, 35
1108 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
    47, 48, 49, 50, 51
1109 52, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
    82, 83, 84, 85, 86
1110 87, 88, 89, 90, 110, 111, 112, 113, 114, 115, 116,
    117, 118, 119, 120, 121
1111 122, 123, 124, 125, 126, 127, 128, 148, 149, 150, 151,
    152, 153, 154, 155, 156
1112 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167,
    168, 169, 170, 171, 172
1113 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183,
    184, 185, 186, 187, 188
1114 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199,
    200, 201, 202, 203, 204
1115 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215,
    216, 217, 218, 219, 220
1116 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231,
    232, 233, 234, 235, 236
1117 237, 238, 239, 240, 241, 242, 262, 263, 264, 265, 266,
    267, 268, 269, 270, 271
1118 272, 273, 274, 275, 276, 277, 278, 279, 280, 319, 320,
    321, 322, 323, 324, 325
1119 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336,
    337, 338, 339, 340, 341
1120 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352,
    353, 354, 355, 356, 395
1121 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406,
    407, 408, 409, 410, 411
1122 412, 413
1123 *Elset, elset=AVERTICAL
1124 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
    32, 33, 34, 35, 36
1125 37, 38, 39, 40, 61, 62, 63, 64, 65, 66, 67,
    68, 69, 70, 71, 72
1126 73, 74, 75, 76, 77, 78, 79, 80, 101, 102, 103,
    104, 105, 106, 107, 108
1127 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
    120, 141, 142, 143, 144
1128 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155,
    156, 157, 158, 159, 160
1129 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
    172, 173, 174, 175,176
```

```
1130 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
    188, 189, 190, 191, 192
1131 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203,
    204, 205, 206, 207, 208
1132 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219,
    220, 221, 222, 223, 224
1133 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235,
    236, 237, 238, 239, 240
1134 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271,
    272, 273, 274, 275, 276
1135 277, 278, 279, 280, 321, 322, 323, 324, 325, 326, 327,
    328, 329, 330, 331, 332
1136 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343,
    344, 345, 346, 347, 348
1137 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359,
    360, 401, 402, 403,404
1138 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415,
    416, 417, 418, 419, 420
1139 *Nset, nset=SET-9, generate
1140 1, 470, 1
1141 *Elset, elset=SET-9, generate
1142 1, 480, 1
1143 *Nset, nset=AHORIZONTAL
1144 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
    12, 13, 14, 15, 16
1145 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
    28, 29, 30, 31, 32
1146 33, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
    63,64,65,66,67
1147 68, 69, 70, 71, 91, 92, 93, 94, 95, 96, 97,
    98, 99, 100, 101, 102
1148 103, 104, 105, 106, 107, 108, 109, 129, 130, 131, 132,
    133, 134, 135, 136, 137
1149 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 243,
    244, 245, 246, 247, 248
1150 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,
    260, 261, 281, 282, 283
1151 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294,
    295, 296, 297, 298, 299
1152 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310,
    311, 312, 313, 314, 315
1153 316, 317, 318, 357, 358, 359, 360, 361, 362, 363, 364,
    365, 366, 367, 368, 369
1154 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380,
    381, 382, 383, 384, 385
1155 386, 387, 388, 389, 390, 391, 392, 393, 394, 414, 415,
    416, 417, 418, 419, 420
1156 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431,
    432, 433, 434, 435, 436
1157 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447,
    448,449, 450, 451,452
1158 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463,
    464, 465,466, 467,468
1159 469, 470
1160 *Elset, elset=AHORIZONTAL
1161 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
    12, 13, 14, 15, 16
```

```
116248, 49, 17, 50, 18, 51, 19, 52 20, 41, 42, 43, 44, 45, 46, 47
1163 53, 54, 55, 56, 57, 58, 59, 60, 81, 82, 83,
    84, 85, 86, 87, 88
1164 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
    100, 121, 122, 123, 124
1165 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,
    136, 137, 138, 139, 140
1166 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,
    252, 253, 254, 255, 256
1167 257, 258, 259, 260, 281, 282, 283, 284, 285, 286, 287,
    288, 289, 290, 291, 292
1168 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303,
    304, 305, 306, 307, 308
1169 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319,
    320, 361, 362, 363, 364
1170 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375,
    376, 377, 378, 379, 380
1171 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391,
    392, 393, 394, 395, 396
1172 397, 398, 399, 400, 421, 422, 423, 424, 425, 426, 427,
    428, 429, 430, 431, 432
1173 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443,
    444, 445,446, 447,448
1174 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459,
    460, 461, 462, 463,464
1175 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475,
    476, 477, 478, 479, 480
1176 *Nset, nset=SET-10, generate
1177 1, 470, 1,
1178 ** Section: Section-1-AHORIZONTAL Profile: Profile-1
1179 *Beam Section, elset=AHORIZONTAL,
    material=NITI_SE_AURRICHIO, poisson = 0.3,
    temperature=GRADIENTS, section=CIRC
1180 """)
1 1 8 1 ~ f i l e O u t p u t . w r i t e ( s t r ( r h ) ) ~ \# ~ w r i t e ~ h o r i z o n t a l ~ r a d i u s ~
1 1 8 2 ~ f i l e O u t p u t . w r i t e ( " " " )
1183 0.,0.,-1.
1 1 8 4 ~ * * ~ S e c t i o n : ~ S e c t i o n - 2 - A V E R T I C A L ~ P r o f i l e : ~ P r o f i l e - 2 ~
1185 *Beam Section, elset=AVERTICAL,
    material=NITI_SE_AURRICHIO, poisson = 0.3,
    temperature=GRADIENTS, section=CIRC
1186 """)
1 1 8 7 \text { fileOutput.write(str(rv)) \# write vertical radius}
1188 fileOutput.write("""
1189 0.,0.,-1.
1190 *End Part
1191 **
1192 **
1193 ** ASSEMBLY
1 1 9 4 ~ * * ~
1195 *Assembly, name=Assembly
1196 **
1197 *Instance, name=PART-1-1, part=PART-1
1 1 9 8 ~ * E n d ~ I n s t a n c e
1199 **
1200 *Nset, nset=BOTTOM, instance=PART-1-1
```

```
1201 3, 4, 8, 11 
1203 6, 7, 9, 14
1204 *Nset, nset=XYPLANE, instance=PART-1-1
1205 1, 8, 9, 10
1206 *Nset, nset=YZPLANE, instance=PART-1-1
1207 12,
1208 *Nset, nset=ZXBOTTOM, instance=PART-1-1
1209 3, 4, 8, 11, 53, 54, 55, 56, 57, 58, 59,
    60, 61, 62, 63,64
1210 65, 66, 67, 68, 69, 70, 71, 243, 244, 245, 246,
    247, 248, 249, 250, 251
1211 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 300,
    301, 302, 303, 304, 305
1212 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316,
    317, 318, 452, 453, 454
1213 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465,
    466, 467, 468, 469, 470
1214 *Nset, nset=ZXTOP, instance=PART-1-1
1215 6, 7, 9, 14, 129, 130, 131, 132, 133, 134, 135,
    136, 137, 138, 139, 140
1216 141, 142, 143, 144, 145, 146, 147, 357, 358, 359, 360,
    361, 362, 363, 364, 365
1217 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376,
    377, 378, 379, 380, 381
1218 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392,
    393, 394, 433, 434, 435
1219 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446,
    447, 448, 449, 450, 451
1220 *Nset, nset=XYBOTTOM, instance=PART-1-1
1221 1, 8, 9, 10, 167, 168, 169, 170, 171, 172, 173,
    174, 175, 176, 177, 178
1222 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189,
    190, 191, 192, 193, 194
1223 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205,
    206, 207, 208, 209, 210
1224 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221,
    222, 223, 224, 225, 226
1225 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237,
    238, 239, 240, 241, 242
1226 *Nset, nset=XYTOP, instance=PART-1-1
1227 4, 5, 7, 13, 72, 73, 74, 75, 76, 77, 78,
    79, 80, 81, 82, 83
1228 84, 85, 86, 87, 88, 89, 90, 148, 149, 150, 151,
    152, 153, 154, 155, 156
1229 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 319,
    320, 321, 322, 323, 324
1230 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335,
    336, 337, 338, 339, 340
1231 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351,
    352, 353, 354, 355, 356
1232 *Nset, nset=ZYBOTTOM, instance=PART-1-1
1 2 3 3 ~ 1 2 ,
1234 *Nset, nset=ZYTOP, instance=PART-1-1
1235 2,
1236 *End Assembly
1237 **
```



```
1292
```

1292
1293 *Static
1293 *Static
1294 0.01, 1., 1e-05, 0.1
1294 0.01, 1., 1e-05, 0.1
1295 **
1295 **
1296 ** BOUNDARY CONDITIONS
1296 ** BOUNDARY CONDITIONS
1297 **
1297 **
1298 ** Name: BC-4 Type: Displacement/Rotation
1298 ** Name: BC-4 Type: Displacement/Rotation
1299 * Boundary, op=NEW
1299 * Boundary, op=NEW
1300 ** Name: BC-5 Type: Displacement/Rotation
1300 ** Name: BC-5 Type: Displacement/Rotation
1301 *Boundary, op=NEW
1301 *Boundary, op=NEW
1302 ZYTOP, 1, 1
1302 ZYTOP, 1, 1
1303 ** Name: Disp-BC-1 Type: Displacement/Rotation
1303 ** Name: Disp-BC-1 Type: Displacement/Rotation
1304 *Boundary, op=NEW
1304 *Boundary, op=NEW
1305 ZXBOTTOM, 2, 2
1305 ZXBOTTOM, 2, 2
1306 ** Name: Disp-BC-2 Type: Displacement/Rotation
1306 ** Name: Disp-BC-2 Type: Displacement/Rotation
1307 *Boundary, op=NEW
1307 *Boundary, op=NEW
1308 XYBOTTOM, 3, 3
1308 XYBOTTOM, 3, 3
1309 ** Name: Disp-BC-3 Type: Displacement/Rotation
1309 ** Name: Disp-BC-3 Type: Displacement/Rotation
1310 *Boundary, op=NEW
1310 *Boundary, op=NEW
1311 YZPLANE, 1, 1
1311 YZPLANE, 1, 1
1312 **
1312 **
1313 ** OUTPUT REQUESTS
1313 ** OUTPUT REQUESTS
1314 **
1314 **
1315 *Restart, write, frequency=0
1315 *Restart, write, frequency=0
1316 **
1316 **
1317 ** FIELD OUTPUT: F-Output-4
1317 ** FIELD OUTPUT: F-Output-4
1318 **
1318 **
1319 *Output, field
1319 *Output, field
1320 *Contact Output
1320 *Contact Output
1321 CDISP, CSTRESS
1321 CDISP, CSTRESS
1322 **
1322 **
1323 ** FIELD OUTPUT: F-Output-2
1323 ** FIELD OUTPUT: F-Output-2
1324 **
1324 **
1325 *Node Output
1325 *Node Output
1326 CF, RF, U
1326 CF, RF, U
1327 **
1327 **
1328 ** FIELD OUTPUT: F-output-3
1328 ** FIELD OUTPUT: F-output-3
1329 **
1329 **
1 3 3 0 ~ * E l e m e n t ~ O u t p u t , ~ d i r e c t i o n s = Y E S ~
1 3 3 0 ~ * E l e m e n t ~ O u t p u t , ~ d i r e c t i o n s = Y E S ~
1 3 3 1 ~ L E , ~ M V F , ~ P E , ~ P E E Q , ~ P E M A G , ~ S ~
1 3 3 1 ~ L E , ~ M V F , ~ P E , ~ P E E Q , ~ P E M A G , ~ S ~
1332 **
1332 **
1333 ** HISTORY OUTPUT: H-Output-2
1333 ** HISTORY OUTPUT: H-Output-2
1334 **
1334 **
1335 *Output, history, variable=PRESELECT
1335 *Output, history, variable=PRESELECT
1336 *End Step
1336 *End Step
1 3 3 7
1 3 3 7
1338 "" ")
1338 "" ")
1 3 3 9 ~ f i l e O u t p u t . c l o s e () ~ \# c l o s e ~ i n p ~ f i l e ~

```
1 3 3 9 ~ f i l e O u t p u t . c l o s e ( ) ~ \# c l o s e ~ i n p ~ f i l e ~
```


II. inpAbaqusRunAll.py

```
#Author: Ian P. Morrissey
#Description: Submits every input deck in current directory
# and provides the job status for each submission to end each
job before submitting the next job
import os
#create array textstring of .inp file names with file extensions
path=os.curdir
inpNames = [f for f in os.listdir(path) if f.endswith('.inp')]
#number of input files or decks
numinps=len(inpNames)
#remove .inp extension from text string
inpNamesNoExt =[]
inpNamesNoExt =[0 for i in range(numinps)]
for i in range(1,numinps+1):
    inpNamesNoExt[i-1] = inpNames[i-1].replace('.inp', '')
#submit all input files and display job status for each
submission to end each job before submitting the next job
for i in range(1,numinps+1):
    os.system('abaqus job='+inpNamesNoExt[i-1]+' int')
print('Done')
```


III. post_tensor.py

```
# Author: Dr. John A. Moore
    # Edited by: Ian P. Morrissey
    # Changes: changed node sets, input name
    # Description: Extracts reaction Force values in 1, 2, & 3
    directions from node set at every frame in each step and sums
    5 E Extracts displacment values in 1, 2, & 3 directions from node
    set at every frame in each step and sums and averages
import math
import datetime
from odbAccess import *
from abaqusConstants import *
# number of displacements
numLoads=8
# number of relative densities
numruns=15
# number of radii variation
numrvar=16
for j in range(1,numLoads+1):
```

```
            for i in range(1,numruns+1):
            for k in range(1,numrvar+1):
                runnum = str(i)
                loadnum = str(j)
                rvarnum = str(k)
                # Input and ouput file names
                InputName='D1B-'+loadnum+' - 'trunnum+' - 'trvarnum
                # Sum of Reaction Forces
                OutName1='RF'
                # top displacement
                OutName2='U'
            print 'ODB = ' + InputName
            print 'Output Variable = ' + OutNamel
            print 'Output Variable = ' + OutName2
            #vector component
            vecComp = 2
        outputfilename1=InputName+' - '+str(OutName1)+'-
'+str(1)+'.txt' #output file name of reaction force in 1-
direction
            outputfilename2=InputName+'-'+str(OutName1)+'-
    '+str(2)+'.txt' #ofn rf in 2
        outputfilename3=InputName+' - '+str(OutName1)+'-
    '+str(3)+'.txt' #Ofn rf in 3
    outputfilename4=InputName+' - '+str(OutName2)+'-
    '+str(1)+'.txt' #ofn displacement in 1-direction
    outputfilename5=InputName+' - '+str(OutName2)+'-
    '+str(2)+'.txt' #ofn d in 2
    outputfilename6=InputName+' - 'tstr(OutName2)+'-
    '+str(3)+'.txt' #ofn d in 3
    ## open txt file to write to
    out1 = open(outputfilename1,'w') #w is mode used to
    open a file to write or to create one if it does not exist
    out2 = open(outputfilename2,'w')
    out3 = open(outputfilename3,'w')
    out4 = open(outputfilename4,'w')
    out5 = open(outputfilename5,'w')
    out6 = open(outputfilename6,'w')
    # open .odb file to read from
    odb = openOdb(InputName+' .odb ')
    # part
    partInstance =odb.rootAssembly.instances['PART-1-
    1']
    # assembly
    assembly = odb.rootAssembly
```

```
        #n node sets
        nsetName = 'ZYTOP' #node set name of center top
nodes
        nsetTop = assembly.nodeSets[nsetName]
        steps = ['LOAD','UNLOAD'] #load steps
        #steps = ['LOAD']
        for s in steps:
            print s
    # number of frames in step
        numberFrame = len(odb.steps[s].frames)
        # extract frame 1 to determine how many elements
it has
    frame = odb.steps[s].frames[1]
        outvarl=frame.fieldOutputs[str(OutName1)]
        outvar2=frame.fieldOutputs[str(OutName1)]
        outvar3=frame.fieldOutputs[str(OutName1)]
        outvar4=frame.fieldOutputs[str(OutName2)]
        outvar5=frame.fieldOutputs[str(OutName2)]
        outvar6=frame.fieldOutputs[str(OutName2)]
        numelem = len(outvar2.values)
        print 'Number of Elements ' + str(numelem)
        # loop over all times (ie frames)
        for ns in range (1,numberFrame):
        # these just let you know its running
and how long it takes
    print ns
    print str(datetime.datetime.now())
    # extract varibles desired
    frame = odb.steps[s].frames[ns]
    outvar1 =
frame.fieldOutputs['RF'].getSubset(region=nsetTop)
    outvar2 =
frame.fieldOutputs['U'].getSubset(region=nsetTop)
    # number of nodes in sets
    nNsetTop = len(outvarl.values)
    # average over all nodes in set
    # this is adding all variable values
together, starting the variable at 0 value
    sumvar1=0.
    sumvar2=0.
    sumvar3=0.
    sumvar4=0.
    sumvar5=0.
    sumvar6=0.
```

```
1 1 8
1 1 9
120 for n in range (0,nNsetTop):
    # sum of reaction for all nodes
    var1 =outvar1.values[n].data[0]
    sumvar1 += var1
    var2 =outvar1.values[n].data[1]
    sumvar2 += var2
    var3 =outvar1.values[n].data[2]
    sumvar3 += var3
    # sum of displacment for all
    nodes
    var4 =outvar2.values[n].data[0]
    sumvar4 += var4
    var5 =outvar2.values[n].data[1]
    sumvar5 += var5
    var6 =outvar2.values[n].data[2]
    sumvar6 += var6
    # average of varibale for all
    displacment (forces don't need averaged)
        avevar4 = sumvar4/nNsetTop
        avevar5 = sumvar5/nNsetTop
        avevar6 = sumvar6/nNsetTop
        # write data
        out1.write(str(sumvar1)+'\n')
        out2.write(str(sumvar2)+'\n')
        out3.write(str(sumvar3)+'\n')
        out4.write(str(avevar4)+'\n')
        out5.write(str(avevar5)+'\n')
        out6.write(str(avevar6)+'\n')
        # close input and output files
        out1.close()
        out2.close()
        out3.close()
        out4.close()
        out5.close()
        out6.close()
```


IV. odbMaxMises.py [20]

```
#code is from
    #Title:odbMaxMises.py
    #Author: D'assault Systemes
    #Date:2018
    #Code Version: N/A
```

```
#Location:
https://help.3ds.com/2018/english/dssimulia_established/simacaec
mdrefmap/simacmd-c-odbintroexamaxmisespyc.htm?contextscope=all
#
#
#Changes: Peak stress is written to text file based off of odb
file name
```



```
from odbAccess import *
from sys import argv,exit
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def rightTrim(input,suffix):
    if (input.find(suffix) == -1):
        input = input + suffix
    return input
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def getMaxMises(odbName,elsetName):
    """ Print max mises location and value given odbName
        and elset(optional)
    """
    elset = elemset = None
    region = "over the entire model"
    """ Open the output database """
    opname=str(odbName)
    opname=opname.replace('.odb','')
    odb = openOdb (odbName)
    assembly = odb.rootAssembly
    """ Check to see if the element set exists
        in the assembly
    """
    if elsetName:
        try:
            elemset = assembly.elementSets[elsetName]
                region = " in the element set : " + elsetName;
        except KeyError:
            print 'An assembly level elset named %s does' \
                                    'not exist in the output database %s' \
                        % (elsetName, odbName)
                odb.close()
                exit(0)
    """ Initialize maximum values """
    maxMises = -0.1
    maxElem = 0
    maxStep = "_None_"
    maxFrame = -1
    Stress = 'S'
    isStressPresent = 0
    for step in odb.steps.values():
        print 'Processing Step:', step.name
        for frame in step.frames:
            allFields = frame.fieldOutputs
            if (allFields.has_key(Stress)):
                        isStressPreseñt = 1
```

```
stressSet = allFields[Stress]
if elemset:
        stressSet = stressSet.getSubset(
                        region=elemset)
for stressValue in stressSet.values:
        if (stressValue.mises > maxMises):
                            maxMises = stressValue.mises
                            maxElem = stressValue.elementLabel
                            maxStep = step.name
                            maxFrame = frame.incrementNumber
    if(isStressPresent):
    print 'Maximum von Mises stress %s is %f in element
%d'%(
            region, maxMises, maxElem)
    outt=open(opname+'-PVM.txt','w') # open a text file
named after the odb
    outt.write(str(maxMises)) #write peak vm stress
    outt.close() #close text file
    print 'Location: frame # %d step: %s
    '% (maxFrame,maxStep)
    else:
            print 'Stress output is not available in' \
                        'the output database : %s\n' %(odb.name)
    """ Close the output database before exiting the program """
    odb.close()
#======================================================================
===
# S T A R T
#
if ___name___ == '___main___':
    odbName = None
    elsetName = None
    argList = argv
    argc = len(argList)
    i=0
    while (i < argc):
        if (argList[i][:2] == "-o"):
            i += 1
            name = argList[i]
            odbName = rightTrim(name,".odb")
        elif (argList[i][:2] == "-e"):
            i += 1
            elsetName = argList[i]
        elif (argList[i][:2] == "-h"):
                print __doc__
                exit(0)
            i += 1
        if not (odbName):
            print ' **ERROR** output database name is not provided'
            print __doc__
            exit(1)
    getMaxMises(odbName,elsetName)
```


V. PVM.py

```
# Author: Ian Morrissey
# Description: Runs odbMaxMisesText.py for all .odb files in the
    current directory
    import os
    # create array textstring of .odb file names with file
    extensions in current directory
    path = os.curdir
    odbNames = [f for f in os.listdir(path) if f.endswith('.odb')]
    numodbs=len(odbNames)
    #submit odb for peak von mises
    for i in range(1,numodbs+1):
        os.system('abaqus python odbMaxMisesText.py -odb
    'todbNames[i-1]+' -elset " ALL ELEMENTS"')
        print('**'todbNames[i-1]+' executed**')
    print('Done')
```


VI. indBuck.py

```
# Author: Ian P. Morrissey
# Description: Reads ABAQUS .msg file for buckling warning,
writes 1 if no buckling warning
# writes O if negative eignenvalue warning is present
import os
path=os.curdir
#create array of textstring of .msg file names with file
extensions within current directory
msgNames = [f for f in os.listdir(path) if f.endswith('.msg')]
numMsg=len(msgNames)
#remove file extension
outNames=[]
outNames=[0 for i in range(numMsg)]
for i in range(1,numMsg+1):
    outNames[i-1]=msgNames[i-1].replace('.msg','')
# text string that appears in .msg file when buckling does not
occur
eigString= '0 ANALYSIS WARNINGS ARE NEGATIVE EIGENVALUE
MESSAGES'
#output files for each simulation
for i in range(1,numMsg+1):
```

```
    currMsg = open(msgNames[i-1],'r') #current .msg file to open
        readMsg = currMsg.read() #read message file
        buckMsg=open(outNames[i-1]+'-Buck.txt','w') #open output
    file to write
        if eigString in readMsg:
        buckMsg.write('1') #write No Buckling warning
    else:
        buckMsg.write('0') # write Negative Eigen-value warning
    currMsg.close #close current msg
    buckMsg.close #close current buck msg
    print('Done')
```


VII. writeRunPost.py

```
#Author: Ian P. Morrissey
#Description: Runs all scripts for writing input decks,
submitting input decks, extracting values from odb and msg files
import os
#write .inp files
os.system('python writeinput.py')
print(' **.inp files written**')
#submit .inp files
os.system('python inpAbaqusRunAll.py')
print(' **jobs completed**')
#extract force and displacement from .odb files
os.system('abaqus python post_tensor.py')
print(' **force and displacement processed**')
#extract peak von mises stresses from .odb files
os.system('python PVM.py')
print(' **peak von mises processed**')
#indicate whether or not buckling occured
os.system('python indBuck.py')
print(' **buckling indication processed**')
#done
print(' **All Scripts Complete**')
```


APPENDIX C

This appendix shows samples of the MATLAB scripts that were used to process and create plots from the extracted values from ABAQUS.

I. PlotresultsD1DNSBeam.m

```
% Author: Ian Morrissey
% description import force and displacment of DNS and Beam
models and plot
clc; clear all; close all
    %import force f and displacement u DNS models
    % 2 compression
    uc2=load(['D1C2-U-1.txt'])
    Fc2=load(['D1C2-RF-1.txt'])
    % 4 compression
    uc4=load(['D1C4-U-1.txt'])
    Fc4=load(['D1C4-RF-1.txt'])
    % 6 compression
    uc6=load(['D1C6-U-1.txt'])
    Fc6=load(['D1C6-RF-1.txt'])
    % 8 compression
    uc8=load(['D1C8-U-1.txt'])
    Fc8=load(['D1C8-RF-1.txt'])
    % 2 tensile
    ut2=load(['D1T2-U-1.txt'])
    Ft2=load(['D1T2-RF-1.txt'])
    % 4 tensile
    ut4=load(['D1T4-U-1.txt'])
    Ft4=load(['D1T4-RF-1.txt'])
    % 6 tensile
    ut6=load(['D1T6-U-1.txt'])
    Ft6=load(['D1T6-RF-1.txt'])
    % 8 tensile
    ut8=load(['D1T8-U-1.txt'])
    Ft8=load(['D1T8-RF-1.txt'])
    %import force f and displacement u beam models at nominal
    % 2 compression
    Buc2=load(['D1B-1-1-U-1.txt'])
    BFC2=load(['D1B-1-1-RF-1.txt'])
    % 4 compression
```

```
Buc4=load(['D1B-2-1-U-1.txt'])
BFC4=load(['D1B-2-1-RF-1.txt'])
% 6 compression
Buc6=load(['D1B-3-1-U-1.txt'])
BFc6=load(['D1B-3-1-RF-1.txt'])
% 8 compression
Buc8=load(['D1B-4-1-U-1.txt'])
BFC8=load(['D1B-4-1-RF-1.txt'])
% 2 tensile
But2=load(['D1B-5-1-U-1.txt'])
BFt2=load(['D1B-5-1-RF-1.txt'])
% 4 tensile
But4=load(['D1B-6-1-U-1.txt'])
BFt4=load(['D1B-6-1-RF-1.txt'])
% 6 tensile
But6=load(['D1B-7-1-U-1.txt'])
BFt6=load(['D1B-7-1-RF-1.txt'])
% 8 tensile
But8=load(['D1B-8-1-U-1.txt'])
BFt8=load(['D1B-8-1-RF-1.txt'])
%plot dns and beam force-displacement
figure(1)
p1=plot(uc2,Fc2,'r')
p1.LineWidth = 1.5
hold on
p2=plot(ut2,Ft2,'r')
p2.LineWidth = 1.5
p3=plot(Buc2,BFc2,'r--')
p3.LineWidth = 1.5
p4=plot(But2,BFt2,'r--')
p4.LineWidth = 1.5
p5=plot(uc4,Fc4,'b')
p6=plot(ut4,Ft4,'b')
p7=plot(Buc4,BFc4,'b--')
p8=plot(But4,BFt4,'b--')
p9=plot(uc6,Fc6,'g')
p10=plot(ut6,Ft6,'g')
p11=plot(Buc6,BFC6,'g--')
p12=plot(But6,BFt6,'g--')
p13=plot(uc8,Fc8,'k')
p14=plot(ut8,Ft8,'k')
p15=plot(Buc8,BFC8,'k--')
p16=plot(But8,BFt8,'k--')
hold off
xlabel('Displacement (mm)');ylabel('Force (N)');grid
axis([-0.2 0.2 -15 15]);
legend([p1 p5 p9 p13 p3 p7 p11 p15],{'DNS 2%','DNS 4%','DNS
6%','DNS 8%','Beam 2%','Beam 4%','Beam 6%','Beam 8%'});
legend('Location','northeastoutside')
saveas(gcf,'BeamDNSFDDirection1.svg')
```


II. plotresults1cont.m

```
% Author: Ian P. Morrissey
% Description: Import displacement and force values
% Imports peak Von Mises stress values and Buckling indication
% Calculates energy dissipation and energy dissipation
coefficient
% Plots Energy Dissipation and Energy Dissipation Coefficient
for set-displacements vs Rvar and Relative Density
clc; clear all; close all;
disp=linspace(-0.08,-0.01,8); % displacment values
rvar=linspace(0.5,1.25,16); % radius variance coefficient values
rd=linspace(0.03,0.45,15); % relative density values
k=0; %initialize k index
for u=1:8; %index by displacment
        for ii=1:15; % index by reltive desnity
            for j=1:16; %index by rvar
                    clear d F di Fi F1 F2 E1 E2 h; % clear variables
    from last loop
                vm=load(['D1B-' num2str(u) '-' num2str(ii) '-'
    num2str(j) '-PVM.txt']); %load peak von mises stress
                buck=load(['D1B-' num2str(u) '-' num2str(ii) '-'
    num2str(j) '-Buck.txt']); %load buckling indication
        if buck==1 && vm<=700 % only proceed if buckling
    did not occur and the stress limit was not reached
        di=load(['D1B-' num2str(u) '-' num2str(ii) '-'
    num2str(j) '-U-1.txt']); %import displacement
            Fi=load(['D1B-' num2str(u) '-' num2str(ii) '-'
    num2str(j) '-RF-1.txt']); %import force
            k=k+1; %index k
                    vab(k,1)=rd(ii); % create rd that is to be used
                    vab(k,2)=rvar(j); %create rvar to be used
                    d(1)=0; %initialize displacment
                    F(1)=0; %initialize force
                    for i= 1:length(di); %convert
                    d(i+1)=-di(i);
                F(i+1)=-Fi(i);
                    end
                    %separate curves for calculating area under
    loading and
    %unloading for energy calculations and calculate
    energy
                    %dissipated and ED coefficeint
                    [maxval,maxind]=max(d);
                    d1=d(1:maxind);
                    d2=d(maxind:length(d));
                    F1=F(1:maxind);
                    F2=F(maxind:length(d));
                    E1=trapz(d1,F1);
                    E2=-trapz(d2,F2);
                    vab(k,3)=E1-E2; %energy calc;
                    vab(k,4)=(E1-E2)./((E1-(E1-E2)./2)*pi); % energy
    dissipation coefficient
```

