Marquette University e-Publications@Marquette

Master's Theses (2009 -)

Dissertations, Theses, and Professional Projects

Numerical Studies of a Superelastic Nickel-Titanium Rhombic Dodecahedron Structure Using the Finite Element Method

Ian Patrick Morrissey Marquette University

Follow this and additional works at: https://epublications.marquette.edu/theses_open

Part of the Engineering Commons

Recommended Citation

Morrissey, Ian Patrick, "Numerical Studies of a Superelastic Nickel-Titanium Rhombic Dodecahedron Structure Using the Finite Element Method" (2022). *Master's Theses (2009 -*). 700. https://epublications.marquette.edu/theses_open/700

NUMERICAL STUDIES OF A SUPERELASTIC NICKEL-TITANIUM RHOMBIC DODECAHEDRON STRUCTURE USING THE FINITE ELEMENT METHOD

By Ian P. Morrissey, B.S.

A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering

> Milwaukee, WI May 2022

ABSTRACT NUMERICAL STUDIES OF A SUPERELASTIC NICKEL-TITANIUM RHOMBIC DODECAHEDRON STRUCTURE USING THE FINITE ELEMENT METHOD

Ian P. Morrissey, B.S.

Marquette University, 2022

Energy dissipation is an important material property for materials used in applications such as armor, airplane wings, and automotive vehicle crumple zones. superelastic Nickel-Titanium (NiTi) and compliant under-dense materials both have excellent energy dissipation properties. Current research suggests that compliant underdense materials made of superelastic NiTi have desirable energy dissipation properties. A rhombic dodecahedron Lattice Structured Material (LSM) is an example of a compliant under-dense Material which has potential to exhibit desirable energy dissipation properties when manufactured from superelastic NiTi. In this work, finite element modeling of a superelastic NiTi rhombic dodecahedron Lattice Structured Material is performed and an optimum for energy dissipation based solely on geometric modification is found.

ACKNOWLEDGEMENTS

Ian P. Morrissey, B.S.

I would like to acknowledge the funding and support I received from Marquette University Graduate School and Dr. Moore that was used to complete this research. I would like to acknowledge my advisor Dr. Moore for his truly tested and seemingly unlimited patience and support, and for the advice and the challenge I was provided throughout my experience in academia thus far. I would like to thank Dr. Murray for her continued moral and academic support, advice, and many enjoyable conversations. I would like to acknowledge Dr. Zhou for taking the time out of his busy schedule and going out on a limb to serve on my committee.

I would like to acknowledge Dr. Rice and Dr. Schimmels for their patience, advice, and support. I am looking forward to working under your advisory.

I would like to acknowledge Jacob Rusch and Allison Goetz whose support has been immeasurable and whose friendship I cherish deeply. I would like to acknowledge my friend Collin Shale for listening to me when everything seemed impossible. I would like to acknowledge Dr. Bowman, Tim Fair, and Waqar Khan for their advice and many engaging conversations. I would like to acknowledge Dr. Park for saying hello and asking why I am still here every time I see him, despite him knowing exactly why I am still here.

I would like to acknowledge my father, Christopher, my mother, Kathryn, my sister, Hannah, my brother, Alexander, and my sister-in-law, Echo, for their continued support. I would like to acknowledge my Aunt Meghan and Uncle Bob for their support and for providing me with feedback. I would like to acknowledge Rocco, Chris, Tom, and Mike for being lifelong friends. I would like to acknowledge everyone else who has helped me along the way.

The support I have received from friends, family, faculty, and colleagues has been immeasurable. Immeasurable is a word I have used too many times to describe the support, and still not enough to describe how much I appreciate it. I hope to never take for granted all of these truly wonderful and patient individuals. I hope I have not forgotten anyone, but I know I will never forget the kindness that others have shown me. It takes a village.

DEDICATION

I would like to dedicate this thesis to the teachers that believed in me when I did not and who provided an ear when I needed it most:

Mr. Nieman - Math Ms. Caduto - Physics Mr. Dupuis - Chemistry Mr. Cleland – Design Dr. Myslinski - Scripture Class & Philosophy Club Coordinator Mr. Sneed - Guidance Counselor Paul Caldwell - Choir Director

I would also like to dedicate this to my late friend Max Marischen. We all miss you. You were my brother, and you always will be.

"I love deadlines, I love the whooshing noise they make as they go by." – Douglas Adams

TABLE OF CONTENTS

LIST (OF TABLESvii
LIST (OF FIGURES viii
LIST (OF ABBREVIATIONS xi
INTRO	DDUCTION 1
BACK	GROUND
I.	Shape Memory Alloy Background 4
II.	Superelasticity Material Model
III.	Under-Dense Material Background 11
IV.	Damping and Energy Dissipation16
SIMU	LATION SET-UP AND STUDIES
I.	Overview
II.	Meshing
III.	Mechanical Behavior Study21
IV.	Energy Dissipation Studies
RESU	LTS AND DISCUSSION
I.	Overview
II.	Mechanical Behavior Study Results
III.	Energy Dissipation and Radii Variation Study

IV.	Energy Dissipation and Relative Density Study	39
V.	Energy Dissipation Combined Study	43
CONC	LUSION	47
FUTU	RE WORK	48
BIBLI	OGRAPHY	49
APPE	NDIX A	52
APPE	NDIX B	65
I.	writeinput.py	65
II.	inpAbaqusRunAll.py	92
III.	post_tensor.py	92
IV.	odbMaxMises.py [20]	95
V.	PVM.py	98
VI.	indBuck.py	98
VII.	writeRunPost.py	99
APPEN	NDIX C 1	00
I.	PlotresultsD1DNSBeam.m	00
II.	plotresults1cont.m1	02

LIST OF TABLES

Table 1: Material Parameters from	[11, pp. 33–34] used in these analyses	10
-----------------------------------	----------------	--------------------------	----

LIST OF FIGURES

Figure 1: Typical stress-strain curves of the (a) SME and (b) SEE based on the plots in [8, Fig. 1]
Figure 2: Example of a typical superelasticity stress-strain curve indicating material parameters adapted from [15, Fig. 1]
Figure 3: Depiction of superelastic NiTi stress-induced phase transformation with straight and slanted lines indicating austenite and martensite phases, respectively, adapted from [9, Fig. 2]
Figure 4: Open-cell rhombic dodecahedron structure with dimensions adapted from [8, Fig. 1]
Figure 5: The rhombic dodecahedron unit cell rendered in Abaqus CAE from multiple viewpoints
Figure 6: Energy dissipation shown as the difference between the energy of the loading path in blue and the unloading path in blue on a typical compression curve of an SMA adapted from [4, Fig. 11]
Figure 7: Beam model mesh using B31 beam elements with 480 elements and 1430 nodes
Figure 8: DNS model mesh of the rhombic dodecahedron unit cell using C3D10 elements with 21683 elements and 38303 nodes
Figure 9: Boundary conditions for the unit cell analyses performed for the (a) DNS model and (b) Beam model
Figure 10: (a) Upper and (b) lower bound of the Horizontal Radius
Figure 11: (a) Upper and (b) lower bound of the Relative Density
Figure 12: Force-Displacement Curve of Beam and DNS Model in <i>x</i> -Direction
Figure 13: Force-Displacement Curve of Beam and DNS Model for y-direction
Figure 14: Equivalent Von-Mises Stress (MPa) contour plots for compression in the <i>x</i> -direction for the DNS (left) and Beam Model (right). The colored legend changes with each displacement
Figure 15: Equivalent Von-Mises Stress (MPa) contour plots for tension in the <i>x</i> -direction for the DNS (left) and Beam Model (right). The colored legend changes with each displacement
Figure 16: Equivalent Von-Mises Stress (MPa) contour plots for compression in <i>y</i> -direction for the DNS (left) and Beam Model (right). The colored legend changes with each displacement
Figure 17: Equivalent Von-Mises Stress (MPa) contour plots for tension in the <i>y</i> -direction for the DNS (left) and Beam Model (right). The colored legend changes with each displacement

Figure 18: Energy dissipated vs horizontal radius for loading in x-direction
Figure 19: Energy dissipation coefficient vs horizontal radius for loading in <i>x</i> -direction.
Figure 20: Energy dissipation vs horizontal radius for loading in <i>y</i> -direction. Simulations that indicated buckling were not included in this plot
Figure 21: Energy dissipation coefficient vs horizontal radius for loading in <i>y</i> -direction. Simulations that indicated buckling were not included in this plot
Figure 22: Energy dissipation vs relative density for loading in <i>x</i> -direction 40
Figure 23: Energy dissipation coefficient vs relative density for loading in x -direction. 41
Figure 24: Energy dissipated vs relative density for loading in <i>y</i> -direction. Simulations that indicated buckling were not included in this plot
Figure 25: Energy dissipation coefficient vs relative density for loading in <i>y</i> -direction. Simulations that indicated buckling were not included in this plot
Figure 26: Energy Dissipated plotted against <i>Rvar</i> and relative density for 4% displacement in <i>x</i> -direction
Figure 27: Energy Dissipation Coefficient, η , plotted against <i>Rvar</i> and relative density for 4% displacement in <i>x</i> -direction
Figure 28: Energy Dissipated plotted against <i>Rvar</i> and relative density for 4% displacement in <i>y</i> -direction. Simulations that exceed stress limit or that indicated buckling were not included in this plot
Figure 29: Energy Dissipation Coefficient, η , plotted against <i>Rvar</i> and relative density for 4% displacement in <i>y</i> -direction. Simulations that exceed stress limit or that indicated buckling were not included in this plot
Figure 30: Energy Dissipated plotted against <i>Rvar</i> and relative density for 8% displacement in <i>x</i> -direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot
Figure 31: Energy Dissipated plotted against <i>Rvar</i> and relative density for 7% displacement in <i>x</i> -direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot
Figure 32: Energy Dissipated plotted against $Rvar$ and relative density for 6% displacement in x-direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot
Figure 33: Energy Dissipated plotted against $Rvar$ and relative density for 5% displacement in x-direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot
Figure 34: Energy Dissipated plotted against <i>Rvar</i> and relative density for 3% displacement in <i>x</i> -direction
Figure 35: Energy Dissipated plotted against <i>Rvar</i> and relative density for 2% displacement in <i>x</i> -direction

Figure 36: Energy Dissipated plotted against <i>Rvar</i> and relative density for 2% displacement in <i>x</i> -direction
Figure 37: Energy Dissipation Coefficient plotted against <i>Rvar</i> and relative density for 8% displacement in <i>x</i> -direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot
Figure 38: Energy Dissipation Coefficient plotted against <i>Rvar</i> and relative density for 7% displacement in <i>x</i> -direction
Figure 39: Energy Dissipation Coefficient plotted against <i>Rvar</i> and relative density for 6% displacement in <i>x</i> -direction
Figure 40: Energy Dissipation Coefficient plotted against <i>Rvar</i> and relative density for 5% displacement in <i>x</i> -direction
Figure 41: Energy Dissipation Coefficient plotted against <i>Rvar</i> and relative density for 3% displacement in <i>x</i> -direction
Figure 42: Energy Dissipation Coefficient plotted against <i>Rvar</i> and relative density for 2% displacement in <i>x</i> -direction
Figure 43: Energy Dissipation Coefficient plotted against <i>Rvar</i> and relative density for 1% displacement in <i>x</i> -direction. All values of η are effectively zero
Figure 44: Energy Dissipated plotted against <i>Rvar</i> and the relative density for 6% displacement in <i>y</i> -direction
Figure 45: Energy Dissipated plotted against <i>Rvar</i> and relative density for 5% displacement in <i>y</i> -direction
Figure 46: Energy Dissipated plotted against <i>Rvar</i> and relative density for 3% displacement in <i>y</i> -direction
Figure 47: Energy Dissipated plotted against <i>Rvar</i> and relative density for 2% displacement in <i>y</i> -direction
Figure 48: Energy Dissipated plotted against <i>Rvar</i> and relative density for 1% displacement in <i>y</i> -direction
Figure 49: Energy Dissipation Coefficient plotted against <i>Rvar</i> and relative density for 6% displacement in <i>y</i> -direction
Figure 50: Energy Dissipation Coefficient plotted against <i>Rvar</i> and relative density for 5% displacement in <i>y</i> -direction
Figure 51: Energy Dissipation Coefficient plotted against <i>Rvar</i> and relative density for 3% displacement in <i>y</i> -direction
Figure 52: Energy Dissipation Coefficient plotted against <i>Rvar</i> and relative density for 2% displacement in <i>y</i> -direction
Figure 53: Energy Dissipation Coefficient plotted against <i>Rvar</i> and relative density for 1% displacement in <i>y</i> -direction

LIST OF ABBREVIATIONS

- SMA Shape Memory Alloy
- SME Shape Memory Effect
- SEE Superelastic Effect
- UDM Under-dense material
- LSM Lattice Structured Material
- SLM Selective Laser Melting
- EBM Electron Beam Melting
- NiTi Nickel-Titanium
- DNS Direct Numerical Simulation

INTRODUCTION

Under-dense material (UDM) describes material in which deliberate void space exists within a volume of a given material which may or may not be filled with other material. UDM take several forms and names like cellular materials, metal foams, and Lattice Structured Materials (LSM) [1], [2]. The use of UDM for impact absorption and energy dissipation is well documented with uses such as armors [3] and airplane wings [1]. A LSM is a porous material usually made up of periodic cells of structural members. In [2], Messner describes them as akin to the beams and trusses of bridges and skyscrapers, but at a reduced scale. These materials are advantageous as they reduce the mass density of a given volume of a material and allow for the modification and customization of the mechanical behavior. LSMs can be manufactured through a variety of processes such as wire-weaving [4] and additive manufacturing processes like Selective Laser Melting (SLM) [5] and Electron Beam Melting (EBM)[6]. Bending dominated LSMs are compliant structures whose structural members are dominated by bending behavior [7]. A rhombic dodecahedron lattice is a bending dominated lattice made up of 12 rhombic faces for which the edges are the structural members of the LSM [8].

A Shape-Memory Alloy (SMA) is a class of material characterized by its unique mechanical property the Shape Memory Effect (SME) [9]–[11]. SME is the property of shape memory alloys in which a specimen of a SMA appears to be plastically deformed and, upon heating, that deformation is recovered. The Superelastic Effect (SEE) is another mechanical property that is characteristic of certain SMAs and can be described

as the large, elastically recoverable deformation that occurs during a solid-state, "stressinduced" [10, p. 176] phase change. Nickel-Titanium (NiTi) is the nearly equiatomic nickel and titanium shape memory alloy. NiTi is also commonly referred to as Nitinol, as it is a NiTi alloy that was researched at the Naval Ordnance Laboratory (NOL) [12]. Superelastic NiTi wire is known for its damping properties as shown in [13]. Superelastic NiTi can accommodate strains in excess of 8%, making it a considerably compliant material relative to other metal alloys as shown in [9],[13].

SMA UDMs have been shown to be capable of providing desirable energy dissipation properties given the strain accommodation that can be provided with UDMs and SMAs as illustrated in [4]. A superelastic NiTi rhombic dodecahedron LSM could provide considerable energy dissipation properties due to the compliant mechanical behavior of both superelastic NiTi and the rhombic dodecahedron lattice structure.

Unit cell modeling of a periodic UDM is a computationally efficient means of analysis for generalizing the behavior of a UDM to a larger global structure. However, there are some limitations to unit cell modeling, namely higher stiffness than modeling an entire structure. The geometry and base materials of LSMs can be modified to in order to optimized the LSMs to a chosen application as noted in [2]. Adjusting the cross section of the members parallel and perpendicular to loading while keeping the relative density and volume of the unit cell constant may allow for better material performance, such as increased capacity for energy dissipation while maintaining the periodicity of the LSM. Adjusting the relative density of the structure will show how the energy dissipated changes with an increase in mass density. Finding a geometric optimum for maximum energy dissipation using a finite element analysis of a SMA LSM unit cell can be computationally expensive and time intensive for large numbers of simulations. Utilizing simplified beam element models allows for reduced computational time so that an optimal geometry for the LSM unit cell can be found. This thesis will find such an optimum using simplified beam element models of a superelastic NiTi rhombic dodecahedron LSM. It will provide the background of the aforementioned subjects, the methodology of these studies, and the results of the studies with pertinent discussion of geometric optimums for energy dissipation of a superelastic NiTi rhombic dodecahedron LSM.

BACKGROUND

I. Shape Memory Alloy Background

As noted earlier, SMA is a classification of metal alloys that exhibit the shape memory effect, a thermo-mechanical property. The SMA NiTi has been the subject of numerous studies, some of which will be outlined here. NiTi exhibits the SME as well as the SEE depending on temperature and alloy composition. The SME is the property of shape memory alloys in which a specimen of a SMA appears to be plastically deformed and, upon heating, that deformation is recovered. SEE is the property of some SMAs in which large recoverable deformations, typically uncharacteristic of metals, occur due to a "stress-induced" [10, p. 176] phase change [9]–[11]. Figure 1 shows typical stress-strain curves of the (a) SME with loading in blue and unloading in red with heat induced strain recovery in green and (b) SEE with loading in blue and unloading in red. These plots were created with color and labels for clarity based on the plots in [8, Fig. 1].

Figure 1: Typical stress-strain curves of the (a) SME and (b) SEE based on the plots in [8,

Fig. 1].

Solid-state phase change are responsible for the SME and SEE in NiTi. Martensite is the lower temperature phase of NiTi and austenite is the higher temperature, "parent" [9, p. 230] phase of NiTi [9]. Martensite has the monoclinic crystalline structure *B*19' [14]. Austenite has the crystalline structure *B*2 [14]. Unstressed low-temperature martensitic NiTi has several variants of martensite whose "crystallographic equivalence" [9, p. 230] induces twinning of related martensite variants which accommodates any transformation strain caused by phase transformation from austenite to martensite upon cooling[9, p. 230].

When stressed sufficiently, all the twinned martensite variants detwin, accommodating strain inelastically. This provides the appearance of plastic deformation. The inelastically deformed, low-temperature detwinned martensitic NiTi transforms to austenite upon heating and the inelastic deformation is recovered. When the NiTi cools, the austenite transforms to the low-temperature martensite phase and the martensite retwins [9]. This is the basis for the SME for which Shape Memory Alloys are named, however, this effect will not be considered in this thesis.

If NiTi is loaded in the high temperature austenite phase, NiTi transitions to a single-variant martensite due to transformation strain induced by stress. When a critical stress is reached during loading, the austenite begins to transform to single-variant martensite. This transformation during loading can be seen in the plateau during loading in Figure 1(b). During unloading, the "stress-induced" [10, p. 176] single variant martensite transforms to austenite. This can be seen in Figure 1(b), represented by the lower plateau during unloading. Single-variant martensite transforms entirely to austenite when unloaded entirely. This is the basis for the SEE [9]. The stress-strain response of the SEE of NiTi is utilized in this thesis.

II. Superelasticity Material Model

From the Abaqus Theory Manual on Superelasticity [15], the Abaqus Material Model Library contains a superelastic material model that is based on the uniaxial stressstrain response of superelastic NiTi. The superelasticity material model requires the use of the elastic material model in conjunction to define the material properties. The material model works similarly to an elastoplastic material model using a Drucker-Prager based flow rule to calculate the transformation strain increment. The plateau in the stress-strain curve of superelastic NiTi, as shown in Figure 2, is representative of this transformation flow. An effective modulus of elasticity and Poisson's ratio are calculated by the material model at every increment based on the fraction of martensite that has transformed from austenite and the elastic properties of the austenite and martensite phases. From [15], the elastic properties are represented by

$$E = E_A + \zeta (E_M - E_A) \tag{1}$$

$$\nu = \nu_A + \zeta(\nu_M - \nu_A) \tag{2}$$

where *E* is the calculated modulus of elasticity, ζ is fraction of martensite, E_A is the elastic modulus of austenite, E_M is the elastic modulus of martensite, ν is the calculated Poisson's ratio, ν_A is the Poisson's ratio of austenite, and ν_M is the Poisson's ratio of martensite. Figure 3 illustrates NiTi under load before and after its full transformation from austenite to martensite. The unstressed cubic austenite phase, represented by vertical lines, which is loaded until the stress is greater than σ_{tL}^E and all the austenite is transformed into single-variant martensite as represented by slanted lines. This figure was adapted from [8, Fig. 2]. From [15], the total strain increment, $\Delta \varepsilon$, is given by equation (3) below

$$\Delta \boldsymbol{\varepsilon} = \Delta \boldsymbol{\varepsilon}^{\boldsymbol{el}} + \Delta \boldsymbol{\varepsilon}^{\boldsymbol{tr}} \tag{3}$$

where $\Delta \boldsymbol{\varepsilon}^{\boldsymbol{el}}$ is the elastic component of strain increment and $\Delta \boldsymbol{\varepsilon}^{\boldsymbol{tr}}$ is the transformation component of the strain increment.

Figure 2: Example of a typical superelasticity stress-strain curve indicating material parameters adapted from [15, Fig. 1].

Figure 3: Depiction of superelastic NiTi stress-induced phase transformation with straight and slanted lines indicating austenite and martensite phases, respectively, adapted from [9, Fig. 2].

The material input parameters of the material model in [15] will now be described. ε^L is the transformation strain. σ_{tL}^S is the stress where austenite begins transformation to single-variant martensite during tensile loading. σ_{tL}^E is the stress where all austenite has transformed into single-variant martensite during tensile loading where $\zeta = 1$. σ_{tU}^S is the stress during tensile unloading where single-variant martensite begins transformation into austenite. σ_{tU}^E is the stress during tensile unloading where singlevariant martensite finishes transformation into austenite where $\zeta = 0$. σ_{cL}^S is the stress where austenite begins transformation to single-variant martensite during compressive loading and is different from σ_{tL}^S [15]. Figure 2 shows these material parameters in relation to the stress-strain curve of the SMA. The parameter α defined in Equation (4) describes the relationship between the initial values of σ_{cL}^{S} and σ_{tL}^{S} [11, Eq. 82], shown as.

$$\alpha = \sqrt{\frac{2}{3} \frac{\sigma_{cL}^S - \sigma_{tL}^S}{\sigma_{cL}^S + \sigma_{tL}^S}}$$
(4)

 $\alpha = 0$ was used for the analyses in this thesis, as the initial compressive and tensile austenite to martensite starting transformation stresses during loading are assumed to be equal. The material parameters in [11] were used for evaluations of the material model in [11, pp. 33–34] and for the analyses in this thesis.

Tuble 1. Malerial 1 arameters from [11, pp. 55-54] used in these analyses				
E_M (MPa)	60000	$T_0(^{\circ}C)$	0	
$ u_M$	0.3	$\left(\frac{\delta\sigma}{\delta T}\right)_{L}\left(\frac{MPa}{^{\circ}\mathrm{C}}\right)$	0	
\mathcal{E}_L	0.075	$\left(\frac{\delta\sigma}{\delta T}\right)_{U}\left(\frac{MPa}{^{\circ}\mathrm{C}}\right)$	0	
σ_{tL}^{S} (MPa)	520	Shape Set Parameter	0	
$\sigma_{tL}^{E}(MPa)$	600	$E_A (MPa)$	60000	
$\sigma_{tU}^{S}(MPa)$	300	ν_a	0.3	
σ_{tU}^E (MPa)	200	$ ho\left(rac{kg}{mm^3} ight)$	6.50(10 ⁻⁶)	
$\sigma_{cL}^{S}(MPa)$	520			

Table 1: Material Parameters from [11, pp. 33–34] used in these analyses.

III. Under-Dense Material Background

As noted earlier, under-dense material (UDM) describes material in which deliberate void space exists within a volume of a given material which may or may not be filled with other material. This can be periodic or non-periodic in nature. These materials reduce the relative density of a given volume of material and modify the mechanical behavior. The relative density, $\bar{\rho}$, is a term used to relate the density of a bulk material and the space that is occupied by that material in a finite volume or a unit cell of the UDM. Relative density is generally given by

$$\bar{\rho} = \frac{V_{Bulk \; Material}}{V_{Total}} \tag{5}$$

Where $V_{Bulk \ Material}$ is the volume of the bulk material and V_{Total} is the total volume of occupied space. Relative density for a unit cell is given by

$$\bar{\rho}_{Unit\ Cell} = \frac{V_{Bulk\ Material}}{V_{Unit\ Cell}} \tag{6}$$

where $\bar{\rho}_{Unit \ Cell}$ represents the relative density, $V_{Bulk \ Material}$ is the volume of bulk material within the unit cell, and $V_{Unit \ Cell}$ is the volume of the entire unit cell [8].

LSMs are periodic UDMs made up of beam-like or truss-like members. LSMs achieve modification of the mechanical behavior of a given base material such as the stiffness, density, and isotropy by the deliberate arrangement of the structural members [2], [7]. LSM can be characterized by the dominating mechanical behavior of the lattice members as "bending-dominated" or "stretching-dominated" [7, p. 1035]. The macroscale mechanical behavior of bending-dominated lattices is relatively compliant while the mechanical behavior of stretching-dominated lattices is relatively stiff. The

dominating mechanical behavior of these lattices is a spectrum of these as noted in [7]. The "Maxwell Criterion" [7, p. 1036] describes the dominating behavior of a LSM based on an algebraic rule. For 3D space from [7, Eq. 2], it is represented by

$$M = s - 3n + 6$$

where M is the Maxwell number, s is the number of struts, and n is the number of joints. Maxwell numbers less than 0 are considered bending-dominated. Maxwell numbers equal to zero are considered stretching-dominated. Maxwell numbers greater than zero are considered mostly stretch-dominated [5].

Rhombic dodecahedron lattices are bending-dominated structures. It is made up of 12 faces of rhombuses whose edges are the members of the unit cell. [8] describes the mechanical properties of the rhombic dodecahedron unit cell as orthotropic with equivalent elastic moduli in the *y*-direction and *z*-direction and a more compliant elastic modulus in the *x*-direction. Figure 4 shows the rhombic dodecahedron structure based off of [8, Fig. 1]. Figure 4(a) shows the structural members in blue and the vertices as red dots. Figure 4(b) shows the rhombic dodecahedron face has side lengths of L and internal angles of 2α and 2Θ . Figure 4(c) shows top, side, and front views of the rhombic dodecahedron unit cell with overall unit cell dimensions. Figure 5 shows 3-Dimensional renderings of the rhombic dodecahedron structure created in Abaqus CAE.

Evaluation of the rhombic dodecahedron unit cell by Maxwell's Criterion finds the structure to be bending-dominated. There are 14 joints of the rhombic dodecahedron Unit Cell and 24 members, and therefore the Maxwell number is -12. The rhombic

(7)

dodecahedron structure is a bending-dominated lattice by this rule. A circular-cross section was selected for the analyses in this thesis.

Figure 4: Open-cell rhombic dodecahedron structure with dimensions adapted from [8, Fig. 1]

Figure 5: The rhombic dodecahedron unit cell rendered in Abaqus CAE from multiple viewpoints.

The relative density of the rhombic dodecahedron unit cell with a circular cross-section for the structural members is represented by

$$\bar{\rho}_{RhD} = \frac{27\sqrt{3}\pi r^2}{4L^2}$$
(8)

where $\bar{\rho}_{RhD}$ is the relative density of the rhombic dodecahedron unit cell, r is the radius of the cross-section, and L is the side length of the rhombus.

Manufacturing of a superelastic NiTi rhombic dodecahedron LSM could be manufactured via a variety of methods. Wire-woven methods were used to produce a SMA truss as shown in [4]. These structures could also be created by an additive manufacturing method such as 4D printing [16].

IV. Damping and Energy Dissipation

Materials capable of high energy dissipation are of interest for their damping properties when considering a need to absorb and control high energy impacts and intense vibrational loading [1], [3], [4], [13]. Energy dissipation is shown to be desirable for applications such as composite armor in [1] and for an impact absorber on an airplane wing in [3]. Superelastic NiTi has desirable energy dissipation properties based on the work in [13]. Energy is dissipated as a result of the "stress-induced" [10, p. 176] solid state phase change as the unloading path has lower energy than the loading path [4], [13].

Figure 6: Energy dissipation shown as the difference between the energy of the loading path in blue and the unloading path in blue on a typical compression curve of an SMA adapted from [4, Fig. 11].

Energy dissipation can be quantified by the difference in potential energy input during loading and the potential energy output during unloading. [4] calculated the dissipated energy from the difference of energy in the loading and unloading paths of wire-woven SMA trusses in compression. From [4, Eq. 1], the energy dissipated is calculated by

$$E_{disp} = E_1 - E_2 \tag{9}$$

where loading energy, the unloading energy, and energy dissipated are represented by E_1 , E_2 , and E_{disp} , respectively. Figure 6 shows E_1 , E_2 , and E_{disp} with respect to the loading paths. From [4, Eq. 2] and [4, Eq. 3], the energy dissipation coefficient, η , which for the purposes of this thesis represents a normalization of the energy dissipated, is calculated by

$$\eta = \frac{E_{disp}}{\pi (E_1 - \frac{E_{disp}}{2})} \tag{10}$$

where η is the energy dissipation coefficient [4, p. 2288].

SIMULATION SET-UP AND STUDIES

I. Overview

The superelastic NiTi rhombic dodecahedron structure unit cell was modeled using two methods. The first model, which will be referred to as the Direct Numerical Simulation (DNS) model, uses a mesh of tetrahedral elements. The second model, which will be referred to as the Beam model, was created using beam finite elements [17, pp. 535–596] for computational efficiency. The DNS is the more precise model of behavior at the expense of computational efficiency. A study to evaluate the mechanical behavior of the unit cell was carried out in which the unit cell was displaced in tension and compression along the *x*-direction and *y*-direction. This study was carried out using both the DNS model and the Beam model to evaluate how well the Beam model can model the mechanical behavior of the unit cell. The Beam model was then used for two studies to evaluate the unit cell for its capacity for energy dissipation given changes in geometry and relative density, respectively. A third study was then carried out to evaluate the unit cell for its capacity for energy dissipation when combining the changes in geometry and relative density while also scaling up the unit cell.

II. Meshing

Both the DNS model and the Beam Model used elements from the Abaqus Element Library [18][19]. The DNS model was meshed using *C3D10* tetrahedral elements. The unit cell was modeled in PTC CREO Parametric 4.0 Academic and meshed in Abaqus CAE. The DNS Model used 21683 elements and 38303 nodes. The Beam model was meshed using *B31* beam elements. The unit cell was also modeled in Abaqus CAE with line segments between vertex points on which *B31* beam elements were meshed on. *B31* beam elements model beam bending behavior based on Timoshenko beam theory[17, pp. 535–596]. *B31* elements have a single-integration point and were used for analyses in this thesis. The Beam model had 480 elements and 1430 nodes. Figure 7 and Figure 8 show the meshes of the rhombic dodecahedron unit cell for the Beam model and the DNS model, respectively.

Figure 7: Beam model mesh using B31 beam elements with 480 elements and 1430 nodes

Figure 8: DNS model mesh of the rhombic dodecahedron unit cell using C3D10 elements with 21683 elements and 38303 nodes

III. Mechanical Behavior Study

A study on the mechanical behavior of the superelastic NiTi rhombic dodecahedron unit cell was carried out. The force-displacement responses of the unit cell in the x-direction and the y-direction were evaluated. The structural members of the unit cell had a length of 1 mm and a radius of 0.087 mm. Figure 9 shows the boundary conditions used for this analysis for displacement-controlled loading in tension and compression along the x-direction and y-direction, respectively. Figure 9(a) and Figure 9(b) shows the boundary conditions used on the DNS model and the Beam model, respectively. Both show the top, front, and side views of the unit cell. The applied displacements in the x-direction and y-direction are shown in green and orange, respectively. The DNS model is shown with the displacements on the highlighted areas of application. The Beam model is shown with the displacements applied at the nodes. Both the DNS model and the Beam Model were used for this study. The edge planes of the unit cell were displacement constrained in the direction perpendicular to the direction of loading as shown by the rollers. The unit cell was displaced along the x-direction and ydirection as denoted in green and orange, respectively, at the opposite edge planes edges to 2%, 4%, 6%, and 8% of the side length, and then unloaded to 0% displacement. Force and displacement parallel to the loading direction was extracted from the nodes of the loading plane. The mean average of the force and displacement of these nodes was calculated at every increment. It should be noted that the displacement-controlled loading in the x-direction and y-direction occurred as two independent loading conditions; displacement-controlled loading in the x-direction and y-direction did not occur simultaneously.

Quasi-static loading conditions were assumed for both models. No contact analysis or post-buckling analysis was performed in both models. Both the DNS Model and the Beam Model used a full Newton-Raphson solution and nonlinear geometry was accounted for. The Beam model had an initial step size (unitless) of 0.01, a maximum step size of 0.01, and a minimum step-size of 0.00001 over an interval of 1. The DNS model had an initial step size of 0.001, a maximum step size of 0.05, and a minimum step-size of 0.00001 over an interval of 1.

Figure 9: Boundary conditions for the unit cell analyses performed for the (a) DNS model and (b) Beam model.

IV. Energy Dissipation Studies

Three studies were carried out to find an energy dissipation optimum using the Beam model. Only the beam model was used for these studies due to its computational efficiency. Only the compression loading regime was used to calculate the energy dissipated and the energy dissipation coefficient. The trapezoid rule was used to calculate the energy of loading and unloading from the force-displacement curves. This was used to calculate the energy dissipated and the energy dissipation coefficient. The loading and boundary conditions of the Beam model in compression used in the mechanical behavior study were used for the energy dissipation studies.

For the first study, the relative density was kept constant while the radii of the members lying parallel to the *xz*-plane and *xy*-plane were varied. The members parallel to the *xz*-plane and *xy*-plane are referred to as the horizontal group and the vertical group, respectively. The radius of the horizontal group was changed while the unit cell volume remained constant, so the vertical group radii changed with it. The choice of varying the radii of members in perpendicular planes was deliberate as periodicity can be maintained while the geometry is modified. Figure 10 shows the unit cell with the horizontal radius at its upper and lower bounds of 0.039 mm and 0.120 mm. A step-size of .003 mm was used. When loading the unit cell as if it were in a "sandwich structure" [4, p. 2285] or in a "Sandwich Panel Configuration" [8, p. 2881], structural members of the rhombic dodecahedron unit cell perpendicular to loading behave primarily in uniaxial tension and compression. The energy dissipated and the energy dissipation coefficient are plotted against the horizontal radius.

Figure 10: (a) Upper and (b) lower bound of the Horizontal Radius

For the second study, the relative density, $\bar{\rho}_u$, (unitless) was varied between 0.0372 and 0.3526. The relative density was calculated from radius values of 0.039 mm to 0.12 mm with a step-size of 0.03. The energy dissipated and the energy dissipation

coefficient are plotted against the relative density. Figure 11 shows the unit cell of the rhombic dodecahedron with the upper and lower bounds of the relative density.

The third study combined the concepts of the first and second study. The length of the strut members was changed to 5 mm. The relative density, $\bar{\rho}_u$, was varied between 0.03 and 0.045 at a resolution of 0.03. The horizontal radius was changed by a factor named R_{var} between 0.5-1.25 at a resolution of 0.05. The load was varied between 1-8% of the unit cell length in the *x*-direction and *y*-direction. Energy Dissipation and the Energy Dissipation Coefficient were calculated. A peak von-Mises stress limit of 700 MPa was chosen using engineering judgement based on the upper limits of stresses of numerical studies and experimental data in [4], [10], [11] as to not include any simulations with stresses where fracture may occur. Any simulation exceeding this von-Mises stress or that provided a warning indicating buckling behavior was not included in plots. The third study was done to be thorough and to demonstrate that $\bar{\rho}_u$ and R_{var} are independent.

RESULTS AND DISCUSSION

I. Overview

This chapter will show and discuss the results of the three studies. Python scripts were used to extract force, displacement, and stress values from the ABAQUS .odb (output database) files and warning messages from the ABAQUS .msg (message) files. These values and warning messages were then post-processed and plots were created using MATLAB. Stress contour plots were generated in the Visualization Module of Abaqus CAE then processed and arranged for clarity and conciseness using Inkscape. Samples of the source code utilized in this work can be found in the appendices.

II. Mechanical Behavior Study Results

Figure 12 and Figure 13 show the force-displacement curve of the superelastic rhombic dodecahedron unit cell in the *x*-direction and the *y*-direction, respectively. The DNS model and the beam model are shown plotted together with varying displacements. The qualitative shape of the force-displacement plots show that the models exhibit similar mechanical behavior, although the response of the beam model is stiffer. The unit cell of the DNS model only includes volume of the material within the boundary of the unit cell; the cross-section is a semi-circle for the structural members which lie on the border of the unit cell, whereas the cross-section of the beam model is a full circle. The Beam model does not model the behavior of stress-concentrations from the geometry at the vertices of the structure. The force-displacement response of the *y*-direction is stiffer than the *x*-direction. This is consistent with the mechanical behavior of the rhombic dodecahedron

structure in [8] that showed a stiffer modulus of elasticity in the y-direction than in the x-direction.

Figure 12: Force-Displacement Curve of Beam and DNS Model in *x*-Direction

Figure 13: Force-Displacement Curve of Beam and DNS Model for y-direction

Figure 14-17 show the equivalent von-Mises Stress contour plots of the rhombic dodecahedron unit cell in compression in the *x*-direction, tension in the *x*-direction, compression in the *y*-direction, and tension in the *y*-direction, respectively, on the deformed model. In both models and for all displacements, stresses are similarly distributed along the structural members with higher stresses closer to the vertices of the LSM. The DNS model shows higher stresses at the vertices than the Beam model. The elements used in the Beam model only model beam bending behavior of the and do not model the complex geometry at the vertices where stress concentrations occur. The stress of the outermost structural members is higher in the DNS model, as the full cross section of each member was not used in the unit cell of the DNS model.

Some of the stresses in the models would exceed the stress where fracture would occur are shown for the 6% and 8% displacement loading conditions of the displacement.

These results show that the predicted stresses are consistent between the DNS and Beam models.

Figure 14: Equivalent Von-Mises Stress (MPa) contour plots for compression in the *x*-direction for the DNS (left) and Beam Model (right). The colored legend changes with each displacement.

Figure 15: Equivalent Von-Mises Stress (MPa) contour plots for tension in the *x*-direction for the DNS (left) and Beam Model (right). The colored legend changes with each displacement.

Figure 16: Equivalent Von-Mises Stress (MPa) contour plots for compression in *y*direction for the DNS (left) and Beam Model (right). The colored legend changes with each displacement.

Figure 17: Equivalent Von-Mises Stress (MPa) contour plots for tension in the *y*-direction for the DNS (left) and Beam Model (right). The colored legend changes with each displacement.

III. Energy Dissipation and Radii Variation Study

Simulation results indicating buckling behavior were not included. These points are omitted from the plots in Figures 20-21. Figure 18 shows the energy dissipated versus horizontal radius for loading in the *x*-direction. Figure 19 shows the energy dissipation coefficient versus the horizontal radius for loading in the *x*-direction. The variation of geometry is symmetric relative to loading which may cause the bimodal response. There are local maximums centered about the nominal radius for the energy dissipated and the energy dissipation coefficient in both Figure 18 and Figure 19. There is a local minimum where the horizontal and vertical radii are equal at 0.087 mm in both Figure 18 and Figure 19. Figure 20 shows the energy dissipation coefficient versus horizontal radius for loading in the *y*-direction. Figure 21 shows the energy dissipation coefficient versus horizontal radius increases, the energy dissipation and energy dissipation coefficient decrease. The energy dissipated and energy dissipation coefficient increased with larger displacements for loading in the *x*-direction and the *y*-direction, which is consistent with the results found in [4].

The local maxima indicate that there is a geometric optimum for energy dissipation by varying the radii. The optimum occurs when the horizontal radii are less than the vertical radii at around 0.07mm. This can be used to find an energy dissipation optimum for a given relative density. For non-additively manufactured structures, this result could be used in conjunction with tabulated nominal wire sizes to find a wirewoven optimal structure using existing wire sizes.

Figure 18: Energy dissipated vs horizontal radius for loading in x-direction.

Figure 19: Energy dissipation coefficient vs horizontal radius for loading in *x*-direction.

Figure 20: Energy dissipation vs horizontal radius for loading in *y*-direction. Simulations that indicated buckling were not included in this plot.

Figure 21: Energy dissipation coefficient vs horizontal radius for loading in *y*-direction. Simulations that indicated buckling were not included in this plot.

IV. Energy Dissipation and Relative Density Study

Figure 22 and Figure 24 shows the energy dissipated versus the relative density for loading in the *x*-direction and the *y*-direction, respectively. Figure 23 and Figure 25 shows the energy dissipation coefficient versus the relative density for loading in the *x*direction and *y*-direction, respectively. All figures show that as the relative density increases, the energy dissipated and the energy dissipation coefficient increase. An increase in the energy dissipated and the energy dissipation coefficient with an increase in displacement remains consistent with the results in [4]. As the relative density increases, the energy dissipated appears to increase exponentially. As the relative density increases, the energy dissipation coefficient appears to increase logarithmically. In other words, there are diminishing returns as the density of the structure is increased with respect to using more material, namely an increase in mass density and financial cost.

Figure 22: Energy dissipation vs relative density for loading in *x*-direction.

Figure 23: Energy dissipation coefficient vs relative density for loading in *x*-direction.

Figure 24: Energy dissipated vs relative density for loading in *y*-direction. Simulations that indicated buckling were not included in this plot.

Figure 25: Energy dissipation coefficient vs relative density for loading in *y*-direction. Simulations that indicated buckling were not included in this plot.

V. Energy Dissipation Combined Study

Figure 26 and Figure 28 shows the energy dissipated plotted against the R_{var} and the relative density for a displacement of 4% of height in the *x*-direction and *y*-direction, respectively. Figure 27 and Figure 29 shows the Energy Dissipation Coefficient plotted against the R_{var} and the relative density for a displacement of 4% of height in the *x*direction and *y*-direction, respectively. Only the 4% displacement data in this section as presenting the other plots does not provide additional meaning information these results Plots for other displacements, 1-8%, can be found in Appendix A. Peaks can be seen in the plots of Figure 26 and Figure 27. As the relative density increases, the Energy dissipation appears to increase exponentially, and the Energy Dissipation Coefficient appears to increase logarithmically and approach a plateau. As R_{var} increases, the energy dissipation and Energy Dissipation Coefficient decrease for the *y*-direction loading condition. These are the same trends for relative density and a change in the horizontal radius is found in the plots in the other energy dissipation studies. These plots show that the energy dissipation and the Energy Dissipation Coefficient can be controlled when manipulating the relative density and R_{var} . These results show that utilizing the Beam model is an efficient method of providing information on the energy dissipation properties of a superelastic NiTi rhombic dodecahedron LSM and its use in a design space. These results need to be verified with a DNS model. This model could be used with existing tabulated wire sizes to create a wire-woven design for a given relative density, which could be modeled using a Beam model and verified with a DNS model.

Figure 26: Energy Dissipated plotted against R_{var} and relative density for 4% displacement in *x*-direction

Figure 27: Energy Dissipation Coefficient, η , plotted against R_{var} and relative density for 4% displacement in *x*-direction

Figure 28: Energy Dissipated plotted against R_{var} and relative density for 4% displacement in *y*-direction. Simulations that exceed stress limit or that indicated buckling were not included in this plot.

Figure 29: Energy Dissipation Coefficient, η , plotted against R_{var} and relative density for 4% displacement in *y*-direction. Simulations that exceed stress limit or that indicated buckling were not included in this plot.

CONCLUSION

These studies show that an optimum for energy dissipation can be found by manipulating the geometry by changing the relative density and the horizontal radius of the superelastic NiTi rhombic dodecahedron LSM. The Beam model provides information about the mechanical behavior of the superelastic NiTi Rhombi-Dodecahedron LSM at a reduced computational expense compared to the DNS model. The Beam model was used to efficiently create the plots of the energy dissipation studies. The information provided by Figures 26-29 about the sensitivities of energy dissipation and the Energy Dissipation Coefficient to manipulation of the geometry of the LSM can be used as a tool to understand the design and implementation of these structures. It can also be used to weigh performance versus cost. The numerical studies shown in Figures 26-29 could be efficiently reproduced using other material parameters or other material models for NiTi without incurring the cost of using more computationally expensive DNS.

FUTURE WORK

This model could be expanded to other material parameters and superelastic materials. The studies in this thesis utilized the material parameters used to verify the original material model. Future simulations could utilize a wide scope of SMA material models of varying properties. These results should be validated with a DNS model before any experimentation. From there, these structures could be created via AM or a wirewoven process and validated experimentally. These concepts could be applied to other bending-dominated structures and other superelastic materials. This work only provided information on relatively small deformations of the structure as compared to full compaction of the LSM, however, DNS with contact and post-buckling analysis as well as experimental work would provide information for higher displacements. These results and methods could be utilized in a wide variety of applications such as noise suppression from the rapid expansion of gas, e.g., a firearm suppressor or a car muffler. They could also be used in the design space of mediating a sonic boom in aerospace applications.

48

BIBLIOGRAPHY

- [1] J. Marx, M. Portanova, and A. Rabiei, "Performance of composite metal foam armors against various threat sizes," *J. Compos. Sci.*, vol. 4, no. 4, 2020.
- M. C. Messner, "Optimal lattice-structured materials," *J. Mech. Phys. Solids*, vol. 96, pp. 162–183, 2016.
- [3] C. G. Ferro, S. Varetti, G. De Pasquale, and P. Maggiore, "Lattice structured impact absorber with embedded anti-icing system for aircraft wings fabricated with additive SLM process," *Mater. Today Commun.*, vol. 15, no. February, pp. 185–189, 2018.
- [4] Z. Rao *et al.*, "Experimental and numerical studies on a novel shape-memory alloy wire-woven trusses capable of undergoing large deformation," *J. Intell. Mater. Syst. Struct.*, vol. 30, no. 15, pp. 2283–2298, 2019.
- [5] M. Mazur, M. Leary, S. Sun, M. Vcelka, D. Shidid, and M. Brandt, "Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM)," *Int. J. Adv. Manuf. Technol.*, vol. 84, no. 5–8, pp. 1391– 1411, 2016.
- [6] L. E. Murr *et al.*, "Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies," *J. Mater. Sci. Technol*, vol. 28, no. 1, pp. 1–14, 2012.
- [7] V. S. Deshpande, M. F. Ashby, and N. A. Fleck, "Foam topology: Bending versus

stretching dominated architectures," *Acta Mater.*, vol. 49, no. 6, pp. 1035–1040, 2001.

- [8] S. Babaee, B. H. Jahromi, A. Ajdari, H. Nayeb-Hashemi, and A. Vaziri,
 "Mechanical properties of open-cell rhombic dodecahedron cellular structures," *Acta Mater.*, vol. 60, no. 6–7, pp. 2873–2885, 2012.
- [9] L. C. Brinson, "One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable," *J. Intell. Mater. Syst. Struct.*, vol. 4, no. 2, pp. 229– 242, 1993.
- [10] F. Auricchio and R. L. Taylor, "Shape-memory alloys: Modelling and numerical simulations of the finite-strain superelastic behavior," *Comput. Methods Appl. Mech. Eng.*, pp. 175–194, 1997.
- [11] F. Auricchio, R. L. Taylor, and J. Lubliner, "SHAPE-MEMORY ALLOYS: macromodelling and numerical simulations of the superelastic behavior," *Comput. Methods Appl. Mech. Engrg*, vol. 146, pp. 281–312, 1997.
- [12] H. U. Schuerch, "Certain Physical Properties and Applications of Nitinol," 1968.
- [13] M. C. Piedboeuf and R. Guavin, "Damping Behaviour of Shape Memory Alloys: Strain Amplitude, Frequency and Temperature Effects," *J. Sound Vib.*, vol. 214, no. 5, pp. 885–901, 1998.
- [14] Y. Gao, L. Casalena, M. L. Bowers, R. D. Noebe, M. J. Mills, and Y. Wang, "An origin of functional fatigue of shape memory alloys," *Acta Mater.*, vol. 126, pp.

389–400, Mar. 2017.

- [15] Dassault-Systèmes, *ABAQUS Theory Manual: Superelasticity*. United States: Dassault Systèmes Simulia Corp, 2018.
- [16] A. Ahmed, S. Arya, V. Gupta, H. Furukawa, and A. Khosla, "4D printing:
 Fundamentals, materials, applications and challenges," *Polymer (Guildf)*., vol. 228, Jul. 2021.
- T. Belytschko, W. K. Kam, B. Moran, and K. I. Elkhodary, "Beams and Shells," in *Nonlinear Finite Elements For Continua and Structures*, Second Edi., West Sussex, UK: John Wiley & Sons, Ltd., 2014, pp. 535–596.
- [18] Dassault-Systèmes, *ABAQUS Theory Manual: Beam Elements*. United States: Dassault Systèmes Simulia Corp, 2018.
- [19] Dassault-Systèmes, ABAQUS Theory Manual: Three-dimensional solid element library. United States: Dassault Systèmes Simulia Corp, 2018.
- [20] Dassault-Systèmes, "ABAQUS Theory Manual: Finding the Maximum Value of Von Mises Stress," 2018. [Online]. Available: https://help.3ds.com/2018/english/dssimulia_established/simacaecmdrefmap/simac md-c-odbintroexamaxmisespyc.htm?contextscope=all.

APPENDIX A

This appendix shows all the plots from the third energy dissipation study for all displacements used. Omitted data points in plots are the simulations where buckling is indicated or the peak von-Mises Stress exceeds the limit set. All simulations for loading in the *y*-direction for displacements greater than 5% were not included as either the peak von-Mises stress was exceed or the simulation indicated buckling.

Figure 30: Energy Dissipated plotted against R_{var} and relative density for 8% displacement in *x*-direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot.

Figure 31: Energy Dissipated plotted against R_{var} and relative density for 7% displacement in *x*-direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot.

Figure 32: Energy Dissipated plotted against R_{var} and relative density for 6% displacement in x-direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot.

Figure 33: Energy Dissipated plotted against R_{var} and relative density for 5% displacement in *x*-direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot.

Figure 34: Energy Dissipated plotted against R_{var} and relative density for 3% displacement in *x*-direction.

Figure 35: Energy Dissipated plotted against R_{var} and relative density for 2% displacement in *x*-direction.

Figure 36: Energy Dissipated plotted against R_{var} and relative density for 2% displacement in *x*-direction.

Figure 37: Energy Dissipation Coefficient plotted against R_{var} and relative density for 8% displacement in *x*-direction. Simulations that exceeded stress limit or that indicated buckling were not included in this plot.

Figure 38: Energy Dissipation Coefficient plotted against R_{var} and relative density for 7% displacement in x-direction

Figure 39: Energy Dissipation Coefficient plotted against R_{var} and relative density for 6% displacement in x-direction

Figure 40: Energy Dissipation Coefficient plotted against R_{var} and relative density for 5% displacement in *x*-direction

Figure 41: Energy Dissipation Coefficient plotted against R_{var} and relative density for 3% displacement in x-direction

Figure 42: Energy Dissipation Coefficient plotted against R_{var} and relative density for 2% displacement in x-direction

Figure 43: Energy Dissipation Coefficient plotted against R_{var} and relative density for 1% displacement in *x*-direction. All values of η are effectively zero.

Figure 44: Energy Dissipated plotted against R_{var} and the relative density for 6% displacement in y-direction

Figure 45: Energy Dissipated plotted against R_{var} and relative density for 5% displacement in *y*-direction

Figure 46: Energy Dissipated plotted against R_{var} and relative density for 3% displacement in *y*-direction

Figure 47: Energy Dissipated plotted against R_{var} and relative density for 2% displacement in y-direction

Figure 48: Energy Dissipated plotted against R_{var} and relative density for 1% displacement in y-direction

Figure 49: Energy Dissipation Coefficient plotted against R_{var} and relative density for 6% displacement in y-direction

Figure 50: Energy Dissipation Coefficient plotted against R_{var} and relative density for 5% displacement in y-direction

Figure 51: Energy Dissipation Coefficient plotted against R_{var} and relative density for 3% displacement in y-direction

Figure 52: Energy Dissipation Coefficient plotted against R_{var} and relative density for 2% displacement in y-direction

Figure 53: Energy Dissipation Coefficient plotted against R_{var} and relative density for 1% displacement in y-direction

APPENDIX B

This appendix shows examples of the python scripts that were used to write and submit input decks (.inp files), vary parameters, and post-process from outputs (.odb and .msg files) with ABAQUS.

I. writeinput.py

```
1 # Author: Ian P. Morrissey
2 # Description: writes ABAQUS .inp files for a range of
   displacements, relative density, and radius variation
3
  import math
4
  import numpy
5
6 # displacement magnitude
7 d1L=5.7735 # direction 1 or x-direction
8 dispMag=d1L*numpy.linspace(-.08,-.01,8)
9
10 # relative density
11 rd=numpy.linspace(0.03,0.45,15)
12 print('rd='+str(rd))
14 # calculate nominal radius based on r
15 r=numpy.sqrt((rd*2*pow(5,2))/(3*numpy.pi*numpy.sqrt(3)))
16 print('r='+str(r))
17
18 # calculate total volume for unit cell
19 totVol=32/9*numpy.sqrt(3)*pow(5,3)
20 print('totVol='+str(totVol))
22 # calculate volume of occupied
23 volume=24*pow(r,2)*numpy.pi*5
24 print('volume='+str(volume))
25
26 # radius variation coefficient
27 rvar=numpy.linspace(0.5,1.25,16)
28 print('rvar='+str(rvar))
29
30 # number of loads to index by
31 numLoads=len(dispMag)
32 print('numLoads='+str(numLoads))
34 # number of relative desnities to index by
35 numrd=len(rd)
36 print('numrd='+str(numrd))
```

```
38 # number of radius variation coefficient to vary by
39 numrvar=len(rvar)
40 print('numrvar='+str(numrvar))
41
42 # index over number of loads/displacements, relative densities,
   and radius variations
43 for j in range(numLoads):
      for i in range(numrd):
44
45
         for k in range(numrvar):
46
          rh=r[i]*rvar[k] #calculate horizontal radius
          rv=numpy.sqrt((volume[i]-
47
   12*5*numpy.pi*pow(rh,2))/(12*5*numpy.pi)) #calculate vertical
   radius
48
49 #inp file name
          filename='D1B-'+str(j+1)+'-'+str(i+1)+'-'+str(k+1)
51 #write inp file
          fileOutput = open(filename + '.inp', 'w')
          fileOutput.write("""*Heading
53
54 ** Job name: BD1ex Model name: BD1ex
55 ** Generated by: Abaqus/CAE 2019
56 *Preprint, echo=NO, model=NO, history=NO, contact=NO
57 **
  ** PARTS
58
59 **
60 *Part, name=PART-1
61 *Node
         1, 2.887000145, 4.08250004, 0
62
         2, 5.7735002, 4.08250004, 4.08250004
63
         3, 2.887000145, 0, 4.08250004
64
         4, 0, 0, 8.1650001
65
         5, 2.887000145, 4.08250004, 8.1650001
66
         6, 2.887000145, 8.1650001, 4.08250004
67
         7, 0, 8.1650001, 8.1650001
68
         8, 0, 0, 0
69
         9, 0, 8.1650001, 0
         10, -2.887000145, 4.08250004, 0
         11, -2.887000145, 0, 4.08250004
         12, -5.7735002, 4.08250004, 4.08250004
74
         13, -2.887000145, 4.08250004, 8.1650001
         14, -2.887000145, 8.1650001, 4.08250004
         15, 3.03132504, 4.08250004, 0.204124991
76
         16, 3.17564994, 4.08250004, 0.4082499815
         17, 3.31997514, 4.08250004, 0.61237499
78
         18, 3.464300035, 4.08250004, 0.816499965
79
         19, 3.608624935, 4.08250004, 1.02062501
80
81
         20, 3.75295013, 4.08250004, 1.22474998
         21, 3.89727503, 4.08250004, 1.42887503
82
         22, 4.04159993, 4.08250004, 1.632999925
83
         23, 4.185925125, 4.08250004, 1.837124975
84
         24, 4.330250025, 4.08250004, 2.04125002
85
         25, 4.474574925, 4.08250004, 2.245375065
         26, 4.61890012, 4.08250004, 2.449499965
87
         27, 4.76322502, 4.08250004, 2.65362501
88
         28, 4.90754992, 4.08250004, 2.85775006
89
         29, 5.0518751, 4.08250004, 3.061875105
         30, 5.1962, 4.08250004, 3.265999855
91
```

92	31, 5 3405249, 4 08250004, 3 4701249
03	32 5 4848498 4 08250004 3 674249945
93	52, 5.1010100, 1.002500001, 5.071210010
94	33, 5.0291747, 4.00230004, 5.070374993
95	54, 5.0291/47, 5.0705/4995, 4.00250004
96	35, 5.4848498, 5.674249945, 4.08250004
97	36, 5.3405249, 3.4701249, 4.08250004
98	37, 5.1962, 3.265999855, 4.08250004
99	38, 5.0518/51, 3.0618/5105, 4.08250004
100	39, 4.90754992, 2.85775006, 4.08250004
101	40, 4.76322502, 2.65362501, 4.08250004
102	41, 4.61890012, 2.449499965, 4.08250004
103	42, 4.474574925, 2.245375065, 4.08250004
104	43, 4.330250025, 2.04125002, 4.08250004
105	44, 4.185925125, 1.837124975, 4.08250004
106	45, 4.04159993, 1.632999925, 4.08250004
107	46, 3.89727503, 1.42887503, 4.08250004
108	47, 3.75295013, 1.22474998, 4.08250004
109	48, 3.608624935, 1.02062501, 4.08250004
110	49, 3.464300035, 0.816499965, 4.08250004
111	50, 3.31997514, 0.61237499, 4.08250004
112	51, 3.17564994, 0.4082499815, 4.08250004
113	52, 3.03132504, 0.204124991, 4.08250004
114	53, 2.742649915, 0, 4.286625085
115	54, 2.59829998, 0, 4.490750135
116	55, 2.453950045, 0, 4.694874885
117	56, 2.309599965, 0, 4.89899993
118	57, 2.165250035, 0, 5.103125
119	58, 2.02089995, 0, 5.30725
120	59, 1.87655002, 0, 5.51137505
121	60. 1.732199935. 0. 5.7155001
122	61. 1.587850005. 0. 5.91962515
123	62. 1.44350007. 0. 6.1237502
124	63. 1.29914999. 0. 6.32787525
125	64. 1.154799985. 0. 6.5319997
126	65. 1 010449975. 0. 6 73612475
127	66. 0 86609997. 0. 6 9402498
128	67. 0 721750035. 0. 7 14437485
129	68. 0 57739999. 0. 7 3484999
130	69. 0 4330499845. 0. 7 55262495
131	70. 0 2886999955. 0. 7 75675
132	71 0 144349998 0 7 96087505
133	72 2 742649915 3 878374995 8 1650001
134	73. 2 59829998. 3 674249945. 8 1650001
135	74 2 453950045 3 4701249 8 1650001
136	75 2 300500065 3 265000855 8 1650001
127	76 2 165250035 3 061875105 8 1650001
120	77 2 02080005 2 85775006 8 1650001
130	78 1 87655002 2 65362501 8 1650001
140	70, 1, 732100035, 2, 0000005, 0, 10000001
1 / 1	80 1 587850005 2 2/5375065 8 1650001
141	81 1 4/350007 2 0/125002 8 1650001
142	01, 1.4400007, 2.0412002, 0.1000001 02 = 1.2001/000 = 1.02712/075 = 0.1650001
143	02, 1.23914999, 1.03/1249/J, 0.10JUUUI 83 1 15/700085 1 632000025 0 1650001
144	05, I.I.J.4/99905, I.052999925, 0.10500001 84 1 010440075 1 40007500 0 1650001
145	04, I.UIU449977, I.420073U3, 8.103UUUI 05 0.06600007 1.00474000 0.1660001
146	85, U.866U9997, I.22474998, 8.165UUU1
147	86, 0.721750035, 1.02062501, 8.1650001
148	87, 0.57739999, 0.816499965, 8.1650001

149	88, 0.4330499845, 0.61237499, 8.1650001
150	89. 0 2886999955. 0 4082499815. 8 1650001
151	90 0 144349998 0 204124991 8 1650001
150	$0.1 \ 3 \ 0.3132501 \ 1 \ 0.8250001 \ 7 \ 0.0087505$
150	91, 5.05152504, 4.00250004, 7.50007505
153	92, 5.17564994, 4.06250004, 7.75675
154	93, 3.31997514, 4.08250004, 7.55262495
155	94, 3.464300035, 4.08250004, 7.3484999
156	95, 3.608624935, 4.08250004, 7.14437485
157	96, 3.75295013, 4.08250004, 6.9402498
158	97, 3.89727503, 4.08250004, 6.73612475
159	98, 4.04159993, 4.08250004, 6.5319997
160	99, 4.185925125, 4.08250004, 6.32787525
161	100, 4.330250025, 4.08250004, 6.1237502
162	101, 4.474574925, 4.08250004, 5.91962515
163	102, 4.61890012, 4.08250004, 5.7155001
164	103, 4,76322502, 4,08250004, 5,51137505
165	104, 4 90754992, 4 08250004, 5 30725
166	105 5 0518751 4 08250004 5 103125
167	106 5 1962 4 08250004 4 89899993
160	107, 5, 31052, 4, 00250004, 4, 005055555
100	107, 5.5405249, 4.00250004, 4.094074005
169	100, 5.4040490, 4.00250004, 4.490750155
170	109, 5.6291747, 4.08250004, 4.286625085
171	110, 3.03132504, 7.96087505, 4.08250004
172	111, 3.1/564994, 7.75675, 4.08250004
173	112, 3.31997514, 7.55262495, 4.08250004
174	113, 3.464300035, 7.3484999, 4.08250004
175	114, 3.608624935, 7.14437485, 4.08250004
176	115, 3.75295013, 6.9402498, 4.08250004
177	116, 3.89727503, 6.73612475, 4.08250004
178	117, 4.04159993, 6.5319997, 4.08250004
179	118, 4.185925125, 6.32787525, 4.08250004
180	119, 4.330250025, 6.1237502, 4.08250004
181	120, 4.474574925, 5.91962515, 4.08250004
182	121, 4.61890012, 5.7155001, 4.08250004
183	122, 4.76322502, 5.51137505, 4.08250004
184	123, 4.90754992, 5.30725, 4.08250004
185	124, 5.0518751, 5.103125, 4.08250004
186	125, 5.1962, 4.89899993, 4.08250004
187	126, 5.3405249, 4.694874885, 4.08250004
188	127, 5.4848498, 4.490750135, 4.08250004
189	128, 5.6291747, 4.286625085, 4.08250004
190	129, 2.742649915, 8.1650001, 4.286625085
191	130, 2.59829998, 8.1650001, 4.490750135
192	131, 2.453950045, 8.1650001, 4.694874885
193	132, 2.309599965, 8.1650001, 4.89899993
194	133, 2.165250035, 8.1650001, 5.103125
195	134, 2.02089995, 8.1650001, 5.30725
196	135, 1.87655002, 8.1650001, 5.51137505
197	136, 1,732199935, 8,1650001, 5,7155001
198	137. 1 587850005. 8 1650001. 5 91962515
199	138, 1 44350007, 8 1650001, 6 1237502
200	139 1 29914999 8 1650001 6 32787525
200	$140 \ 1 \ 154799985 \ 8 \ 1650001 \ 6 \ 5310007$
201	$141 \ 1 \ 010449975 \ 8 \ 1650001 \ 6 \ 73612475$
202	1/2 0 86600007 9 1650001 6 0/02/00
203	142, 0.00009997, 0.1030001, 0.9402490 143, 0.721750035, 9.1650001, 7.14427495
204	143, U.721730000, O.1030001, 7.14437403
205	144, U.S//SYYYY, 8.16SUUUL, /.3484999

200	115	0 4220400045 0 1650001 7 55262405
206	14J,	0.4550499045, 0.1050001, 7.55202495
207	146,	0.28869999955, 8.1650001, 7.75675
208	14/,	0.144349998, 8.1650001, 7.96087505
209	148,	2.742649915, 4.286625085, 8.1650001
210	149,	2.59829998, 4.490750135, 8.1650001
211	150,	2.453950045, 4.694874885, 8.1650001
212	151,	2.309599965, 4.89899993, 8.1650001
213	152,	2.165250035, 5.103125, 8.1650001
214	153,	2.02089995, 5.30725, 8.1650001
215	154,	1.87655002, 5.51137505, 8.1650001
216	155,	1.732199935, 5.7155001, 8.1650001
217	156,	1.587850005, 5.91962515, 8.1650001
218	157,	1.44350007, 6.1237502, 8.1650001
219	158,	1.29914999, 6.32787525, 8.1650001
220	159,	1.154799985, 6.5319997, 8.1650001
221	160,	1.010449975, 6.73612475, 8.1650001
222	161,	0.86609997, 6.9402498, 8.1650001
223	162,	0.721750035, 7.14437485, 8.1650001
224	163,	0.57739999, 7.3484999, 8.1650001
225	164,	0.4330499845, 7.55262495, 8.1650001
226	165,	0.2886999955, 7.75675, 8.1650001
227	166.	0.144349998, 7.96087505, 8.1650001
228	167.	0.144349998, 0.204124991, 0
22.9	168.	0.2886999955, 0.4082499815, 0
230	169.	0.4330499845. 0.61237499. 0
231	170.	0 57739999. 0 816499965. 0
232	171.	0 721750035. 1 02062501. 0
233	172.	0 86609997. 1 22474998. 0
234	173.	1 010449975, 1 42887503, 0
235	174	1 154799985, 1 632999925, 0
235	175.	1 29914999 1 837124975 0
230	176	1 44350007. 2 04125002. 0
238	177	1 587850005. 2 245375065. 0
239	178	1 732199935, 2 449499965, 0
240	179	1 87655002 2 65362501 0
241	180	2 02089995 2 85775006 0
242	181	2 165250035 3 061875105 0
212	182	2 300500065 3 265000855 0
243	183	2 453950045 3 4701249 0
215	184	2 59829998 3 67424945 0
245	185	2.55025550, 5.074245543 , 0
240	186	0 1//3/0908 7 06087505 0
247	197	0.2886000055 7 75675 0
240	188	0.230009999999, 7.75079, 0
249	100,	0.4330439043, 7.33202493, 0
250	100	0.57759999, 7.5404999, 0 0.721750025, 7.14427405, 0
201	101	0.721750055, 7.14457465, 0
252	102	1,010/40075,6,72612/75,0
200	102	1.010449975, 0.75012475, 0 $1.154700005, 6.5210007, 0$
204	104	1, 1, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
205	194,	1.23314333, 0.32707323, U
256	195,	1.44550007, 0.1237502, 0 1.607060006 E.01002615 0
257	196,	1.30703UUUS, 3.91902315, U
258	197,	1.752199935, 5.7155001, 0
259	198,	1.87855002, 5.51137505, 0
260	199,	2.02089995, 5.30/25, 0
261	200,	2.165250035, 5.103125, 0
262	201,	2.309599965, 4.89899993, 0

263	202,	2.453950045, 4.694874885, 0
264	203,	2.59829998, 4.490750135, 0
265	204,	2.742649915, 4.286625085, 0
266	205,	-2.742649915, 4.286625085, 0
267	206,	-2.59829998, 4.490750135, 0
268	207,	-2.453950045, 4.694874885, 0
269	208,	-2.309599965, 4.89899993, 0
270	209,	-2.165250035, 5.103125, 0
271	210,	-2.02089995, 5.30725, 0
272	211,	-1.87655002, 5.51137505, 0
273	212.	-1.732199935, 5.7155001, 0
2.7.4	213.	-1.587850005, 5.91962515, 0
275	214.	-1.44350007. 6.1237502. 0
276	215.	-1.29914999, 6.32787525, 0
277	216.	-1 154799985. 6 5319997. 0
278	217.	-1 010449975, 6 73612475, 0
279	218	-0.86609997, 6.9402498 , 0
280	210,	-0.721750035 7.14437485 0
281	220	-0.57739999 7.3484999 0
201	220,	-0.1330199845 7.55262495 0
202	221,	-0.2886000055 7.75675 0
200	222,	-0.2000999955, 7.75075, 0
284	223,	-0.144349990, 7.90007303, 0
285	224,	-0.144545550, 0.204124551, 0
280	225,	-0.20009999900, 0.4002499010, 0
287	220,	-0.4350499045, 0.01257499, 0
288	221,	-0.57739999, 0.816499965, 0
289	228,	
290	229,	-0.86609997, 1.22474998, 0
291	230,	-1.010449975, 1.42887503, 0
292	231,	-1.154/99985, 1.632999925, 0
293	232,	-1.29914999, 1.83/1249/5, 0
294	233,	-1.44350007, 2.04125002, 0
295	234,	-1.587850005, 2.245375065, 0
296	235,	-1./32199935, 2.449499965, 0
297	236,	-1.87655002, 2.65362501, 0
298	237,	-2.02089995, 2.85775006, 0
299	238,	-2.165250035, 3.061875105, 0
300	239,	-2.309599965, 3.265999855, 0
301	240,	-2.453950045, 3.4701249, 0
302	241,	-2.59829998, 3.674249945, 0
303	242,	-2.742649915, 3.878374995, 0
304	243,	-0.144349998, 0, 0.204124991
305	244,	-0.2886999955, 0, 0.4082499815
306	245,	-0.4330499845, 0, 0.61237499
307	246,	-0.57739999, 0, 0.816499965
308	247,	-0.721750035, 0, 1.02062501
309	248,	-0.86609997, 0, 1.22474998
310	249,	-1.010449975, 0, 1.42887503
311	250,	-1.154799985, 0, 1.632999925
312	251,	-1.29914999, 0, 1.837124975
313	252,	-1.44350007, 0, 2.04125002
314	253,	-1.587850005, 0, 2.245375065
315	254,	-1.732199935, 0, 2.449499965
316	255,	-1.87655002, 0, 2.65362501
317	256,	-2.02089995, 0, 2.85775006
318	257,	-2.165250035, 0, 3.061875105
319	258,	-2.309599965, 0, 3.265999855

320	259, -2.453950045, 0, 3.4701249
321	260, -2.59829998, 0, 3.674249945
322	261, -2.742649915, 0, 3.878374995
323	262, -3.03132504, 0.204124991, 4.08250004
324	2633.17564994. 0.4082499815. 4.08250004
325	264, -3 31997514, 0 61237499, 4 08250004
220	265 -3 $464300035 - 0.816400065 - 4.08250004$
320	266 - 3.608624025 - 1.02062501 - 4.00250004
327	266, -3.608624935, 1.02062501, 4.08250004
328	267, -3.75295013, 1.22474998, 4.08250004
329	268, -3.89727503, 1.42887503, 4.08250004
330	269, -4.04159993, 1.632999925, 4.08250004
331	270, -4.185925125, 1.837124975, 4.08250004
332	271, -4.330250025, 2.04125002, 4.08250004
333	272, -4.474574925, 2.245375065, 4.08250004
334	273, -4.61890012, 2.449499965, 4.08250004
335	274, -4.76322502, 2.65362501, 4.08250004
336	275, -4.90754992, 2.85775006, 4.08250004
337	276, -5.0518751, 3.061875105, 4.08250004
338	277 -5 1962 3 265999855 4 08250004
330	278 = 5 3405249 - 3 4701249 - 4 08250004
339	270, 5.3403249, 5.4701249, 4.00250004
340	279, -5.4040490, 5.074249945, 4.00250004
341	280, -5.6291747, 3.878374995, 4.08250004
342	281, -5.6291/4/, 4.08250004, 3.8/83/4995
343	282, -5.4848498, 4.08250004, 3.674249945
344	283, -5.3405249, 4.08250004, 3.4701249
345	284, -5.1962, 4.08250004, 3.265999855
346	285, -5.0518751, 4.08250004, 3.061875105
347	286, -4.90754992, 4.08250004, 2.85775006
348	287, -4.76322502, 4.08250004, 2.65362501
349	288, -4.61890012, 4.08250004, 2.449499965
350	289, -4.474574925, 4.08250004, 2.245375065
351	290, -4.330250025, 4.08250004, 2.04125002
352	291, -4.185925125, 4.08250004, 1.837124975
353	2924.04159993. 4.08250004. 1.632999925
354	293 -3 89727503 4 08250004 1 42887503
355	293, -3.75295013, 4.08250004, 1.42007303
355	294, 5.75299013, 4.00290004, 1.22474990
350	295, -5.000024955, 4.00250004, 1.02002501
357	296, -5.464500055, 4.06250004, 0.016499965
358	297, -3.31997514, 4.08250004, 0.61237499
359	298, -3.1/564994, 4.08250004, 0.4082499815
360	299, -3.03132504, 4.08250004, 0.204124991
361	300, 0.144349998, 0, 0.204124991
362	301, 0.2886999955, 0, 0.4082499815
363	302, 0.4330499845, 0, 0.61237499
364	303, 0.57739999, 0, 0.816499965
365	304, 0.721750035, 0, 1.02062501
366	305, 0.86609997, 0, 1.22474998
367	306, 1.010449975, 0, 1.42887503
368	307, 1.154799985, 0, 1.632999925
369	308, 1.29914999, 0, 1.837124975
370	309, 1.44350007, 0, 2.04125002
371	310, 1,587850005, 0, 2,245375065
372	311. 1.732199935. 0. 2 449499965
373	312, 1 87655002, 0 2 65362501
374	313 2 02080005 0 2 85775006
374	314 2 165250035 0 3 061075105
375	SI4, 2.105250055, 0, 5.001075105 215 2.200500065 0, 2.265000055
376	313, Z.3U9399965, U, 3.Z65999855

377	316, 2.453950045, 0, 3.4701249
378	317, 2.59829998, 0, 3.674249945
379	318, 2.742649915, 0, 3.878374995
380	319, -2.742649915, 3.878374995, 8.1650001
381	320, -2.59829998, 3.674249945, 8.1650001
382	321, -2.453950045, 3.4701249, 8.1650001
383	322, -2.309599965, 3.265999855, 8.1650001
384	3232.165250035. 3.061875105. 8.1650001
385	3242 02089995. 2 85775006. 8 1650001
386	325 -1 87655002 2 65362501 8 1650001
307	326 -1 $732100035 2 1000000 8 1650001$
200	227 1 E070E000E 2 24E27E06E 0 1650001
200	327, -1.307030003, 2.243373003, 0.1030001
389	520, -1.44550007, 2.04125002, 0.1050001
390	329, -1.29914999, 1.83/1249/5, 8.1650001
391	330, -1.154/99985, 1.632999925, 8.1650001
392	331, -1.010449975, 1.42887503, 8.1650001
393	332, -0.86609997, 1.22474998, 8.1650001
394	333, -0.721750035, 1.02062501, 8.1650001
395	334, -0.57739999, 0.816499965, 8.1650001
396	335, -0.4330499845, 0.61237499, 8.1650001
397	336, -0.2886999955, 0.4082499815, 8.1650001
398	337, -0.144349998, 0.204124991, 8.1650001
399	338, -0.144349998, 7.96087505, 8.1650001
400	339, -0.2886999955, 7.75675, 8.1650001
401	340, -0.4330499845, 7.55262495, 8.1650001
402	341, -0.57739999, 7.3484999, 8.1650001
403	342, -0.721750035, 7.14437485, 8.1650001
404	343, -0.86609997, 6.9402498, 8.1650001
405	344, -1.010449975, 6.73612475, 8.1650001
406	345, -1.154799985, 6.5319997, 8.1650001
407	346, -1.29914999, 6.32787525, 8.1650001
408	347, -1.44350007, 6.1237502, 8.1650001
409	348, -1.587850005, 5.91962515, 8.1650001
410	349, -1.732199935, 5.7155001, 8.1650001
411	350, -1.87655002, 5.51137505, 8.1650001
412	351, -2.02089995, 5.30725, 8.1650001
413	352, -2.165250035, 5.103125, 8.1650001
414	353, -2.309599965, 4.89899993, 8.1650001
415	354, -2,453950045, 4,694874885, 8,1650001
416	3552.59829998. 4.490750135. 8.1650001
417	356, -2,742649915, 4,286625085, 8,1650001
418	357. 0.144349998. 8.1650001. 0.204124991
419	358, 0.2886999955, 8.1650001, 0.4082499815
420	359. 0 4330499845. 8 1650001. 0 61237499
421	360, 0 57739999, 8 1650001, 0 816499965
422	361, 0.721750035, 8.1650001, 1.02062501
423	362, 0.86609997, 8.1650001, 1.22474998
123	363 1 010449975 8 1650001 1 42887503
425	364. 1 154799985. 8 1650001 1 632999925
426	365, 1 29914999, 8 1650001 1 837124975
120	366, 1 44350007, 8 1650001, 2 04125002
427	367 1 587850005 8 1650001 2 2/5375065
420	368. 1 732199935. 8 1650001 2 4/9400065
429	369 1 87655002 8 1650001 2 65362501
430	370 - 2 - 0.20808095 + 2 - 650001 + 2 - 65502501
431	370, 2.02003333, 0.1030001, 2.03773000 371 2.165250035 8.1650001 2.061075105
432	272 2 200500065 0 1650001 2 265000055
433	212, 2.303233302, 8.I020001, 3.202333822

10.1	
434	3/3, 2.453950045, 8.1650001, 3.4701249
435	374, 2.59829998, 8.1650001, 3.674249945
436	375, 2.742649915, 8.1650001, 3.878374995
437	376, -0.144349998, 8.1650001, 0.204124991
438	377, -0.2886999955, 8.1650001, 0.4082499815
439	378, -0.4330499845, 8.1650001, 0.61237499
440	379, -0.57739999, 8.1650001, 0.816499965
441	380, -0.721750035, 8.1650001, 1.02062501
442	381, -0.86609997, 8.1650001, 1.22474998
443	382, -1.010449975, 8.1650001, 1.42887503
444	383, -1.154799985, 8.1650001, 1.632999925
445	3841 29914999. 8 1650001. 1 837124975
446	3851 44350007. 8 1650001. 2 04125002
110	386 -1 587850005 8 1650001 2 245375065
110	387 -1 732199935 8 1650001 2 449499965
110	388 -1 87655002 8 1650001 2 65362501
110	200 -2 0200005 0 1650001 2 05775006
450	309, -2.020039993, 0.1030001, 2.03773000
451	390, -2.165250035, 8.1650001, 3.061875105
452	391, -2.309599965, 8.1650001, 3.265999855
453	392, -2.453950045, 8.1650001, 3.4701249
454	393, -2.59829998, 8.1650001, 3.674249945
455	394, -2.742649915, 8.1650001, 3.878374995
456	395, -5.6291747, 4.286625085, 4.08250004
457	396, -5.4848498, 4.490750135, 4.08250004
458	397, -5.3405249, 4.694874885, 4.08250004
459	398, -5.1962, 4.89899993, 4.08250004
460	399, -5.0518751, 5.103125, 4.08250004
461	400, -4.90754992, 5.30725, 4.08250004
462	401, -4.76322502, 5.51137505, 4.08250004
463	402, -4.61890012, 5.7155001, 4.08250004
464	403, -4.474574925, 5.91962515, 4.08250004
465	404, -4.330250025, 6.1237502, 4.08250004
466	405, -4.185925125, 6.32787525, 4.08250004
467	406, -4.04159993, 6.5319997, 4.08250004
468	407, -3.89727503, 6.73612475, 4.08250004
469	408, -3.75295013, 6.9402498, 4.08250004
470	409, -3.608624935, 7.14437485, 4.08250004
471	410, -3.464300035, 7.3484999, 4.08250004
472	411, -3.31997514, 7.55262495, 4.08250004
473	412, -3.17564994, 7.75675, 4.08250004
474	413, -3.03132504, 7.96087505, 4.08250004
475	414, -3.03132504, 4.08250004, 7.96087505
476	415, -3.17564994, 4.08250004, 7.75675
477	416, -3.31997514, 4.08250004, 7.55262495
478	417, -3,464300035, 4,08250004, 7,3484999
479	418, -3.608624935, 4.08250004, 7.14437485
480	419, -3.75295013, 4.08250004, 6.9402498
481	4203.89727503. 4.08250004. 6.73612475
482	4214 04159993. 4 08250004. 6 5319997
483	4224.185925125. 4 08250004. 6 32787525
484	4234 330250025. 4 08250004 6 1237502
485	4244 474574925 4 08250004, 0.1257502
486	425 -4 61890012 4 08250004 5 7155001
487	426 -4 76322502 4 08250004 5 51137505
407	120, -1.0022002, -1.0020004, 5.00005
488	427, 74.90734992, 4.00230004, 3.30723 420 _5 0510751 / 00250007 5 102125
489	420, -3.0310/31, 4.00230004, 3.103123
490	429, -0.1902, 4.0820004, 4.89899993

491	430,	-5.3405249, 4.08250004, 4.694874885
492	431.	-5 4848498, 4 08250004, 4 490750135
493	432.	-5.6291747, 4.08250004, 4.286625085
494	433.	-2 742649915, 8 1650001, 4 286625085
495	434.	-259829998, 81650001, 4490750135
496	435.	-2 453950045, 8 1650001, 4 694874885
190	436	-2 309599965 8 1650001 4 89899993
497	430,	-2.165250035 8.1650001 5.103125
490	138	-2.103230033, 0.1030001, 3.103123
499	430,	-2.02009993, 0.1030001, 5.30723
500	439,	-1.87033002, 0.1030001, 3.31137303 -1.732100035, 0.1650001, 5.7155001
501	440 ,	-1.752199955, 0.1050001, 5.7155001
502	441,	-1.507050005, 0.1050001, 5.91902515
503	442,	1 20014000 0 100001 0 2270702
504	443,	-1.29914999, 8.1650001, 6.32787525
505	444,	-1.154/99985, 8.1650001, 6.531999/
506	443,	-1.010449975, 8.1650001, 6.73612475
507	446,	-0.86609997, 8.1650001, 6.9402498
508	447,	-0.721750035, 8.1650001, 7.14437485
509	448,	-0.5//39999, 8.1650001, /.3484999
510	449,	-0.4330499845, 8.1650001, 7.55262495
511	450,	-0.2886999955, 8.1650001, 7.75675
512	451,	-0.144349998, 8.1650001, 7.96087505
513	452,	-2.742649915, 0, 4.286625085
514	453,	-2.59829998, 0, 4.490750135
515	454,	-2.453950045, 0, 4.694874885
516	455,	-2.309599965, 0, 4.89899993
517	456,	-2.165250035, 0, 5.103125
518	457,	-2.02089995, 0, 5.30725
519	458,	-1.87655002, 0, 5.51137505
520	459,	-1.732199935, 0, 5.7155001
521	460,	-1.587850005, 0, 5.91962515
522	461,	-1.44350007, 0, 6.1237502
523	462,	-1.29914999, 0, 6.32787525
524	463,	-1.154799985, 0, 6.5319997
525	464,	-1.010449975, 0, 6.73612475
526	465,	-0.86609997, 0, 6.9402498
527	466,	-0.721750035, 0, 7.14437485
528	467,	-0.57739999, 0, 7.3484999
529	468,	-0.4330499845, 0, 7.55262495
530	469,	-0.2886999955, 0, 7.75675
531	470,	-0.144349998, 0, 7.96087505
532	*Element,	type=B31
533	1, 1,	15
534	2, 15,	16
535	3, 16,	17
536	4, 17,	18
537	5, 18,	19
538	6, 19,	20
539	7, 20,	21
540	8, 21,	22
541	9, 22,	23
542	10, 23,	24
543	11, 24,	25
544	12, 25,	26
545	13, 26,	27
546	14, 27,	28
547	15, 28,	29

548	16.	29.	- 30
549	17.	30.	31
550	18	31	32
550	10,	21, 22	22
551 551	19,	22,	55
552	20,	33,	2
553	21,	2,	34
554	22,	34,	35
555	23,	35,	36
556	24,	36,	37
557	25,	37,	38
558	26,	38,	39
559	27.	39	40
560	28	40.	41
561	20,	л1 Л1	12
201	29,	41, 10	12
262	50,	42,	43
563	31,	43,	44
564	32,	44,	45
565	33,	45,	46
566	34,	46,	47
567	35,	47,	48
568	36.	48.	49
569	37	49	50
570	38	50	51
570	20,	50,	50
571 557	39,	SI,	52
572	40,	52,	3
573	41,	3,	53
574	42,	53,	54
575	43,	54,	55
576	44,	55,	56
577	45.	56.	57
578	46	57	58
570	10,	50	50
579	4/,	50,	59
08C	40,	59,	60
581	49,	60,	61
582	50,	61,	62
583	51,	62,	63
584	52,	63,	64
585	53,	64,	65
586	54,	65,	66
587	55.	66.	67
580	56	67	68
500	57	60	60
289	57,	00,	09
590	58,	69,	70
591	59,	70,	71
592	60,	71,	4
593	61,	5,	72
594	62,	72,	73
595	63,	73,	74
596	64.	74.	7.5
597	65	75	76
597	66	75,	70
598	00,	76,	77
599	67,	Π,	78
600	68,	78,	79
CO 1	69.	79,	80
60I	/		
601	70,	80,	81
601 602 603	70, 71,	80, 81,	81 82
	548 549 550 551 5552 5553 5553 5555 5567 5567 5567 5567 5567 5675 5675 5675 5772 5775 5785 5882 5887 5890 5992 5992 5995 5992 5992 5990 5992 592 5	54816,54917,55018,55119,55220,55321,55422,55523,55624,55725,55826,55927,56028,56129,56230,56331,56432,56533,56634,56735,56836,56937,57038,57139,57240,57341,57442,57543,57644,57745,57846,57947,58048,58149,58250,58351,58452,58553,58654,58755,58856,59159,59260,59361,59462,59563,59664,59765,59866,59967,60068,60169,	548 16, 29, 549 17, 30, 550 18, 31, 551 19, 32, 552 20, 33, 553 21, 2, 554 22, 34, 555 23, 35, 556 24, 36, 557 25, 37, 558 26, 38, 559 27, 39, 560 28, 40, 561 29, 41, 562 30, 42, 563 31, 43, 564 32, 44, 565 33, 45, 566 34, 46, 567 35, 47, 568 36, 48, 569 37, 49, 570 38, 50, 571 39, 51, 572 40, 52, 573 41, 3, 574 42, 53,

605	73,	83,	84
606	74,	84,	85
607	75,	85,	86
608	76.	86.	87
600	77	87	88
610	78	207 ,	20
010	70,	00,	0.0
611	/9,	89,	90
612	80,	90,	4
613	81,	5,	91
614	82,	91,	92
615	83,	92,	93
616	84,	93,	94
617	85.	94.	95
61.8	86.	95.	96
61.0	87	96	97
C20	00,	07	00
020	00,	<i>91</i>	90
621	89,	98,	99
622	90,	99,	100
623	91,	100,	101
624	92,	101,	102
625	93,	102,	103
626	94,	103,	104
627	95,	104,	105
628	96,	105.	106
629	97	106	107
630	98	107	109
030	90,	100	100
631	99 ,	100,	109
632	100,	109,	2
633	101,	6,	110
634	102,	110,	111
635	103,	111,	112
636	104,	112,	113
637	105,	113.	114
638	106.	114.	115
630	107	115	116
640	100	116	117
640	100,	117	110
641	1109,	110	110
642	110,	118,	119
643	111,	119,	120
644	112,	120,	121
645	113,	121,	122
646	114,	122,	123
647	115,	123.	124
648	116.	124.	125
610	117	125	126
650	110	126	127
650	110,	107	120
651	119,	127,	128
652	120,	128,	2
653	121,	6,	129
654	122,	129,	130
655	123,	130,	131
656	124,	131,	132
657	125.	132.	133
650	126	132,	134
CE O	127	124	1.25
659	12/,	134,	135
660	128,	135,	136
661	129.	136.	137

662 130,	137,	138
663 131.	138.	139
66A 132	139	140
CCE 122	140	1 / 1
665 133,	140,	141
666 134,	141,	142
667 135,	142,	143
668 136,	143,	144
669 137,	144,	145
670 138,	145,	146
671 139,	146,	147
672 140.	. 147.	7
673 141	5	148
674 142	1/2	1/0
074 142,	140,	150
6/5 I43,	149,	150
676 144,	150,	151
677 145,	151,	152
678 146,	152,	153
679 147,	153,	154
680 148,	154,	155
681 149.	155,	156
682 150	156	157
683 151	157	158
601 152	158	150
COE 1E2	150,	160
685 153,	100	100
686 154,	160,	161
687 155,	161,	162
688 156,	162,	163
689 157,	163,	164
690 158,	164,	165
691 159,	165,	166
692 160.	166.	7
693 161	8	167
694 162	167	168
COF 162	160	160
095 105,	100,	170
696 164,	169,	170
697 165,	1/0,	1/1
698 166,	171,	172
699 167,	172,	173
700 168,	173,	174
701 169,	174,	175
702 170,	175,	176
703 171.	176.	177
704 172	177	178
705 172	178	170
705 173,	170,	100
706 1/4,	1/9,	180
707 175,	180,	181
708 176,	181,	182
709 177,	182,	183
710 178,	183,	184
711 179,	184,	185
712 180.	185.	1
713 181	9	186
714 192	186	187
714 LOZ,	100,	100
/15 183,	18/,	188
716 184,	188,	189
717 185,	189,	190
718 186,	190,	191

719 187,	191,	192
720 188	192	193
720 100,	102	101
721 109,	193,	194
722 190,	194,	195
723 191,	195,	196
724 192,	196,	197
725 193,	197,	198
726 194,	198,	199
727 195,	199,	200
728 196,	200,	201
729 197	201	202
720 100	201	202
730 190,	202,	203
731 199,	203,	204
732 200,	204,	1
733 201,	10,	205
734 202,	205,	206
735 203,	206,	207
736 204,	207,	208
737 205.	208.	209
738 206	209	210
730 200,	210	211
739 207,	210,	211
740 208,	211,	212
741 209,	212,	213
742 210,	213,	214
743 211,	214,	215
744 212,	215,	216
745 213,	216,	217
746 214.	217.	218
747 215	218	219
740 216	210,	220
748 210,	219,	220
749 Z17,	220,	221
750 218,	221,	222
751 219,	222,	223
752 220,	223,	9
753 221,	8,	224
754 222.	224.	225
755 223	225	226
756 224	226	227
757 224,	220,	227
151 223,	221,	220
758 226,	228,	229
759 227,	229,	230
760 228,	230,	231
761 229,	231,	232
762 230,	232,	233
763 231.	233.	234
764 232	234	235
765 232,	235	236
705 255,	200,	230
766 234,	236,	237
767 235,	237,	238
768 236,	238,	239
769 237,	239,	240
770 238,	240,	241
771 239.	241.	242
772 240	242.	10
773 241	_ 12,	2/3
773 241,	242	243
//4 242,	243,	244
775 243.	244.	245

776 244,	245,	246				
777 245,	246.	247				
778 246.	247.	248				
779 247	248	249				
700 249	240,	250				
780 240,	249,	250				
/81 249,	250,	251				
782 250,	251,	252				
783 251,	252,	253				
784 252,	253,	254				
785 253,	254,	255				
786 254,	255,	256				
787 255,	256,	257				
788 256,	257,	258				
789 257.	258.	259				
790 258	259	260				
701 259	260	261				
702 260	261	11				
792 200,	11	262				
793 Z6I,	11 ,	202				
794 262,	262,	263				
795 263,	263,	264				
796 264,	264,	265				
797 265,	265,	266				
798 266,	266,	267				
799 267,	267,	268				
800 268,	268,	269				
801 269,	269,	270				
802 270,	270,	271				
803 271.	271.	272				
804 272.	272.	273				
805 273	273	274				
005275,	273,	275				
000 274,	274,	275				
807275,	275,	270				
808 276,	270,	277				
809 277,	211,	278				
810 278,	278,	279				
811 279,	279,	280				
812 280,	280,	12				
813 281,	12,	281				
814 282,	281,	282				
815 283,	282,	283				
816 284,	283,	284				
817 285,	284,	285				
818 286,	285,	286				
819 287,	286,	287				
820 288,	287.	288				
821 289.	288.	289				
822 290	289.	290				
823 291	290.	291				
824 292	291	292				
024 292,	202	202				
025 295,	292,	293				
826 294,	293,	294				
827 295,	294,	295				
828 296,	295,	296				
829 297,	296,	297				
830 298,	297,	298				
831 299,	298,	299				
832 300.	299.	10				

833 301,	8,	300		
834 302,	300,	301		
835 303.	301,	302		
836 304,	302.	303		
837 305.	303.	304		
838 306	304	305		
030 300	305	306		
0.39 307	305,	300		
040 300,	300,	308		
841 JU9,	200	200		
842 JIU,	300,	210		
843 311,	309,	310 211		
844 312,	310,	311		
845 JIJ,	311,	312		
846 314,	312,	313		
847 315,	313,	314		
848 316,	314,	315		
849 317,	315,	316		
850 318,	316,	317		
851 319,	317,	318		
852 <mark>320,</mark>	318,	3		
853 321,	13,	319		
854 322,	319,	320		
855 323 ,	320,	321		
856 324,	321,	322		
857 325,	322,	323		
858 326,	323,	324		
859 327.	324.	325		
860 328.	325.	326		
861 329.	326.	327		
001 <u>32</u> ,	320,	328		
863 331	328	320		
003 331	320,	330		
004 332,	330	221		
066 224	330,	330 221		
000 334,	222,	222		
867 335,	332,	333		
868 336,	333,	334		
869 337,	334,	335		
870 338,	335,	336		
871 339,	336,	337		
872 340,	337,	4		
873 341,	7,	338		
874 342,	338,	339		
875 343,	339,	340		
876 344,	340,	341		
877 345,	341,	342		
878 346,	342,	343		
879 347,	343,	344		
880 348,	344,	345		
881 349,	345,	346		
882 350.	346,	347		
883 351.	347.	348		
884 352	348	349		
885 353	349	350		
886 354	350	351		
887 355	351	352		
007 333,	350	352		
888 336,	352,	333 2E4		
889 37 .				

890 <mark>358,</mark>	354,	355				
891 359,	355,	356				
892 360.	356.	13				
893 361	9	357				
000 362	357	358				
894 302,	357, 250	350				
895 363,	358,	359				
896 364,	359,	360				
897 365,	360,	361				
898 <mark>366,</mark>	361,	362				
899 367,	362,	363				
900 368,	363,	364				
901 369.	364.	365				
902 370	365	366				
002 370,	266	267				
903 J71,	200,	207				
904 372,	307,	300				
905 3/3,	368,	369				
906 374 ,	369,	370				
907 375,	370,	371				
908 376,	371,	372				
909 377,	372,	373				
910 378.	373.	374				
911 379	374	375				
912 380	375	6				
010 201	<i>373,</i>	276				
913 301,	270	270				
914 382,	370,	377				
915 383,	311,	378				
916 384,	378,	379				
917 385,	379,	380				
918 <mark>386,</mark>	380,	381				
919 387,	381,	382				
920 388,	382,	383				
921 389.	383.	384				
922 390.	384	385				
922 390	385	386				
004 302	200,	200				
924 392,	207	200				
925 393,	301,	300				
926 394,	388,	389				
927 395,	389,	390				
928 396,	390,	391				
929 397,	391,	392				
930 398,	392,	393				
931 399,	393,	394				
932 400,	394,	14				
933 401,	12,	395				
934 402.	395.	396				
935 403	396	397				
936 101	397	398				
027 404,	300	300				
93/403,	200,	100				
938 406,	399,	400				
939 407,	400,	401				
940 408,	401,	402				
941 409,	402,	403				
942 410,	403,	404				
943 411,	404,	405				
944 412.	405.	406				
945 413	406	407				
916 111	407	408				
940 414,	-10/,	400				

947 415,	408,	409				
948 416,	409,	410				
949 417,	410,	411				
950 418,	411,	412				
951 419,	412,	413				
952 420,	413,	14				
953 421,	13.	414				
954 422.	414,	415				
955 423,	415,	416				
956 424.	416,	417				
957 425.	417.	418				
958 426.	418.	419				
959 427.	419.	420				
960 428.	420.	421				
961 429	421	422				
962 430	422	423				
963 431	423	424				
964 432	424	425				
965 132,	425	426				
966 431	426	427				
967 135	427	428				
962 436	428	429				
969 437	429	430				
970 438	430	431				
971 430,	431	432				
971 430,	132 ,	12				
972 440,	чэс , 1л	133				
973 441	лзз	130				
974 112	дол ,	135				
975 445,	404,	435				
970 444,	433,	430				
977 443,	430,	437				
978 440,	43/,	400				
9/9 447,	430,	439				
980 440,	439,	440				
981 449,	440,	441				
982 430,	441,	442				
983 4DI,	442,	443				
984 432,	443,	444				
985 4JJ,	444,	445				
900 404,	443,	440				
987 400,	440,	447 770				
900 400, 000 157	44/ , //0	440 ЛЛQ				
989 407,	440,	449				
990 438,	449,	450				
991 439,	450,	401				
992 400,	401, 11	150				
993 401,	152	452				
994 462,	452,	433				
995 403,	453,	454				
996 464,	434,	400				
997465,	455,	406				
998 466,	456,	457				
999 467,	457,	458	450			
1000	468,	, 458,	459			
1001	469,	, 459,	460			
1002	470,	, 460,	461			
1003	471	, 461,	462			

1004	472, 462, 463							
1005	473, 463, 464							
1006	474, 464, 465							
1007	475, 465, 466							
1008	476, 466, 467							
1009	477, 467, 468							
1010	478, 468, 469							
1011	479, 469, 470							
1012	480, 470, 4							
1013	*Nset, nset=WIRE-2-SE	5T-1 E	C	7	0	0	1.0	1 1
1014	1, 2, 3, 4,	э,	0,	· ·	°,	9,	10,	±±,
1015	17, 18, 19, 20,	21,	22,	23,	24,	25,	26,	27,
28,	, 29, 30, 31, 32							
1016	33, 34, 35, 36,	37,	38,	39,	40,	41,	42,	43,
44,	, 45, 46, 47, 48							
1017	49, 50, 51, 52,	53,	54,	55,	56,	57,	58,	59,
60,	, 61, 62, 63, 64	60	70	71	70	70	7 4	75
1018 76,	, 77, 78, 79, 80	69,	/0,	/⊥,	12,	13,	/4,	/5,
1019	81, 82, 83, 84,	85,	86,	87,	88,	89,	90,	91,
1020	, 93, 94, 95, 96 97 98 99 100	101	102	103	104	105	106	107
1020	B, 109, 110, 111, 112	101,	102,	100,	101,	100,	100,	107,
1021	113, 114, 115, 116,	117,	118,	119,	120,	121,	122,	123,
1022	4, 125, 126, 127, 128 129, 130, 131, 132,	133.	134.	135.	136.	137.	138.	139.
140	0, 141, 142, 143, 144	,	,	,	,	/	,	,
1023	145, 146, 147, 148,	149,	150,	151,	152,	153,	154,	155,
1024	o, 157, 158, 159, 160 161, 162, 163, 164	165.	166.	243	244	245	246	247
248	3 , 249, 250, 251, 252	1007	100,	2107	,	2107	2107	21/1
1025	253, 254, 255, 256,	257,	258,	259,	260,	261,	262,	263,
1026	4, 205, 200, 207, 208	273	274	275	276	277	278	279
280	209, 270, 271, 272, 281, 282, 283, 284	213,	2/4,	275,	270,	211,	270,	219,
1027	285, 286, 287, 288,	289,	290,	291,	292,	293,	294,	295,
29	6, 297, 298, 299, 300						i i	
1028	301, 302, 303, 304,	305,	306,	307,	308,	309,	310,	311,
312	2, 313, 314, 315, 316							
1029	317, 318, 319, 320,	321,	322,	323,	324,	325,	326,	327,
328	3, 329, 330, 331, 332	227	220	220	240	2 4 1	240	242
1030 3 1,	333, 334, 333, 330, 1 345 346 347 348	337,	338,	339,	340,	341,	342,	343,
1031	349. 350. 351. 352.	353.	354	355.	356.	357.	358.	359
360), 361, 362, 363, 364	,	001/	0007	0007	,	0007	0007
1032	365, 366, 367, 368,	369,	370,	371,	372,	373,	374,	375,
37	6, 377, 378, 379, 380							
1033	381, 382, 383, 384,	385,	386,	387,	388,	389,	390,	391,
392	2, 393, 394, 395, 396							
1034	397, 398, 399, 400,	401,	402,	403,	404,	405,	406,	407,
408	8, 409, 410, 411, 412	117	410	110	100	101	400	400
1035	413, 414, 415, 416, 1 125 126 127 129	41/,	418,	419,	420,	421,	422,	423,
1036	429, 430, 421, 420	433	434	435	436	437	438	439
44(0, 441, 442, 443, 444	1007	1017	1007	1007	10/1	1007	1007

456, 457, 458, 459, 460 1038 461, 462, 463, 464, 465, 466, 467, 468, 469, 470 1039 *Elset, elset=WIRE-2-SET-1 1040 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 1041 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 1042 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48 1043 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64 1044 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 1046 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 1047 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128 1048 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144 1059 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160 1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 1051 257, 256, 257, 258 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 346, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 373, 338, 389, 390, 391, 391, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 346, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 371, 338, 389, 390, 391, 392, 393, 394, 395, 364, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 460, 462, 463, 464 1051 417, 418, 419, 420, 421, 422, 423, 4	1037	445, 446, 447, 448,	449,	450,	451,	452,	453,	454,	455,	
1038461, 462, 463, 464, 465, 466, 467, 468, 469, 4701039*Elset, elset=WIRE-2=SET-110401, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12, 13, 14, 15, 167, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,104117, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,104233, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,44, 45, 46, 47, 48104349, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,60, 61, 62, 63, 64104465, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,76, 77, 78, 79, 80104581, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,92, 93, 94, 95, 96104697, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,108, 109, 110, 111, 1121047113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,124, 125, 126, 127, 1281048129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,140, 141, 142, 143, 1441049145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155,156, 157, 158, 159, 1601050241, 222, 243, 244, 245, 246, 247, 248, 249, 250, 251,253, 254, 255, 256, 266, 267,1051257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267,1051257, 258, 259, 260, 271, 2721052273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283,1053284, 285, 286, 287, 2881054357, 358, 359, 300, 301, 311, 312, 313, 314, 315,316, 317, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347,336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347,336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, <td>456,</td> <td>457, 458, 459, 460</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	456,	457, 458, 459, 460								
1039 *Elset, elset=WIRE-2-BET-1 1040 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 1041 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 1042 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48 1043 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64 1044 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 78, 80 1045 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96 1046 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 1047 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128 1048 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144 1049 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160 1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 1053 289, 200, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 391, 392, 393, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356 1058 366, 387, 384 1059 385, 366, 387, 384, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1051 447, 448, 445, 444 1044, 445, 446, 447, 448 1053 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 465, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1055 *Nect, nele=ENT-2, generate 1066 1, 470, 1	1038	461, 462, 463, 464,	465,	466,	467,	468,	469,	470		
140 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 141 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 144, 45, 46, 47, 48 144, 45, 46, 47, 48 144, 45, 46, 47, 48 144, 45, 46, 47, 48 144 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 78, 80 144 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 78, 80 144 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 144 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156 157, 158, 159, 160 146 94, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 155 253, 254, 255, 256 155 328, 269, 270, 271, 272 152 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 155 328, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 155 321, 322, 333, 334, 335, 336 156 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 346, 349, 350, 351, 352 155 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 355, 356 156 337, 338, 338, 340, 341, 342, 343, 344, 345, 346, 347, 346, 349, 350, 351, 352 157 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 159 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 159 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 159 366, 367, 368 159 366, 367, 368 150 366, 367, 368 150 367, 373, 384, 389, 390, 301, 312, 233, 394, 395, 396, 360, 361, 362, 363, 364 150 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 160 41, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 160 41, 402, 403, 404, 405, 463, 464 160 41,	1039	*Elset, elset=WIRE-2	-SET-	1	_	0	0	1.0		
12, 13, 14, 14, 15, 16 1041 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 1042 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48 1043 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64 1044 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 1045 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96 1046 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 1047 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128 1048 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144 1049 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160 1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 1051 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 1053 289, 200, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 384, 349, 350, 351, 352 1059 381, 382, 383, 384 1059 381, 382, 383, 384 1059 381, 382, 383, 384 1059 385, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 337, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 413, 422, 443, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Neet, neet=SET-2, generate 1066 1, 470, 1	1040	L, 2, 3, 4,	5,	6,	/,	8,	9,	10,	±±,	
104, 29, 30, 31, 32 1042 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48 1043 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64 1044 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 1045 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96 1046 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 1047 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128 1048 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144 1049 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160 1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 254, 255, 256 1051 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 286 1051 35, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 344, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 356, 367, 368 1058 366, 367, 368 1059 361, 362, 363, 351, 352 1059 365, 366, 367, 368 1059 365, 366, 367, 368 1059 361, 362, 363, 364, 365, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1059 365, 366, 367, 368 1050 40, 40, 40, 40, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428,	1041	17 18 19 20	21	22	23	24	25	26	27	
1042 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48 1043 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64 1044 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 1045 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96 1046 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 1047 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128 1048 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 1400, 141, 142, 143, 144 1049 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160 1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 1051 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 338, 335, 346, 347, 348, 344, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1056 337, 338, 339, 400 1056 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1051 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 436, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 400	28,	29. 30. 31. 32	2 ± 1	221	20,	21,	20,	20,	21,	
<pre>44, 45, 46, 47, 48 1043</pre>	1042	33, 34, 35, 36,	37,	38,	39,	40,	41,	42,	43,	
1043 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64 1044 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 1045 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96 1046 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 1047 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128 1048 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144 1049 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160 1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 1051 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284 285, 286, 287, 288 1053 289, 290, 201, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 3057 352, 353, 354, 355, 356, 357	44,	45, 46, 47, 48								
 60, 61, 62, 63, 64 104 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 105 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96 106 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 1047 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128 1048 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144 1049 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160 1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 1051 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 360, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 106 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 416, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1054 405, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 *Nset, nset=SET-2, generate 	1043	49, 50, 51, 52,	53,	54,	55,	56,	57,	58,	59,	
 1044 0.5, 05, 07, 05, 05, 09, 70, 71, 72, 73, 74, 73, 74, 73, 76, 77, 73, 79, 79, 80 1045 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96 1046 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 1047 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128 1048 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144 1049 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160 1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 1051 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 366, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 400, 431, 442, 443, 444, 445, 446, 447, 448 1063 419, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 419, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1064 46	60,	61, 62, 63, 64	C O	70	71	70	70	7 /	75	
<pre>105, 11, 10, 10, 11, 10, 10, 10, 10, 10, 10</pre>	76.	77. 78. 79. 80	09,	10,	/ ± ,	12,	13,	/4,	/ .	
<pre>92, 93, 94, 95, 96 1046 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 1047 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128 1048 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144 1049 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 155, 157, 158, 159, 160 1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 1051 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 386, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 470 1065 *Nset, nset=SET=2, generate 1066 1, 477, 1 1067 *Elset, elset=SET=2, generate</pre>	1045	81, 82, 83, 84,	85,	86,	87,	88,	89,	90,	91,	
1046 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 1047 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128 1046 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144 1049 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160 1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 1051 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET=2, generate 1066 1, 470, 1 1067 *Elset, elset=SET=2, generate	92,	93, 94, 95, 96							i i	
108, 109, 110, 111, 112 1047 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128 1048 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144 1049 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160 1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 1051 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 387, 388, 389, 390, 391, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1052 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 350, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1055 *Nset, nset=SET=2, generate 1066 1, 477, 478, 479, 480	1046	97, 98, 99, 100,	101,	102,	103,	104,	105,	106,	107,	
<pre>1147 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128 1048 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144 1049 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160 1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 1051 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 355, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate</pre>	108,	109, 110, 111, 112	117	110	110	100	101	100	100	
 1048 129, 130, 120, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144 1049 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160 1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 1051 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate 	124	113, 114, 115, 116, 125, 126, 127, 128	±±/,	118,	119,	120,	121,	122,	123,	
<pre>140, 141, 142, 143, 144 1049 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160 1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 1051 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate</pre>	1048	129, 130, 131, 132,	133,	134,	135,	136,	137,	138,	139,	
<pre>1049 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160 1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 1051 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 388, 399, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 415, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 **Diset, nest=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate</pre>	140,	141, 142, 143, 144	, i						· ·	
<pre>156, 157, 158, 159, 160 1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 1051 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 455, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate</pre>	1049	145, 146, 147, 148,	149,	150,	151,	152,	153,	154,	155,	
1050 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 1051 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 339, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062	156,	157, 158, 159, 160	045	246	047	240	240	250	0 5 1	
 1051 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate 	252	241, 242, 243, 244, 253, 254, 255, 256	243,	240,	Z47,	248,	249,	250,	201,	
<pre>268, 269, 270, 271, 272 1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate</pre>	1051	257, 258, 259, 260,	261,	262,	263,	264,	265,	266,	267,	
<pre>1052 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 * Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate</pre>	268,	269, 270, 271, 272	, i						· ·	
<pre>284, 285, 286, 287, 288 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate</pre>	1052	273, 274, 275, 276,	277,	278,	279,	280,	281,	282,	283,	
 1053 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304 1054 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate 	284,	285, 286, 287, 288	202	0.0.4	0.05	200	0.07	000	200	
 1054 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate 	1053	289, 290, 291, 292,	293,	294,	295,	296,	291,	298,	299,	
<pre>316, 317, 318, 319, 320 1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate</pre>	1054	305, 306, 307, 308,	309,	310,	311,	312,	313,	314,	315,	
<pre>1055 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate</pre>	316,	317, 318, 319, 320							· ·	
<pre>332, 333, 334, 335, 336 1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate</pre>	1055	321, 322, 323, 324,	325,	326,	327,	328,	329,	330,	331,	
<pre>1056 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate</pre>	332,	333, 334, 335, 336	241	240	242	244	245	246	247	
 1057 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate 	1056 348	337, 338, 339, 340, 349, 350, 351, 352	341,	342,	343,	344,	345,	346,	347,	
<pre>364, 365, 366, 367, 368 1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate</pre>	1057	353, 354, 355, 356,	357,	358,	359,	360,	361,	362,	363,	
<pre>1058 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate</pre>	364,	365, 366, 367, 368								
<pre>380, 381, 382, 383, 384 1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate</pre>	1058	369, 370, 371, 372,	373,	374,	375,	376,	377,	378,	379,	
<pre>1059 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400 1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate</pre>	380,	381, 382, 383, 384	200	200	2.01	200	202	204	205	
<pre>1060 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416 1061 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate</pre>	1059 396	385, 386, 387, 388, 397 398 399 400	389,	390,	391,	392,	393,	394,	395,	
<pre>412, 413, 414, 415, 416 1061</pre>	1060	401, 402, 403, 404,	405,	406,	407,	408,	409,	410,	411,	
<pre>1061</pre>	412,	413, 414, 415, 416	, i						· ·	
<pre>428, 429, 430, 431, 432 1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate</pre>	1061	417, 418, 419, 420,	421,	422,	423,	424,	425,	426,	427,	
<pre>1062 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 1063 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate</pre>	428,	429, 430, 431, 432	127	120	120	110	1 1 1	440	110	
<pre>114, 143, 140, 147, 140 1063</pre>	1062	433, 434, 435, 436, AA5 AA6 AA7 AA8	437,	438,	439,	440,	441 ,	442,	443,	
460, 461, 462, 463, 464 1064 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate	1063	449, 450, 451, 452,	453,	454,	455,	456,	457,	458,	459,	
<pre>1064</pre>	460,	461, 462, 463, 464		· · · · ·						
476, 477, 478, 479, 480 1065 *Nset, nset=SET-2, generate 1066 1, 470, 1 1067 *Elset, elset=SET-2, generate	1064	465, 466, 467, 468,	469,	470,	471,	472,	473,	474,	475,	
1065 ^Nset, nset=5±T=2, generate 1066 1, 470, 1 1067 *Elset, elset=SET=2, generate	476,	477, 478, 479, 480								
1067 *Elset, elset=SET-2, generate	1065	$^{\text{NSet}}$, $\text{nset}=\text{SET}=2$, ge	enera	Le						
	1067	*Elset, elset=SET-2,	gene	rate						

1, 480, 1068 *Nset, nset=SET-4, generate 1, 470, 1 1070 *Elset, elset=SET-4, generate 1, 480, 1 1072 *Nset, nset=SET-7 5, 6, 8, 1, 2, 3, 7, 9, 10, 11, 1074 4, 14, 15, 16 13, 12, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32 33, 53, 54, 56, 57, 58, 59, 60, 1076 63, 64, 65, 66, 67 68, 69, 70, 71, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102 103, 104, 105, 106, 107, 108, 109, 129, 130, 131, 132, 1078 133, 134, 135, 136, 137 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 243, 1079 244, 245, 246, 247, 248 1080 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 281, 282, 283 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315 316, 317, 318, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 1084 381, 382, 383, 384, 385 386, 387, 388, 389, 390, 391, 392, 393, 394, 414, 415, 416, 417, 418, 419, 420 1086 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436 1087 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 1088 464, 465, 466, 467, 468 469, 470 1089 *Elset, elset=SET-7 7, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16 17, 18, 19, 20, 41, 47, 42, 43, 44, 45, 46, 49, 50, 51, 52 48, 53, 54, 55, 56, 57, 58, 60, 81, 85, 86, 87, 88 84, 89, 90, 91, 92, 94, 97, 1094 93, 95, 98, 100, 121, 122, 123, 124 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256 257, 258, 259, 260, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 1098 304, 305, 306, 307, 308 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 1099 320, 361, 362, 363, 364

1100	365, 366, 367, 368,	369,	370,	371,	372,	373,	374,	375,	
376,	377, 378, 379, 380								
1101	381, 382, 383, 384,	385,	386,	387,	388,	389,	390,	391,	
392, 1102	393, 394, 395, 396 397 398 399 400	421	422	423	424	425	426	427	
428.	429, 430, 431, 432	1211	1221	420,	121,	420,	420,	12/1	
1103	433, 434, 435, 436,	437,	438,	439,	440,	441,	442,	443,	
444,	445, 446, 447, 448								
1104	449, 450, 451, 452,	453,	454,	455,	456,	457,	458,	459,	
460,	461, 462, 463, 464	100	470	171	470	172	A 7 A	17E	
1105	465, 466, 467, 468, 177 178 179 180	469,	4/0,	4/1,	4/2,	4/3,	4/4,	4/3,	
1106	*Nset, nset=AVERTICA	L							
1107	1, 2, 3, 4,	5,	6,	7,	8,	9,	10,	11,	
12,	13, 14, 34, 35								
1108	36, 37, 38, 39,	40,	41,	42,	43,	44,	45,	46,	
4/,	48, 49, 50, 51 52 72 73 74	75	76	77	78	79	80	81	
82,	83. 84. 85. 86	13,	10,	· · · •	10,	15,	00,	01,	
1110	87, 88, 89, 90,	110,	111,	112,	113,	114,	115,	116,	
117,	118, 119, 120, 121								
1111	122, 123, 124, 125,	126,	127,	128,	148,	149,	150,	151,	
1112	153, 154, 155, 156	161	162	163	164	165	166	167	
168,	169, 170, 171, 172	101,	102,	100,	101,	100,	100,	±07,	
1113	173, 174, 175, 176,	177,	178,	179,	180,	181,	182,	183,	
184,	185, 186, 187, 188								
1114	189, 190, 191, 192,	193,	194,	195,	196,	197,	198,	199,	
200 ,	201, 202, 203, 204	209	210	211	212	213	214	215	
216,	217, 218, 219, 220	200,	210,	2 I I I	212,	210,	217,	210,	
1116	221, 222, 223, 224,	225,	226,	227,	228,	229,	230,	231,	
232,	233, 234, 235, 236								
1117	237, 238, 239, 240,	241,	242,	262,	263,	264,	265,	266,	
1118	208, 209, 270, 271	276.	277	278	279	280-	319	320.	
321,	322, 323, 324, 325	2707	2111	2101	2131	2007	5157	5207	
1119	326, 327, 328, 329,	330,	331,	332,	333,	334,	335,	336,	
337,	338, 339, 340, 341								
1120	342, 343, 344, 345,	346,	347,	348,	349,	350,	351,	352,	
1121	396, 397, 398, 399,	400.	401.	402.	403.	404.	405.	406.	
407,	408, 409, 410, 411	1007	101/	1027	1007	1017	1007	1007	
1122	412, 413								
1123	*Elset, elset=AVERTI	CAL							
1124	21, 22, 23, 24,	25,	26,	27,	28,	29,	30,	31,	
34, 1125	37, 38, 39, 40,	61	62 -	63.	64	65.	66.	67.	
68,	69, 70, 71, 72	01/	021	007	01/	007	007	011	
1126	73, 74, 75, 76,	77,	78,	79,	80,	101,	102,	103,	
104,	105, 106, 107, 108								
1127	109, 110, 111, 112, 141, 142, 142, 142, 142, 142	113,	114,	115,	116,	117,	118,	119,	
1128	145, 146, 147, 148	149	150.	151.	152.	153.	154.	155.	
156,	157, 158, 159, 160		1007	101/	1021	1007	101/	1007	
1129	161, 162, 163, 164,	165,	166,	167,	168,	169,	170,	171,	
172,	173, 174, 175, 176								

177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 1134 272, 273, 274, 275, 276 277, 278, 279, 280, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 1136 344, 345, 346, 347, 348 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 1137 360, 401, 402, 403, 404 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 1138 416, 417, 418, 419, 420 *Nset, nset=SET-9, generate 1139 1140 1, 470, *Elset, elset=SET-9, generate 1141 1 1, 480, 1142 *Nset, nset=AHORIZONTAL 1143 4, 5, 6, 1, 2, 3, 7, 8, 9, 10, 1144 12, 13, 14, 15, 16 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 1145 28, 29, 30, 31, 32 1146 33, 53, 54, 55, 56, 57, 58, 59, 60, 63, 64, 65, 66, 67 68, 69, 70, 71, 91, 92, 94, 1147 96, 97, 99, 100, 101, 102 98, 103, 104, 105, 106, 107, 108, 109, 129, 130, 131, 132, 1148 133, 134, 135, 136, 137 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 243, 1149 244, 245, 246, 247, 248 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 281, 282, 283 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315 316, 317, 318, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369 1154 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385 386, 387, 388, 389, 390, 391, 392, 393, 394, 414, 415, 1155 416, 417, 418, 419, 420 1156 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 1158 464, 465, 466, 467, 468 469, 470 1159 *Elset, elset=AHORIZONTAL ⁵¹ 1, 2, 3, 4, 5, 12, 13, 14, 15, 16 6, 7, 8, 9, 10, 11,

17, 18, 19, 20, 41, 42, 45, 43, 44, 46, 47, 49, 50, 51, 52 53, 54, 55, 56, 57, 58, 59, 60, 81, 82, 84, 85, 86, 87, 88 93, 89, 90, 91, 92, 94, 95, 96, 97, 98, 1164 100, 121, 122, 123, 124 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 1166 252, 253, 254, 255, 256 257, 258, 259, 260, 281, 282, 283, 284, 285, 286, 287, 1167 288, 289, 290, 291, 292 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 1168 304, 305, 306, 307, 308 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 1169 320, 361, 362, 363, 364 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396 397, 398, 399, 400, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 1174 460, 461, 462, 463, 464 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 1175 476, 477, 478, 479, 480 *Nset, nset=SET-10, generate 1176 1, 470, 1, ** Section: Section-1-AHORIZONTAL Profile: Profile-1 1178 1179 *Beam Section, elset=AHORIZONTAL, material=NITI SE AURRICHIO, poisson = 0.3, temperature=GRADIENTS, section=CIRC 1181 fileOutput.write(str(rh)) # write horizontal radius fileOutput.write (""" 1183 0.,0.,-1. ** Section: Section-2-AVERTICAL Profile: Profile-2 1184 1185 *Beam Section, elset=AVERTICAL, material=NITI SE AURRICHIO, poisson = 0.3, temperature=GRADIENTS, section=CIRC """) 1186 1187 fileOutput.write(str(rv)) # write vertical radius fileOutput.write (""" 1188 1189 0.,0.,-1. 1190 *End Part ** 1191 ** 1192 ** ASSEMBLY 1193 ** 1194 *Assembly, name=Assembly *Instance, name=PART-1-1, part=PART-1 *End Instance 1198 ** *Nset, nset=BOTTOM, instance=PART-1-1

3, 4, 8, 11 *Nset, nset=TOP, instance=PART-1-1 6, 7, 9, 14 *Nset, nset=XYPLANE, instance=PART-1-1 1204 1, 8, 9, 10 *Nset, nset=YZPLANE, instance=PART-1-1 1206 12, *Nset, nset=ZXBOTTOM, instance=PART-1-1 1208 3, 4, 8, 11, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64 65, 66, 67, 68, 69, 70, 71, 243, 244, 245, 246, 247, 248, 249, 250, 251 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 300, 301, 302, 303, 304, 305 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 452, 453, 454 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470 *Nset, nset=ZXTOP, instance=PART-1-1 1214 6, 7, 9, 14, 129, 130, 131, 132, 133, 134, 135, 1215 136, 137, 138, 139, 140 141, 142, 143, 144, 145, 146, 147, 357, 358, 359, 360, 1216 361, 362, 363, 364, 365 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 1218 393, 394, 433, 434, 435 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 1219 447, 448, 449, 450, 451 *Nset, nset=XYBOTTOM, instance=PART-1-1 1, 8, 9, 10, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178 1222 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 1224 222, 223, 224, 225, 226 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 1225 238, 239, 240, 241, 242 *Nset, nset=XYTOP, instance=PART-1-1 1226 4, 5, 7, 13, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83 79, 1228 84, 85, 86, 87, 88, 89, 90, 148, 149, 150, 151, 152, 153, 154, 155, 156 1229 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 319, 320, 321, 322, 323, 324 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356 *Nset, nset=ZYBOTTOM, instance=PART-1-1 12, *Nset, nset=ZYTOP, instance=PART-1-1 1234 1235 2, *End Assembly **

```
** MATERIALS
1238
1239
        **
1240
        *Material, name=NITI SE AURRICHIO
        *SUPERELASTIC
1241
       60000., 0.3, 0.075, 520., 600., 300., 200., 520.
1242
1243
        0.,
                  0., 0., 0.
        *Density
1244
        6.5e-06,
1245
        *Elastic
1246
1247
       60000., 0.3
1248
        ** BOUNDARY CONDITIONS
1249
        * *
        ** Name: Disp-BC-1 Type: Displacement/Rotation
        *Boundary
        ZXBOTTOM, 2, 2
        ** Name: Disp-BC-2 Type: Displacement/Rotation
1254
        *Boundary
       XYBOTTOM, 3, 3
1256
        ** Name: Disp-BC-3 Type: Displacement/Rotation
        *Boundary
1258
       YZPLANE, 1, 1
1259
        ** ____
        * *
        ** STEP: LOAD
        * *
        *Step, name=LOAD, nlgeom=YES
1264
       *Static
       0.01, 1., 1e-05, 0.1
1266
        **
1267
        ** BOUNDARY CONDITIONS
1268
1269
        * *
        ** Name: BC-4 Type: Displacement/Rotation
        *Boundary
       """)
               fileOutput.write('ZYTOP, 1, 1, '+str(dispMag[j])) #
write displacement magnitude
            fileOutput.write("""
1274
        **
        ** OUTPUT REQUESTS
1276
        * *
        *Restart, write, frequency=0
1278
1279
        * *
        ** FIELD OUTPUT: F-Output-1
1280
        * *
1281
1282
        *Output, field, variable=PRESELECT
        * *
1283
        ** HISTORY OUTPUT: H-Output-1
1284
        * *
1286
        *Output, history, variable=PRESELECT
        *End Step
        ** __
1288
        * *
1289
        ** STEP: UNLOAD
        * *
1291
```

```
1292
         *Step, name=UNLOAD, nlgeom=YES
         *Static
1294
         0.01, 1., 1e-05, 0.1
         ** BOUNDARY CONDITIONS
1296
1297
        * *
        ** Name: BC-4 Type: Displacement/Rotation
1298
        *Boundary, op=NEW
1299
        ** Name: BC-5 Type: Displacement/Rotation
        *Boundary, op=NEW
       ZYTOP, 1, 1
        ** Name: Disp-BC-1 Type: Displacement/Rotation
1303
        *Boundary, op=NEW
1304
       ZXBOTTOM, 2, 2
        ** Name: Disp-BC-2 Type: Displacement/Rotation
1306
        *Boundary, op=NEW
1307
        XYBOTTOM, 3, 3
1308
        ** Name: Disp-BC-3 Type: Displacement/Rotation
1309
        *Boundary, op=NEW
        YZPLANE, 1, 1
        * *
1312
        ** OUTPUT REQUESTS
1313
        * *
1314
        *Restart, write, frequency=0
1315
         * *
1316
        ** FIELD OUTPUT: F-Output-4
1318
         * *
         *Output, field
1319
        *Contact Output
        CDISP, CSTRESS
1321
         **
        ** FIELD OUTPUT: F-Output-2
1323
        * *
1324
        *Node Output
1325
        CF, RF, U
1326
         * *
         ** FIELD OUTPUT: F-Output-3
1328
         **
1329
         *Element Output, directions=YES
1331
        LE, MVF, PE, PEEQ, PEMAG, S
         * *
1332
        ** HISTORY OUTPUT: H-Output-2
        * *
1334
1335
        *Output, history, variable=PRESELECT
        *End Step
1336
         """)
1338
                fileOutput.close() #close inp file
1339
```

II. inpAbaqusRunAll.py

```
#Author: Ian P. Morrissey
1
  #Description: Submits every input deck in current directory
2
  # and provides the job status for each submission to end each
3
   job before submitting the next job
4
  import os
5
6
  #create array textstring of .inp file names with file extensions
8 path=os.curdir
9 inpNames = [f for f in os.listdir(path) if f.endswith('.inp')]
10
11 #number of input files or decks
12 numinps=len(inpNames)
14 #remove .inp extension from text string
15 inpNamesNoExt =[]
16 inpNamesNoExt =[0 for i in range(numinps)]
17 for i in range(1,numinps+1):
       inpNamesNoExt[i-1] = inpNames[i-1].replace('.inp', '')
18
19
20 #submit all input files and display job status for each
   submission to end each job before submitting the next job
21 for i in range(1,numinps+1):
       os.system('abaqus job='+inpNamesNoExt[i-1]+' int')
23 print('Done')
```

III. post_tensor.py

```
# Author: Dr. John A. Moore
1
  # Edited by: Ian P. Morrissey
2
3 # Changes: changed node sets, input name
4
  # Description: Extracts reaction Force values in 1, 2, & 3
   directions from node set at every frame in each step and sums
  # Extracts displacment values in 1, 2, & 3 directions from node
5
   set at every frame in each step and sums and averages
6
8 import math
9 import datetime
10 from odbAccess import *
11 from abaqusConstants import *
12 # number of displacements
13 numLoads=8
14 # number of relative densities
15 numruns=15
16 # number of radii variation
17 numrvar=16
18 for j in range(1,numLoads+1):
```

```
19
       for i in range(1,numruns+1):
           for k in range(1,numrvar+1):
               runnum = str(i)
               loadnum = str(j)
23
               rvarnum = str(k)
24
2.5
               # Input and ouput file names
               InputName='D1B-'+loadnum+'-'+runnum+'-'+rvarnum
2.6
               # Sum of Reaction Forces
2.8
29
               OutName1='RF'
               # top displacement
               OutName2='U'
               print 'ODB = ' + InputName
34
               print 'Output Variable = ' + OutName1
               print 'Output Variable = ' + OutName2
               #vector component
38
               vecComp = 2
40
41
42
               outputfilename1=InputName+'-'+str(OutName1)+'-
43
   '+str(1)+'.txt' #output file name of reaction force in 1-
   direction
               outputfilename2=InputName+'-'+str(OutName1)+'-
44
   '+str(2)+'.txt' #ofn rf in 2
               outputfilename3=InputName+'-'+str(OutName1)+'-
45
   '+str(3)+'.txt' #ofn rf in 3
               outputfilename4=InputName+'-'+str(OutName2)+'-
46
   '+str(1)+'.txt' #ofn displacement in 1-direction
               outputfilename5=InputName+'-'+str(OutName2)+'-
47
   '+str(2)+'.txt' #ofn d in 2
               outputfilename6=InputName+'-'+str(OutName2)+'-
48
   '+str(3)+'.txt' #ofn d in 3
49
               ## open txt file to write to
               out1 = open(outputfilename1,'w') #w is mode used to
   open a file to write or to create one if it does not exist
53
               out2 = open(outputfilename2,'w')
54
               out3 = open(outputfilename3,'w')
55
               out4 = open(outputfilename4,'w')
56
               out5 = open(outputfilename5,'w')
57
               out6 = open(outputfilename6,'w')
58
               # open .odb file to read from
59
               odb = openOdb(InputName+'.odb')
60
61
               # part
62
               partInstance = odb.rootAssembly.instances['PART-1-
63
   1']
64
               # assembly
65
               assembly = odb.rootAssembly
```

67 #n node sets 68 69 nsetName = 'ZYTOP' #node set name of center top nodes nsetTop = assembly.nodeSets[nsetName] steps = ['LOAD', 'UNLOAD'] #load steps 74 75 #steps = ['LOAD'] for s in steps: 76 print s 78 79 # number of frames in step numberFrame = len(odb.steps[s].frames) 80 81 # extract frame 1 to determine how many elements 82 it has frame = odb.steps[s].frames[1] 83 outvar1=frame.fieldOutputs[str(OutName1)] 84 outvar2=frame.fieldOutputs[str(OutName1)] 85 outvar3=frame.fieldOutputs[str(OutName1)] 86 outvar4=frame.fieldOutputs[str(OutName2)] 87 outvar5=frame.fieldOutputs[str(OutName2)] 88 outvar6=frame.fieldOutputs[str(OutName2)] 89 90 91 numelem = len(outvar2.values) print 'Number of Elements ' + str(numelem) 92 93 94 95 # loop over all times (ie frames) for ns in range (1,numberFrame): # these just let you know its running 97 and how long it takes 98 print ns 99 print str(datetime.datetime.now()) # extract varibles desired frame = odb.steps[s].frames[ns] 104 outvar1 = frame.fieldOutputs['RF'].getSubset(region=nsetTop) 105 outvar2 = frame.fieldOutputs['U'].getSubset(region=nsetTop) # number of nodes in sets 108 nNsetTop = len(outvar1.values) 109 # average over all nodes in set # this is adding all variable values together, starting the variable at 0 value sumvar1=0. sumvar2=0. 113 sumvar3=0. 114 115 sumvar4=0. sumvar5=0. sumvar6=0.
```
118
119
                            for n in range (0, nNsetTop):
                                    # sum of reaction for all nodes
                                    var1 =outvar1.values[n].data[0]
                                    sumvar1 += var1
                                    var2 =outvar1.values[n].data[1]
124
                                    sumvar2 += var2
                                    var3 =outvar1.values[n].data[2]
                                    sumvar3 += var3
                                    # sum of displacment for all
128
  nodes
                                    var4 =outvar2.values[n].data[0]
129
130
                                    sumvar4 += var4
                                    var5 =outvar2.values[n].data[1]
131
                                    sumvar5 += var5
132
                                    var6 =outvar2.values[n].data[2]
                                    sumvar6 += var6
134
135
                            # average of varibale for all
136
   displacment (forces don't need averaged)
                            avevar4 = sumvar4/nNsetTop
137
138
                            avevar5 = sumvar5/nNsetTop
                            avevar6 = sumvar6/nNsetTop
139
140
141
                            # write data
142
                            out1.write(str(sumvar1)+'\n')
                            out2.write(str(sumvar2)+'\n')
143
                            out3.write(str(sumvar3)+'\n')
144
                            out4.write(str(avevar4)+'\n')
145
                            out5.write(str(avevar5)+'\n')
146
                            out6.write(str(avevar6)+'\n')
147
148
149
              # close input and output files
              out1.close()
               out2.close()
              out3.close()
154
              out4.close()
              out5.close()
156
               out6.close()
```

IV. odbMaxMises.py [20]

1 #code is from
2 #Title:odbMaxMises.py
3 #Author: D'assault Systemes
4 #Date:2018
5 #Code Version: N/A

```
6 #Location:
  https://help.3ds.com/2018/english/dssimulia established/simacaec
  mdrefmap/simacmd-c-odbintroexamaxmisespyc.htm?contextscope=all
  #
8
9 #Changes: Peak stress is written to text file based off of odb
  file name
11 from odbAccess import *
12 from sys import argv, exit
14
15 def rightTrim(input, suffix):
      if (input.find(suffix) == -1):
16
          input = input + suffix
      return input
18
19 #~~~~~~~~~
                   21 def getMaxMises(odbName,elsetName):
      """ Print max mises location and value given odbName
         and elset (optional)
      .....
24
      elset = elemset = None
      region = "over the entire model"
26
      """ Open the output database """
      opname=str(odbName)
2.8
29
      opname=opname.replace('.odb','')
      odb = openOdb(odbName)
      assembly = odb.rootAssembly
      """ Check to see if the element set exists
         in the assembly
34
      .....
      if elsetName:
36
         try:
38
             elemset = assembly.elementSets[elsetName]
             region = " in the element set : " + elsetName;
39
40
          except KeyError:
             print 'An assembly level elset named %s does' \
41
42
                    'not exist in the output database %s' \
43
                    % (elsetName, odbName)
44
             odb.close()
45
             exit(0)
46
      """ Initialize maximum values """
47
48
      maxMises = -0.1
49
      maxElem = 0
      maxStep = " None "
50
      maxFrame = -1
51
      Stress = 'S'
52
      isStressPresent = 0
      for step in odb.steps.values():
54
         print 'Processing Step:', step.name
          for frame in step.frames:
             allFields = frame.fieldOutputs
57
             if (allFields.has key(Stress)):
58
59
                 isStressPresent = 1
```

60 stressSet = allFields[Stress] if elemset: 61 stressSet = stressSet.getSubset(62 region=elemset) 63 for stressValue in stressSet.values: 64 if (stressValue.mises > maxMises): 65 maxMises = stressValue.mises 66 67 maxElem = stressValue.elementLabel 68 maxStep = step.name 69 maxFrame = frame.incrementNumber if(isStressPresent): 71 print 'Maximum von Mises stress %s is %f in element %d'%(72 region, maxMises, maxElem) outt=open(opname+'-PVM.txt','w') # open a text file named after the odb outt.write(str(maxMises)) #write peak vm stress 74 outt.close() #close text file 75 76 print 'Location: frame # %d step: %s '%(maxFrame,maxStep) else: print 'Stress output is not available in' \ 78 'the output database : %s\n' %(odb.name) 79 80 """ Close the output database before exiting the program """ 81 odb.close() 82 83 === 85 **#** S T A R T 86 # 87 **if** name == ' main ': 88 odbName = None 89 90 elsetName = None 91 argList = argv argc = len(argList) 92 i=0 93 94 while (i < argc):</pre> 95 if (argList[i][:2] == "-o"): 96 i += 1 97 name = argList[i] 98 odbName = rightTrim(name,".odb") 99 elif (argList[i][:2] == "-e"): i += 1 elsetName = argList[i] elif (argList[i][:2] == "-h"): print doc 104 exit(0) i += 1 106 if not (odbName): print ' **ERROR** output database name is not provided' 108 print doc 109 exit(1) getMaxMises(odbName,elsetName)

V. PVM.py

```
# Author: Ian Morrissey
1
  # Description: Runs odbMaxMisesText.py for all .odb files in the
2
   current directory
  import os
3
4
  # create array textstring of .odb file names with file
5
   extensions in current directory
6 path = os.curdir
7 odbNames = [f for f in os.listdir(path) if f.endswith('.odb')]
8 numodbs=len(odbNames)
9 #submit odb for peak von mises
10 for i in range(1,numodbs+1):
       os.system('abaqus python odbMaxMisesText.py -odb
   '+odbNames[i-1]+' -elset " ALL ELEMENTS"')
       print('**'+odbNames[i-1]+' executed**')
13 print('Done')
```

VI. indBuck.py

```
1 # Author: Ian P. Morrissey
2 # Description: Reads ABAQUS .msg file for buckling warning,
   writes 1 if no buckling warning
  # writes 0 if negative eignenvalue warning is present
3
4
5
  import os
6
8 path=os.curdir
9 #create array of textstring of .msg file names with file
  extensions within current directory
10 msgNames = [f for f in os.listdir(path) if f.endswith('.msg')]
11 numMsg=len(msgNames)
12 #remove file extension
13 outNames=[]
14 outNames=[0 for i in range(numMsg)]
15 for i in range(1,numMsg+1):
       outNames[i-1]=msgNames[i-1].replace('.msg','')
16
17
18 # text string that appears in .msg file when buckling does not
  occur
19 eigString= '0 ANALYSIS WARNINGS ARE NEGATIVE EIGENVALUE
  MESSAGES'
21 #output files for each simulation
22
23 for i in range(1,numMsg+1):
```

```
24 currMsg = open(msgNames[i-1],'r') #current .msg file to open
25 readMsg = currMsg.read() #read message file
26 buckMsg=open(outNames[i-1]+'-Buck.txt','w') #open output
27 if eigString in readMsg:
28 buckMsg.write('1') #write No Buckling warning
29 else:
30 buckMsg.write('0') # write Negative Eigen-value warning
31 currMsg.close #close current msg
32 buckMsg.close #close current buck msg
33
34 print('Done')
```

VII. writeRunPost.py

```
1
   #Author: Ian P. Morrissey
2 #Description: Runs all scripts for writing input decks,
   submitting input decks, extracting values from odb and msg files
3
4
  import os
5
  #write .inp files
6
  os.system('python writeinput.py')
8 print('
                         **.inp files written**')
9
10 #submit .inp files
11 os.system('python inpAbaqusRunAll.py')
12 print('
                         **jobs completed**')
13
14 #extract force and displacement from .odb files
15 os.system('abaqus python post tensor.py')
16 print('
                         **force and displacement processed**')
18 #extract peak von mises stresses from .odb files
19 os.system('python PVM.py')
20 print('
                          **peak von mises processed**')
22 #indicate whether or not buckling occured
23 os.system('python indBuck.py')
                          **buckling indication processed**')
24 print('
26 #done
                          **All Scripts Complete**')
27 print('
```

APPENDIX C

This appendix shows samples of the MATLAB scripts that were used to process and create plots from the extracted values from ABAQUS.

I. PlotresultsD1DNSBeam.m

```
% Author: Ian Morrissey
1
  % description import force and displacment of DNS and Beam
   models and plot
3
  clc; clear all; close all
4
5
6
  %import force f and displacement u DNS models
8 % 2 compression
9 uc2=load(['D1C2-U-1.txt'])
10 Fc2=load(['D1C2-RF-1.txt'])
11 % 4 compression
12 uc4=load(['D1C4-U-1.txt'])
13 Fc4=load(['D1C4-RF-1.txt'])
14 % 6 compression
15 uc6=load(['D1C6-U-1.txt'])
16 Fc6=load(['D1C6-RF-1.txt'])
17 % 8 compression
18 uc8=load(['D1C8-U-1.txt'])
19 Fc8=load(['D1C8-RF-1.txt'])
20 % 2 tensile
21 ut2=load(['D1T2-U-1.txt'])
22 Ft2=load(['D1T2-RF-1.txt'])
23 % 4 tensile
24 ut4=load(['D1T4-U-1.txt'])
25 Ft4=load(['D1T4-RF-1.txt'])
26 % 6 tensile
27 ut6=load(['D1T6-U-1.txt'])
28 Ft6=load(['D1T6-RF-1.txt'])
29 % 8 tensile
30 ut8=load(['D1T8-U-1.txt'])
31 Ft8=load(['D1T8-RF-1.txt'])
32
34
36 %import force f and displacement u beam models at nominal
37 % 2 compression
38 Buc2=load (['D1B-1-1-U-1.txt'])
39 BFc2=load(['D1B-1-1-RF-1.txt'])
40 % 4 compression
```

```
41 Buc4=load(['D1B-2-1-U-1.txt'])
42 BFc4=load(['D1B-2-1-RF-1.txt'])
43 % 6 compression
44 Buc6=load(['D1B-3-1-U-1.txt'])
45 BFc6=load(['D1B-3-1-RF-1.txt'])
46 % 8 compression
47 Buc8=load (['D1B-4-1-U-1.txt'])
48 BFc8=load(['D1B-4-1-RF-1.txt'])
49 % 2 tensile
50 But2=load(['D1B-5-1-U-1.txt'])
51 BFt2=load(['D1B-5-1-RF-1.txt'])
52 % 4 tensile
53 But4=load(['D1B-6-1-U-1.txt'])
54 BFt4=load(['D1B-6-1-RF-1.txt'])
55 % 6 tensile
56 But6=load(['D1B-7-1-U-1.txt'])
57 BFt6=load(['D1B-7-1-RF-1.txt'])
58 % 8 tensile
59 But8=load(['D1B-8-1-U-1.txt'])
60 BFt8=load(['D1B-8-1-RF-1.txt'])
61
62
63
64 %plot dns and beam force-displacement
65 figure(1)
66 p1=plot(uc2,Fc2,'r')
67 pl.LineWidth = 1.5
68 hold on
69 p2=plot(ut2,Ft2,'r')
70 p2.LineWidth = 1.5
71 p3=plot (Buc2, BFc2, 'r--')
72 p3.LineWidth = 1.5
73 p4=plot (But2, BFt2, 'r--')
74 p4.LineWidth = 1.5
75 p5=plot(uc4,Fc4,'b')
76 p6=plot(ut4,Ft4,'b')
77 p7=plot (Buc4, BFc4, 'b--')
78 p8=plot(But4,BFt4,'b--')
79 p9=plot(uc6,Fc6,'g')
80 p10=plot(ut6,Ft6,'q')
81 p11=plot (Buc6, BFc6, 'g--')
82 p12=plot (But6, BFt6, 'g--')
83 p13=plot(uc8,Fc8,'k')
84 p14=plot(ut8,Ft8,'k')
85 p15=plot (Buc8, BFc8, 'k--')
86 p16=plot (But8, BFt8, 'k--')
87 hold off
88 xlabel('Displacement (mm)');ylabel('Force (N)');grid
89 axis([-0.2 0.2 -15 15]);
90 legend ([p1 p5 p9 p13 p3 p7 p11 p15], {'DNS 2%', 'DNS 4%', 'DNS
   6%','DNS 8%','Beam 2%','Beam 4%','Beam 6%','Beam 8%'});
91 legend ('Location', 'northeastoutside')
92 saveas (gcf, 'BeamDNSFDDirection1.svg')
```

```
1
  % Author: Ian P. Morrissey
2
  % Description: Import displacement and force values
3
  % Imports peak Von Mises stress values and Buckling indication
4
  % Calculates energy dissipation and energy dissipation
   coefficient
   % Plots Energy Dissipation and Energy Dissipation Coefficient
   for set-displacements vs Rvar and Relative Density
  clc; clear all; close all;
8
9
  disp=linspace(-0.08,-0.01,8); % displacment values
10 rvar=linspace(0.5,1.25,16); % radius variance coefficient values
11 rd=linspace(0.03,0.45,15); % relative density values
12 k=0; %initialize k index
13 for u=1:8; %index by displacment
       for ii=1:15; % index by reltive desnity
14
           for j=1:16; %index by rvar
15
               clear d F di Fi F1 F2 E1 E2 h; % clear variables
   from last loop
               vm=load(['D1B-' num2str(u) '-' num2str(ii) '-'
   num2str(j) '-PVM.txt']); %load peak von mises stress
               buck=load(['D1B-' num2str(u) '-' num2str(ii) '-'
   num2str(j) '-Buck.txt']); %load buckling indication
               if buck==1 && vm<=700 % only proceed if buckling
19
   did not occur and the stress limit was not reached
                   di=load(['D1B-' num2str(u) '-' num2str(ii) '-'
   num2str(j) '-U-1.txt']); %import displacement
                   Fi=load(['D1B-' num2str(u) '-' num2str(ii) '-'
   num2str(j) '-RF-1.txt']); %import force
                   k=k+1; %index k
                   vab(k,1)=rd(ii); % create rd that is to be used
23
                   vab(k,2)=rvar(j); %create rvar to be used
2.4
                   d(1)=0; %initialize displacment
                   F(1)=0; %initialize force
                   for i= 1:length(di); %convert
                       d(i+1)=-di(i);
2.8
                       F(i+1)=-Fi(i);
                   end
                   %separate curves for calculating area under
   loading and
                   %unloading for energy calculations and calculate
   energy
                   %dissipated and ED coefficeint
                   [maxval,maxind]=max(d);
34
                   d1=d(1:maxind);
                   d2=d(maxind:length(d));
                   F1=F(1:maxind);
                   F2=F(maxind:length(d));
                   E1=trapz(d1,F1);
40
                   E2=-trapz(d2,F2);
41
                   vab(k,3)=E1-E2; %energy calc;
                   vab(k,4)=(E1-E2)./((E1-(E1-E2)./2)*pi); % energy
42
   dissipation coefficient
```

```
else % continue to next if vm limit exceed
43
44
                   %or if buckling occured
45
               end
           end
46
47
       end
       clear k %clear and reinitialize k
48
       k=0;
49
50
51
       % put mesh over points so they can be seen on plot clearly
       x1=linspace(min(vab(:,1)),max(vab(:,1)),100)
52
       y1=linspace(min(vab(:,2)),max(vab(:,2)),100)
53
       [X,Y]=meshgrid(x1,y1)
54
       Z1=griddata(vab(:,1),vab(:,2),vab(:,3),X,Y,'cubic');
56
       %plot ED and save svg of plot
57
58
       figure(2*u-1)
59
       mesh(X,Y,Z1),grid;title(['ED for Displacement = ' num2str(-
   100*disp(u)) '%']);xlabel('Relative
   Density');ylabel('R_{var}');zlabel('E_{disp} ({\mu}J)');
       hold on
60
       plot3(vab(:,1),vab(:,2),vab(:,3),'r.','MarkerSize',15),grid
61
       saveas(gcf,['D1ED-' num2str(u) '.svg'])
62
63
64
       %plot EDC and save svg of plot
       figure(2*u)
65
       Z2=griddata(vab(:,1),vab(:,2),vab(:,4),X,Y,'cubic');
66
       mesh(X,Y,Z2),grid;title(['\eta for Displacement = '
67
   num2str(-100*disp(u)) '%']);xlabel('Relative
   Density');ylabel('R {var}');zlabel('\eta ');
       hold on
68
       plot3(vab(:,1),vab(:,2),vab(:,4),'r.','MarkerSize',15),grid
69
       saveas(gcf,['D1EDC-' num2str(u) '.svg'])
71 end
```