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Abstract 
Description of tire model development using the finite element (FE) method is presented. Three-
dimensional tire-pavement contact stresses were predicted for braking, traction, and free rolling using 
the FE method. Measured load-deflection curves, contact area, and contact stresses were used for 
model outcome validation. Slide-velocity-dependent friction and accurate input regarding geometry 
and material properties were considered. The developed tire model, which helped in studying contact 
stresses variation in each direction, was used to explain the various phenomena taking place at the 
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tire-pavement interface during straight-line rolling. The analysis matrix includes nine rolling conditions 
and various loads, tire inflation pressures, and speeds. Vertical contact stresses were not significantly 
affected by speed or slip ratio; however, contact stresses were greatly modified along the in-plane 
directions by rolling conditions. Analytical expressions were introduced to represent vertical and 
longitudinal contact stresses for full braking and full traction. Formulas are presented for low speed 
and full braking, which are relevant for roadway intersections design. 

Introduction 
The tire-pavement contact phenomenon has important implications not only on vehicle safety, 
maneuvering, and fuel consumption, but also on pavement response and damage quantification. 
Pavement surface distresses are relatively easier to remedy; therefore, pavement design 
methodologies focus on localizing damage on the upper pavement layers (NAPA 2013). In addition, 
appropriate characterization of contact loading has proven relevant when evaluating stresses and 
strains in pavement structures, primarily at points close to the surface (Al-Qadi and Yoo 2007). This 
study addresses the characterization of tire-pavement interaction using finite elements and 
experimental measurements for validation. 

The finite element (FE) modeling of tires has continuously evolved as computational powers have 
increased (Ghoreishy 2008). Incompressible hyperelastic rubber and rebar elements for tire 
reinforcement have been considered to show the low effect of friction coefficient on vertical contact 
stresses and its relevant influence on contact shear (Ghoreishy et al. 2007). Similarly, gains of 
longitudinal contact stresses with the increase of friction coefficient have been reported (Wang and 
Wu 2009). However, influence of tire inflation pressure on transverse contact stresses was not 
observed. 

Tire FE models have been applied in pavement analysis (Wang et al. 2012). Even though rubber 
materials were assumed linear elastic with a Poissons ratio of 0.49, large displacement and geometric 
nonlinearity were considered. The model was calibrated with load deflection curves and validated 
using measured contact stresses. Various rolling conditions were analyzed (e.g., free-rolling, braking, 
traction, cornering). Increasing longitudinal contact stresses were observed during braking. The model 
was improved to include velocity-dependent friction (Wang et al. 2014). It was shown that braking and 
traction resulted in higher longitudinal contact stresses, but smaller transverse contact stresses 
compared with the free-rolling condition. During cornering, in-plane contact stresses were greater than 
the contact stresses in the free rolling condition. The study concluded that constant friction coefficient 
is acceptable for free rolling and small-slip angles, but not for braking and traction. 

A racing tire was modeled giving special attention to braking (Gruber et al. 2012). The model assumed 
rubber as hyperelastic (Mooney-Rivlin) in addition to constant friction coefficient (𝜇𝜇 = 0.5) and speed 
(𝑉𝑉 = 19.4  m s⁄ ). The results obtained agree with the trends reported in the literature. The important 
influence of carcass deformation on shear stress distribution was reported. Based on these results, a 
physical tire model was developed (Gruber and Sharp 2012), which divided the tire into three main 
components: rigid wheel, flexible carcass, and rubber tread. The approach proposed was used to 
assess the significance of contact patch geometry, contact pressure distribution, carcass flexibility, 



rolling radius variation, and friction coefficient on shear forces at tire-surface interface. Rolling radius 
and friction were found to be essential for determining the magnitude and distribution of shear forces. 

In this study, a wide-base truck tire is modeled to study the three-dimensional (3D), tire-pavement 
contact stresses. A detailed description of the developed FE model is presented. The contact stresses 
are studied at braking, free rolling, and traction. Special attention is given not only to contact stresses 
magnitude, but also to the shape of variation along the contact length. Finally, mathematical 
expressions with potential use in the design of road intersection are presented. Work is currently 
underway at the University of Illinois at Urbana-Champaign to apply a similar methodology to the 
modeling of conventional dual tire assembly. This will allow the comparison of both tires and their 
effect on pavement performance. 

Finite Element Model 
Geometry 
The modeled wide-base truck tire (WBT) is 445 mm wide; the ratio between the tires height and width 
is 50%; the rims diameter is 571.5 mm, and the radius is 508.3 mm. Dimensions of the tires cross 
section were accurately measured. The WBT consists of five belts, with a specific orientation and width 
as presented in Table 1. The belt closest to the tires interior was labeled Belt 1, and the one closest to 
the tread was labeled Belt 5. Table 1 shows the number of reinforcement cords in 10 mm; this 
information was used to infer the reinforcement spacing. All belts were hosted in the 8.2-mm-thick 
belt packaged. 

Table 1. Belt Width and Reinforcement Orientation 
Belt Width (mm) Orientation 

(mm) Spacing  
cords

10
  mm 

Area 
(mm2) 

Belt 1 315.7 89.0 33 1.370 
Belt 2 367.3 18.0 43 0.852 
Belt 3 274.8 0.0 49 1.885 
Belt 4 343.2 20.0 43 0.811 
Belt 5 312.2 18.0 31 1.885 
Ply — 90 39 0.657 

 

The thickness of the inner liner, which is the inner-most tire component, is 2.1 mm. In addition, the 
distance between the inner liner and the belt package (body ply thickness) is 3.6 mm. Thickness of the 
tread in the middle of the tire is 26.5 mm, whereas thickness of the crown is 40.4 mm (summation of 
the inner liner, body ply, belt package, and tread). The shoulder dimension, or the distance from the 
corner of the outer tread to the inner surface of the tire measured perpendicularly, is 9.9 mm. The tires 
bead consists of a rectangular array of wires (8 × 6), each wire is 2.0 mm wide and 1.3 mm long 
(8 × 6), 2.0 mm wide and 1.3 mm long each. 

Material Properties 
The Mooney-Rivlin model was adopted to characterize the behavior of rubber. In this model, the 
stored strain energy for a hyperelastic incompressible material is given by 



(1) 

𝑊𝑊 = 𝐶𝐶10(𝐼𝐼1 − 3) + 𝐶𝐶01(𝐼𝐼2 − 3) 

where 𝐶𝐶01 and 𝐶𝐶10 = empirically-determined material constants; 𝐼𝐼1 and 𝐼𝐼2 = first and second principal 
invariants of the right Cauchy-Green deformation tensor; and 𝑊𝑊 = strain energy density. Material 
constants 𝐶𝐶01 and 𝐶𝐶10 for the rubber components considered in this study were provided by the tire 
manufacturer. 

Tire reinforcement consisted of belts, plies, and the bead wire, which were assumed to be linear elastic 
and were characterized following ASTM D882. In this test, a tensile load was applied to properly 
clamped reinforcement samples, and the deformation was measured. A typical stress-strain curve 
showed an initial portion with very low slope as a result of the initial setting of the load. During 
calculation of the elastic modulus, this portion was discarded, and only the linear part was considered. 
Five samples were tested for each material, and the average of the five moduli was used as input in the 
FE model. 

Tire-Pavement Friction 
Poor and good pavement macrotexture has been examined (Wang et al. 2014) using the slide-velocity-
dependent model (Kato and Matsubayashi 1970; Kato et al. 1972) and proper numerical 
implementation (Oden and Martins 1985). In the present study, the intermediate macrotexture was 
assumed as representative of most pavements. A static and dynamic friction coefficient of 𝜇𝜇s =
0.30 and 𝜇𝜇𝑘𝑘 = 0.17, respectively, were used to define the slide-velocity-dependent friction model 
along with a decay coefficient of 𝑑𝑑𝑐𝑐 = 0.0002  s mm⁄ . 

Arbitrary Lagrangian-Eulerian Formulation 
Steady-state transport analysis was used to perform numerical calculations and predict tire-pavement 
contact stresses (ABAQUS/Simulia). This approach is based on the arbitrary Lagrangian-Eulerian (ALE) 
formulation, which combines the advantages of the Lagrangian and Eulerian formulation (Belytschko 
et al. 2000). ALE formulation can transform a dynamic problem, such as steady-state rolling, into a 
problem where all derivatives are related to space variables. In addition, the mesh refinement needed 
to handle contact problems can be localized to the region that may be in contact with the rolling 
surface rather than extending to the whole circumference of the tire. 

Analysis Sequence 
To take advantage of the various symmetries in the static analysis of the tire, the 3D analysis was 
divided into two consecutive phases: axisymmetric and 3D model (Fig. 1). In the axisymmetric model, 
the geometry of the tire’s cross section is defined along with the element types and material 
properties. The main boundary condition identified in this model was the tire-rim contact region. The 
axisymmetric model was only subjected to tire inflation pressure. 

The axisymmetric model was revolved with respect to the tires axis to create the 3D model. In this 
phase, road and tire were in contact, and the load was applied. Surface-to-surface contact was 
adopted because it better represents the contact stresses (ABAQUS/Simulia). In addition, fixed 
boundary conditions at the tire-rim contact region were assigned. 



Mesh Configuration 
Because of the complexity of the tire structure, special elements were used for tire modeling. A 
combination of general Cartesian elements in the potential contact region and cylindrical elements in 
the remaining region provided an efficient balance between accuracy and small computational time. 
Cylindrical and general Cartesian elements were assigned to different sectors of the tires 
circumference. Assuming that 𝜃𝜃 = 0°° represents the positive 𝑧𝑧 axis (i.e., perpendicular to the rigid 
surface) and it is measured clockwise; general elements were located in the sector 150° < 𝜃𝜃 < 210°, 
which was assumed to be the potential tire-surface contact sector. Accordingly, the sector 0° <
𝜃𝜃 < 150° and 210° < 𝜃𝜃 < 360° contained cylindrical elements. 

Rubber is an incompressible material and therefore hybrid formulation was chosen for behavior 
modeling. Conversely, reinforced rubber was modeled using rebar elements. This approach was 
followed to avoid homogenization of steel reinforcement and surrounding rubber. Each component 
was considered independently. The material properties obtained in the laboratory for rubber and 
reinforcement could be directly used in the model definition. Surface elements, embedded in host 
elements (rubber material), were specified for reinforcement. The reinforcement, or rebar layer, was 
fully defined by specifying the cross-sectional area, spacing, material properties, and orientation as 
presented in Table 1. 

The most efficient mesh configuration regarding element size was the configuration that provided 
accurate results with the least amount of elements. Therefore, instead of using a specific response as 
the indicator of accuracy (e.g., maximum deflection), total strain energy was used. A mesh with strain 
energy equal to one of the finest mesh ±5% was considered accurate. Various mesh configurations 
were tested in the axisymmetric and full-tire model until the optimum was found. 

Validation 
To corroborate the accuracy of the developed tire FE model, validation was implemented. The material 
properties in the tire structure were slightly modified to match experimentally measured contact area 
(𝐴𝐴𝑐𝑐) and deflection (𝑑𝑑) when 𝑃𝑃 = 44.4  kN and 𝑆𝑆 = 690  MPa. 

A parametric study was performed as part of the validation. Material constants of each tire component 
was varied to assess their impact on 𝐴𝐴𝑐𝑐, 𝑑𝑑, and vertical contact stresses. The deflection and contact 
area were primarily affected by the sidewall and tread, respectively. The effect of sidewall on 3D 
contact stresses and contact area for various rolling conditions was assessed. The maximum 
percentage change of the 𝐿𝐿2-norm of the vectors storing the output at the contact nodes was 9.3% 
(𝐶𝐶01,sidewall was changed between 1.5 and 2.25 MPa). 

Convergence issues were observed in the bead area because of the great difference in stiffness 
between the bead wire and bead filler. Homogenization was used to address this issue and, thus, one 
material was assigned to the region occupied by the bead filler and the bead wire with properties 
proportional to their corresponding area in the cross section. 

During validation, material properties were fixed, and experimental and calculated contact area, 
deflection, and vertical contact stresses for the other loads (𝑃𝑃 = 26.7, 35.6, and 44.4 kN) and tire 
inflation pressures (𝑆𝑆 = 552, 690, and 758 kPa) were compared. The difference between measured 



and calculated deflection, contact area, and maximum vertical contact stresses is presented in Fig. 2. 
The mean absolute percentage error (MAPE) was used as criteria, which is given by 

(2) 

MAPE =
100
𝑚𝑚

��
Meas𝑖𝑖 − Calc𝑖𝑖

Meas𝑖𝑖
�

𝑚𝑚

𝑖𝑖=1

 

where 𝑚𝑚 = number of measurements. A static model was used for 𝐴𝐴𝑐𝑐 and 𝑑𝑑, which better represented 
the laboratory condition during their measurement. Figs. 2(a and b) show a good agreement for 
contact area and deflection (MAPE = 4.2 and 8.5%, respectively). It is noted that from a pavement 
engineering point of view, the contact area is more relevant than deflection. 

To compare contact stresses, a free-rolling model was used on a rigid surface with a high friction 
coefficient. The agreement for maximum vertical contact stress in each rib is not as good as 
for 𝐴𝐴𝑐𝑐 [Fig. 2(c)]. Ribs 4 and 5 only provided the most reliable contact stresses because of restrictions 
of the measuring equipment (Hernandez et al. 2014). 

Numerical Analysis Matrix 
After the tire model was developed and validated, it was used to calculate tire-pavement contact 
stresses of a tire rolling on an infinitely rigid surface. Three values of load (𝑃𝑃 = 26.7, 35.6, and 
44.4 kN), tire inflation pressure (𝑆𝑆 = 552, 690, and 758 kPa), and speed (𝑉𝑉 = 8.0, 65.0, 
and 115  km h⁄ ) were considered. For each speed, not only the free rolling condition was studied, but 
also braking and traction. Braking and traction conditions were defined using the slip ratio 

(3) 

𝑠𝑠𝑏𝑏 = 1 −
𝑅𝑅𝑓𝑓𝑓𝑓𝜔𝜔
𝑉𝑉

 

(4) 

𝑠𝑠𝑡𝑡 = 1 −
𝑉𝑉

𝑅𝑅𝑓𝑓𝑓𝑓𝜔𝜔
 

where 𝑅𝑅𝑓𝑓𝑓𝑓 = free rolling radius; 𝑠𝑠𝑏𝑏 and 𝑠𝑠𝑡𝑡 = slip ratio for braking and traction; 𝑉𝑉 = traveling speed; 
and 𝜔𝜔 = angular speed. 

The ratios 𝑠𝑠𝑏𝑏 and 𝑠𝑠𝑡𝑡 can vary between 0 and 100%: 𝑠𝑠𝑏𝑏 = 𝑠𝑠𝑡𝑡 = 0 indicated free rolling, 𝑠𝑠𝑏𝑏 =
100% indicated full braking, and 𝑠𝑠𝑡𝑡 = 100% indicated full traction. Based on the variation 
of 𝑇𝑇𝑦𝑦 versus 𝜔𝜔, 𝑠𝑠𝑏𝑏 = 𝑠𝑠𝑡𝑡 = 7% was found to represent full braking and traction, respectively. As part of 
the analysis matrix, four values of 𝑠𝑠𝑏𝑏 and 𝑠𝑠𝑡𝑡 were considered: 𝑠𝑠𝑏𝑏 = 𝑠𝑠𝑡𝑡 = 1.5, 3.0, 4.5, and 7.0%. The 
numerical analysis matrix is summarized in Table 2. 

Table 2. Values of Load, Tire Inflation Pressure, Speed, and Rolling Condition Considered 
Load (kN) Pressure (kPa) Speed (𝑘𝑘𝑚𝑚 ℎ⁄ ) Braking (slip %) Traction (slip %) 
𝑃𝑃1 = 26.6 𝑆𝑆1 = 552 𝑉𝑉1 = 8 𝐵𝐵1 = 1.5 𝑇𝑇1 = 1.5 



𝑃𝑃2 = 35.5 𝑆𝑆2 = 690 𝑉𝑉2 = 65 𝐵𝐵2 = 3.0 𝑇𝑇2 = 3.0 
𝑃𝑃3 = 44.4 𝑆𝑆3 = 758 𝑉𝑉3 = 115 𝐵𝐵3 = 4.5 𝑇𝑇3 = 4.5 
— — — 𝐵𝐵4 = 7.0 𝑇𝑇4 = 7.0 

 

Contact Stresses at Free Rolling 
Free rolling, which is characterized by the absence of driving torque, was used as a reference to 
compare the effect of braking and traction on the 3D contact stresses. The distribution of contact 
stresses was studied for the loads, tire inflation pressures, and speeds considered. Fig. 3 shows the 
typical variation of contact stresses in the longitudinal, vertical, and transverse directions when 𝑃𝑃 =
44.4  kN and 𝑆𝑆 = 690  MPa for various speeds. The behavior for the other loading cases was similar. 

The distribution of contact stresses in the three directions was not greatly affected by speed. This was 
the case with free rolling only, as speed greatly affected some of the stress components in the other 
rolling conditions. 

Load and tire inflation pressure affected differently vertical contact stresses. Inflation pressure 
primarily modified the peak value along each meridian. Along the third meridian in Rib 5, for instance, 
at 𝑃𝑃 = 26.7  kN, 𝜎𝜎𝑧𝑧,max changed from 0.71 MPa when 𝑆𝑆 = 552  kPa to 0.91 MPa when 𝑆𝑆 = 758  kPa, 
an increment of 28%. Conversely, the contact length decreased 9.1%. The load remained constant, so 
the tire balanced the change in inflation pressure by reducing the contact length and increasing the 
peak vertical contact stress. 

The load applied had a reverse effect on vertical contact stresses. When the pressure remained 
constant and the applied load increased, peak 𝜎𝜎𝑧𝑧 remained almost constant. The contact length 
increased 28% when the tire inflation pressure remained constant at 552 kPa, and the load changed 
from 26.7 to 44.4 kN. As the load increased, the highly compressed zones in the tread reached their 
load-carrying capacity. Therefore, the tire increased its contact length to compensate the increment in 
the applied load. 

The variation of longitudinal contact stresses along the contact length is defined by the relative 
deformation of the tread with respect to the contact surface, which is linked to the sliding velocity and 
its variation along the contact length (Clark 1971; Berger 1959). At the entrance and exit of contact, the 
tread travels faster than the road, and the direction of this velocity changes once or twice during 
contact. This was observed in the variation of 𝜎𝜎𝑥𝑥  along the contact length, where the plots crossed the 
horizontal axis once or twice. 

Regardless of the number of changes in the direction of 𝜎𝜎𝑥𝑥, a positive and a negative peak with similar 
magnitude were observed for the analyzed 𝑃𝑃 - and 𝑆𝑆 -values. The magnitude of these peaks increased 
because of the applied load and decreased as a result of the tire inflation pressure. This behavior can 
be explained by the effect of 𝑃𝑃 and 𝑆𝑆 on the contact length. The increase of tire inflation pressure 
reduced contact length, thereby resulting in a limited distance for relative displacement to build up. 
Conversely, the applied load increased contact length, thus allowing for higher relative displacements 
to appear in the contact length and, consequently, for higher longitudinal contact stresses. 



Transverse contact stresses are primarily caused by the restriction of tread displacement in the 
direction perpendicular to traffic. The transfer of load through the tires walls may also influence the 
distribution of 𝜎𝜎𝑦𝑦 along the contact length. As shown in Fig. 3(c), a small negative peak was observed at 
the rear end of the contact length, which might be caused by a combination of tensile longitudinal 
contact stresses and the influence of the load transferred by the sidewalls in the transverse direction. 

Contact Stresses at Braking 
Four braking conditions, defined by slip ratios of 𝑠𝑠𝑏𝑏 = 1.5, 3.0, 4.5, and 7.0% were studied (7.0% slip 
was assumed to represent full braking). Fig. 4 shows the variation of contact stresses in the three 
directions along the third meridian of Rib 5 when 𝑉𝑉 = 8  km h⁄ , 𝑃𝑃 = 44.4  kN, and 𝑆𝑆 = 690  kPa. 
Based on Fig. 4(a), the main effect on 𝜎𝜎𝑧𝑧 is seen on the location of its peak values. As 𝑠𝑠𝑏𝑏 increased, the 
location of 𝜎𝜎𝑧𝑧,max slightly shifted farther from the center of the contact length. Consequently, the 
resultant force would not be aligned with the center of the contact length. This phenomenon has 
implications on the distribution of longitudinal contact stresses and rolling resistance. 

As shown in Fig. 4(b), longitudinal contact stresses were greatly affected by the variation in braking 
condition when compared with free rolling. The variation of 𝜎𝜎𝑥𝑥  along the contact length during braking 
results from the superposition of three elements (Clark 1971). The first element affecting the variation 
of 𝜎𝜎𝑥𝑥  is distribution of longitudinal contact stresses during free rolling. Second, a resultant torque with 
respect to the 𝑦𝑦 direction, 𝑇𝑇𝑦𝑦, creates a reaction during braking in the direction of traffic at the contact 
between the tire and the rolling surface. This reaction is distributed as longitudinal contact stresses on 
the tire-surface contact. Third, as the tire rolls, the surface constrains the longitudinal movement of 
the tread elements, which translates into contact stresses along the traffic direction. 

The effect of increasing the slip ratio on the distribution of 𝜎𝜎𝑥𝑥  along contact length is shown in Fig. 4(b). 
During free rolling (𝑠𝑠𝑏𝑏 = 0%), 𝜎𝜎𝑥𝑥  points in the direction of traffic at the front of the tire and in the 
opposite direction at the back of the tire. As the slip ratio increases (e.g., 𝑠𝑠𝑏𝑏 = 1.5%), the components 
mentioned in the previous paragraph begin to accumulate until the limit imposed by the friction 
coefficient is reached. The points to first attain the limit were located at the rear end of the tire; as the 
slip ratio increases (e.g., 𝑠𝑠𝑏𝑏 = 3.0%), a greater portion of the contact length matched the maximum 
friction. At full braking, all the points converged to the limit established by the friction coefficient. The 
surge in longitudinal contact stresses causes the orientation of the in-plane shear stresses to be 
predominantly oriented in the direction opposite to traffic. Consequently, the contact stresses in the 
direction perpendicular to traffic decreased as 𝑠𝑠𝑏𝑏 increased. Fig. 4(c) shows the lowest 𝜎𝜎𝑦𝑦 for full-
braking conditions. 

Minimal variability of maximum 𝜎𝜎𝑥𝑥  was observed as the braking slip ratio increased [Fig. 4(b)]. 
Consequently, the peak longitudinal contact stress should not be used to assess the potential severity 
of braking conditions on pavement responses. The total force transferred by the tire through the 
meridians provided better insight into the effect of braking conditions on contact forces. As expected 
from the variation of the vertical contact stresses with contact length, the total vertical load carried by 
each rib did not change with speed or braking condition. A different behavior was noticed for the 
longitudinal contact forces, where the considered variables affected 𝜎𝜎𝑥𝑥  differently. The longitudinal 
force carried by each rib increased as the speed changed from 115 to 8  km h⁄  at the same braking 



condition. The friction model adopted in this study considered the effect of sliding speed on friction 
between the tire and rolling surface. As the speed decreased, the value of the friction coefficient 
increased, which translated into higher longitudinal contact stresses and forces along and across the 
tire as speed is reduced. 

As the braking slip ratio increased, more points along the contact length reached the limit defined by 
the friction coefficient, so the role of friction became more important as 𝑠𝑠𝑏𝑏 increased. Because the 
friction coefficient decreased by decreasing the sliding speed, the reduction of longitudinal contact 
forces with speed was more pronounced at high 𝑠𝑠𝑏𝑏 values. 

A surge in longitudinal contact forces compared with free rolling condition was also noticed. During 
free rolling, the longitudinal resultant force, 𝐹𝐹𝑥𝑥, only balanced the moment caused by the offset of the 
vertical reaction. However, 𝐹𝐹𝑥𝑥 also balanced the braking torque during braking. The braking torque 
significantly increased 𝐹𝐹𝑥𝑥. Furthermore, for the three speeds considered, the share of the total 
longitudinal contact force transferred by the edge ribs increased with the increase of the applied load. 
At high load values, the sidewalls of the tire transfer a higher fraction of the applied load, thus 
increasing the contact stresses. 

The variation of the total reaction force in the longitudinal direction with speed, load, inflation 
pressure, and braking slip ratio is presented in Fig. 5. A similar effect of the variables on 𝐹𝐹𝑥𝑥 was 
observed. First, 𝐹𝐹𝑥𝑥 reduced its magnitude as the moving speed increased; second, the difference 
between 𝐹𝐹𝑥𝑥 at various 𝑃𝑃 decreased as the braking slip ratio decreased; third, tire inflation pressure 
barely affected the reaction force in the traffic direction; and, fourth, 𝐹𝐹𝑥𝑥 was minimal at free rolling, 
but not equal to zero. 

Contact Stresses at Traction 
Traction in a rolling tire is created when a positive driving torque is applied along the rotation axis; in 
other words, when the tire rotates at an angular speed higher than the free rolling angular speed. 𝑠𝑠𝑡𝑡, 
as defined in Eq. (4), was utilized to characterize traction using four values: 𝑠𝑠𝑡𝑡 = 1.5, 3.0, 4.5, and 7.0%. 
Three aspects were studied: (1) variation of 3D contact stresses along a representative meridian; 
(2) force distribution carried by each meridian across the tires width; and (3) total resultant in the 
direction of traffic. 

The typical variation of contact stresses in the vertical, longitudinal, and transverse direction when 𝑉𝑉 =
8.0  km h⁄ , 𝑃𝑃 = 44.4  kN, and 𝑆𝑆 = 690  kPa is shown in Fig. 6. Similar to the braking condition, 𝑉𝑉 did 
not affect the variation of 𝜎𝜎𝑧𝑧, and the location of 𝜎𝜎𝑧𝑧,max was slightly shifted from the center of the 
contact length. In this case, the location did not move forward, but rather backwards. 

The same three components that generate 𝜎𝜎𝑥𝑥  in the braking condition apply during traction: Stresses 
resulting from horizontal reaction, free rolling, and deformation of the tread element. Even though the 
free rolling condition is the same as in braking, the direction of the other two components changed. As 
observed in Fig. 6(b), when changing from free rolling to the first traction condition 𝑠𝑠𝑡𝑡 = 1.5%, the 
negative peak in the rare part of the tire switched to positive. As previously explained, 𝜎𝜎𝑥𝑥  began to 
exceed the limit imposed by friction from the rare part of the tire, thus creating a peak value. In some 
cases, the variation of 𝜎𝜎𝑥𝑥  along contact length showed two negative peaks. 



Even though Fig. 6(b) does not show significant difference between 𝑠𝑠𝑡𝑡 = 4.5% and 𝑠𝑠𝑡𝑡 = 10% for the 
points at the rare region of the contact, a different behavior was observed in the other speeds. If 𝑉𝑉 ≠
8.0  km h⁄ , 𝜎𝜎𝑥𝑥  exceeded the friction limit, but full traction showed smaller longitudinal contact stresses 
than for 𝑠𝑠𝑡𝑡 = 4.5%. This may be caused by the smaller friction coefficient created by the higher slip 
rate at full traction when compared with 𝑠𝑠𝑡𝑡 = 4.5%. 

A clear effect of the degree of traction was observed on the transverse contact stresses. From Fig. 6(c), 
both peaks in the variation of 𝜎𝜎𝑦𝑦 along contact length decreased as 𝑠𝑠𝑡𝑡 increased. Transverse contact 
stresses are primarily caused by the movement restriction created by the ground. As the traction slip 
ratio increased, the tread element moved in the longitudinal direction rather than the transverse one, 
causing a reduction in 𝜎𝜎𝑦𝑦. 

As expected from the unmodified variation in the vertical contact stresses, the total vertical force 
carried by each meridian did not change with the change in speed or traction. 

A similar behavior was also observed with the force in the longitudinal direction. First, the magnitude 
of longitudinal forces dramatically increased with respect to the free rolling condition as 𝑠𝑠𝑡𝑡 increased. 
In addition, as speed increased, the force in the longitudinal direction decreased; this can be explained 
by the reduction of the friction coefficient. It was also noted that under full traction, the force was very 
similar to full braking, but with an opposite sign, suggesting an antisymmetric behavior between 
braking and traction with respect to the free rolling condition. Under full braking and full traction, the 
magnitude of contact forces in the longitudinal direction was controlled by the limit imposed by 
friction; this limit remained constant regardless of the magnitude of the angular speed and direction of 
movement. 

The variation of the total resultant in the traffic direction, 𝐹𝐹𝑥𝑥, for the load, tire inflation pressure, and 
speed cases is summarized in Fig. 7. The behavior at full traction and full braking was similar, but in 
different directions, as verified by comparing 𝐹𝐹𝑥𝑥 in both cases (Fig. 7 for traction and Fig. 5 for braking). 
It is also noted that the curves for various tire inflation pressures were as coincidental as in braking, 
thus signaling a lack of influence of inflation pressure on 𝐹𝐹𝑥𝑥 when the tire was subjected to traction. 
Finally, as observed in braking, the effect of the applied load in 𝐹𝐹𝑥𝑥 was reduced as 𝑠𝑠𝑡𝑡 decreased. 

Regression Analysis 
Regression analysis was applied to the variation of vertical contact stresses during free rolling for the 
speed, load, and tire inflation pressure. For full braking and full traction, not only vertical but also 
longitudinal contact stresses were fitted. Based on previously presented equations (Guo and Lu 2007), 
the contact stresses in the vertical and longitudinal direction were assumed to be given by 

(5) 

𝜎𝜎𝑧𝑧,𝑦𝑦(𝜉𝜉) =
𝛼𝛼𝑃𝑃
2𝑎𝑎𝑎𝑎

𝑐𝑐1(1− 𝜉𝜉2𝑛𝑛)(1− 𝑐𝑐2𝛿𝛿𝜉𝜉) 

where 𝑎𝑎 = 𝑙𝑙 2⁄  = half contact length (mm); 𝑐𝑐1 = 1 + 1 2𝑛𝑛⁄ ; 𝑐𝑐2 = [−3(2𝑛𝑛 + 3)(2𝑛𝑛 + 1)];𝑃𝑃 = applied 
tire load (kN); 𝑛𝑛, 𝛼𝛼, and 𝛿𝛿 = fitting parameters; and 𝜉𝜉 = 𝑥𝑥 𝑎𝑎⁄  = normalized distance along the contact 
length. 



To accurately represent the variation of contact stresses, each rib 𝑖𝑖 was divided into three subribs, and 
one variation of contact stresses 𝜎𝜎𝑖𝑖,𝑗𝑗 was assigned to each subrib (𝑖𝑖 = 1– 8, and 𝑗𝑗 = 1– 3). 𝜎𝜎𝑖𝑖,𝑗𝑗 was 
calculated considering the share of applied load carried by each subrib (Hernandez et al. 2014). 
Consequently, 24 equations are needed to fully determine the contact stresses in the vertical or 
longitudinal direction for a combination of applied load, tire inflation pressure, rolling condition, and 
speed. 

Not only was the coefficient of determination, 𝑅𝑅2, but also equilibrium used to verify the quality of the 
obtained equations. The resultant of the calculated vertical contact stresses from Eq. (5) should be 
equal to the applied load. The average resultant-to-applied-load ratio and coefficient of determination 
for all regressions performed were 0.987 and 0.962, respectively. 

Braking is particularly relevant in road intersections design, so the information needed to determine 
vertical and longitudinal contact stresses at full braking and 𝑉𝑉 = 8  km h⁄  was provided. 
Figs. 8 and 9 present the regression coefficients 𝑛𝑛, 𝛼𝛼, and 𝛿𝛿 for the vertical and longitudinal contact 
stresses, respectively. The horizontal axis indicates each one of the 24 subribs across the tire. 
Fig. 10 shows the contact length and contact width for the same rolling condition and speed. 

Conclusions 
A validated FE model for a wide-base truck tire was used to study the 3D contact stresses at various 
rolling conditions. The model included detailed tire geometry and laboratory-measured material 
properties of rubber (hyperelastic) and tire reinforcement (linear elastic). In addition, advanced 
features were included such as rebar elements, cylindrical elements, and sliding-velocity-dependent 
friction. The analysis matrix included values of applied load, tire inflation pressure, speed, and rolling 
condition to cover the typical operating conditions of truck tires. 

The study discussed the shape of contact stress variation along each direction and the effect of various 
variables. The vertical contact stresses are unaffected by the traveling speed and rolling condition, but 
their shape and magnitude would change by applied load and tire inflation pressure. The rolling 
condition affects the longitudinal contact stresses, where the magnitude greatly increases as the 
severity of braking and traction becomes more relevant. Longitudinal contact stresses were 
successfully fitted to a mathematical expression, and regression parameters were provided for the 
lowest speed at full braking (relevant for road intersection design). 

The model presented is being improved to consider rubber materials as linear-hyperviscoelastic. This 
advancement will allow for the evaluation of the effect of loading rate and tire temperature on contact 
stresses and energy dissipation (i.e., truck fuel consumption). 
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Notation 
The following symbols are used in this paper: 

𝐴𝐴𝑐𝑐 = contact area; 
𝑎𝑎 = half contact length; 
𝑎𝑎 = contact width of sub-rib 𝑖𝑖, 𝑗𝑗; 

𝐶𝐶10 and 𝐶𝐶01 = Mooney-Rivlin constants; 
𝑐𝑐1 and 𝑐𝑐2 = fitting parameters; 

𝑑𝑑 = tire deflection; 
𝐹𝐹𝑥𝑥 = longitudinal resultant force; 

𝐼𝐼1 and 𝐼𝐼2 = first and second principal invariant of the deformation tensor; 
𝑙𝑙 = contact length; 

MAPE = mean absolute percentage error; 
𝑚𝑚 = number of measurements used in validation; 
𝑃𝑃 = applied load; 
𝑅𝑅𝑓𝑓𝑓𝑓 = free-rolling radius; 
𝑆𝑆 = tire inflation pressure; 

𝑠𝑠𝑡𝑡 and 𝑠𝑠𝑏𝑏 = slip ratio for traction and braking, respectively; 
𝑉𝑉 = rolling speed; 
𝑊𝑊 = strain energy density; 

𝑛𝑛, α, and 𝛽𝛽 = fitting parameters; 
𝜉𝜉 = normalized distance along contact length; 
𝜎𝜎𝑖𝑖,𝑗𝑗 = contact stresses in rib 𝑖𝑖 subrib 𝑗𝑗; 
𝜎𝜎𝑥𝑥,𝑦𝑦,𝑧𝑧 = longitudinal, transverse, and transverse contact stresses and; and 
𝜔𝜔 = angular frequency. 
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