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Abstract 
Suchomel, TJ, Giordanelli, MD, Geiser, CF, and Kipp, K. Comparison of joint work during load absorption between 
weightlifting derivatives. J Strength Cond Res 35(2S): S127–S135, 2021—This study examined the lower-
extremity joint-level load absorption characteristics of the hang power clean (HPC) and jump shrug (JS). Eleven 
Division I male lacrosse players were fitted with 3-dimensional reflective markers and performed 3 repetitions 
each of the HPC and JS at 30, 50, and 70% of their 1 repetition maximum (1RM) HPC while standing on force 
plates. Load absorption joint work and duration at the hip, knee, and ankle joints were compared using 3-way 
repeated-measures mixed analyses of variance. Cohen's d effect sizes were used to provide a measure of 
practical significance. The JS was characterized by greater load absorption joint work compared with the HPC 
performed at the hip (p < 0.001, d = 0.84), knee (p < 0.001, d = 1.85), and ankle joints (p < 0.001, d = 1.49). In 
addition, greater joint work was performed during the JS compared with the HPC performed at 30% (p < 
0.001, d = 0.89), 50% (p < 0.001, d = 0.74), and 70% 1RM HPC (p < 0.001, d = 0.66). The JS had a longer loading 
duration compared with the HPC at the hip (p < 0.001, d = 0.94), knee (p = 0.001, d = 0.89), and ankle joints (p < 
0.001, d = 0.99). In addition, the JS had a longer loading duration compared with the HPC performed at 30% (p < 
0.001, d = 0.83), 50% (p < 0.001, d = 0.79), and 70% 1RM HPC (p < 0.001, d = 0.85). The JS required greater hip, 
knee, and ankle joint work on landing compared with the load absorption phase of the HPC, regardless of load. 
The HPC and JS possess unique load absorption characteristics; however, both exercises should be implemented 
based on the goals of each training phase. 

Introduction 
The weightlifting movements (i.e., snatch, clean, and jerk) and their catching derivatives (e.g., power snatch, 
hang power clean [HPC], etc.) are popular exercises to implement within resistance training programs for the 
development of lower-extremity strength and power. In fact, previous research has indicated that training with 
weightlifting movements has been shown to produce superior strength-power adaptations compared with 
traditional resistance training (1,3,4,19), jump training (37,38), and kettlebell training (24). This is not surprising, given 
their ability to generate greater relative power outputs during the triple extension of the hip, knee, and ankle 
(plantar flexion) joints compared with other resistance training exercises (17). Additional literature has indicated 
that the ability to perform weightlifting movements strongly correlates with jumping ability (2,20) and that 
weightlifting movements can be used to develop sprint speed (14). 

An additional benefit of weightlifting movements and their catching derivatives (i.e., those that include the catch 
phase) may be the ability to absorb an external load. In fact, some may argue that the catch phase of these 
movements may simulate an impact experienced in sports such as American football and rugby (29). Despite the 
large body of literature that has examined the concentric phase of weightlifting catching derivatives (5–

7,9,12,13,20,21,26,32,35), only one previous study has examined load absorption characteristics. Moolyk et al. (23) 
indicated that the lower-extremity joint work completed during the clean and power clean exercises was greater 
or similar to that of jump landing and drop landing. These results led the authors to conclude that the load 
absorption phase of weightlifting movements may be used to train the muscular strength required for impact 
actions, such as jumping landing tasks. Given the benefits of both the concentric and load absorption phases of 
weightlifting catching derivatives, there is little doubt as to why these movements have become a staple in so 
many resistance training programs. 

Although weightlifting catching derivatives may be featured more exclusively in strength and conditioning 
programs, a growing body of literature indicates that weightlifting pulling derivatives (i.e., those that omit the 
catch phase) may produce similar (5,6) or greater (22,32,33,35,36) force-velocity characteristics during the concentric 
phase of the movement. Due to the elimination of the catch phase, loads greater than the 1 repetition 
maximum (1RM) of a weightlifting catching derivative may be prescribed (8,10,18), which may allow for enhanced 



force production characteristics to be developed. Similarly, weightlifting pulling derivatives such as the jump 
shrug (JS) and hang high pull may also produce greater velocities compared with weightlifting catching 
derivatives (35). Given the above benefits and others that have been discussed (28,29), the implementation of 
weightlifting pulling derivatives with weightlifting catching derivatives may be beneficial. 

Similar to the research completed on weightlifting catching derivatives, the majority of the research on 
weightlifting pulling derivatives has examined the concentric phase of the movement (5,6,8,10,22,25,27,32–36,39). 
However, given the potential of weightlifting catching derivatives to train individuals to absorb an external load 
(23), research examining the ability of weightlifting pulling derivatives to train similar characteristics is needed. 
Two previous studies examined the load absorption characteristics of weightlifting pulling derivatives and 
compared them with weightlifting catching derivatives (11,31). Collectively, these studies indicated that 
weightlifting pulling derivatives may produce similar or greater load absorption force-time characteristics (i.e., 
work, mean force, duration) compared with the examined weightlifting catching derivatives. It should be noted, 
however, that the recent studies did not examine joint-level kinetics, making it difficult to compare their findings 
with those of Moolyk et al. (23). To determine the potential of weightlifting pulling derivatives to train an 
individual's ability to absorb an external load, research comparing the joint-level load absorption characteristics 
of a weightlifting catching and pulling derivative is needed. Therefore, the purpose of this study was to examine 
the lower-extremity joint-level load absorption characteristics of the HPC and JS performed at several different 
loads. It was hypothesized that the JS would produce greater load absorption demands compared with the HPC 
regardless of the external load used. 

Methods 
Experimental Approach to the Problem 
A repeated-measures design was used to examine the differences in hip, knee, and ankle joint work and loading 
duration during the load absorption phase of the HPC and JS performed with several relative loads. Each 
participant was fitted with 3-dimensional reflective markers and performed 3 repetitions each of the HPC and JS 
at 30, 50, and 70% of their 1RM HPC during a single testing session. Load absorption joint work and duration 
were used to characterize the mechanical demands experienced by the lower-extremity joints during the load 
absorption phase of each exercise. 

Subjects 
Thirteen male, NCAA DI lacrosse players (mean ± SD; age: 20.1 ± 1.2 years; height: 1.78 ± 0.07 m; body mass: 
80.4 ± 8.1 kg; 1RM HPC: 100.4 ± 8.1 kg; relative 1RM HPC: 1.25 ± 0.13 kg·kg−1) were recruited for this study. The 
athletes were actively engaged in a resistance training program that involved weightlifting movements, such as 
the HPC, and were tested during their off-season training phase. The current study was approved by Marquette 
University's Institutional Review Board, and all participants provided written informed consent. 

Procedures 
To begin each testing session, participants were fitted with 18 reflective markers attached to the pelvis, thigh, 
shank, and foot segments of the right lower extremity based on the standard plug-in gait marker set (Vicon, 
Oxford, United Kingdom). The markers were attached with double-sided tape and secured with extra tape as 
necessary. After the placement of the markers, the participants were asked to perform a static trial in which 
they stood in an anatomically neutral position. 

After the participants completed the static trials, a general warm-up that consisted of jumping jacks, lunges, 
bodyweight squats, and unloaded and loaded (20 kg) vertical jumps was performed. The participants then 
performed a specific HPC warm-up that consisted of 2 sets of 3 repetitions of the HPC at 30 and 50% of their 



1RM. The warm-up loads were based on the results from 1RM testing that was completed as part of the 
participants' training programs a week before the current study. After the warm-up was completed, participants 
began performing testing repetitions with either the HPC or JS, and performed one work set of 3 repetitions 
each at 30, 50, and 70% of each participant's 1RM HPC. The load percentages were based off of the HPC 1RM 
and were the same for each exercise. The exercise that was tested first (i.e., HPC or JS) was counterbalanced, 
and the order of work sets was randomized (e.g., 50, 70, 30%). After all the work sets for the first exercise were 
complete, participants then performed the work sets for the other exercise using the same random order of 
loads as the previous exercise. Each exercise set was performed with 20 seconds of rest between each repetition 
and 90 seconds of rest between each set. All HPC and JS repetitions were performed using previously described 
techniques (26,30). The movement sequence for both exercises is depicted in Figures 1 and 2. Briefly, each 
movement started from the midthigh (power) position (15). While keeping their elbows extended, the 
participants performed a countermovement with the barbell down their anterior thigh to a position above their 
patellae by flexing at hip and shifting their hips posteriorly. On reaching a position above the patellae and 
without pausing, the participants then transitioned back to the midthigh (power) position. On reaching this 
position, the participants rapidly extended their hip, knee, and ankle (plantar flexion) joints (i.e., second pull) 
and elevated the barbell (e.g., HPC) or “jumped as high as possible” (e.g., JS). After the barbell was elevated by 
the second pull and driving their elbows upward during the HPC, the participants rapidly rotated their elbows 
around the barbell while dropping into a semisquat position, and absorbed the load by racking the weight across 
their anterior deltoids. After the second pull and jump phase of the JS, the participants returned to the ground 
and absorbed the load by landing in the midthigh (power) position. 

 

Figure 1.: Hang power clean exercise sequence. 

 

Figure 2.: Jump shrug exercise sequence. 

Twelve, 3-dimensional reflective markers were recorded at 100 Hz with a 14-camera motion analysis system 
(Vicon). Vertical ground reaction force data were recorded using 2, in-ground force plates (AMTI, Watertown, 
MA, USA) sampling at 1,000 Hz. Hang power clean and JS kinematic and kinetic data were collected 
simultaneously using Vicon Nexus (Vicon). To process the data from the static and dynamic trials and calculate 
hip, knee, and ankle joint biomechanics, the standard plug-in gait biomechanical model was used. The model 
uses the dot product between joint angular velocity and net joint moment to calculate mechanical joint power. 
Total work was then calculated from the integral of all the joint power data during the load absorption phase 
(40). Within the model, the net joint moments are already normalized to body mass, and the total amount of 
joint work completed is thus expressed relative to the participants' body mass. Analysis of any variables during 
the load absorption phase was limited to the period between when the feet were in contact with the ground 
during the catch of the HPC, or landing of the JS, and the return to an upright standing position. More 
specifically, the integral time for negative joint work and the duration of the load absorption phase for each joint 
was defined as the period when the joint power was negative (i.e., a joint was flexing in the presence of an 
extension moment) during the catch and landing phases described above. In all cases, a distinct foot contact was 
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present and thus clearly demarcated these phases. Data from each of the 3 trials were averaged into a 3-trial 
average. Potential outliers were identified as data points that were more than 3 SDs away from the group mean. 

Statistical Analyses 
Test-retest reliability of load absorption joint work and duration was determined using 2-way mixed-model 
intraclass correlation coefficients. Three, 3-way (Exercise × Load × Joint) repeated-measures analysis of variance 
with Bonferroni post hoc comparisons were used to examine the differences in load absorption joint work and 
duration. Specifically, joint work and duration was compared between and within exercises (HPC and JS), load 
(30, 50, and 70% 1RM HPC), and joint (hip, knee, and ankle). Two-way interaction effects were examined using 
pooled (i.e., average) data across whichever variable was not part of the interaction (e.g., for the exercise × joint 
interaction, global measures of dependent variables were calculated by averaging across all loads). If the 
assumption of sphericity was violated, Greenhouse-Geisser adjusted values were used. The normality and 
homogeneity of the variance were examined using the Shapiro-Wilk and Levene's tests, respectively, before data 
were compared. Statistical significance for all analyses was set at a level of α = 0.05. In addition, Cohen's d effect 
sizes, statistical power (c), and 95% confidence intervals (CIs) are presented. All statistical analyses were 
performed using SPSS 24 (IBM Corp., Armonk, NY, USA). 

Results 
Two participants were identified as outliers and were removed from the statistical analyses. The Shapiro-Wilk 
results indicated that all data were normally distributed. The Levene's tests were not statistically significant and 
thus, equal variances were assumed. The reliability statistics for relative joint work and loading duration are 
displayed in Tables 1 and 2, respectively. 

Table 1. - Intraclass correlation coefficient reliability results for relative joint work.* 
Joint Hang power clean   Jump shrug    

30% 50% 70% 30% 50% 70% 
Hip 0.29 0.40 0.82 0.92 0.92 0.80 
Knee 0.92 0.93 0.94 0.95 0.95 0.92 
Ankle 0.78 0.59 0.80 0.94 0.80 0.88 

*Percentages are based on the 1 repetition maximum hang power clean. 

 

Table 2. - Intraclass correlation coefficient reliability results for loading duration.* 
Joint Hang power clean   Jump shrug    

30% 50% 70% 30% 50% 70% 
Hip 0.74 0.58 0.50 0.75 0.85 0.90 
Knee 0.80 0.70 0.73 0.84 0.88 0.93 
Ankle 0.71 0.75 0.81 0.87 0.93 0.93 

*Percentages are based on the 1 repetition maximum hang power clean. 

Relative Joint Work 
The relative joint work descriptive statistics are displayed in Table 3. Statistically significant main effect 
differences in joint work existed for exercise (F1, 10 = 45.068, p < 0.001, c = 1.00), load (F2, 20 = 12.965, p < 
0.001, c = 0.99), and joint (F1.25, 12.497 = 75.214, p < 0.001, c = 1.00). In addition, statistically significant 
exercise × joint (F2, 20 = 47.255, p < 0.001, c = 1.00) and load × joint (F4, 40 = 10.961, p < 0.001, c = 1.00) interaction 
effects were present. Finally, there was no statistically significant exercise × load (F2, 20 = 2.576, p = 0.101, c = 
0.454) or exercise × load × joint (F1.716, 17.156 = 2.025, p = 0.166, c = 0.554) interaction effects present. Post hoc 
analyses indicated that the JS was characterized by greater load-averaged joint work compared with the HPC 



performed at the hip (p < 0.001, d = 0.84, CI = 0.10–0.23), knee (p < 0.001, d = 1.85, CI = 0.48–0.66), and ankle 
joints (p < 0.001, d = 1.49, CI = 0.08–0.13; Figure 3). In addition, greater joint-averaged joint work was performed 
during the JS compared with the HPC performed at 30% (p < 0.001, d = 0.89, CI = 0.20–0.42), 50% (p < 0.001, d = 
0.74, CI = 0.17–0.37), and 70% 1RM HPC (p < 0.001, d = 0.66, CI = 0.17–0.34; Figure 4). 

Table 3. - Descriptive relative joint work (Joules per kilogram) statistics for the hang power clean and jump shrug 
performed at 30, 50, and 70% of 1 repetition maximum.* 

Joint Hang power clean   Jump shrug    
30% 50% 70% 30% 50% 70% 

Hip 0.56 ± 0.09 0.71 ± 0.15 0.84 ± 0.14 0.76 ± 0.21 0.87 ± 0.22 0.99 ± 0.21 
Knee 0.44 ± 0.29 0.53 ± 0.25 0.56 ± 0.25 1.09 ± 0.37 1.08 ± 0.35 1.07 ± 0.36 
Ankle 0.14 ± 0.05 0.14 ± 0.04 0.14 ± 0.04 0.23 ± 0.10 0.25 ± 0.10 0.25 ± 0.07 

*Percentages are based on the 1 repetition maximum hang power clean. 

 
Figure 3.: Load-averaged relative joint work performed at the hip, knee, and ankle joints during the hang power 
clean (HPC) and jump shrug (JS). *Statistically greater than HPC (p < 0.001). 

 
Figure 4.: Joint-averaged relative joint work performed during the hang power clean (HPC) and jump shrug (JS) 
performed at 30, 50, and 70% 1RM HPC. *Statistically greater than HPC (p < 0.001). 1RM = 1 repetition 
maximum. 
 

Loading Duration 
The loading duration descriptive statistics are displayed in Table 4. Statistically significant main effect differences 
in loading duration existed for exercise (F1, 10 = 20.767, p = 0.001, c = 0.983), load (F2,20 = 4.925, p = 0.018, c = 
0.74), and joint (F1.15, 11.452 = 122.214, p < 0.001, c = 1.00). In addition, statistically significant exercise × joint (F2, 

20 = 10.080, p = 0.001, c = 0.969) and load × joint (F4, 40 = 3.506, p = 0.015, c = 0.819) interaction effects were 
present. Finally, there was no statistically significant exercise × load (F1.34, 13.38 = 0.086, p = 0.918, c = 0.059) or 
exercise × load × joint (F4, 40 = 1.120, p = 0.360, c = 0.319) interaction effects present. Post hoc analyses indicated 
that the JS had a longer load-averaged loading duration compared with the HPC performed at the hip (p < 
0.001, d = 0.94, CI = 0.06–0.13), knee (p = 0.001, d = 0.89, CI = 0.08–0.15), and ankle joints (p < 0.001, d = 0.99, CI 
= 0.10–0.18; Figure 5). In addition, the JS had a longer joint-averaged loading duration compared with the HPC 
performed at 30% (p < 0.001, d = 0.83, CI = 0.08–0.15), 50% (p < 0.001, d = 0.79, CI = 0.08–0.17), and 70% 1RM 
HPC (p < 0.001, d = 0.85, CI = 0.08–0.14; Figure 6). 
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Table 4. - Descriptive loading duration (seconds) statistics for the hang power clean and jump shrug performed 
at 30, 50, and 70% of 1 repetition maximum.* 

Joint Hang power clean   Jump shrug    
30% 50% 70% 30% 50% 70% 

Hip 0.45 ± 0.10 0.45 ± 0.12 0.49 ± 0.07 0.55 ± 0.11 0.56 ± 0.11 0.58 ± 0.10 
Knee 0.57 ± 0.13 0.59 ± 0.15 0.65 ± 0.08 0.70 ± 0.14 0.70 ± 0.14 0.76 ± 0.12 
Ankle 0.58 ± 0.14 0.57 ± 0.19 0.63 ± 0.10 0.71 ± 0.14 0.72 ± 0.15 0.76 ± 0.12 

*Percentages are based on the 1 repetition maximum hang power clean. 

 

 
Figure 5.: Load-averaged loading duration at the hip, knee, and ankle joints during the hang power clean (HPC) 
and jump shrug (JS). *Statistically greater than HPC (p < 0.01). 

 
Figure 6.: Joint-averaged loading duration of the hang power clean (HPC) and jump shrug (JS) performed at 30, 
50, and 70% 1RM HPC. *Statistically greater than HPC (p < 0.001). 1RM = 1 repetition maximum. 

Discussion 
This study compared the joint work and duration of the load absorption phase of a weightlifting catching 
derivative (i.e., HPC) and a weightlifting pulling derivative (i.e., JS). The primary findings are as follows: (a) 
Greater hip, knee, and ankle joint work was performed during the JS compared with the HPC when averaged 
across joints and loads, which was characterized by longer loading durations, and (b) As the external load 
increased, greater joint work was performed at each joint, while loading duration was maintained or increased. 

Previous research indicated that the load absorption phase of the HPC and power clean mimicked joint work 
demands during jump and drop landings and may thus be used to train landing movements (23). It is commonly 
believed that the catch phase contributes to the load absorption experienced during weightlifting movements; 
however, recent research indicated that the load absorption work performed during several different 
weightlifting pulling derivatives that removed the catch phase was similar (11) or greater (11,31) than weightlifting 
catching derivatives. The results of this study support the latter findings. The JS required the participants to 
perform more hip, knee, and ankle joint work during the load absorption phase compared to the HPC with 
moderate-large effect sizes being present when joint work was averaged across loads. Considering the 
movement demands of each exercise, these results should not be overly surprising. For example, athletes should 
be coached to “jump as high as possible” during the JS (30). As displayed by previous research (31), a maximal 
jump during the JS may increase the eccentric forces experienced by the athlete on landing. Greater landing 
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forces, combined with a longer load absorption duration as shown in this study, may ultimately contribute to a 
greater amount of work performed by the athlete to decelerate their body mass and the external load. By 
contrast, athletes may be cued to aggressively extend their hip, knee, and ankle joints during the second pull 
phase to accelerate the barbell upward during the HPC. In addition, athletes may perform a small hop while 
moving their feet laterally to form a wider base of support (similar to a front squat) in preparation to catch the 
weight. Although racking the barbell across the shoulders during the catch phase may contribute to force 
absorption (23), it should be noted that a properly executed HPC is characterized by catching the barbell near the 
top of its vertical path. This in turn may limit the downward displacement and kinetic energy of the barbell, 
ultimately decreasing the deceleration demand of the catch phase. The current results, as well as previous 
studies (11,31), support this notion. 

Another interesting finding of the current study was focused on how the external load affected the joint work 
performed during the HPC and JS. Statistically greater joint work, with moderate practical effects, was 
performed during the load absorption phase of the JS compared with the HPC at each load examined. These 
findings are similar to those of Suchomel et al. (31), who reported that athletes may perform as much as 3–6× the 
amount of work during the load absorption phase of the JS compared with the HPC. However, it should be noted 
that in the previous study, and the current study, the differences in the load absorption work or joint work 
performed became smaller as the external load increased. Although moderate effect sizes still existed, the 
difference in the joint work performed during the JS and HPC was the smallest at the highest load examined 
(e.g., 70% 1RM HPC). Considering the technique of each exercise, a deeper squat may have been required to 
proper execute the catch phase of the HPC at 70% 1RM, which would ultimately result in more overall work 
performed. Practically speaking, these data support previous recommendations for the use of heavier loads with 
the HPC (20,21,26). Although joint work may increase with heavier loads during the JS as well, athletes may benefit 
more from using lighter loads with the JS due to its ballistic nature and force-time characteristics (22,25,31–36). 

As noted above, the HPC and JS techniques differ in how the load absorption phase is performed. For example, 
Suchomel et al. (31) indicated that weightlifting derivatives may possess a unique load absorption profile (e.g., 
high mean forces and short loading duration vs. low mean forces and longer loading duration). The catch phase 
of the HPC resembles a front squat, although the HPC catch is typically performed using a semisquat (above 
parallel depth). The JS, by contrast, requires the athlete to land in the midthigh position (15) with their feet 
approximately shoulder-width apart and an upright torso. A benefit of landing in this manner is that the 
midthigh position is considered the strongest position within weightlifting movements (16). Because the HPC and 
JS both require an athlete's torso be in an upright position during their respective load absorption phases, both 
exercises may benefit athletes from a joint load absorption standpoint in the vertical plane. Furthermore, given 
their unique loading profiles, these exercises may be best implemented during different phases of training to 
match specific resistance training goals. 

A limitation to the current study may be use of loads based off of the 1RM HPC. However, as previous literature 
has noted, there is no criteria for performing a 1RM weightlifting pulling derivative (29) and thus, attempting to 
do say may be inappropriate. Future research may consider using percentages of bodyweight or comparing the 
bar velocity between weightlifting catching and pulling derivatives to determine what relative loads are 
comparable. The authors acknowledge that load absorption joint power was not included in the current analysis. 
This may be viewed as a limitation to the current study; however, it should be noted that several joint and load 
combinations were unreliable based on test-retest statistics. The rate of work performed during the load 
absorption phase of weightlifting catching and pulling derivatives at the hip, knee, and ankle joints (i.e., joint 
power) may be something that future research should investigate to determine if any differences exist. 
However, it should be noted that those interested in performing this research will have to be explicit when 
providing load absorption phase cues to ensure that a consistent technique is used. 



Practical Applications 
The JS required greater hip, knee, and ankle joint work performed over longer loading durations on landing 
compared with the load absorption phase of the HPC at each load examined. Thus, the JS may be used an 
effective alternative to the HPC for load absorption benefits. However, the HPC and JS may provide unique load 
absorption training benefits based on how they load the hip, knee, and ankle joints. Practitioners should also 
note that the external load used during the HPC and JS does not seem to alter the joint work performed during 
the load absorption phase. Therefore, both exercises may be prescribed for load absorption benefits; however, 
it is important to consider the goals of each training phase. Based on the performance benefits, force-velocity 
characteristics, and load absorption benefits, the HPC may be best implemented during a maximal strength 
phase with moderate-heavy loads. By contrast, the JS may be best implemented during a speed-strength phase 
with light-moderate loads. 

Practitioners should note that a properly executed catch phase (i.e., athlete meets the barbell near its maximum 
height) may limit the deceleration demand of the HPC and thus, decrease the load absorption stimulus. 
Although some load absorption benefits may occur, the current study, along with previous research (11,31), 
indicates that the catch phase of the HPC may not be an optimal method to train deceleration. For example, as 
athletes continue to train with weightlifting catching derivatives, it is possible that they may begin to experience 
less of a force absorption requirement as the result of refined exercise technique. However, further research is 
needed to compare the load absorption demands of weightlifting catching and pulling derivatives as well as 
other resistance training exercises (e.g., squat variations, jump squats, etc.). Moreover, additional research is 
needed to determine how technique changes affect load absorption during a weightlifting catching derivative. 
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