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Abstract 

 

Introduction: Patients on hemodialysis (HD) have a significant burden of cognitive impairment. 
Characterizing the cerebral structural changes in HD patients compared to healthy controls and 
evaluating the relationship of cerebral structural integrity with cognitive performance in HD patients 
can help clarify the pathophysiology of the cognitive impairment in HD patients. Methods: In this cross-
sectional study, in-center HD patients ≥50 years of age underwent brain structural and diffusion MRIs 
and cognitive assessment using the NIH Toolbox cognition battery. The cerebral imaging measures of 
the HD participants were compared to imaging from age-matched controls. Gray matter volume, white 
matter volume, and white matter integrity determined by diffusion tensor imaging parameters 
(including fractional anisotropy [FA]) were measured in both cohorts to determine differences in the 
cerebral structure between HD participants and healthy controls. The association between cognitive 
performance on the NIH Toolbox cognition battery and cerebral structural integrity was evaluated 
using multiple linear regression models. Results: We compared imaging measures form 23 HD 
participants and 15 age-matched controls. The HD participants had decreased gray matter volumes 
(526.8 vs. 589.5 cm3, p < 0.01) and worsened white matter integrity overall (FA values of 0.2864 vs. 
0.3441, p < 0.01) within major white matter tracts compared to healthy controls. Decreases in white 
matter integrity in the left superior longitudinal fasciculus was associated with lower executive 
function scores (r2 = 0.24, p = 0.02) and inferior longitudinal fasciculus with lower memory scores (r = 
0.25 and p = 0.03 for left and r2 = 0.21 and p = 0.03 for right). Conclusions: HD patients have a pattern 
of decreased white matter integrity and gray matter atrophy compared to controls. Decreases in white 
matter integrity were associated with decreased cognitive performance in the HD population. 

Introduction 
Cognitive impairment (CI) in patients with end-stage renal disease (ESRD) treated with hemodialysis 
(HD) is increasingly apparent and concerning. Cohort studies demonstrate that two-thirds of HD 
patients suffer from CI and half of those have severe impairment that is consistent with dementia [1-
4]. CI in the HD population is associated with higher mortality, increased hospitalization rates, and 
lower functional status and quality of life [5, 6]. In the dialysis population, CI can reduce the patients’ 



ability to adhere to medications and dietary restrictions that are complex and central to dialysis care. 
In addition, it compromises decision-making capacity regarding care. The pathophysiology of cognitive 
decline in this population is unclear. However, the HD population is noted to have generalized cortical 
atrophy and white matter disease on imaging [7-10]. This indicates that there may be cerebral 
structural changes that lead to the CI in this population. 

Characterizing cerebral microstructural changes in HD patients can be used to identify how brain injury 
might be occurring and inform prevention therapies. The pathophysiology for CI is likely multifactorial 
with uremic toxins, inflammation, anemia, electrolyte disturbances, and proteinopathies all 
contributing; however, cerebral ischemia appears to play a key role. Prior evidence demonstrates an 
increased risk of cerebrovascular disease after initiation of HD [11]. There is evidence of white matter 
disease, lacunae and infarcts, and atrophy on brain imaging in HD patients [1, 8, 12, 13]. These 
ischemic-type lesions may be due to the circulatory stress that is induced by HD in the setting of 
vascular disease [14]. Cerebral hypoperfusion during HD has been demonstrated using a number of 
methods [15-17]. In addition to infarcts and atrophy, there may also be microstructural changes in 
white matter integrity that occur. These ischemic lesions, atrophy, and loss of integrity of neural 
pathways and structures may be the link to compromised cognitive function. 

To provide further information on cerebral structural and cognitive changes in the HD population, we 
conducted a cross-sectional analysis using magnetic resonance imaging (MRI) and cognitive testing in 
an HD cohort with comparison to MRI data from healthy controls. We utilized state-of-the-art image 
processing methodology to improve accuracy of the measurements of white matter integrity, focusing 
on parameters of fractional anisotropy (FA, a measure of directional diffusion along neuronal tracts) 
and mean diffusivity (MD, a measure of dispersion along a tract). We hypothesized that the HD cohort 
would have decreased gray and white matter volumes and indicators of decreased white matter 
integrity compared to healthy controls. Furthermore, we hypothesized that cerebral volumes and 
white matter integrity would be associated with cognitive performance in the HD cohort. 

Methods 
Participants 
In this cross-sectional analysis from an ongoing longitudinal study, we recruited participants with ESRD 
treated with HD from 4 community dialysis units in Milwaukee, WI. Each ESRD participant provided 
informed written consent to the protocol, which was approved by the Institutional Review Board at the 
Medical College of Wisconsin. Inclusion criteria were age ≥50 years and receiving thrice weekly 
conventional in-center HD. Participants also had to be on dialysis over 1 month but <2 years at 
enrollment. The 1 month was to avoid the complicating effects of untreated uremia, and the <2-year 
requirement was to capture when cognitive changes may be more commonly occurring as part of the 
longitudinal study. Exclusion criteria included a history of stroke, traumatic brain injury, brain tumor or 
surgery within the past year, non-English speaking, hearing or vision impairment enough to preclude 
the ability to take the cognitive tests, severe CI that would prevent them from completing cognitive 
testing, or diagnosis of dementia. Healthy control data were used from a previous study [18]. The 
healthy control group had the same imaging protocol as the HD cohort but did not have the cognitive 



testing. Both the HD and control groups’ imaging were processed and analyzed using the same 
processing pipeline described below. 

Cognitive Testing 
Each HD participant completed the NIH Toolbox cognition battery, which includes 7 assessments that 
evaluate the following domains: language, attention, processing speed, executive function, working 
memory, and episodic memory, as well as 3 composite scores [19]. Testing was performed the day 
after the participant’s 2nd dialysis session of the week. This was to avoid the immediate changes in 
cognition during and immediately after a dialysis session [20]. All testing was carried out in a quiet 
room with a test administrator and completed on an iPad. 

Magnetic Resonance Imaging 
MRI was performed on the same day as the cognitive testing, immediately following the cognitive 
testing. No participant was given anti-anxiety or sedative medications for the scan. Every participant 
completed an MRI safety screen prior to the scan. T1-weighted anatomical images were acquired using 
an axial fast spoiled gradient recall 3D sequence (TE = 3.2 ms, TR = 8.16 ms, flip angle = 12°, prep time = 
450, bandwidth = 22.73, FOV = 240 mm, 156 1-mm slices, and matrix = 256 × 240). The diffusion-
weighted volumes were acquired using an axial q-ball high angular resolution diffusion imaging 
sequence using single-shot echo-planar imaging (TE = 72.3 ms, TR = 5,700 ms, b-value = 1,500 s/mm2, 5 
b0 images, 150 directions, FOV = 256 mm, 59 2.5-mm slices, and matrix = 128 × 128). 

Image Processing 
Anatomical morphometry processing, including bias correction, skull stripping, spatial normalization, 
and segmentation, was completed using cat12 (http://www.neuro.uni-jena.de/cat/). Total volumes of 
gray matter, white matter, and cerebrospinal fluid and total intracranial volume were calculated with 
segmented anatomical volumes. Region of interest analysis was carried out by masking the gray matter 
segmentation of each participant with the Harvard-Oxford Cortical and Subcortical Atlases and the 
Probabilistic Cerebellar Atlas [21, 22]. For the diffusion processing, diffusion volumes were skull 
stripped and corrected for susceptibility in the images, interslice and intraslice and volume motion, 
signal dropout, and b-vector correction [23, 24]. Diffusion volumes were registered using a rigid 
transform from diffusion to anatomical space, and a combination of affine and nonlinear registration 
was used to obtain the transforms from anatomical to standard MNI 152 Nonlinear 1-mm space. 

After completing registration, the tensor model was then fit to each voxel in the diffusion volume to 
get the diffusion tensor imaging (DTI) measures of microstructural integrity (FA, axial diffusion [AD], 
radial diffusion [RD], and MD). FA is a measure of the strength of diffusion in the primary direction 
relative to the nonprimary diffusion directions, MD is the average diffusivity in a certain voxel, AD is 
the magnitude of diffusion in the primary direction, and RD is the average of the diffusivity in the 2 
nonprimary diffusion directions. FA is correlated positively with general white matter integrity. MD is 
negatively correlated with white matter integrity as more diffusion in all directions would mean less 
white matter tracts to restrict diffusion. An increase in RD may indicate demyelination as the 
nonprimary diffusion directions are perpendicular to the white matter tracts, and any increased 
diffusion in these directions is a marker of decreased restriction of diffusion in these directions. AD has 
been previously correlated with axon density as it measures the diffusion along the white matter 



tracts; a decrease indicates a loss of white matter organization to channel diffusion in the direction of 
the white matter tract [25-28]. 

Identifying Tract Regions of Interest 
White matter tract regions of interest (tROIs) were delineated for calculating diffusion parameters for 
specific tracts. FSL’s probabilistic tractography function probtrackx was used to generate white matter 
tracts [29]. Seed, termination, and exclusion masks for 27 white matter tracts were used [30]. For each 
tract, 5,000 streamlines were run per voxel seeded and the resulting tract density images were 
thresholded at 0.2 to remove noisy tracts from the ROIs. The ROIs were then warped to anatomical 
space where non-white matter regions identified by using the FSL’s fast segmentation algorithm of the 
anatomical data were removed from the tROIs for each participant, resulting in 27 tROIs encompassing 
only white matter. Each measure of white matter microstructural integrity (FA, AD, RD, and MD) was 
then averaged within each tROI and used for statistical analyses. 

Analysis 
Cognitive Performance Analysis 
Tests were scored automatically in the NIH Toolbox app. The HD cohort scores were compared to age-
corrected standard population means of 100 with an SD of 15 using one-sided t tests with a CI of 95%. 

Anatomical Statistical Analysis 
Total gray matter, white matter, and cerebrospinal fluid were compared between the HD and control 
groups, controlling for total intracranial volume and age effects, using FSL’s PALM software in MATLAB. 
This comparison was repeated for each gray matter ROI identified using the Harvard-Oxford and 
Probabilistic Cerebellar Fusion Atlas [21, 22, 31-33] to identify cortical regions in which the volume was 
significantly smaller in the HD cohort compared to controls. False discovery rate was used to correct 
for multiple comparisons. 

Diffusion Statistical Analysis 
Whole brain white matter DTI measures were compared between the 2 groups using an ANCOVA with 
age as a confounding variable. In addition, an ANCOVA analysis was conducted for each tROI identified 
with tractography using false discovery rate to correct for multiple comparisons (corrected p < 0.05). 
Whole brain white matter and tROI results were then used in multiple linear regression models with 
age and white matter microstructural integrity as 2 predictors and cognitive scores as the response 
variable; models were made for each tract and cognitive task. Although we evaluated 27 white matter 
tracts and 10 cognitive scores, we did not perform multiple comparisons on this specific analysis given 
the initial small dataset and preliminary nature of this component of the study. 

Results 
We had 190 HD patients met age and <2 years on HD criteria, but of those, 123 were excluded due to 
exclusion criteria or too sick to complete study procedures. Out of the remaining 67 eligible 
participants, 32 consented to participate. Subsequently 3 changed their mind due to having to go off-
site for MRI, 5 were unable to get MRI due to MRI screening failure or claustrophobia, and 1 image was 
not used due to large strokes that led to DTI parameters and volumes that were statistically noted as 



outliers. We included 23 HD participants and 15 healthy controls in the analysis. The mean age of the 
HD cohort was 66.3 versus 62.3 in healthy controls, p = 0.11 (see Table 1). Demographics including age, 
race, and gender as well as HD duration and medical comorbidities are noted in Table 1. 

Table 1. Age and gender differences between HD participants and healthy controls and HD 
comorbidities 
 

 Group   
 HD participants (𝑛𝑛 = 23) healthy controls (𝑛𝑛 = 15) p value 
Age (SD) 66.3 62.3 0.11 
Male, % 65.2 53.3 0.13 
Hemodialysis duration, months 7.8±6.7 N/A – 
Comorbidities, n (%)    

Hypertension 18 (78.3) N/A – 
Diabetes 15 (65.2)   

CAD 9 (39.1)   

PVD 3 (13.0)   

CHF 9 (39.1)   

Race, n (%)    
Caucasian 14 (60.9)   
African American 7 (30.4)   
Others 2 (8.7)   

Cause of ESRD, n (%)    

Diabetes 11 (47.8) N/A – 
Hypertension 6 (26.1)   

Others 6 (26.1)   

Educational level, n (%)    

High school or less 13 (56.5)   

Some college/bachelor’s degree 8 (34.8)   

Advanced degree 2 (8.7)   

HD, hemodialysis; CAD, coronary artery disease; PVD, peripheral vascular disease; CHF, congestive heart failure; 
ESRD, end-stage renal disease. Advanced degree indicates masters’, graduate, or professional degree. 
 

Cerebral Volumes in HD Cohort Compared to Controls 
Global gray matter volume adjusted for age and total intracranial volume was lower in the HD cohort 
than in healthy controls (526.8 vs. 589.5 cm3, p < 0.01) (Fig. 1). Regionally, the left putamen, bilateral 
pallidum, bilateral VIIa cerebellar lobules, and right VIIb cerebellar lobule were significantly decreased 
in HD patients after multiple comparisons correction (Fig. 2). There were no regions with higher gray 
matter volumes in HD patients compared to controls. Cerebrospinal fluid volume was significantly 
greater in HD patients (415.4 vs. 335.5 cm3, p < 0.01), while white matter volume was not significantly 
different between the 2 groups (470.8 vs. 490.4 cm3, p = 0.20), shown in Figure 1. 

Fig. 1. Total GM, WM, and CSF volumes after controlling for age and total intracranial volume as confounding 
variables. Significance labels represent significance p < 0.01**. There is a decrease in GM and WM volume along 
with increase in CSF volume in the hemodialysis cohort compared to healthy control indicating generalized 
atrophy. GM, gray matter; WM, white matter; CSF, cerebral spinal fluid; HD, hemodialysis. 



 
Fig. 2. T map of significant (p < 0.05) volume differences in individual ROIs derived from the Harvard-Oxford 
Cortical and Subcortical Atlases and Probabilistic Cerebellar Atlas. Cortical and subcortical atlases are shown on 
the right and cerebral atlas on the left. The color graph on the right indicates the difference in volume in 
cm3 with yellow indicating a larger difference. The highlighted subcortical structures include the left putamen 
and bilateral pallidum. ROIs, regions of interest. 

 
White Matter Microstructural Integrity in HD Cohort Compared to Controls 
Global white matter FA was significantly lower in HD patients compared to controls (0.2864 vs. 
0.3441, p < 0.01), shown in Figure 3, with significantly higher mean AD (0.001 vs. 0.00097, p < 0.01), RD 
(6.47 × 10−4 vs. 5.60 × 10−4, p < 0.01), and MD (7.65 × 10−4 vs. 6.97 × 10−4, p < 0.01) values. The lower FA 
in HD patients compared to controls was present in 17 out of the 27 tracts measured (see FA bar plot 
in online suppl. Fig. 1; see www.karger.com/doi/10.1159/000510614 for all online suppl. material,). 
The absolute differences in FA for all significantly different white matter tracts are shown in Figure 3. In 
addition, most of the decreased tracts had increased RD (see RD bar plot in online suppl. Fig. 1). 

Fig. 3. Map of significant FA differences in tracts identified using tractography and whole white matter 
difference in FA between the groups. On the left are the FA differences in tracts using tractography, and tROIs 
were summed and mapped as the FA difference between the 2 groups. Highlighted tracts all have statistically 
significant differences compared to controls with p < 0.01. The degree of differences in FA is shown with the 
color graph, with yellow indicating a higher difference. On the right is the difference in whole white matter FA 
between the groups, with p < 0.01. HD, hemodialysis; FA, fractional anisotropy; tROIs, tract regions of interest. 

https://www.karger.com/WebMaterial/ShowPic/1238640
https://www.karger.com/WebMaterial/ShowPic/1238639


 
Cognitive Performance in HD Cohort 
NIH Toolbox Cognitive Function scores for the HD cohort are displayed in Table 2, with p values for 
comparisons with age-corrected standard population scores (mean = 100 and SD = 15 for all scores). 
The mean (SD) total cognition composite score in the HD cohort was 92.4 (15.2), significantly less (p = 
0.02) than the age-corrected population scores. This difference was primarily due to differences in fluid 
measures. The Fluid Cognition Composite (86.9 [14.3]) and its components of pattern comparison 
processing speed (83.1 [16.1]) and flanker inhibitory executive function and attention test (84.3 [10.1]) 
were all significantly less than population scores. The Crystallized Cognition Composite Score (99.1 
[14.5]) and all components of it were similar to population scores. 

Table 2. HD cohort scores on NIH Toolbox tasks with cognitive domain for each test 

Cognitive tests Cognitive domain Score, mean (SD) p value 

Picture vocabulary Language 97.7 (12.6) 0.20 
Oral reading Language 99.9 (15.0) 0.49 
Crystallized cognition compositea N/A 99.1 (14.5) 0.39 
Flanker inhibitory control and attention Executive function and attention 84.3 (10.1) <0.01 
List sorting Working memory 96.3 (12.4) 0.09 
Dimensional change card sort Executive function 96.7 (15.0) 0.15 
Pattern comparison processing speed Processing speed 83.1 (16.1) <0.01 
Picture sequence memory Episodic memory 95.4 (15.0) 0.08 
Fluid cognition compositea N/A 86.9 (14.3) <0.01 
Total cognition composite N/A 92.4 (15.2) 0.02 

 

Cognitive Function and Cerebral Imaging Parameters in HD Cohort 
There were no associations between total gray white or total white matter and cognitive scores in the 
HD cohort. In evaluating the tROI FA values and cognitive function, there was a small, but statistically 
significant, positive relationship between microstructural integrity of the left superior longitudinal 
fasciculus and scores on the test of executive function and attention (r2 = 0.24, p = 0.02) and left 
inferior longitudinal fasciculus (r2 = 0.25 and p = 0.03) and right inferior longitudinal (r2 = 0.21 and p = 
0.03) with tests of memory, as shown in Figure 4. 

Fig. 4. Graph of white matter tract FA values with scores on cognitive tasks. The top panel shows the 
relationship between the left SLF FA values and the age-corrected score of the flanker inhibitory test, which 
measures both executive function and attention. The middle and bottom panels show the relation between the 
right and left ILF FA values and tests of working (list sorting) and episodic memory (picture sequence), 
respectively. The FA values are adjusted for age, and a higher FA indicates better white matter integrity. The 
cortical images on the right outline the respective tracts. FA, fractional anisotropy; SLF, superior longitudinal 
fasciculus; ILF, inferior longitudinal fasciculus. 

https://www.karger.com/WebMaterial/ShowPic/1238638


 

Discussion 
We found evidence of cerebral degeneration with lower gray matter volume, higher cerebrospinal fluid 
volumes, and decreased microstructural integrity of most major white matter tracts (noted by lower FA 
values and higher MD values) in HD patients relative to healthy age-matched controls. The greatest 
decreases in white matter integrity were observed in areas of the brain used in executive function and 
processing speed, cognitive domains in which our HD cohort performed worse than age-adjusted 
standard population scores. Finally, we found that lower white matter integrity in specific white matter 
tracts was associated with decreased cognitive performance in our HD patients. Previous studies have 
found cerebral structural changes; however, we identified that these changes are present early after 
dialysis initiation and found new subcortical changes that have not been previously noted. The cerebral 
structural changes we note and the association with cognitive performance support our framework of 
an HD-associated cerebral injury that has an impact on cognitive function. 

While prior studies of persons with ESRD have documented lower brain matter volumes and global 
decreases in white matter integrity relative to controls [7, 10, 34], our study adds information on 
specific DTI parameters and examines these changes in white matter integrity within specific tracts. In 
our analysis, 17 of 27 measured tracts had decreased FA in HD patients relative to controls. Many of 
the tracts affected, including the forceps minor, cingulum, and uncinate fasciculus, project to the 
frontal cortex and therefore have important roles in cognition and executive function. We also found 

https://www.karger.com/WebMaterial/ShowPic/1238637


that in most tracts, the decreased tract FA was due to an increase in the RD measurements, which may 
indicate more demyelination of white matter [26, 28]. These results indicate that there is disruption in 
the majority of white matter tracts in the HD cohort, with decreased overall white matter integrity, 
characterized by decreased FA. 

An important strength of our approach was to preidentify the major white matter tracts of the brain. 
Previous studies have used voxel-wise tract-based spatial statistics [10, 34] to characterize changes in 
white matter integrity. Those methods restrict the area of white matter that is used for quantification 
to the highest FA regions (rather than the whole tract), which reduces complications of identifying tract 
boundaries, but is susceptible to systemic misalignment issues [35, 36]. Tract-based spatial statistics 
also requires post hoc assignment of white matter regions to specific tracts. Another method used 
manual segmentation of white matter into regions based on the cortical location (frontal, parietal, etc.) 
[7], which depends on subjective criteria for tract identification. With our unique processing method, 
we incorporated individual variation in white matter tract architecture by identifying white matter 
tract regions using tractography, avoiding potential misalignment issues that can occur in other 
approaches. The accuracy of this method is demonstrated by the fact that we found differences in 
white matter integrity despite no difference in white matter volume. 

In addition to white matter changes, we found evidence of gray matter atrophy, with lower gray 
matter volume and higher cerebrospinal fluid volumes in the HD cohort. We found primarily 
subcortical (putamen and pallidum) and cerebellar gray matter volume differences. This differs from 
prior studies that found mostly cortical volume changes [9, 37] and provides new information on brain 
structural changes and CI in HD patients. The lack of significant cortical volume decreases in our study 
compared to prior studies may also be due to differences in our study demographics. The populations 
included in prior studies were 30 years younger on average and had minimal or no CI compared to our 
cohort [9, 37]. Our cohort is more reflective of the current HD population in both age and CI [38]. 
Cohort age is important since cortical gray matter volume decreases with age [39, 40]. The known age-
related decreases in cortical gray matter volume might have reduced the differences in cortical gray 
matter between the HD participants and controls in our older cohort. Alternatively, our cohort had a 
lower dialysis vintage compared to prior study cohorts and we may be detecting initial changes that 
occur before the cortical gray matter changes. The differences in subcortical gray matter that we 
observed raise the possibility that changes in subcortical gray matter volume might play a role in CI in 
older HD patients. The decrease in putamen gray matter volume in the HD cohort may be important as 
lesions in the putamen have been associated with impairments in memory and processing speed in 
other neurological disease states and aging [41, 42]. 

To examine the potential effects of the cerebral structural changes, we evaluated the relationship 
between cognitive performance and brain imaging parameters. The pattern of NIH Toolbox scores we 
noted in our cohort – greatest performance differences in processing speed, executive function, and 
attention domains and less but still notable differences in memory – is consistent with prior literature 
[43-46]. The relationships between the superior longitudinal fasciculus FA and performance on 
executive function and attention tasks and between the inferior longitudinal fasciculus FA and memory 
tasks are also consistent with other studies [47, 48]. A study evaluating white matter integrity in 26 HD 
patients found a similar correlation of lower white matter integrity in superior longitudinal fasciculi 



with lower performance on executive function and processing speed [34]. Although we did not correct 
for multiple comparison in our small sample, the trends in our results support the general theory that 
decreased white matter integrity is associated with worse cognitive performance. Many of the white 
matter tracts in the HD patients had decreased FA values compared to controls, including the inferior 
fronto-occipital fasciculus, forceps major, and uncinate fasciculus; all of which project to the frontal 
cortex, a structure important in executive function, an area of deficit in HD patients [49]. 

Our study has limitations. Our small sample size may have reduced our ability to identify statistically 
significant associations between the integrity of specific white matter tracts and cognitive 
performance. Our controls were healthy volunteers and thus were not matched in rates of 
comorbidities such as diabetes and hypertension. We cannot determine if the changes in brain matter 
are due to comorbidities, renal disease, or HD. However, this does not limit our ability to describe the 
brain changes in HD patients versus healthy controls and to evaluate the relationship between 
cognitive score and cerebral imaging parameters in HD patients. We relied on comparison to age-
adjusted population norms to identify the cognitive deficits in the HD cohort. However, using general 
population norms allowed us to compare our HD cohort to a larger sample rather than just our 15 
controls. In terms of imaging processing, the tensor model we used is limited in regions with crossing 
tracts [50]. We believe the methodology performed better than generic group-defined tract masks by 
accurately identifying specific tracts in individual participants. We noted misalignment, with tracts 
going through gray matter or CSF when using generic masks, which were not present when using our 
tractography method. Finally, our cross-sectional study design only allowed us to look for associations 
between variables at 1 point in time. An ongoing longitudinal study will provide further information on 
how HD may affect the brain over time. 

In summary, we found that HD patients had lower white matter integrity and more gray matter 
atrophy than controls. The changes in white matter integrity in certain tracts were associated with 
decreased cognitive performance noted in the HD group. Future studies need to replicate our methods 
in a larger cohort to confirm findings. In addition, longitudinal studies evaluating changes in the 
integrity of white matter tracts over time in HD participants are needed to determine if HD-specific 
factors contribute to white matter changes. Increased focus in this area of research is needed in order 
to better understand and prevent the CI and neurodegeneration in HD patients. 
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