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ABSTRACT
DETECTING INVASIVE INSECTS USING UNCREWED AERIAL

VEHICLES AND VARIATIONAL AUTOENCODERS

Scott Daniel Stewart

Marquette University, 2021

In this thesis, we use machine learning techniques to address limitations in
our ability to monitor pest insect migrations. Invasive insect populations, such as
the brown marmorated stink bug (BMSB), cause significant economic and environ-
mental damages. In order to mitigate these damages, tracking BMSB migration is
vital, but it also poses a challenge. The current state-of-the-art solution to track
insect migrations is called mark-release-recapture. In mark-release-recapture, a re-
searcher marks insects with a fluorescent powder, releases them back into the wild,
and searches for the insects using ultra-violet flashlights at suspected migration des-
tination locations. However, this involves a significant amount of labor and has a
low recapture rate. By automating the insect search step, the recapture rate can be
improved, reducing the amount of labor required in the process and improving the
quality of the data. We propose a solution to the BMSB migration tracking problem
using an unmanned aerial vehicle (UAV) to collect video data of the area of interest.
Our system uses an ultra violet (UV) lighting array and digital cameras mounted on
the bottom of the UAV, as well as artificial intelligence algorithms such as convolu-
tional neural networks (CNN), and multiple hypotheses tracking (MHT) techniques.
Specifically, we propose a novel computer vision method for insect detection using
a Convolutional Variational Auto Encoder (CVAE). Our experimental results show
that our system can detect BMSB with high precision and recall, outperforming the
current state-of-the-art. Additionally, we associate insect observations using MHT,
improving detection results and accurately counting real-world insects.
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CHAPTER 1

INTRODUCTION

Invasive insects such as the Brown Marmorated Stinkbug (BMSB) cause over

$120 billion in damages every year in the United States [1]. Invasive species disturb

and threaten ecosystems. These damages are expected to continue to increase as more

invasive species are introduced to new environments, such as in 2020, when “Murder

Hornets” were found in the United States for the first time, making national headlines

[2]. Any solution to the invasive insect problem must first be able to determine how

they migrate, otherwise removing them from one area may become a temporary

solution. The typical method for tracking the migration of invasive species is Mark-

Release-Recapture [3]. An example of this method is when ecologists capture a bear,

put a collar on the bear, release it into the wild, and recapture the bear at a later

date [4]. We can monitor where the bear travels based on the unique identifier on

the collar itself. Unfortunately, while it is possible to affix localization devices to

BMSBs, it is a labor-intensive, time-consuming, and consequently expensive process

[5]. Currently, one of the most widely used methods to capture mark and recapture

invasive insects relies on coating the insects with fluorescent powder and going to

fields at night to try and locate the insects using an ultraviolet light source, but this

procedure is inconsistent and time-consuming [3].

Uncrewed aerial vehicles (UAVs), also known as drones, have the ability to

efficiently solve this problem. Instead of manually searching for the insects in the

field, using a drone to automate the process could reduce the human effort required

to detect the insects while potentially increasing insect retrieval rates. Furthermore,

we can use computer vision technology to automate the detection of the insects on the

videos collected by the drones. Existing methods can successfully detect insects from
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videos acquired by drones [1]. However, these methods do not take full advantage

of recent developments in machine learning techniques applied to computer vision

and hence leave room for improvement. Besides, existing systems do not have the

capability of associating multiple insect detections acquired at different times or to

map them to a global coordinate system.

In this thesis, we present a novel approach for detecting invasive insects us-

ing UAVs and computer vision techniques. Specifically, we use a computer vision

algorithm called a convolutional variational auto encoder (CVAE) [6] that learns to

represent the expected appearance of an image. Then, by taking the difference be-

tween the real image and the expected image only “anomalies” are left. In our case,

these anomalies are the image pixels corresponding to insects. We then associate

multiple detections among consecutive frames using multi-object tracking algorithms

and project these association to a global coordinate frame based on the trajectory

information reported by the drone during data collection flights.

1.1 Contributions

This work presents a significantly more accurate method for detecting the mi-

gration of invasive insects using computer vision than existing methods. Specifically,

it provides the following contributions:

1. We propose and evaluate a novel use of anomaly detection methods for deter-

mining the location of insects in aerial videos.

2. We propose and evaluate a novel use of multiple object tracking methods to

keep track of insects across multiple frames in a dataset.

3. We introduce an additional annotated dataset of illuminated insects in a night-

time setting.
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1.2 Organization

This work is organized into the following chapters. Chapter 1 provides a brief

introduction to the problem and the proposed approach to address it. Chapter 2 in-

troduces related works and other research relevant to this project. Chapter 3 discusses

the background knowledge related to this thesis. Chapter 4 describes the methods

used to collect and annotate the insect data. Chapter 5 contains the descriptions

of the overall system design and its components as well as the experimental results.

Finally, Chapter 6 provides a conclusion and final thoughts related to the thesis.
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CHAPTER 2

RELATED WORK

This chapter discusses recent research contributions closely related to this the-

sis. The interdisciplinary nature of this thesis requires some background on topics

such as artificial intelligence in agriculture (2.1), anomaly detection in computer vi-

sion(2.3), multiple object tracking methods (2.4), among others. This section aims to

to provide readers with the needed context. The current state of the art in automated

insect detection using drone videos is based on simple color thresholding strategies,

which are effective in limited scenarios. When there are leaves or other elements in

the background, such methods may fail to accurately find the insects. To compound

on this issue, these methods do not keep track of which insect detection in a given

video frame should be associated with detections in other frames, so they can only

determine in which frames an insect is found, but not how many insects are found in

the entire video sequence.

2.1 Computer Vision in Agriculture

Computer vision has proven a useful and increasingly popular tool in agri-

cultural applications [7]. These applications include detecting weeds [8], grading the

quality of fruits and vegetables [9], analyzing the flowers on fruit bearing trees to de-

termine bloom intensity [10], measuring the growth of pecan nuts [11], vision-based

orchard monitoring and management [12, 13], among several others. There have been

a few different previous methods for detecting invasive insects with uncrewed aerial

vehicles and computer vision [1, 14]. For example, in [14], the authors used drones to

monitor changes in reflectance of crops and use that information to detect outbreaks

of invasive insects and other pests. Other previous methods [1] detect insects coated

with reflective powders from images collected by drones using specialized illumina-
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tion systems and performing operations directly on the features of the images, such

as thresholding the color channels (Section 5.6.1) or clustering image pixels based

on their colors using the k-means algorithm (Section 5.6.2).

2.2 Insect Detection

Modern techniques to track invasive insects involve marking the insects with a

bright fluorescent powder and searching for them over a region of interest using high-

intensity ultraviolet lights. This method has a number of drawbacks as it requires

substantial investments of time and effort while still being inefficient. Rice et al.

found it took volunteers 14 minutes, on average, to find 80% of the BMSBs placed

within a large tree. [15]. Recent efforts to track invasive insects have made great

strides toward improving the efficiency and the accuracy of mark-release-recapture

studies. Rice et al. have improved the process to apply fluorescent powders to the

insects [15]. Rojas-Araya et al. [16] have shown that the fluorescent powder has a

slight effect on insect behavior, but does not affect their survival rates. On the other

hand, Kirkpatrick et al. [3] have noted little influence of fluorescent coatings on the

mobility or survival rates of the BMSB. Other studies aim to remove the need for

fluorescent powder coatings altogether. Kirkpatrick et al. [17] have attached passive

communication devices to the insects, making it possible to recapture the insects at

unprecedented rates. However, it is difficult to attach these devices to the insects,

making this approach time-consuming and expensive. Computer vision techniques

might provide a non-contact alternative to these strategies.

Computer vision has been applied to the insect detection problem before.

Ebrahimi et al. use Support Vector Machines (SVM) to classify if strawberry plants

in greenhouses are affected by Thrips (a small insect that is harmful to crops) [18].

Alves et al. use Deep Residual Networks, a type of Neural Network, to classify

what type of pest, if any, is affecting cotton crops [19]. Kaya et al. implement an
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effective classifier for determining species of butterfly [20]. Huddar et al. created an

effective algorithm for the segmentation of whiteflies (another type of harmful insect)

on leaves [21]. These algorithms, while effective at the task they are designed for,

need the camera to be significantly closer to the insect than is possible with a UAV.

2.3 Anomaly Detection

Detecting invasive insects using computer vision techniques can be cast as an

instance of the unsupervised anomalous pixel detection problem. Anomalous pixel

detection is the problem of trying to identify which, if any, pixels in an image are

different from the corresponding pixels in a typical image for a given application. For

example, anomalous pixel detection can be used to examine x-ray images of circuit

boards to quickly determine if any solder joints do not complete a circuit [22]. State-

of-the-art methods for unsupervised anomaly detection in images typically employ

one of three strategies: i) search for salient features directly in the original image

[23], ii) learn to represent the image in a deep latent feature space and look for

anomalous latent features [24, 25], iii) or learn to recreate the image and evaluate

the corresponding reconstruction error [26]. In this thesis, we choose to use the

third method as it can be solved using unsupervised machine learning strategies.

Unsupervised methods are preferable for the anomalous insect detection problem

since there is a lack of comprehensive labeled data and creating such datasets would

be difficult for a number of reasons. First, annotating videos containing insects is

difficult and time consuming, and must be done multiple times to ensure no human

error affects the results. In addition, it is necessary to obtain permission from the

Federal Aviation Administration (FAA) to fly drones to collect data, which further

hinders the data gathering procedure.

Recent efforts have greatly improved anomaly detection for one-class and

multi-class classification problems [27, 28, 29, 30]. Many of these algorithms focus on
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detecting anomalous images within a set of images instead of looking for anomalous

pixels within an image. Existing methods for anomalous pixel detection typically an-

alyze deep latent features of the images generated by a Convolutional Neural Network

(CNN) to locate anomalous areas [31] or use generative models, such as Generative

Adversarial Networks (GANS) [32] or Variational AutoEncoders (VAEs) [33, 34], to

compute the reconstruction error of the recreated image. Bergmann et al. [31] inves-

tigates the performance of using a student-teacher approach to solving the anomalous

pixel problem with promising results. However, their approach is semi-supervised and

greatly benefits from transfer learning strategies [35]. This makes this approach less-

than-ideal for insect detection. Similarly, Napoletano et al. [36] take advantage of a

pretrained Resnet-18 model [37] and principal component analysis (PCA) with good

results, but that method also requires training data, which precludes its application

to the insect detection problem. Because of these limitations, we chose to approach

the problem using methods based on generative models.

Methods based on generative networks such as such as GANS [32] or VAEs

[6, 33, 34] attempt to recreate the original image based on latent features generated

by a deep neural network and compute the reconstruction error of the image to

determine where the expected image differs from the true image. Perera et al. [32]

propose a novel approach that adds an extra discriminator to the latent dimension of

a GAN to reduce reconstruction error. The discriminator forces the latent dimension

to follow a uniform distribution. While this works well to sort anomalous images by

class, it has not been applied to the anomalous pixel problem. Fan et al. [38] achieve

remarkably good performance on anomalous pixel detection by combining the results

from a Convolutional Variational Auto-Encoder (CVAE) and an optical flow model.

Their method is able to isolate abnormal events in video footage such as a vehicle

driving on a pedestrian path. Unfortunately, for the insect detection problem, as

long as the insects remain stationary, their displacement among consecutive video
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frames would be indistinguishable from that of background clutter objects, since the

drone moves at a constant velocity with respect to the background. This, however

does not mean that CVAEs are not suitable for this problem, as they can still detect

anomalies without resorting to optical flow information. Hence, we choose to build

upon previous works on anomaly detection using CVAEs to solve the insect detection

problem.

2.4 Multiple Object Tracking

Multiple Object Tracking (MOT) corresponds to a class of algorithms that

can track multiple objects across multiple frames of a video. This has a number of

practical applications such as tracking cars which can improve autonomous vehicles,

and tracking pedestrians [39, 40]. MOT methods are often composed of a number

of models, such as an appearance model, a motion model, and an interaction model,

working in conjunction [41].

2.4.1 Multiple Hypotheses Tracking

Multiple Hypotheses Tracking (MHT) is a method for tracking multiple ob-

jects by making a number of hypotheses based on previous observations of the detec-

tion [42]. By taking the appearance, location, and velocity of detected objects into

consideration, MHT can associate detections, so each detection has a single tempo-

ral identifier across the video sequence. In our case this means each ‘real’ insect is

assigned a unique identifier in all the frames in which it appears.

2.4.2 The MOT Metrics

Bernardin et al. created a set of metrics to evaluate and compare Multiple

Object Tracking techniques: the MOT Metrics [43, 44]. The Mostly Tracked metric

corresponds to the number of objects tracked for at least 80% of the lifespan of the

ground truth objects. Similarly, Mostly Lost is the number of objects tracked less than
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20% of the lifespan of the ground truth objects. Partially Tracked is the number of

objects tracked between 80% and 20% of their lifespan. MOTA is the multiple object

tracking accuracy, and is defined as

MOTA = 1−
∑

t(mt + fpt +mmet)∑
t gt

, (2.1)

where mt is the number of misses, fpt is the number of false positives, mmet is the

number of mismatches at time t, and gt is the total number of ground truth ids. ID

Switches is the count of Track Switches. For example, an ID Switch happens when

the ground truth insect is labeled in the prediction as ‘A’ for 10 frames and switches

to ‘B’ after that. Number of Fragmentations is the count of tracks that start tracked

and become untracked or vice-versa. ID Precision is defined as

IDPrecision =
IDTruePositives

IDTruePositives × IDFalsePositives

, (2.2)

where IDTruePositives and IDFalsePositives are the number of true positives and false

positives found by using a global assignment algorithm respectively.ID Recall can be

defined as

IDRecall =
IDTruePositives

IDTruePositives × IDFalseNegatives

, (2.3)

where IDTruePositives and IDFalseNegatives are the number of true positives and false

negatives found by using a global assignment algorithm respectively [44]. ID F1 can

be defined as

IDF1 = 2× IDRecall × IDPrecision

IDRecall + IDPrecision

. (2.4)
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CHAPTER 3

BACKGROUND

In this chapter we cover a number of well established methods and techniques

used throughout this thesis. We discuss three main topics: Uncrewed Aerial Vehicles,

Multiple Object Tracking, and Image Segmentation.

3.1 UAVs in Agriculture

Uncrewed Aerial Vehicles are becoming an increasingly popular tool for col-

lecting data remotely and monitoring large areas [45]. This is because they allow a

single operator to perform tasks that normally would require multiple people, and in

some cases can be operated automatically [46]. By recording video from a UAV, we

can inspect a large area for invasive insects without the need for manually walking

around the area. A significant advantage to using UAVs for pest insect detection is

that they are already in use for a variety of agricultural applications. Therefore, the

cost of implementing new UAV solutions is significantly reduced. Popular uses for

UAVs in agriculture include mapping crops [47], spraying pesticides [48], monitoring

crops for weed growth [49], irrigation [50], and diagnosing the symptoms of pests [45].

Because there already exists a number of uses for UAVs in agriculture, the cost asso-

ciated with the proposed solution could be dramatically amortized as the investment

on the UAV might cover several tasks.

3.1.1 Uncrewed Aerial Vehicle Operation and Regulatory Issues

Because drones introduce both safety and privacy concerns, we underwent

the process of acquiring a part 107 drone pilot’s license [51]. This process includes

taking a course, understanding airspace regulations, understanding Aviation Routine

Weather Reports (called METARs), and passing an examination to prove sufficient
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knowledge. This license is provided by the FAA and is designed for commercial drone

operators. Due to the nature of this project’s data collection needs, which require

night time drone operation, we also needed to acquire an FAA night-time operation

waiver (§107.29 - Operation at night) [52]. To obtain night flight permission one must

apply to the FAA and provide a plan including detailed descriptions of the steps the

pilot will take to reduce the chances of a collision. In our case this involved attaching

a strobe to the top of the UAV and having multiple observers on the ground to

ensure safe flight. After applying for and receiving the waiver we were able to collect

a number of night-time data sets.

3.2 Image Segmentation

Image segmentation consists of assigning the pixels in an image into a class

[53]. This is useful for the insect detection problem as each pixel in the dataset is

either an insect or a background object.

3.2.1 Pixel Intensity Thresholding

By applying a threshold to the intensity levels of the individual pixels of a

gray-scale image, it is possible to segment its contents into foreground and background

elements. This can be represented as a simple equation:

pcls = pval ≥ τ, (3.1)

where pval is the value of the pixel intensity, and τ are is the thresholding value, and

pcls is the corresponding pixel class, i.e., pixels with pcls = 1 (i.e., those for which

pval ≥ τ) correspond to the foreground whereas pixels with pcls = 0 are part of the

background. That is, any pixel intensity greater than or equal to τ is classified as a

foreground pixel, and any value less than that is a background pixel. For color images,

multi-thresholding techniques can be applied to the individual image channels. The

main challenge with thresholding is finding an appropriate value for τ , and techniques
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such as Otsu’s method (described in Section 3.2.2) attempt to address that problem.

However, Otsu’s always finds a single, fixed threshold, which assumes that all the

background pixels have lower intensity than foreground pixels (or vice-versa). This

is not always the case for the invasive insect detection problem as there are often

frames of the dataset without any insects whatsoever. However, that problem can

be solved by dynamically adjusting the threshold on individual video frames and

verifying whether the segmentation results are consistent with the presence of insects

[1].

3.2.2 Otsu’s Method

Otsu’s method [54] is one of the simplest ways to define a threshold to seg-

ment a gray-scale image, and can serve as a baseline when creating and testing new

segmentation methods. Otsu’s method classifies each pixel of the image as belong-

ing either to the “foreground” or the “background”. Thus, it can only be applied to

binary segmentation problems. This strategy is applicable to the insect classification

problem as we only need two classes: “insects” and “background”.

Otsu’s method tries to find an optimal threshold for determining the “fore-

ground” pixels based on the distribution of pixel intensities within an image. This is

done by maximizing the inter-class variances:

σ2
bkg =

∑T
i=1(i− µbkg)

2pi
ω0

, (3.2)

and

σ2
frg =

∑imax

i=T+1(i− µfrg)
2pi

ω1

, (3.3)

where

ω0 =
T∑
i=1

(pi), (3.4)

and

ω1 =
imax∑

i=T+1

pi. (3.5)
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In these equations σ2
bkg and σ2

fgd are the inter-class variances for the background

and the foreground, respectively, T represents a tentative threshold value, imax is

the highest pixel intensity present in the image, µfgd and µbkg, are the average pixel

intensities of the foreground and background at the current threshold level. ω0 and

ω1 are both functions of T. pi defines what percentage of pixels have a an intensity

of i for each value of i = T + 1, . . . , imax. Because both functions are entirely based

on the value of the threshold, we can rewrite the equation as

σcombined(T )2 =
[µimageω0 − µT ]2

ω0ω1

, (3.6)

where

µT =
imax−1∑
i=0

i · p(i), (3.7)

and µimage is the mean pixel value of the image. The variance is computed for every

value of 1 ≤ T ≤ imax and the value that maximizes σcombined is selected as the

threshold. This threshold is then applied to every pixel in the image to classify pixels

greater than or equal to the threshold as “foreground” and the others as “background.”

This approach works relatively well for the application under consideration as

the insects are generally brighter than the background so they should be classified as

foreground pixels. However, there are shortcoming to Otsu’s method. For example,

leaves often look similar to the insects in the nigh-time videos. Another downside is

that Otsu’s method always finds a threshold between the minimum and maximum

value in the dataset, so if there is no insect in the data it will incorrectly pick a

threshold value as the insect cutoff. This problem is illustrated in Figure 3.1.

3.2.3 K-Means Clustering for Segmentation

K-means is an algorithm to cluster data points together. It accomplishes

this goal by randomly determining k different seed points, and associating each data

point with one of the k seeds. Then, the means of all points associated with the



14

Figure 3.1: A sample image where Otsu’s method fails (top row), and a sample image
where it succeeds (bottom row). In both cases there is an insect and Otsu’s method
is used to find a threshold on the red channel of the image.

corresponding seed are computed. The means then become the new seeds for the

next iteration. This is repeated iteratively until a stopping criterion is met. The

stopping criterion is often a number of iterations, or a threshold on the total change

in the values of the cluster means.

K-means can be used as a segmentation method, with a number of advantages.

For example, it is possible to define different types of distance metric, so position

in an image as well as similarities between pixel colors can be taken into account.

Furthermore, the number of classes k segmented by k-mean clustering is flexible. K-

means clusters data points into k clusters centered on a mean based on iteratively
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minimizing the average distance metric to the k points. This allows it to find patterns

in unlabeled data, or to find outliers. Both of these applications of k-means are used

and discussed. The number of clusters k can either be determined beforehand or be

iteratively tested to minimize the silhouette score. Then, a distance metric must be

determined. This is often the Euclidean distance among the elements in a dataset.

The k-means algorithm can be described as follows: 1) Assign k random center points

(centroids), 2) Calculate the distance from each point in the dataset and assign it to

the nearest centroid, 3) Move the centroid to the mean location of all of the points

assigned to it, 4) Repeat everything after the initial random points until there is no

longer any change in the location of the centroids, or a defined maximum has been

found.

In order to apply this to a segmentation problem, instead of using random

initial locations, a starting location is selected using prior knowledge. However, for

many segmentation problems an adequate prior is not known. Fortunately, prior

information is known for the anomalous insect detection problem: pixels whose hue

is close to orange are more likely to correspond to insects. Besides, it is known that

there are a large number of background pixels compared to insect pixels. Stumph et

al. [1] leverages that information by executing the k-means algorithm multiple times

on each image, so that the detected foreground cluster of the image is iteratively

refined. The cluster with the higher hue value is kept and k-means is re-run until

convergence. This process can be seen in Algorithm 1, which also pre-filters the

image pixels using a set of experimentally determined color thresholds to increase the

robustness of the algorithm to background clutter.

3.2.3.1 Silhouette Scores

When evaluating different implementations of K-means it is important to have

a criterion to assess how well a set of parameters performs. Silhouette scores provide
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Algorithm 1: Insect detection with K-means.

Input : Cropped ROI video frame, I(N)
n

Output: Binary image, I(b)n , where foreground pixels are insects
1 for Each pixel, p(r)i do
2 if ph > τh and pv > τv then
3 p

(r)
i = p

(r)
i ;

4 else
5 p

(r)
i = 0;

6 L = 0 ;
7 while L < γ and µ(f)

h < µ
(r)
h + σh and µ(f)

v < µ
(r)
v + σv do

8 (cf , cb) = k −means(I(r)n 6= 0) ;
9 L = L+ 1;

one such criterion. For example, by iterating through various values of k to determine

how many clusters exist in a dataset, the Silhouette score can give provide a measure

of the performance improvement obtained by increasing the number of clusters. While

performance always increases with the value of k, if it does not increase by a significant

amount, the additional cluster may have over-partitioned the data rather than found

a new real cluster. K-Means performs at its best when all elements in any cluster are

normally distributed around the mean. The Silhouette score can be used to determine

if this is whether that assumption is being satisfied. The Silhouette Score is defined

as:

S(i) =
α− β

min[α, β]
, (3.8)

α =

(
min
k 6=1

1

Ck

∑
j∈Ck

d(i, j)

)
, (3.9)

β =

(
min
k 6=1

1

|Ck| − 1

∑
j∈Ck,i 6=j

d(i, j)

)
, (3.10)

for each centroid. Lower values of S indicate better clustering performance.
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3.2.4 AutoEncoders

In contrast with traditional neural networks for classification and regression,

AutoEncoders are generative and unsupervised learners. As a result, AutoEncoders

have been used for a large variety of tasks such as generating synthetic images [55].

This section explores the basic concepts related to AutoEncoders, Variational Au-

toEncoders, and Convolutional Variational AutoEncoders.

AutoEncoders have several benefits over many other generative models. Like

other generative models, AutoEncoders allow the production of synthetic data. Un-

like many other generative models, they allow you to do that by either randomly

generating new data, or modifying existing data. This allows researchers to have

control over where the data goes, and what happens to the data.

An AutoEncoder comprises two separate neural networks in one model. These

networks are often referred to as the Encoder and Decoder, but in this thesis, we will

referred to them as the Inference Network and the Generative Network. The Inference

Network takes the input and learns to represent it in a lower dimensionality space.

This space is often referred to as either the latent space or the z-dimension. This is

similar to how a classification neural network operates. In a classifier, the network

learns to represent the data in a latent space that is consistent with each class of

data.

The Generative Network is trained to take the latent dimension, z, and re-

construct the original image. This is usually done by mirroring the structure of

the Inference Network. For example, a 2D convolution becomes a 2D convolutional

transpose of the same size. The Inference Network is trained hand-in-hand with the

Generative Network, and optimized to encode for the Generative Network. They are

both trained via back-propagation. This means that AutoEncoders are specifically

optimized to recreate their own input. The networks are trained with a mean-squared
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error or cross-entropy loss between the original data and the reconstructed data. This

penalizes the network for incorrect reconstruction of the data.

Because the latent dimension contains less information that the original image

the Generative Network must lose some information. However, this is compensated

by the Generative Network as it learns what the typical appearance of an image,

so less information is needed to recreate the original image. Together, the Inference

Network and Generative Network can effectively encode an image into significantly

less information than what they originally contained.

3.2.4.1 Limitations of Traditional AutoEncoders

Traditional AutoEncoders have certain shortcomings. Because of the nature of

the interaction between the Inference Network and the Generative Network, the latent

space is often not used to its fullest potential. While they are still useful for a number

of tasks, they fall short at creating synthetic data and their reconstructions are often

of low quality. The problem lies with the latent space: it is often only partially used.

When building synthetic data it would be better to be able to randomly create data

from the latent space. We can do this by examining how data populates the latent

space and exploring the populated areas. When there are unpopulated areas in the

latent space the decoder is still be able to create an output, but it is not similar

to any trained inputs. This results in unrealistic or misleading outputs. Variational

AutoEncoders aim to solve this problem.

3.2.5 Variational AutoEncoders

Variational Autoencoders (VAEs) are able to generate latent spaces that are

more uniform than traditional Autoencoders [56]. Traditional Autoencoders tend

to use the same areas of the latent space to represent different information, losing

information. Variational Autoencoders try to use more of the latent space by adding

small amounts of noise to the latent space. In VAEs, instead of encoding the input
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onto a latent dimension, the Inference Network encodes it to a latent space comprised

of two sections. These sections represent the mean µ and variance σ of a normally

distributed latent vector z:

z = N (µ, σ). (3.11)

This means that for the same input, the latent dimension is allowed to vary to some

extent. Despite this variation of the latent vector, we expect the VAE to generate the

same output. As a consequence, each input inherently uses more of the latent space,

so the total dataset encompasses a much larger region of the latent space. As long

as the latent vector is centered around the ‘true’ encoding (i.e., the mean), the stan-

dard deviation determines a manifold around it where everything inside the manifold

corresponds to the same encoding. This means that the generative net explores a sig-

nificantly larger number of latent dimension values, even when trained multiple times

on the same data. This strategy creates smoother latent spaces with a small amount

of overlap. The Inference network must then learn to generate different means for

each class, essentially clustering them apart. That is, the inference network attempts

to maximize the distances among the means of the distribution while minimizing their

standard deviations so that encodings themselves do not vary too much for the same

sample. To accomplish that goal, we must optimize a loss function that penalizes

the network when it tries to center the encoding around a mean of 0 and a standard

deviation of 1. If the standard deviation becomes 0, the network would simply func-

tion as a traditional AutoEncoder, so penalizing this prevents it from happening. By

doing this we encourage the AutoEncoder to utilize more of the latent space. This is

accomplished by minimizing the the Kullback-Leibler (KL) divergence:

LKL =
n∑

i=1

(
σ2
i + µ2

i − log(σi)− 1
)
, (3.12)

where σi are the variances generated for the latent space, µi are the corresponding

means, and n is the dimensionality of the latent space. This loss is minimized when
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each µi = 0 and σi = 1. However, this alone would not cause the network to

reconstruct the original data. We must also incorporate the mean square error (MSE)

or the cross entropy loss (CEL) of the reconstruction error into the loss function in

combination with the KL loss to correctly reconstruct the image while maintaining a

well explored latent space. This can be defined as

Loss = LKL + Lr. (3.13)

Loss is the loss function used to train the network and Lr is the MSE or CEL loss of

the reconstruction error. If MSE is chosen, it can be defined as

Lr =

∑nx

i=1

∑ny

j=1(Fi,j −Ri,j)
2

nx × ny

. (3.14)

In this case, nx and ny are the number of pixels in the x and y dimensions of the

input image. Fi,j is the value of the input image at pixels i, j and Ri,j is the value of

the reconstructed image at pixels i,j. If CEL is chosen, the loss can be defined as

Lr =

∑nx

i=1

∑ny

j=1Fi,j × log(Ri,j)− (1−Fi,j)× log(1−Ri,j)

nx × ny

. (3.15)

3.3 Multiple Object Tracking

Multiple Object tracking is a common problem in computer vision [57]. It

typically consists of monitoring the location of several objects in a video sequence

by detecting them in multiple frames and temporally associating the detections, a

framework known as tracking-by-detection. For example, autonomous vehicles need

to both detect the cars around them and keep track of their trajectories. There are

a number of successful multiple object tracking solutions available [58, 59, 60], but

the vast majority of these approaches take advantage or rely entirely on appearance

models [58, 59]. Unfortunately most of these method cannot be used to associate

insects detected over a sequence of video frames, as the insects look virtually identical,

and are small with relatively no visual information. Therefore, our solutions must
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rely on movement and location information only. The following sections describe to

strategies explored in this thesis.

3.3.1 Constrained Clustering for Multiple Object Tracking

Algorithm 2: Insect association using constrained K-means.
Input : Set of Bounding Boxes and frame numbers of Insect Detections

Io
Output: A set of means representing the insect locations

1 for K = 1, . . . , Kmax do
2 Mp = ∅;
3 Mn = {mk}Ki=1, where mk ∈ R3 is a uniformly distributed vector;
4 C = {Ck}Kk=1, where Ck is the set of points closest to mk;
5 whileMp 6=Mn do
6 Mp =Mn;
7 Id = Io ;
8 for i ∈ Id do
9 Id = Id \ {i};

10 T = C;
11 while T 6= ∅ do
12 kmin = argmink∈Mn

{||i−mk||} ;
13 Ckmin

= Ckmin
∪ {i};

14 for j ∈ Ckmin
do

15 if jframe = iframe then
16 if ||i−mkmin

|| < ||j −mkmin
|| then

17 Id = Id ∪ {j};
18 Ckmin

= Ckmin
\ {j};

19 else
20 Id = Id ∪ {i};
21 Ckmin

= Ckmin
\ {i};

22 T = T \ Ckmin
;

23 Mn =Mn \ kmin;
24 for m, c ∈Mn, C do

25 m =
(
∑|c|

i=1 ci)

|c|
;
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One strategy for multiple object tracking is to associate detections over multi-

ple frames using constrained clustering techniques [61]. For example, the constrained

k-means algorithm [62] allows previous knowledge about the points to be clustered

to be incorporated in the form of “must-link” and “cannot-link” constraint graphs.

Points that are connected through an edge in the “must-link” graph are forced to be

placed in the same cluster, whereas points connected by an edge in the “cannot-link”

graph are not allowed to be clustered together. In our problem, we create cannot-link

constraints such that if two insect detections appear in the same frame they cannot

correspond to the same ‘real’ insect.

Algorithm 2 illustrates our implementation of this simplified constrained k-

means approach. For our specific problem, two practical considerations must be

addressed. First, the number of clusters K should be equal to the the number of

unique insects observed in a video sequence. To address that problem, the algorithm

iterates over the values of k = 1, . . . , 10 to optimize over the silhouette score and

determine the correct number of insects over the video frames. Second, when assigning

data points to the nearest cluster centroid, we must check whether there is already

an element from the same frame in that centroid. If there is, we assign the element to

the cluster whose centroid is closest to it, and assign the new element to the second

closest cluster. This is repeated until there are no more changes to the locations of

the centroids.
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CHAPTER 4

DATA COLLECTION SYSTEM

Gathering data is essential to tackling the anomalous insect detection problem.

By gathering accurate and varied data we can test the robustness of various methods

of detecting insects. This chapter presents the hardware and methods for gathering

the data.

4.1 Field Data Acquisition System

The Unmanned Aerial Vehicle used to capture videos of the insects is a DJI

Matrice 100 (M100) quadcopter shown in Figure 4.1. We customize the vehicle with

an array of ultraviolet LEDs mounted on the bottom, and with an extra battery bay

for extended flight duration. The drone also carries a Zenmuse X3 camera, which

records video with a 4096× 2160 pixel resolution at 29 frames per second. The M100

has an extended flight time compared to typical UAVs even with an additional pay-

load. This, however, comes with the downside of being heavier than other commercial

UAVs. This extended flight time is required due to the large size of the fields being

analyzed.

4.2 Hardware Testing

Ensuring that hardware works as expected is an important step to collecting

accurate data. In this section we talk about how we tested the various hardware

components such as the UAV (4.2.1), the Camera (4.2.2), and the Ultra Violet Light

(4.2.5).

4.2.1 UAV testing

The unmanned aerial vehicle must be able to carry out several tasks in order

to complete the assigned mission. First, it must be able to carry the weight of the
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Figure 4.1: The DJI Matrice 100 drone.

added lighting array. Second, it must be able to tell the real-world location of the

drone during any given frame of the video. Third, it must have a long enough flight

duration to take a large enough dataset for our purposes. Finally, it must be both

safe and easy to operate and use.

4.2.1.1 M100 flight log information

In order to obtain the drone’s real-world position and time data, the M100

flight logs must be accessed. The flight logs can be extracted via USB using the

manufacturer’s specialized data acquisition software, which runs on the Microsoft

Windows operating system. The flight logs are stored in a proprietary binary format

and must be converted into a readable format. We convert it to comma-separated

values format (CSV) using a publicly-available open-source conversion library1. Re-

cently, DJI has also made a publicly available tool to convert the flight logs into CSV
1https://datfile.net/DatCon/downloads.html



25

Table 4.1: Matrice 100 flight log values. Captured and recorded 30 times per second.

Field
Tick# Battery(0):minCurrent | maxCurrent | avgCurrent
offsetTime Battery(0):minVolts | maxVolts | avgVolts
IMU_ATTI(0):Longitude Battery(0):minWatts | maxAmps | avgAmps
IMU_ATTI(0):Latitude Motor:Speed:Rfront | LFront | LBack | RBack
IMU_ATTI(0):numSats Motor:EscTemp:Rfront | LFront | LBack | Rback
IMU_ATTI(0):barometer:Raw Motor:PPMrecv:Rfront | LFront | LBack | Rback
IMU_ATTI(0):barometer:Smooth Motor:V_out:Rfront | LFront | LBack | Rback
IMU_ATTI(0):accel:X | Y | Z | Composite Motor:Volts:Rfront | LFront | LBack | Rback
IMU_ATTI(0):gyro:X | Y | Z | Composite Motor:Current:Rfront | LFront | LBack | RBack
IMU_ATTI(0):mag:X | Y | Z | Mod Motor:Status:Rfront | LFront | LBack | RBack
IMU_ATTI(0):mag:Y Motor:thrustAngle
IMU_ATTI(0):mag:Z AirComp:AirSpeedBody:X | Y | Alti | VelNorm
IMU_ATTI(0):mag:Mod AirComp:AirSpeedGround:X | Y | VelLevel
IMU_ATTI(0):vel:N | E | D | Composite | H | GPS-H eventLog
IMU_ATTI(0):roll | pitch | yaw | yaw360 IMUEX(0):err
IMU_ATTI(0):totalGyro:X | Y | Z flyCState
IMU_ATTI(0):magYaw flycCommand
IMU_ATTI(0):distanceHP flightAction
IMU_ATTI(0):distanceTravelled nonGPSCause
IMU_ATTI(0):directionOfTravel[mag] compassError
IMU_ATTI(0):directionOfTravel[true] connectedToRC
IMU_ATTI(0):temperature Battery:lowVoltage
flightTime RC:ModeSwitch
navHealth gpsUsed
General:vpsHeight visionUsed
General:relativeHeight IMUEX(0):err
General:absoluteHeight MotorCtrl:Status
GPS(0):Long | Lat | Date | Time | HeightMSL MotorCtrl:PWM:Rfront | LFront | LBack | RBack
GPS:dateTimeStamp AirCraftCondition:fsmState | nearGround | landState
GPS(0):hDOP | pDOP | sAcc AirCraftCondition:launch_acc_dur | launch_delta_v
GPS(0):numGPS | numGLnaS | numSV AirCraftCondition:thrust | gyro | gyro_acc | land_dur
GPS(0):velN | velE | velD AirCraftCondition:thrust_proj_gnd
RC:Aileron | Elevator | Rudder | Throttle AirCraftCondition:thrust_proj_gnd_compen
Controller:gpsLevel | ctrl_level AirCraftCondition:thrust_compensator
Battery(0):cellVolts1 | 2 | 3 | 4 | 5 | 6 AirCraftCondition:hover_thrust | safe_tilt
Battery(0):current | totalVolts | temp | batter% | watts Attribute|Value
Battery(0):FullChargeCap | RemainingCap | voltSpread ConvertDatV3

files. Table 4.1 lists the information available in the flight logs. Unfortunately, none

of these options directly translates into the drone’s heading. Hence, we estimate the

drone’s heading based on its position, as discussed in greater detail in Section 5.4.

4.2.1.2 Maximum Flight Duration Tests

Because of the custom payload, the weight of the M100 nearly doubled. This

results in a dramatic change in the expected flight duration of the aircraft. In addition,

the camera draws power from the Matrice 100 batteries, so power depleted by the
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camera must be taken into consideration when collecting data. It is thus necessary to

test the maximum flight duration of the modified aircraft in motion while recording

a video. For that purpose, Stumph et al. fly the UAV in a square pattern measuring

20 meters per side over the field south of Marquette University’s Engineering Hall[1].

The M100 has a return-to-home function that causes the M100 to return to the

takeoff point when its battery is depleted. Therefore, the test is terminated when the

return-to-home function is triggered. The UAV was tested both with and without

the added weight of the UV light array. Without a payload the UAV weights 998g,

and with the payload it weighs 2, 187g.The flights lasted 27 minutes 34 seconds and

17 minutes 49 seconds, respectively. While this is a significant decrease, a 17-minute

flight duration is acceptable for the data collection as our largest dataset can be

collected in less than 13 minutes, as shown in Section 4.3. It is worth noting that

decreasing the weight of the payload would significantly increase the flight duration

of the drone. Furthermore, the flight duration of the drone may be affected by the

age of the battery being used.

4.2.1.3 Pitch Angle Testing

UAVs generate forward velocity by slightly pitching their noses downwards.

The faster the UAV moves the further the UAV needs to pitch forward. While the

camera is attached to a gimbal to minimize the effect of the pitch angle on the videos,

the lighting array is attached directly to the bottom of the M100, so the further the

drone pitches forward the more out-of-frame the UV light beam becomes. Because

we can define a constant velocity for the drone we can calculate a corresponding

constant pitch angle. To do this, we must determine the UAV’s pitch angle as a

function of its velocity. For this test, we varied the drone velocity between 1 m/s and

5 m/s in increments of 0.5 m/s, and monitored the M100 flight logs to identify the

corresponding pitch angles. Because of the initial change in pitch angle the drone
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makes in order to begin moving, the first few seconds of each experiment have a large

amount of noise and are ignored. Each test was conducted by Stumph et al, who

fly the drone for 45 meters in a straight line starting from a standstill[1]. The pitch

angle was obtained from the M100 flight logs. The maximum defined pitch angle

where the UV light still sufficiently falls in the center of frame of the drone videos is

approximately 16◦ [1], and all tests up to and including 5 m/s fall within this limit.

However, there are still other metrics to consider when determining the maximum

drone speed as discussed in Section 4.2.4.

4.2.1.4 Stability Testing

To verify that the added weight of the light array does not dramatically affect

the stability of the drone a stability test was undertaken. The test was conducted

both with and without the added payload of the illumination array as discussed in

Section 4.2.5 by Stumph et al[1]. The total weight of the drone is 2.187g and 998g

with and without the payload, respectively. The stability test measured whether the

drone could properly hover in place with and without the payload. Both experiments

were conducted with a wind speed of approximately 13 k/h. Using the information

from the M100 flight logs we calculated its stability metrics [1]. If the drone had

similar pitch, roll, and yaw angle variations with and without a payload in similar

conditions, we can conclude that the payload has minimal effect on stability. To

calculate if the stability in each test was similar we calculate the Mean Root Squared

Error(ERMS) of the yaw pitch and roll of each test, which is given by:

ERMS =

√∑n
i=1(ŷi − y)2

n
, (4.1)

where y is the initial value and ŷi is the value of each sample of the yaw, pitch and

roll. We found that the average ERMS of the default configuration is 0.59◦, and

the UV light configuration is 0.40◦. We found that the worst ERMS of the default

configuration is 0.34◦ and the UV light configuration is 1.90◦. While this increase is
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high it is not large enough to cause concern especially since in the data acquisition

the UAV only moves forward, so variations in roll or yaw are minimized. This means

the UAV is stable enough with and without the UV lighting array.

4.2.1.5 Operating the UAV

Because we must perform data collection at night when visibility is limited,

drone safety and ease of operation are especially important. Fortunately, DJI includes

a number of safety features in their drones. In addition to the return-to-home feature

described above, which also lands the drone where it took off if the signal between the

controller and the drone is lost. Furthermore, the Matrice 100 drone can be operated

via the DJI Ground Station Pro App for the iPad2.

4.2.2 Camera Testing

The Zenmuse X3 camera used in our experiments is both practical and meets

the needs of our project. The camera captures 4k videos, which provides sufficient

resolution to allow the insects to be visible in the video frames. The camera also

comprises a 3-axes gimbal to correct for any unexpected pitch, yaw, or roll variations

the drone may experience. In addition, the Zenmuse X3 camera is equipped with a

microSD card reader that can be changed quickly in the field, allowing multiple tests

to be performed back-to-back.

4.2.2.1 Camera ISO and Shutter Speed testing

Due to the nighttime data collection, it is important to optimize camera pa-

rameters for low-light levels. To do this, we focus on two relevant camera parameters:

ISO and shutter speed. The ISO affects how much light the camera’s sensor is able to

capture. However, higher ISO values lead to increased image capture noise. Usually,

this can be fixed with a longer exposure by adjusting the camera’s shutter speed.
2https://www.dji.com/ground-station-pro/info
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However, because the drone and camera are moving during data collection, if the

shutter speed is too long motion blur can occur. For our work, we need to find the

optimal point adjusting these two parameters that allow maximum image bright-

ness without adding significant noise or motion blur. To accomplish this goal, we

conducted a number of experiments to optimize these values.

Stumph et al. first test several configurations of ISO values. The Zenmuse X3

camera supports ISO values from 100 to 3200 on an exponential scale (100, 200, 400,

800, 1600, 3200). We visually inspected the videos collected at each ISO value at a

height of 10 meters, as determined in section 4.2.3. For this test, we determined that

the insects were only visible for ISO values of 800, 1600, and 3200. Then, a second

test was performed by flying the UAV at 1 m/s over two groups of three insects with a

shutter speed of 1/25 s using the three ISO values identified in the first test. This was

evaluated by measuring the performance of frame-by-frame insect segmentation using

Otsu’s method [1, 54], which is discussed in detail in Section 3.2.2. If the camera’s

parameters are incorrect the segmentation will contain noise or no visible insects. In

either case, Otsu’s method will fail to separate it from the background. Therefore, by

calculating the precision of the segmentation results we can find the optimal settings.

Based on this evaluation strategy, we determine that only the 1600 and 3200 ISO

options allowed for the insects to be properly segmented.

To determine which of these ISO options better meets the needs of the problem

under consideration, we tested the shutter speed and ISO combinations in tandem.

Specifically, for each ISO value, we evaluated at 1/40 s, and 1/60 s [1].At an ISO of

3200 we tested at 1/80 s. 1/25 s was already tested in the previous ISO test so it

was left out. These results can be seen in Table 4.2. The settings with the highest

precision were chosen for the camera settings, so an ISO of 1600 ISO and 1/25 s

shutter speed was chosen.
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Table 4.2: Precision results when applying Otsu’s method to various ISO and shutter
speeds.

ISO Value Shutter Speed (s) Precision
1600 1/25 0.30
1600 1/40 0.23
1600 1/60 0.00
3200 1/40 0.24
3200 1/60 0.28
3200 1/80 0.00

4.2.3 Maximum Altitude Testing

If the UAV can fly at a higher altitude, it can cover more ground over a shorter

period of time. However, at higher elevations the insects become smaller in the video

frames and the UV light beam diffuses, reducing the effectiveness of the illumination

system. To determine the maximum data collection height, we tested the drone at

multiple altitudes. These tests were conducted at night by hovering the drone with

the lighting array attached at an altitude of 8 meters and slowly flying upwards until

the insects can no longer be seen. While it was found insects were still visible at

an altitude of 11 meters, visibility was significantly reduced when compared to an

altitude of 10 meters, so 10 meters was selected as the data collection altitude.

4.2.4 Maximum Velocity Testing

Table 4.3: Motion blur maximum velocity testing.

Velocity (m/s) Insect Hue Bkg Hue Insect Value Bkg Value
1.0 227.59 183.13 78.62 31.75
1.5 207.69 182.37 59.34 25.20
2.0 203.41 183.31 47.91 25.20
2.5 205.29 181.62 48.91 22.63
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The faster the drone moves the more ground it can cover in one data collection

mission. However, higher speeds introduce motion blur in the collected images. To

assess the impact of motion blur, we recorded footage the drone flying over clusters

of insects at varying velocities. The videos were recorded using the camera settings

discussed in section 4.2.2.1. To determine the effect of motion blur, a metric must

be created. When the pixels in the image belong to an insect, they typically have

a higher hue and value than the typical background pixels. This is especially true

under the conditions in which the tests were performed: a recently mowed, healthy

lawn in the summer. Under these conditions, there is relatively little noise in the data

collection. We observed that when the drone moves too quickly no insects are visible

in the video frames, so the test was limited to speeds of up to 2.5 m/s. We performed

our test at the speeds of 1.0, 1.5, 2.0, and 2.5 m/s. For each test, we compared

the background hue and value channels to the hue and value channels of the pixels

corresponding to insects. The results can be seen in Table 4.3. The difference in

hue and value between the insects and the background slowly decrease as the drone’s

velocity increases. However, the change in difference between 1.0 and 1.5 m/s is more

significant than at other speeds. The data acquired at 1.0 m/s has very high quality

when compared to all of the other data at the cost of longer data collection times.

Hence, we chose to collect data at 1.0 m/s.

4.2.5 UV Light Testing

The Ultra Violet (UV) light array is mounted to the bottom of the M100 drone

as seen in Figure 4.2. The array is comprised of 10 high-power LEDs (Engin part

number LZ4-40UB00-00U5) that produce light at approximately 395nm wavelength.

The light produced by each LED is narrowed through a lens (Engin part number

LLNS-2T06-H) to maximize their range. The heat produced by the LEDs is dissipated

through an aluminum heatsink. The LEDs are powered by a set of four 3.7V Lithium
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Figure 4.2: Ultraviolet illumination system attached to the bottom of the Matrice
100.

Ion batteries with 3400mAh capacity. The power to the LEDs is controlled via remote

control allowing mid-flight use of the LED array. This array was constructed by Scott

Wolford at the USDA Appalachian Fruit Research Station in Kearneysville, WV.

4.3 Field Data Acquisition

Table 4.4: Description of the datasets.

Dataset
Acquisi- # of # of # of Flight Wind Illumi- Lat. ◦ Lon.◦
tion Date Frames Insects Detec- Area Speed nation

tions (m2) (km/h) (lumens)
A Sep 2018 1,869 23 587 3,000 6.0 0.03 43.037 -87.929
B Nov 2018 8,878 39 1,473 575 1.4 0.10 43.037 -87.929
C June 2019 19,023 82 1,949 575 2.7 0.30 43.025 -87.945
D June 2021 3,856 125 3,005 N/A N/A N/A N/A N/A

Data was collected in three test locations – Mitchell Park in Milwaukee, the

Marquette University Quad, and an apple orchard in the West Virginia USDA Ap-

palachian Fruit Research Station (AFRS). Datasets A and B were acquired at the

Marquette University Quad, Dataset C was acquired at Mitchell Park, and Dataset

D was collected at the AFRS research orchard. Dataset A was collected in September
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2018, Dataset B was collected in November 2018, Dataset C was collected in June

2019, and Dataset D was collected in June 2021. Environmental conditions, number

of insects, and other relevant information for each dataset can be seen in Table 4.4.

Dataset D was collected and provided by the USDA and does not include the flight

logs, as discussed in Section 4.2.1.1.

Figure 4.3: The flight path of the drone. From left to right the flight path for datasets
A, B, then C.

Dataset A is meant to represent an “ideal” data collection scenario, where

conditions were favorable to detecting insects; the grass was recently cut and there

is no source of noise in the images. Dataset B is significantly more challenging than

Dataset A, as the presence of leaves on the ground introduce a large source of visual

noise in the data. Figures 4.3 show the flight paths of datasets A, B, and C (note

that the background images were not acquired at data acquisition time, so the leaves

on Dataset B cannot be seen in the images). Dataset C, while more difficult than

dataset A, contains less noise than dataset B. Because dataset C was acquired at

a public area, other sources of noise such as trash are present, but because it was
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collected during the summer, there is no noise from leaves. However, the grass height

varies, and the ground was wet from recent rainfall, causing the ground to generate

light reflections in several places. The final difference between datasets A and B vs.

C is that for dataset C the latitude and longitude of each insect was determined

using an RTK GPS. Dataset D was collected by the United States Department of

Agriculture and is significantly different from the other datasets. In Datasets A, B,

and C the insects are on the ground, but in D they are placed in the canopies of

the trees at the USDA research orchard. Hence, the drone is flown parallel to the

rows of trees, with the camera aimed at the trees at an angle of approximately 45o,

rather than over the insects as in the other three datasets. Because the insects are not

below the UAV in Dataset D, the flight logs could not be used for the constrained K-

Means (Section 5.6.2) or Hungarian (Section 5.7.2.1) algorithms used in this thesis for

global insect localization. Finally, the fluorescent powder in dataset D is blue instead

of orange. Dataset C is notable for having the longest flight time, with around 13

minuets of data recorded. Despite being approximately one fifth the length of Dataset

C, Dataset D contains more insect detections.

Factors such as the need to acquire a “§107.29(a)(2) – Operation at night

waiver” from the FAA [51], limited periods of weather conducive for drone flying, and

the Coronavirus pandemic, limited our ability to collect additional datasets.

4.3.1 Flight Path Configuration

The drone can be operated and configured using the DJI Ground Station Pro

app. This app is created and maintained by the Matrice 100 drone’s manufacturer,

DJI. The ground station prop app provides the ability to plan a mission before taking

off and to automatically fly the drone according to the mission. Mission planning

includes setting points via latitude and longitude, determining the turning angle of

the drone, its altitude, among other parameters. We chose to use the WayPoint Route
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mission mode for collecting data. To do this, we simply plotted the desired drone

route, including its altitude by setting a number of waypoints for the drone to reach

and the speed of the drone. When flying the mission, the drone attempts to travel

as close as possible to the set waypoint map. The latitude and longitude waypoints

are calculated by determining a start-point and end-point for the mission. Then a

python program was created to generate a square-wave pattern for the drone to fly to

capture the data between these points. All of the insects to be detected must be placed

inside this box. The width of the squarewave-pattern is determined by the desired

altitude of the flight, and the known light dispersion of the UV illumination array

attached to the drone. If the program has told the drone must fly at a higher altitude

it simply scales the squarewave to increase the distance between the parallel lines.

Once the squarewave pattern is defined, a set of coordinates that fill out the box are

calculated. The algorithm begins by moving directly in a cardinal direction (North,

South, East, or West) until either the latitude or longitude of the drone matches the

latitude or longitude of the endpoint of the corresponding line. The drone travels

along the furthest dimension of the data acquisition region. This helps minimize the

number of waypoints the drone is required to make. The drone then rotates 90◦ to

face the next end point, travels the determined width of the squarewave, rotates 90◦

to face the opposite direction of initial travel, and moves in a straigh line until it

reaches either the latitude or longitude of the start-point. The pattern then repeats

itself with alternating rotation directions so as to follow each line of the squarewave

pattern. A waypoint is recorded for each point where the algorithm determines that

the drone must perform a rotation. The algorithm terminates when the drone has

approximately reached the endpoint. An example of the drone’s path can be seen in

Figure 4.3.
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4.3.2 Data Collection Procedure

In order to gather data, a flight plan must be created and a data collection

flight must be performed. This allows us to gather data including both flight logs and

video frames. Sample bugs marked with fluorescent powder are placed throughout

the data collection area. Next, the luminosity and other relevant environmental

conditions of the field are noted. The drone flies in a pre-defined squarewave pattern

10 meters above ground level as seen in Figure 4.3 while recording a video with

the camera oriented perpendicular to the flight plane. Following this procedure, we

collected a total of four datasets from four different flights: Datasets A, B C, and D,

whose characteristics are described in Table 4.4. Sample frames from each data set

can be seen in Figure 4.4. An example of the insect appearance in the dataset can

be seen in Figure 4.5.

Figure 4.4: Best viewed in color: from left to right: the A,B, C, and D datasets.

4.3.3 Data Labeling

The ground truth was manually labeled using a custom-built annotation tool.

The order of the images was randomized, and each insect seen was marked with a

bounding box. Randomizing was necessary as when displayed in chronological order

the annotator may make an inference and put a bounding box even if the insect is

not visible in the frame. The insects were then associated by hand so that if an insect
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Figure 4.5: An example of what an insect looks like in dataset C.

was seen in multiple frames it had the same identifier in all of those frames.
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CHAPTER 5

INSECT DETECTION PIPELINE AND EXPERIMENTAL ANALYSIS

The full algorithm pipeline can be seen in Figure 5.1. Implementation details

can be found in Section 5.9. We begin by creating a flight plan as described in

Section 4.3.2. We use the frames to train an auto encoder to reconstruct the image

and calculate the reconstruction error. Using connected component analysis we group

the pixels into frame by frame insects and using MHT we group these into global

insects. Our proposed invasive insect detection network takes a video sequence as

input and outputs the latitude and longitude coordinates of the detected insects.

We use video data recorded from the DJI Matrice 100 drone with ultra violet (UV)

lights mounted to the bottom. The illumination system is discussed in detail in

Section 4.2.5. We train the CVAE on unlabeled data from each dataset. Because

there are significantly more background pixels than insect pixels in each image, the

CVAE should learn the expected appearance of the background. Hence, this approach

allows us to remove the background (everything that is not an insect) from each frame.

Using the drone’s internal measurement unit’s location information, the orientation of

the drone calculated by a Kalman Filter [63], and camera calibration information, we

can project the image coordinates of the insect detections into the global coordinate

frame to find the corresponding latitude and longitude of each detection. Finally,

using Multiple Hypotheses Tracking (MHT [42]) we can track each detection across

video frames. Without this each frame in which an insect appears would be treated

as a unique insect. However, if an insect appears in nearby locations over a sequence

of frames, it is likely the same insect. MHT analyzes the observed trajectory of the

insect within the video frames to determine if it should be treated as one or multiple

insects.
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Figure 5.1: Proposed pest insect detection system architecture. By taking the pre-
dicted location of the insects relative to the drone as determined by the CVAE and
the location of the drone from the flight logs we can calculate an accurate drone
location.

5.1 Convolutional Variational Auto Encoders

Figure 5.2: Best Viewed In Color: Illustration of the CVAE pipeline. The image is
tiled, split into its color channels and input into the Inference Net. Then, the output
of the inference net is used to create the z-dimension with a Gaussian distribution.
Finally, the Generative net uses the z-dimension to re-create the image’s red, green
and blue component of the image and stitches each sub-image back into the full
output image.

Figure 5.2 summarizes our Convolutional Variational AutoEncoder. The Au-

toEncoder is trained on video frames from our flight data. Its reconstruction (Rx) is

then used to calculate the reconstruction error (Ex).
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5.1.1 Pre Processing the data for the CVAE

We train a separate Convolutional Variational AutoEncoder for each data set.

To do this, from each image, we select a region of interest (ROI) of pr × pr pixels

at the center of the original image. This is necessary because most pixels outside

the region of interest are not within the range of the illumination array and are

hence completely dark, containing no visible information. Removing the area outside

the ROI leads to significant reductions in the processing time for the CVAE while

improving its reconstruction performance. Then, the ROI is tiled into a grid of c× c

cells Fx,y ∈ Rng×ng×nc , where ng is the resolution of the grid cells, which is given by

ng = bpr/cc, nc = 3 is the number of channels of the ROI image, and x = 1, . . . , c,

y = 1, . . . , c. As indicated in Fig. 5.3, to minimize blocking artifacts, we follow the

strategy proposed in [10] and allow a small overlap among each tile and its immediate

neighbors.

5.1.2 CVAE Processing

Let F i
x,y correspond to the grid cells comprising the i-th image in the dataset.

For each dataset F =
{
F i

x,y

}N
i=1

, where N is the number of images in the dataset, a

CVAE is trained to learn the mapping

C(F i
x,y) = G(z), (5.1)

where z ∼ N (µ,Σ) and Σ = diag(σ) is an nl × nl diagonal matrix whose elements

are given by the vector σ ∈ Rnl . The latent features [µ, σ] ∈ R2×nl correspond to

the mean and variance of a multivariate normal distribution. The latent features are

generated by the inference network I : Rng×ng×nc ⇒ R2×nl , which maps the input

grid cell F i
x,y onto the latent feature space, i.e., [µ, σ] = I(F i

x,y). Finally, G(z) is the

generative network G : Rnl ⇒ Rng×ng×nc , which computes the reconstructed image

Ri
x,y = G(z). (5.2)
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Hence, the CVAE learns the overall function

C : Rng×ng×nc ⇒ R2×nl ⇒ Rnl ⇒ Rng×ng×nc (5.3)

that maps input grid cells into their corresponding reconstructions. The output grid

cells can be placed back into their original grid positions, such that

Rx = D(Ri
x,y), (5.4)

where D is a function that puts each Ri
x,y back into the correct (x,y) position in the

reconstruction of image i. When there is overlap in the grid pixels, D averages the

pixels for that position.

Figure 5.3: Illustration of how the image is tiled into smaller images of 64× 64 pixels
before being encoded and decoded by the CVAE.

Since the vast majority of the pixels in each grid cell correspond to the back-

ground, the CVAE fails to learn to recreate insects. Hence, we expect the reconstruc-

tion error

Ex = Fx −Rx (5.5)

to be comprised mostly of anomalies such as insect pixels. We have empirically

determined that the reflection of the UV light by the coating powder on the insects



42

Figure 5.4: The histograms of each channel of the data, reconstruction, reconstruction
error, and transformed reconstruction error of dataset A.



43

Figure 5.5: The histograms of each channel of the data, reconstruction, reconstruction
error, and transformed reconstruction error of dataset B.
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Figure 5.6: The histograms of each channel of the data, reconstruction, reconstruction
error, and transformed reconstruction error of dataset C.
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Figure 5.7: The histograms of each channel of the data, reconstruction, reconstruction
error, and transformed reconstruction error of dataset D.
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is most prominent in the red channel, whereas background noise is present primarily

in the blue channel for datasets A,B, and C. This can be seen in Figures 5.4, 5.5, and

5.6. To take advantage of this knowledge, we propose a transformed reconstruction

error that prioritizes the red channel:

Êx = 2 · Exr − Exb, (5.6)

where Exr ∈ Rnw×nh and Exb ∈ Rnw×nh are the red and blue channels of the recon-

struction error Ex.

Dataset D is different from the other datasets in a number of ways. Notably,

the insects are not coated with orange fluorescent powder. Instead, these insects

are marked with a blue fluorescent coating. To compensate for that we change the

transformed reconstruction error to no longer prioritize any channel for this dataset.

Instead, we use the average reconstruction error over the three channels, i.e.,

Êx =
Exr + Exb + Exg

3
, (5.7)

where Exr ∈ Rnw×nh and Exb ∈ Rnw×nh and Exb ∈ Rnw×nh are the red, blue, and

green channels of the reconstruction error Ex.

5.1.3 CVAE Network Architecture

As explained in Chapter 3, a CVAE is composed of two stages: The Inference

Network and the Generative Network. The Inference Network takes an image as

input and learns to represent it using a lower dimensional latent feature composed of

an array of means and standard deviations. Next, a new array is created by sampling

from a multi-variate Gaussian distribution whose means and standard deviations are

given by the latent feature vector. Then, the latent feature vector z is used as the

input for the Generative Network, which learns to recreate the original image based

on the information in the z vector. The architecture of the Inference Network used
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in this thesis can be seen in Table 5.1, and the Generative Network is described in

Table 5.2. Definitions for items in the table can be found in Table 5.3

Table 5.1: Architecture of the inference network.

Layer Filter Kernel size Strides Activation Output size
Input n/a n/a n/a n/a (64,64,3)
2D Conv. 96 3 (2,2) relu (31,31,96)
2D Conv. 192 3 (2,2) relu (15,15,192)
Flatten n/a n/a n/a n/a (43200
Dense n/a n/a n/a linear (3900)

Table 5.2: Architecture of the generative network.

Layer Filters Kernel Size Strides Activation Output Size
Input n/a n/a n/a n/a (1950)
Dense n/a n/a n/a linear (24576)
Reshape n/a n/a n/a n/a (16,16,96)
2D Conv.^T 192 3 (2,2) relu (32,32,192)
2D Conv.^T 96 3 (2,2) relu (64,64,96)
2D Conv.^T 3 3 (1,1) linear (64,64,3)

5.1.4 Training Procedure

The CVAE is trained in an unsupervised manner. That is, the network is

trained on all of the frames in the dataset without prior knowledge of which frames

contain insects. Because each frame is split into a c × c grid of ng × ng pixels (see

Section 5.1.1), even when a frame does contain an insect, the majority of the grid cells

do not. Therefore, the overwhelming majority of the training data does not contain

an insect. Due to the unbalanced nature of the insects in the data, the network does
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Table 5.3: Definitions for layers in the CVAE.

Term Definition
Flatten Changes a 1D Array into a 2D Array
2D Conv. 2D Convolutional Layer
2D Conv.^T 2D Convolutional Transpose Layer
Dense Takes a 1D input and makes a 1D Output.
Reshape Changes a 1D Array Input into a 2D Array

not learn how to represent insects. Instead, the network learns only how to represent

the background of the images. The CVAE is retrained from scratch for each dataset

with a batch size of bs for e epochs. The network is trained to maximize the evidence

lower bound (ELBO) on the marginal log-likelihood [64], i.e.,

L(x, z) = − (log p(x|z) + log p(z)− log q(z|x)) , (5.8)

where log p(x|z) is the log-likelihood of the training sample x, log p(z) is the log

probability of z, which is normally distributed with µ = 0 and σ = 0, and log q(z|x)

is the log probability of z conditioned on the input x, which is normally distributed

with mean µ and variance σ, which are learned based on the data distribution.

5.2 Determining Insects from CVAE output

Because the CVAE outputs an error that is transformed for each pixel as de-

scribed in Equation 5.6, it does not provide the actual insect locations in each image.

Instead, we must find a way to determine which pixels in each image correspond to

insects (Section 5.2.1), and a way to group these pixels into different insects if there

are multiple insects in an image (Section 5.2.2).

5.2.1 Thresholding Error to Find Insect Pixels

In order to find the insects using the transformed error (Ex) described in Equa-

tion 5.6, we chose to determine a threshold (ethr) where any pixel greater than ethr
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Algorithm 3: Insect threshold determination.
Input : Set of transformed reconstruction errors for dataset x: Êx

A probability of a pixel not being a insect pixel: Pinsectpixel

Output: Integer threshold ethr with a value in [0, 255]
1 Vpixels = array of length 255;
2 Tpixels = 0;
3 for e ∈ Êx do
4 for pixel ∈ e do
5 Vpixels[pixel] += 1;
6 Tpixels +=1;

7 for p ∈ Vpixels do
8 p = p/Tpixels
9 cdf = array of length 255;

10 cdf[0]= Vpixels[0];
11 ethr = 0;
12 for i ∈ [1 . . . 255] do
13 cdf[i] = cdf[i-1]+Vpixels[i];
14 if cdf[i] < Pinsectpixel then
15 ethr = i;
16 else
17 break;

18 return ethr

is assumed to belong to an insect, and any pixel less than ethr is assumed otherwise.

Using Algorithm 3 we calculate the insect threshold. To do this we find a Probability

Density function (PDF) for Ex over the entire dataset under consideration. Then we

turn this PDF into a Cumulative Density Function (CDF) using Equation 5.9

CDF (x) =
x∑

i=1

PDF (i). (5.9)

Finally, we determine ethr by finding the largest CDF (ethr) that is still smaller than

a probability Pinsectpixel. Any pixel for which Ex > ethr is added to the set of insect

pixels.
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Algorithm 4: Creating insect observations using the reconstruction
error.

Input : Êx

ethr
Output: Set of bouding boxes

1 out = [] for e ∈ êx do
2 for pixel ∈ e do
3 pixel_value = the integer value of the pixel;
4 if pixel_value > ethr then
5 pixel_value = 1;
6 else
7 pixel_value = 0;
8 end
9 end

10 cca = connectedComponentAnalyisis(e);
11 for ConnectedComponent ∈ cca do
12 x = ConnectedComponent.min_X;
13 y = ConnectedComponent.min_Y;
14 width =

ConnectedComponent.max_X-ConnectedComponent.min_X;
15 height =

ConnectedComponent.max_Y-ConnectedComponent.min_Y;
16 out.append([x, y, width, height])
17 end
18 end
19 return out

5.2.2 Connected Components Analysis to Group Insect Pixels

Once the set of insect pixels at a given frame is found, we need to determine

which pixels belong to the same insect. Because multiple insects can appear in one

frame, we cannot assume that all the pixels in the frame belong to the same insect.

Instead, we group the pixels into insects using connected components analysis, as

described in Algorithm 4. Connected component analysis takes groups of pixels and,

if any of its neighbors are also insect pixels, associates itself with those neighbors.

Then, it repeats itself for each disjoint group of pixels. It continues this process

until all pixels that both touch each other and are insect pixels have a common
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identifier. For each group of insect pixels, we extract a bounding box representing

the corresponding insect detection.

5.3 Associating Detections

Associating insect detections is a challenging and important aspect of this

project. We want to associate detections that belong to the same global insect.

If an insect appears in the video, it is highly likely that it will appear in several

frames. So, if we can associate the detections to a global insect we can determine

its global position. When labeling the ground truth, we give each insect a global

insect identifier. This allows us to evaluate the methods we implemented to track the

insects and compare them to the hand-labeled insect identifiers using the multiple

object tracking (MOT) metrics as discussed in Section 2.4.2 [43]. By accurately

associating insect detections together, we can improve the quality of the detections

and effectively count the number of insects present in the field. The proposed method

does have a shortcoming: if an insect appears, leaves for a significant amount of time,

and reappears later, there is a strong chance the algorithm will believe that it is a new

insect. However, it is likely that any human walking through a field with a handheld

UV light would make the same mistake.

To associate multiple detections of the same insect into a single consistent

observation, we evaluated two methods. Our first approach consisted of projecting

the insects back to a real world location and using constrained k-means clustering

on groups of detections to try and determine if they corresponded to a single insect

or to multiple insects that happened to be nearby. Since we did not obtain satisfac-

tory performance with that strategy, we decided to employ the Multiple Hypothesis

Tracking (MHT) algorithm [42] to associate the detections. These two strategies are

described in detail in the following subsections.
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Algorithm 5: Applying constrained K-Means to real data.
Input : Set of detection’s bounding box’s centers with their x, y, and

frame values, Cx, all within Dmin of at least one other
observation in the group

Output: Set of real-world insect locations, locx
1 V = ∅ ;
2 for k = 1 to Km do
3 V = V ∪ constrainedKMeans(k, Cx);

4 locx = argmaxvk∈V sillhouetteScore(vk);

5.3.1 Constrained K-means Insect association

Constrained K-means clustering is implemented to associate insect detections.

Constrained K-means is discussed in detail in Section 3.3.1, but the details of this

implementation can be found here. By mapping the insect detections to their real-

world coordinates (as discussed in Section 5.5, distances between each observation

are found with a small margin of error. Then, any group of insects each within a

minimum distance (Dmin) of each other are inserted into constrained k-means. If

the insects’ detections share a frame constrained k-means cannot give them the same

global insect ID. This is repeated for each k value between 1 and Km, and the clusters

with the best silhouette score is chosen. This process is shown in Algorithm 5.

5.3.2 Multiple Hypotheses Tracking

In MHT each sequence of detections (i.e., a track) is assigned a score Sl(k),

which is defined as follows:

Sl(k) = wmotS
l
mot(k) + wappS

l
app(k), (5.10)

where Sl
mot(k) is the motion score, Sl

app(k) is the appearance score, and wmot and wapp

are their relative weights on the overall computation of the appearance score. How-

ever, because there is little variability in the appearance of the insects, we disregard
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Figure 5.8: Illustration of the insect tracks by the MHT algorithm on two image
sequences, both from datasets C.

the appearance score so that the overall score becomes simply

Sl(k) = Sl
mot(k). (5.11)

The motion score is defined as:

Sl
mot(k) = ln

(
p(yi1:k |i1:k ⊆ Tl)

p(yi1:k |i1:k ⊆ ∅)

)
, (5.12)

where i1:k represents a set of observations i1, i2, ..., ik, Tl represents the target hypoth-

esis, and yi1:k is the set of location measurements for the set of observations i1:k. In

other words, p(yi1:ki1:k ⊆ Tl) represents the probability of the set of measurements

happening, and p(yi1:k |i1:k ⊆ ∅) represents the probability of a set of measurements

not being associated. After generating many hypotheses, we can calculate the track

score for each hypothesis and take the highest available. Figure 5.8 illustrates the

resulting insect trajectories obtained using MHT.

5.4 Drone Heading Estimation Using a Kalman Filter

Because data provided by the DJI M100 Drone does not include heading in-

formation, we must find a way to calculate it. We discuss the DJI M100 log file in
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Figure 5.9: Best viewed in color: Visualization of applying the Kalman headings
to an observation



55

more detail in Section 4.2.1.1. To map the insect detections to a global coordinate

frame, we must know the drone location and orientation. Since the orientation is not

available in the flight logs, we use the location information to estimate it. To do so,

we implemented a Kalman filter to estimate the drone heading [65]. The Kalman

filter uses a state vector given by

st =

pt
ωt

 , (5.13)

where pt = arctan(∆x/∆y) is the arc tangent of the direction of the motion of the

drone along the x and y coordinates, so that pt is the current estimated angle of the

drone where p0 corresponds to north. ωt is the current estimated angular velocity.

We define F (the system transition matrix) and H (the observation matrix) as:

F =

1 1

0 1

 , (5.14)

H =

1

0

 . (5.15)

The predicted state of the drone is given by

st+1 = F · st. (5.16)

Figure 5.10 illustrates the drone heading estimated using this procedure for the flight

corresponding to datasets A, B, and C.

5.5 Mapping Insect Detections to the Global Coordinate System

Using the position, heading and height of the drone as well as the distance

and angle of the insects relative to the drone, it is possible to compute the insect’s

real-world location. We use the angular Kalman filter described in Section 5.4 to

estimate the orientation of the drone. The application of the Kalman filter to an
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Figure 5.10: Estimated drone heading orientations generated using an angular
Kalman filter. Datasets A, B and C from left to right.

Figure 5.11: Best viewed in color: Visualization of applying the Kalman headings
and drone location information to an observation

insect detection is illustrated in Figure 5.9. Then, by taking the real world coordinates

of the drone as well as the angle and distance of the insect relative to the drone,

the insect detection can be given in real-world coordinates using the following affine

transformation 
xr

yr

1

 =


s cos θt s sin θt xd

−s sin θt s cos θt yd

0 0 1



xi

yi

1

 , (5.17)

where (xi, yi) are the image coordinates of the insect, θt is the heading of

the drone as provided by the Kalman filter, (xd, yd) are the world coordinates of

the drone, and s is a scaling factor that represents the region covered by a pixel

in meters at an elevation of H meters. An example of this in action can be seen in
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Figure 5.11. Because the drone’s real-world positional measurements and the Kalman

filter are both imperfect there is some error in the real-world position assigned to each

detection. Fortunately, there are typically several detections per insect that, when

averaged, provide a more accurate location for the insect. To do this we use the MHT

algorithm, as outlined in Section 5.3.2.

5.6 Baseline Insect Detection and Association Methods

We compare our proposed insect detection strategy with two methods pre-

viously proposed in [1] and [66] by Stumph et al. For completeness, this section

provides a brief description of these methods. For additional details, the reader is

referred to the corresponding references. We also compare the performance of our

insect detection association mechanism described in Subsection 5.3.2 with a naive

approach that uses the k-means algorithm to associate detections in multiple frames.

5.6.1 Insect Detection by Color Thresholding

Algorithm 6: Insect color threshold

Input : Cropped ROI video frame, I(N)
n

Output: Binary image, I(b)n , where foreground pixels are insects
1 for Each pixel, p(r)i do
2 if pg < pb < pr and ph > τh and ps > τs and pv > τv then
3 p

(b)
i = 1;

4 else
5 p

(b)
i = 0;

Color thresholding looks at the color values of a pixel, and if they fit more

into the group of “insect” pixels than the pixels around them, they are classified as

belonging to an insect. This is outlined in Algorithm 6. The results of these can be

seen in table 5.4.
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5.6.2 Insect Detection Using K-Means Clustering

To avoid confusion, it is important to note that this is a different implemen-

tation of k-means that previously mentioned in this thesis. While it is the same

algorithm, the use-case of this k-means implementation is significantly different. The

K-Means method of finding insects relies on clustering pixels in each frame by their

color values using the K-means clustering algorithm [67]. First, pixels with low values

in either the hue or value color spaces, which represent the majority of the pixels in

a frame, are filtered out using color thresholding. Then, K-means (with k = 2 to

represent the background and the insect pixels) clusters each pixel by its color value.

This process is iterated three times discarding the cluster with the smaller number of

elements at each iteration. The remaining pixels are classified as belonging to insect

clusters. This is discussed in detail in Section 3.2.3. This is outlined in Algorithm 1.

The results of these can be seen in table 5.4

5.7 Experimental Results

We evaluate our results with two different methods. First, we evaluate the

frame-by-frame performance of our insect detection algorithm. In the frame-by-frame

study, each frame is analyzed to find any correct detections (True Positives), extra

detections (False Positives), and missed detections (False Negatives). Second, we

evaluate the tracking results. In the tracking results section, we analyze how well the

insects are tracked using MOT metrics.

5.7.1 Frame-by-Frame Analysis

By performing connected components analysis, we can group neighboring pix-

els together to create bounding boxes representing each insect S as seen in Algo-

rithm 4. Then, an intersection over union (IoU) calculation is performed on each



59

Table 5.4: CVAE results compared to baseline methods

Dataset Method Precision Recall F1

A

K-Means 0.95 0.75 0.84
Color Threshold 0.80 0.52 0.63
Auto Encoder 0.78 0.81 0.79
Auto Encoder +MHT 0.81 0.88 0.85

B

K-Means 0.40 0.50 0.44
Color Threshold 0.65 0.40 0.50
Auto Encoder 0.87 0.76 0.81
Auto Encoder +MHT 0.72 0.93 0.81

C

K-Means 0.83 0.40 0.54
Color Threshold 0.85 0.30 0.44
Auto Encoder 0.88 0.63 0.73
Auto Encoder +MHT 0.85 0.67 0.74

D

K-Means N/A N/A N/A
Color Threshold N/A N/A N/A
Auto Encoder 0.75 0.92 0.83
Auto Encoder +MHT 0.78 0.96 0.85

bounding box compared to a hand-labeled ground truth. IoU is calculated by

IoU =
GTl ∩Dl

CT ∪D
, (5.18)

where GTl is a ground truth detection, and Dl is a observed detection. Traditionally,

an IoU of greater than 50% is considered a true positive. However, because of the

small size of the insects using a IoU of 50% or better results in a significant amount

of misclassifications as seen in Figure 5.12.

5.7.2 Tracking Results

We evaluate the performance of our insect detection methods using two meth-

ods. First, we use the MOT metrics discussed in Section 2.4.2. These results can be

seen in Table 5.5. Both the MHT and the constrained K-means results for Datasets

A, B, and C are shown in Figures 5.16, 5.17, and 5.18. Dataset D is not visualized
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Figure 5.12: A small insect detection inside a bounding box. Here the IOU is below
the traditionally used IOU threshold of 0.5.

because there are no flight logs for that dataset, which precludes the application of

the association method based on constrained K-means.

Figure 5.13: Insect detections before and after being clustered when using K-means.
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Table 5.5: MOT metrics [43] of the Constrained K-means and MHT results. Dataset
D does not include a flight log, so K-means was not a viable method for tracking.

Const. K-Means MHT
Dataset A B C D A B C D

MOTA 0.26 0.49 0.46 N/A 0.66 0.56 0.55 0.67
Mostly
Tracked 17 30 37 N/A 14 30 33 111
Partially
Tracked 5 6 17 N/A 6 5 15 8
Mostly
Lost 0 3 43 N/A 2 4 49 6
Number of
Fragmentations 22 31 59 N/A 21 23 12 28

ID Switches 58 31 132 N/A 13 8 12 48

ID Precision 0.41 0.47 0.67 N/A 0.78 0.67 0.83 0.66

ID Recall 0.53 0.61 0.49 N/A 0.84 0.86 0.86 0.87

ID F1 0.43 0.52 0.54 N/A 0.81 0.75 0.73 0.73
Ground Truth
Insects 22 39 97 125 22 39 97 125

5.7.2.1 Comparing Ground Truth Insects to Real-World Insects using the
Hungarian Algorithm

In order to associate ground truth insects with predicted insects, there must

be a way to associate them. This problem is commonly referred to as the assignment

problem, and an elegant solution is the Hungarian Algorithm [68]. In our implemen-

tation, each detection is associated to the nearest ground truth bounding box and if

the distance between them is less than 0.5 meters, it is classified as a true positive.

If there are additional detections that do not satisfy this criterion, they are classified

as false positives. If there are extra ground truth bounding boxes which are not asso-
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Figure 5.14: Ground truth of insect locations (left) vs. the detected insect locations
using K-means (right).

Algorithm 7: Assigning costs to the Hungarian algorithm.
Input : The set x and y of real-world location coordinates of

ground-truth insects, GTx,
The set x and y of real-world location coordinates of grouped

detected insects DIx
Output: Cost matrix for the Hungarian Algorithms, dw

1 dw = Empty 2D array of size Count(GTx)× Count(DIx);
2 for xg, yg in (GTx) do
3 for xp, yp in (DIx) do
4 Compute dwgp Using Equation 5.19;

ciated to any detection, they are classified as false negatives (Figure 5.14). This can

be achieved by implementing the following cost metric

dwgp =
√

(xg − xp)2 + (yg − yp)2, (5.19)

wgp =


dwgp if dwgp ≤ lHungarian

∞ otherwise
. (5.20)
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Figure 5.15: Left: Ground truth locations of the insects. Right: MHT insect de-
tections (orange) placed alongside the ground truth locations (red). From dataset
C.

Table 5.6: Hungarian algorithm evaluation on constrained K-means and MHT results.

Const. K-Means MHT
Dataset A B C A B C
True Positives 17 11 42 19 27 25
False Positives 46 63 55 22 51 52
False Negatives 5 28 25 3 12 15
Precision 0.26 0.14 0.34 0.46 0.34 0.46
Recall 0.77 0.28 0.62 0.86 0.69 0.75
F1 0.40 0.19 0.52 0.60 0.46 0.57

The computation of dwgp is shown in Algorithm 7. The association results can

be seen in Table 5.6. The Results for Datasets A, B, and C can be visualized in

Figures 5.19, 5.20, and 5.21, respectively. Dataset D is not included because it does

not include flight logs.
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Figure 5.16: Visualization of results from dataset A.
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Figure 5.17: Visualization of results from dataset B.
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Figure 5.18: Visualization of results from dataset C.
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Figure 5.19: Visualization of applying the Hungarian method to the results of dataset
A.

5.8 Discussion

The results indicate that the CVAE is a significantly improved way to detect

insects in the videos collected by the drone compared to existing methods. Because

insects are sparsely distributed throughout the datasets, the CVAE does not learn

to represent them, so they simply do not appear in the reconstruction images, while

background information does. Previous methods, although arguably less complex

than the proposed approach, fail to separate the insects from background noise (es-

pecially leaves). Interestingly, the results were worse when trying to find an insect

using the entire dataset to train the CVAE (these results are omitted for the sake of

conciseness). Interestingly, dataset D had the best results. Considering the number

of factors that distinguish dataset D from the other datasets is a direction worth
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Figure 5.20: Visualization of applying the Hungarian method to the results of dataset
B.

exploring in the future to determine the best data collection methods.

5.9 Implementation Details

In this section, we discuss the implementation of the Python code implemented

for this project. Table 5.7 lists the variables used in the implementation of the CVAE

and their corresponding values. Table 5.8 shows the Anaconda 31 environment used

by the project. Our proposed method consists of a series of algorithms run as a

software pipeline. Each dataset is processed with through these algorithms and the

final result produces the latitude and longitude of the detected insect, which are

saved to a CSV file that is compared to the hand-labeled ground-truth. All code was
1https://www.anaconda.com
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Figure 5.21: Visualization of applying the Hungarian method to the results of dataset
C.

written in Python 3.6, with bash scripts acting to automatically connect parts of the

code together. The platform used was Ubuntu 18.04. New code was either written

by Scott Stewart or sourced from Tensorflow2, pyMOT3, or pyMOTMetrics4.

2https://www.tensorflow.org/tutorials/generative/cvae
3https://github.com/yoon28/pymht
4https://github.com/cheind/py-motmetrics
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Table 5.7: Definitions for variables used in the CVAE.

Term Variable Used Definition
Subgrid Count c 17
Channels in subgrid nc 3
Pixels in subgrid ng 64
size of latent dimension nl 650
Number of images in dataset N Variable
Pixels in ROI pr 720

Table 5.8: Anaconda environment used for all the code discussed in this thesis.

Package Name Version Package Name Version
bleach 3.1.5 pep8 1.7.1
filterpy 1.4.5 pexpect 4.8.0
future 0.18.2 pickleshare 0.7.5
glib 2.65.0 pillow 7.2.0
google-auth 1.30.0 pip 20.3.1
imageio 2.9.0 ply 3.11
ipykernel 5.3.4 py 1.9.0
ipython 5.8.0 py-opencv 3.4.2
jpeg 9d pygments 2.6.1
json5 0.9.4 pytables 3.4.4
markupsafe 1.1.1 python 3.6.9
matplotlib 3.3.1 python-dateutil 2.8.1
mht 0.0.1 pywavelets 1.1.1
mkl 2019.5 qtpy 1.9.0
motmetrics 1.1.3 requests-oauthlib 1.3.0
nltk 3.4.4 scikit-image 0.17.2
notebook 6.1.3 scikit-learn 0.23.2
numba 0.51.1 scipy 1.5.2
numexpr 2.7.1 tensorboard 2.5.0
numpy 1.19.5 tensorflow-gpu 2.4.1
packaging 20.4 wheel 0.36.2
pandas 1.1.1 yaml 0.2.5
path 15.0.0
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CHAPTER 6

CONCLUSION

The goal of this project is to accurately find insects in aerial videos while

requiring as little human input as possible. Anomaly detection offers a promising

approach to address this problem. In this thesis, we present an effective strategy

for insect detection based on anomalous pixel detection algorithms. Our detection

method relies solely on the expected background of videos observed by the drone,

so it should be adaptable to other types of environments. We were also able to

associate multiple frame-by-frame detections into a set of unique insect identifiers

with reasonable accuracy. Finally, we were able to use the location data from the

drone in conjunction with a Kalman filter to determine the heading of the drone. This

allowed us to calculate the latitude and longitude of the real-world insect locations.

Overall, we found a significant improvement in our results over previous approaches

to the anomalous insect problem.

There are limitations to the proposed work. While the proposed method is a

significant improvement over existing methods, there is still room for improvement

when detecting insects. While MHT is better than the baseline constrained k-means

strategy, it still struggles to associate insect detections in more complex scenarios

involving multiple insects.

6.1 Future Work

The proposed methods represent significant improvements to the current state

of the art in insect detection methods. However, there are a number of improvements

to be made.

The first potential improvement is to the data collection procedure. Using

an RTK-GPS that allows centimeter accurate locations could provide an improved
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ground truth for future data collection. In fact, one was purchased and tested for this

project, but the COVID-19 pandemic prevented data collection, and the unit died

after its lithium ion battery stopped charging due to disuse.

Another potential improvement is in the neural network chosen to reconstruct

the image. CVAEs have a number of strengths, but a GAN can reconstruct images

with higher accuracy, providing enough training data is available.

The third potential area for improvement is by implementing a physical light

filter over the lens of the camera. By filtering only for the wavelengths of light the

fluorescent powder reflects the noise could be reduced, potentially improving insect

detection performance significantly.

Finally, another potential area for improvement is by testing what factors

made dataset D have the best results. For example, having the camera off to the side

of the insects, rather than over the top of them. Alternatively, the blue fluorescent

powder may be easier for the algorithm to find even if it is harder for a human.

Finally, the algorithm may benefit from having several insects visible in any given

frame.
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