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András Lőrincz* and András Sárkány

Neural Information Processing Group, Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary

The existence of place cells (PCs), grid cells (GCs), border cells (BCs), and head

direction cells (HCs) as well as the dependencies between them have been enigmatic.

We make an effort to explain their nature by introducing the concept of Cartesian

Factors. These factors have specific properties: (i) they assume and complement each

other, like direction and position and (ii) they have localized discrete representations with

predictive attractors enabling implicit metric-like computations. In our model, HCs make

the distributed and local representation of direction. Predictive attractor dynamics on

that network forms the Cartesian Factor “direction.”We embed these HCs and idiothetic

visual information into a semi-supervised sparse autoencoding comparator structure that

compresses its inputs and learns PCs, the distributed local and direction independent

(allothetic) representation of the Cartesian Factor of global space. We use a supervised,

information compressing predictive algorithm and form direction sensitive (oriented) GCs

from the learned PCs by means of an attractor-like algorithm. Since the algorithm can

continue the grid structure beyond the region of the PCs, i.e., beyond its learning domain,

thus the GCs and the PCs together form our metric-like Cartesian Factors of space. We

also stipulate that the same algorithm can produce BCs. Our algorithm applies (a) a

bag representation that models the “what system” and (b) magnitude ordered place cell

activities that model either the integrate-and-fire mechanism, or theta phase precession,

or both. We relate the components of the algorithm to the entorhinal-hippocampal

complex and to its working. The algorithm requires both spatial and lifetime sparsification

that may gain support from the two-stage memory formation of this complex.

Keywords: Cartesian factors, entorhinal hippocampal complex, integrate-and-fire neurons, head direction cells,

place cells, grid cells, border cells

1. INTRODUCTION

The fact that we are able to describe autobiographic events, can discover rules, in spite of the many
dimensional inputs, such as the retina (millions of photoreceptors), the ear (cca. 15,000 inner plus
outer hair cells), the large number of chemoreceptors as well as proprioceptive, mechanoreceptive,
thermoceptive and nociceptive sensory receptors is puzzling, since the number of sensors enters
the exponent of the size of the state space. This number is gigantic even if the basis of exponent is
only 2, but it is typically much larger. How is it possible to remember for anything in such a huge
space?
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An illuminating and classical observation has been made
by Kohonen (1982): the brain develops low dimensional
representations, sometimes in the form of topographic maps
manifested by retinotopy in the visual system, tonotopy in the
auditory system, somatotopy in the somatosensory system, and
so on. Kohonen considered these maps as some kind of implicit
metric of the sensed space, being visual, auditory, or body
related. The dimensionality of these maps is low, unlike the
number of the sensors that give rise to those maps. Similarly
low-dimensional representations of the external space appear
in the entorhinal-hippocampal complex (EHC), although the
topography is sometimes missing. The derivation of the abstract
and low-dimensional representation of space from the actual and
high dimensional sensory information is critical for goal oriented
behavior as noted in the context of reinforcement learning, see,
e.g., Kearns and Koller (1999), Boutilier et al. (2000), and Szita
and Lőrincz (2009). In this context, one is directed to the EHC.
The importance of this complex was discovered many years ago
by Scoville and Milner (1957). Now, it is widely accepted that
the EHC is responsible for episodic memory, see, e.g., Squire
and Zola (1998) and Moscovitch et al. (2016) for an earlier
review and for a recent one, respectively. In their paper, Buzsáki
and Moser (2013) propose that (i) planning has evolved from
navigation in the physical world, (ii) that navigation in real and
mental space are fundamentally the same, and (iii) they underline
the hypothesis that the EHC supports navigation and memory
formation.

We believe that one of the functional tasks of this complex is
the learning of low-dimensional Cartesian Factors that we define
as follows. We say that (i) a low-dimensional representation
discretizes a low dimensional variable, if discretization means
that individual neurons [e.g., place cells (PCs) discovered more
than 40 years ago (O’Keefe and Dostrovsky, 1971; O’Keefe and
Nadel, 1978) represent local regions of their space (the so called
place fields for PCs)] and thus the representation of the variable
is distributed, (ii) the variable could be used as a coordinate in
controlling and cognitive tasks, and (iii) an attractor network
can predict by means of the local representation and, in turn,
it can work as an implicit metric. As a further specification, we
distinguish two factor types. Components of the first kind may
exist even if other ones are not present, whereas components of
Cartesian Factors do assume each other; no Cartesian Factor may
exist without the others although many of them can be latent. We
detail this below:

• Type I factors make no (or minor) assumptions about each
other. Non-negative matrix factorization (NMF), for example,
originates from chemistry: it is used in mass spectrometry and
radiology among other fields, where absorbing or radiating
components can sum up. In a given environment and for a
given detector system, the observation of different isotopes
depends on the environment and the detector, but they do
not influence each other’s spectrum except that—to a good
approximation—they sum up. Another example is slow vs.
faster or fast features (Franzius et al., 2007; Schönfeld and
Wiskott, 2015). Such Type I factors are called features in most
cases; they can be independent, one of them may not have to

imply the presence of others. In other words, if one of the NMF
or slow feature components is present, others can be missing.

• Type II factors assume each other. For example, texture, shape,
weight, material components belong to the same object and
any object possess all of these features. Some of them can be
relevant when considering the value of a tool in a task. Another
example is the information about the position of an object in
space that can be given by the spatial coordinates and its pose.
The speed of the object is another component, being necessary
for the characterization of its state in certain tasks.

Latent Type II factors can serve cognition by decreasing the
description and thus the state space. Keeping the example of
the space, path planning requires the discretization of space and
information about the neighboring relations of the PCs, i.e.,
the neighbor graph. Then an algorithm can find the shortest
path on the graph. This path planning procedure doesn’t require
directional information; it works in a reduced dimensional space.
We are concerned with such complementing and dimension
reducing factors that may alleviate cognition in different ways in
different tasks.

We assume that there is at least one Type II factor that
can be sensed directly and this factor is represented in a
topographic manner: it has some kind of (implicit) metric.
This factor plays the role of a semi-supervisor in the learning
of the complementing Type II factor(s). We also assume that
the complementing factor is also low dimensional. Allothetic
representation of the space is one example of such factors and
it is the complementing factor of the allothetic representation of
direction. Head direction cells (HCs) (see e.g., the work of Taube,
2007 and the references therein) make the discretized allothetic
head direction representation. An attractor network can predict
the activity pattern of the representation during rotation making
it an (implicit) metric-like representation of direction. In turn,
the set of HCs make a Cartesian Factor. We will consider how
a metric-like representation may emerge from neurally plausible
dynamics and the PC representation via predictive methods.

We note that according toWinter et al. (2015), in rodents, HCs
are needed for the development of PCs, which are localized (i.e.,
discretized and distributed) allothetic representation of space;
Type II factor according to our concepts.

There are neurons that respond along trigonal grids. These are
the so called grid cells (GCs) (Fyhn et al., 2004; Moser et al., 2014).
Results of Bonnevie et al. (2013) indicate that the presence of GCs
is conditioned on both the presence of PCs and on the availability
of HCs. For a recent review of the grid cells and the place cells
see, e.g., the collection edited by Derdikman and Knierim (2014)
as well as the references cited therein.

Our contributions are as follows.

1. We present a unified model of the EHC. We put forth
the idea that this complex tries to solve the problem of
nonlinear dimensionality reduction via Type II factors. These
reduced dimensions function are like Cartesian coordinates if
attractor networks enable them to form an implicit metric.
Such Cartesian Factors can be reasoned with like symbolic
variables. Consequently, we see the continuation of the grid
as learnable manipulation at the symbolic level called mind
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travel by Sanders et al. (2015). The grounding of the symbolic
manipulation beyond the known domain seems as a necessity
for acting according to Harnad (1990). A simple example is
homing behavior; the transformation of goals in allothetic PCs
to idiothetic action series.

2. The model is a learning model, which is capable of explaining
(a) peculiar findings on the inter-dependencies of PCs and
GCs, including (b) the corruptions that occur upon lesioning
of different components and (c) the order of learning as
described in the recent review paper of Rowland et al. (2016).

3. Direction sensitive GCs are developed from PCs and HCs by
means of a predictive and compressing supervised algorithm
working onmagnitude ordered neural activities. We argue that
either (a) integrate-and-fire characteristics or (b) theta phase
precession can give rise to magnitude ordering in the time
domain. We apply two simple linear algorithm on the ordered
representation; we use pseudoinverse computation and partial
least squares (PLS) regression. We show that PLS regression
produces orientation sensitive, close to hexagonal grids in
an incommensurate squared environment. We demonstrate
that magnitude ordered predictive grid representation can be
continued beyond the experienced environment.

4. We show that the predictive mechanism that gives rise to
direction sensitive GCs can support the learning of Border
Cells (BCs).

5. Our autoencoder model exploits sparsification and has the
following constraints: we find that lifetime sparsification, i.e.,
sparsification over a larger number of inputs is necessary for
efficient learning. Lifetime sparsification is not possible in real
time, when individual input based sparsification, called spatial
sparsification is needed. We propose that the two types of
sparsification may be (one of) the underlying reason(s) of
the two-stage memory formation in the EHC loop (Buzsáki,
1989).

Cartesian Factors have been introduced in two previous
conference papers (Lőrincz et al., 2016; Lőrincz, 2016).
The definition presented here is more precise and more
elaborate: Cartesian Factors complement each other and assume
metric-like representations. PCs have been developed in those
publications and we review the results here. The extension
of the model with orientation sensitive grid cells appears
here for the first time alike to the proposal that magnitude
ordered representation can serve the learning. Both integrate-
and-fire behavior and theta phase precession are neurally
plausible mechanism for magnitude ordering. In the first case,
the spike representing the highest magnitude input comes
first. In the second case, highest firing rates occur in the
middle of the theta cycles. The combined model of direction
sensitive GCs, PCs, and BCs is presented here for the first
time.

In the following sections, we review background information
and list some of the models of place cell and grid formation
(Section 2). We describe the algorithmic components of our
model in Section 3. More details of the algorithms are provided
in the Appendix. The results section (Section 4) presents PC and
directional sensitive GC representations. Results are discussed

from the point of view of neuroscience in Section 5. We
also consider symbolic representation, symbol manipulation
and the symbol grounding problem in this section. We argue
that all components—i.e., Cartesian Factors, place cell forming
algorithms, oriented grid learning computational methods,
and border cell formation—may fit the features of the EHC.
Conclusions are drawn in Section 6.

2. BACKGROUND

2.1. Review of Related Findings in the EHC
The set of PCs, also called the cognitive map, the orientation
independent representation of space, was discovered more than
40 years ago (O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel,
1978). Since then we have learned many features of these
cells, which are present in the CA3 and CA1 subfields of the
hippocampus. Theta frequency oscillations (5–10 Hz) in the
rodent hippocampal system create theta sequences: (i) place cells
fire in temporal order, (ii) the sequences cover past, present and
future, and (iii) time compression can be as much as a factor
of 10 (Skaggs and McNaughton, 1996). Such temporal series
centered on the present are the so called (theta) phase precession
of PCs. The CA3 subfield has a recurrent collateral structure
that, during sharp wave ripple (SPW-R, 140–200 Hz) complexes,
replays temporal series experienced during exploratory behavior,
when theta oscillations occur. Time series compression in SPW-
R is around twenty fold and forty fold, before and after learning,
respectively as shown by Lee and Wilson (2002). Memory
trace formation seems to require to stages, the theta-concurrent
exploratory activity and the population burst during SPW-R
following the explorations (Buzsáki, 1989; Chrobak and Buzsáki,
1994) and according to the widely accepted view, the EHC
formedmemories include episodic ones (Moscovitch et al., 2016).
The hippocampal formation is needed for dead reckoning (path
integration) (Whishaw et al., 2001).

Grid cells have been found in the medial entorhinal cortex
(MEC). It turns out thatMEC lesion can abolish phase precession
(Schlesiger et al., 2015; Wang et al., 2015), but the lesion only
corrupts hippocampal place cells, it can’t fully eliminate them
(Hales et al., 2014). On the other hand, grid cells require
hippocampal input (Bonnevie et al., 2013). The excellent review
of Sanders et al. (2015) about place cells, grid cells, and phase
precession includes a novel model about the two halves, i.e., about
the past and the future. They claim that different mechanisms
operate during the two halves.

Another important feature is that both the grid representation
in the entorhinal cortex and the place cell representation of the
hippocampus depend strongly on the vestibular information.
There are indications put forth by Winter and Taube (2014) that
head direction cells may not be critical for place cell formation
since those can be controlled by environmental cues, like visual
landmarks. However, it was shown by Winter et al. (2015) that
the disruption of head direction cells can impair grid cell signals
and are crucial for the formation of the allothetic representation
including both place cells and grid cells . They also reported that
theta waves are spared upon the same manipulation.
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We shall argue that several findings follow from the
constraints of developing the Cartesian Factor abstraction and
the related metric-like representations.

2.2. Related Models
The number of place cell models is considerable, we list
only a few of them. The interested reader is directed to the
recent publication of Schultheiss et al. (2015) that reviews both
mechanistic bottom-up models and top-down models.

Neural representation of trajectories traveled and the
connectivity structure developed during such paths have been
suggested as the method for place cell formation by Redish and
Touretzky (1998). Incoming information includes external cues
and internally generated signals. They are fused to develop place
cells in the paper of Arleo and Gerstner (2000). Place cells were
derived by Solstad et al. (2006) from linear combinations of
entorhinal grid cells (Fyhn et al., 2004) and vice versa, neuronal
level model can produce grid cell firing from place cell activities
as shown by Burgess and O’Keefe (2011). Time plays the key
role in the slow feature analysis model of place cells put forth by
Franzius et al. (2007) and Schönfeld and Wiskott (2015). Time
plays the opposite role in the independent component analysis
based autoencoding place cell models (Lőrincz and Buzsáki, 2000;
Lőrincz and Szirtes, 2009). In these works, time appears in a so
called novelty detection (time differentiation) step.

We think that all of these models, i.e., navigation based
models, models based on interaction between representations,
models that search for components that change slowly in
time, and models that consider novelty detection may
have their merits in the development of low-dimensional
representation of Cartesian Factors, since the development os
such representations—as it has been mentioned earlier—are
crucial for reinforcement learning of goal oriented behavior.
For example, navigation in partially observed environments,
like the Morris maze or when in dark, can be supported by
temporal integration. As another example, novelty detection
may support the separation of a rotating platform from remote,
non-rotating cues studied by the Stuchlik group (Stuchlik and
Bures, 2002; Stuchlik et al., 2013). Further, the relevance of
learning of low-dimensional task oriented representations can’t
be underestimated since state space and thus learning time
decreases tremendously if the dimension is decreased.

It seems straightforward to us that information both from
the environment and from self-motion should be combined for
an efficient and precise neural representation of self motion
in the external space (Evans et al., 2016) and that different
signals and latent variables can be advantageous under different
conditions and may support each other. The case is similar
to object recognition, when the different mechanisms, such as
stereoscopic information, structure from motion, shape from
shading, texture gradient, and occlusion contours among others
work together in order to disambiguate the “blooming, buzzing
confusion” of the visual information in different conditions,
see, e.g., the work of Todd (2004) and the references in that
paper.

Due to the critical nature of the vestibular input, our goal is to
derive place cells under the assumption that only this component

of the Cartesian representation, namely the egocentric direction
relative to an allothetic coordinate system is available and we
ask if the allothetic representation of space can be derived by
using only (i) directional information and (ii) the egocentric, i.e.,
idiothetic visual information.

3. REVIEW OF THE ALGORITHMS

3.1. The Logic of the Algorithmic
Components
The logic is as follows:

(i) We start with an autoencoding network and meet the
comparator hypothesis of Vinogradova (2001).

(ii) Firing in the hippocampus is very sparse, see, e.g., the work
of Quiroga et al. (2008), and we apply sparse models.

(iii) We find limitations and include lifetime sparsity beyond the
spatial one. It is supported by the two-stage formation of
memory traces.

(iv) We derive the dynamics of the grid structure by predicting
in the simplest form: input–output pairs are formed by past
and future experiences, respectively. The predicted values
can be fed back, the input can be shifted by them and thus,
prediction can be continued into the future. We compare
linear models; the pseudoinverse computation and partial
least square regression.

(v) Prediction concerns the actual firing pattern instead of the
individual neurons that fire and components are ordered
by their magnitudes: the largest magnitude signal makes
the first component of the input and so on in decreasing
order. This feature may appear naturally in integrate-and-
fire mechanisms.

(vi) We assume view invariant observations of the objects. We
use indices: a visible object activates an index. This is like the
recognition of the presence of the object (“what”) without
the knowledge about its position (“where”). This “what”
representation resembles to the so called “bag model”
(Harris, 1954; Csurka et al., 2004).

Below, we elaborate on these algorithms and then we present our
results.

3.2. Autoencoder
An autoencoder is the self-supervised version of the Multilayer
Perceptron (MLP) and may have deep versions (Hinton and
Salakhutdinov, 2006; Vincent et al., 2010). For the sake of general
formulation, the deep version is described below although our
numerical studies in this respect are limited.

Consider a series of non-linear mappings (layers) of the form:

H = fN
(
· · · f2

(
f1(XW1)W2

)
· · ·WN

)
, (1)

where X ∈ R
I×J is the matrix of I inputs of size J,Wn ∈ R

Qn−1 ,Qn

are parameters with Q0 = J, and fn are non-linear almost
everywhere differentiable element-wise functions (n = 1, . . . ,N;
N ∈ N). Then H ∈ R

I×Q is called the feature map (QN = Q).
Typically, one takes two such mappings with reversed sizes—an
encoder and a decoder—and composes them. Thereupon one can
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define a so-called reconstruction error between the encoder input
X and the decoder output X̂ ∈ R

I×J , normally the ℓ2 or Frobenius
norm of the difference, i.e.,

1

2
‖X − X̂‖2F =

1

2

∑

i=1,...,I

∑

j=1,...,J

(Xi,j − X̂i,j)
2

and try to find a local minimum of it in terms of parameters
Wn after random initialization, by taking advantage of a step-size
adaptive mini-batch subgradient descent method (Duchi et al.,
2011; Zeiler, 2012; Kingma and Ba, 2014). The non-linearity can
be chosen to be the rectified linear function fn(x) = x · I (x > 0)
for x ∈ R (Nair and Hinton, 2010; Dahl et al., 2013) to avoid the
vanishing gradient problem (Hochreiter, 1991; Hochreiter et al.,
2001), where I designates the indicator function.

3.3. Spatial Sparsity and Lifetime Sparsity
Deep Autoencoders are often used as a pretraining scheme, see,
e.g., the work of Erhan et al. (2010), or as a part of supervised
algorithms as in the paper of Rasmus et al. (2015), but they lack
the ability to learn a meaningful or simple data representation
without prior knowledge (Sun et al., 2017). To obtain such a
description, one might add regularizers or constraints to the
objective function as did Grant and Boyd (2014) and Becker et al.
(2011), or employ a greedy procedure like Tropp and Gilbert
(2007) and Dai and Milenkovic (2009). It is well known that
minimizing the sum of ℓ2 norms of parameters Wn can reduce
model complexity by yielding a dense feature map, and similarly,
the ℓ1 variant may result in a sparse version (Tibshirani, 1996;
Ng, 2004).

An alternative possibility is to introduce constraints in the
non-linear function fn. For example, one may utilize a k-sparse
representation by keeping solely the top k activation values in
feature map H, and letting the rest of the components zero as
suggested byMakhzani and Frey (2013). This case, when features,
i.e., the components of the representation, compete with each
other is referred to as spatial sparsity.

Sparsification occurs on a different ground if indices of the
representation onmany inputs go up against each other. This case
is called lifetime sparsity, see, e.g., the work of Makhzani and Frey
(2015) and the references therein. Lifetime sparsification ensures
that all indices may play a role, whereas spatial sparsification may
render a large portion of the components of the representation
quiet for all inputs. On the other hand, lifetime sparsificationmay
not be used on any single input, the case needed for real time
responses.

3.4. Predictive Partial Least Squares
Regression
PLS regression started with the works of Kowalski et al. (1982)
and Geladi and Kowalski (1986) back in the eighties. The PLS
model assumes explanatory samples collected in matrix R made
of t samples of l dimensions and a response matrix Q of
m dimensions collected on the t observations. PLS combines
features of principal component regression (PCR) and multiple
linear regression (MLR): PCR finds maximum variance in R,
MLR is to maximize correlation between R andQ. PLS regression

tries to do both by maximizing covariance between them: first, it
extracts a set of latent factors that explain the covariance between
the explanatory and response variables and then the regression
step predicts the values of the response variables.

In our case, explanatory variables and responses are connected
by time: R = [r(1), . . . , r(t)] andQ = R(+) = [r(2), . . . , r(t+1)]
make the explanatory and the response variables, respectively.
PLS regression takes the form

R = TPT + E (2)

R(+) = UQT + F (3)

where T and U are matrices of dimensions t× n, P andQ are the
so called orthogonal loadingmatrices of dimensions t×n (PTP =

QTQ = I), and matrices E and F are the error terms drawn
from independent and identically distributed random normal
variables. It is also assumed that covariance between matrices T
and U are maximal. In the computations, we used the Python
package sklearn (Pedregosa et al., 2011).

3.5. Prediction via Pseudoinverse
Computation
PLS regression is one option for predictions. Deep networks
can be considerably more efficient. The simplest method, on the
other hand, is possibly pseudoinverse computation that can be
embedded into a Hebbian network structure as suggested by
Lőrincz and Szirtes (2009) and in some of the references cited.
Using the notations of the previous section, the pseudoinverse
solution can be formulated as follows:

r(τ + 1) = M

(
r(τ )T , . . . , r(τ − t)T

)T
+ e(t) (4)

where e(t) is the error term at time t. Equation (4) gives rise to the
solution M̂ ≈ R(+)R+ where R

+ denotes the Moore–Penrose
right pseudoinverse of the matrix constructed from the matrix

with the ith column formed by
(
r(i)T , . . . ; r(i− t)T

)T
and i > n

is assumed.

3.5.1. Continued Prediction
For the pseudoinverse method, matrix M̂ and the estimated
predicted activities can be used for shifting the prediction further
in time

r̂(τ + 1) ≈ M̂

(
r(τ )T , . . . , r(τ − t)T

)T
(5)

r̂(τ + 2) ≈ M̂

(
r̂(τ + 1)T , . . . , r(τ − t + 1)T

)T
(6)

and so on

and the case is similar for the PLS regression.

3.6. Magnitude Ordered Activities
PC activities themselves are bounded to the PCs themselves. This
representation can’t fulfill our purposes since PCs are locked
to already observed bag representations and thus they are not
able to support prediction outside of the explored field. As we
shall see, sparse autoencoder on the bag representation produces
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densely packed PCs that have high activities at the centers and
lower activities off-center. In turn, between two place cell bumps
there should be a hump and a metric-like representation can
take advantage of this periodicity. If we order activities according
to their magnitudes then largest activity will reach its (local)
maximum at the center of a place cell, it will be smaller at
other (neighboring) positions and will become large at another
center. We will develop latent predictive factors of the magnitude
ordered place cell activities. Indications that magnitude based
ordering may be present in the neural substrate is elaborated in
the discussion (Section 5.2).

3.7. The Bag Model
We assume a high level representation of the visual information
that correspond to the so called bag model of machine learning.
The Bag of Words representation, for example, represents a
document by the words that occur in the document, without
any syntactic information (Harris, 1954). Similarly, the Bag of
Keypoints representation of an image (see e.g., Csurka et al.,
2004 and the references therein) contains the visual descriptors
of the image without any information about the position of those
descriptors. Such representations are similar to thewhat system in
visual processing as described first by Mishkin and Ungerleider
(1982), elaborated later by Goodale and Milner (1992) and that
may also be present in the representations of other modalities,
see, e.g., the work of Schubotz et al. (2003).

Our inputs are represented by the indices of the objects
present in the visual field. If the object is present, then the value at
corresponding input component is set to 1. Otherwise, it is set to
zero. This representation is independent from the position of the
object within the visual field, being an invariant representation of
the object, since the value of the representation does not change
as a function of idiothetic direction and allothetic position as long
as the object is within the visual field.

3.8. Algorithmic Formulation of Cartesian
Factor Learning
We assume that a latent random variable Z (e.g., the discretized
allothetic representation of the state, that is, the place cells) and
an observed random variable Y (e.g., the head direction, that is,
a compass) are continuous and together they can fully explain
away—by means of saved memories—another observed binary
random variable X (e.g., the egocentric view with pixel values
either one or zero taken in the direction of the head, or the
invariant bag representation with ones and zeros). The ranges
of Z and Y are supposed to be discretized finite r- and one-
dimensional intervals, respectively. For more details, see Figure 1
and the Appendix.

3.9. Simulation environment and numerical
details
3.9.1. The Arena
For our study, we generated a squared “arena” surrounded by
d = 150 boxes (Figure 1). The “arena” had no obstacles. Boxes
were placed pseudo-randomly: they did not overlap. The “arena”
was discretized by an M × M = 36 × 36 grid. From each grid
point and for every 20◦, a 28◦ field of view was created (i.e.,

L = 360◦

20◦ = 18, overlap: 4◦ between regions), and the visibility—
a binary value (0 for occlusion or out of the angle of view)—for
each box was recorded, according to Equation (7); we constructed
a total of I = 37 · 37 · 18 = 24, 642 binary (x(m,l)) vectors.

3.9.2. Masks and Information on Closeness
These vectors were processed further. Beyond the actual viewing
direction and viewing angle of 28◦, we also input visual
information in neighboring directions: we varied the non-zeroed
(non-masked) part of the input from a single direction (28◦) to
all 18 directions (360◦). Formally, for various experiments, we
defined masks Vi,· summing to v = 1, 3, . . . , 17, 18, for which
we carried out the concatenation method for each visible sectors
separated by 20◦ degrees that we appended with all-zero vectors
for the non-visible sectors (see, Figure 2 below and Equation 8 in
the Appendix).

3.9.3. Normalization and Lifetime Sparsity
In some experiments we normalized the inputs to unit ℓ2 norm
for each d = 150 dimensional components, provided that at
least one of the components differed from zero and dropped the
input if all the components were zeroes. This is the “normalized
case.” We used spatial sparsification with k = 1. We also used
lifetime sparsification. The dimension Q of the feature map of
the autoencoder was set to 30 and we used probabilities of p =
100
Q % = 3.33% and p = 6.66%. The p = 3.33% means that
any component was active once on the average in the sample,
but either none of them, one of them, or more than one of them
may have assumed non-zero values for an individual input. The
all zero case was dropped and thus the average probability was
somewhat higher than p = 3.33%. The ratio of dropped inputs
was smaller for probability p = 6.66%.

Concerning the error of the autoencoder we had two
options: (a) error of the full output and (b) error only on
the visible components that belonged to the viewing angle
as in Equation (9). This latter is called masked experiment.
We experimented with 3 and 5 layer autoencoders, with
the middle layer representing the latent variables. For the
5 layer case, the sizes of the hidden layers were spaced
linearly between 2700 and 30 giving rise to layers of
dimensions 2, 700, 1, 335, 30, 1, 335, 2, 700 from input to output,
respectively.

3.9.4. Magnitude Ordering
For each point in the arena we ordered the activity vector’s
components according to their magnitudes, with the largest
being the first. Although the dimension of the representation
remains, the individual indices of the place cells disappear: one
doesn’t know, which place cell has the largest activity, which
one is the second largest, and so on. Nonetheless the largest
activity will change along straight paths since between two
place cell dumps there is always a hump. The oscillation is the
basis of learning. Magnitude ordered activities along straight
paths may provide information about displacements along the
path, since the differences of the magnitudes change. Exceptions
correspond to different positions that have the same set of activity
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FIGURE 1 | Arrangements of the numerical experiments. (A) Input is concatenated from sub-vectors, which belong to different allothetic directions. A given

index corresponds to the same box, the “remote visible cue,” in all sub-vectors. The value of the a component of a sub-vector is 1 (0) if the box is visible (non-visible)

in the corresponding direction (cf. bag representation, for more details, see text). More than one direction can be visible. The figure shows the case of three visible

directions depicted by green color. Some boxes may be present in more than one visible direction, since they are large. (B–D) The “arena” from above with the

different boxes around it plus some insets. Shaded green areas in (B–D), show the visible portions within the field of view at a given position with a given head

direction. Insets show the visual information for each portion to be transformed to 1 s and 0 s in the respective components of the sub-vectors. Components of

out-of-view sub-vectors are set to zero. (Lőrincz et al., 2016 with permission).

FIGURE 2 | General architecture. In the numerical experiments the notations correspond to the following quantities: Z latent positions, Y discretized “compass”

values. Non-visible part of the input to the network is denoted by red, visible part is denoted by green. Visible part consists of 28◦ viewing angle in the actual direction

and 28◦ viewing angle in neighboring directions separated by 20◦. The number of neighbors was set to 2, 4, 16, 17 with 17 directions and the actual direction

covering the whole 360◦. For each viewing angle inputs represent boxes visible within the corresponding range. Values of the vector components representing the

boxes are set to 1 if the range corresponds to the actual direction or if belongs to the set of neighbors. The full size of the input equals to the “No. of boxes × No. of

viewing angle ranges.” (Lőrincz et al., 2016 with permission).

magnitudes, whichmay occur for regular lattices and along lattice
translation vectors.

3.9.5. Prediction along Straight Paths
We performed the prediction experiments on a place cell
activity model trained by the autoencoder with a specific set of
parameters: we used p = 6.66% lifetime sparsity with normalized
input and masked loss function with a 220◦ viewing angle. The

model was trained for 100 epochs. We discretized the arena to a
150× 150 grid and collected place cell activities using the model
from each of the 151 × 151 = 22801 grid points for all 18
directions.

We collected data in each direction separately. Distance
between the steps equals the grid step distance of the discretized
arena. In the learning phase we used n = 60, 80, 100 samples of
them(= 30) magnitude ordered place cell activities from a n step
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length straight path as inputs. For each step the sample of the
closest grid point was taken. The m dimensional data sample of
the (n + 1)st step along the same path was used as supervisory
predictive information. All sample paths where the necessary
n + 1 steps doesn’t lead out from the arena were used during
training.

With this method we can estimate the representation beyond
the arena from an initial series of samples by using the predicted
estimation for shifting the n consecutive samples and dropping
the last one. The short distances between the steps aim to imitate
gamma-wave sampling.

The software used in these studies can be downloaded from
GitHub1.

4. RESULTS

First, we review our recent results on place cells derived in
Lőrincz et al. (2016) and in Lőrincz (2016) for the sake of
argumentation and clarity. These results are reproduced in
Figures 3, 4, and in Table 1. Then we derive new features related
to the place cells. This subsection is followed by the description
of our new results on oriented grid cells. They, together, form the
Cartesian Factor.

We note that uniformly distributed inputs and sparsification
favors similarly sized sets of the input space, since latent units are
competing for responses as we shall discuss it later. Competition
gives rise to close packing. In 2D, the locally closest packing is
the hexagonal structure and this arrangement is commensurate
with the 2D space, so locally close packing can be continued
and gives rise to a regular global structure, the triangular lattice.
Our arena is, however, a square structure and has 90◦ symmetry,
which is incommensurate with the hexagonal structure. In turn,
we expect a close to hexagonal PC structure with reasonable
amount of structural errors. Notably, self-supervised predictive
compression gives rise to grids and emerging grids show
improved hexagonal symmetry and tend to correct the errors of
the place cells. Note that the larger the arena, the smaller the effect
of the boundary is.

4.1. Cartesian Abstraction Yields Place
Cells
The dependencies of the responses in the hidden representation
vs. space and direction are shown in Figures 3, 4, respectively.
Linear responses of randomly selected latent units for different
algorithms are depicted in Figure 3, illustrating the extent
that the responses became localized even in the absence of
competition after learning.

Figure 4 shows the direction (in)dependence of the responses.
This figure has a special coding method: for each position and
for each direction we computed the responses of all 30 neurons
of the middle layer of the autoencoder and chose the one with
the highest activity. In the ideal case a single neuron wins in
all directions at a given position. Therefore, for each position
we selected the neuron which won in the most directions (out
of the 18) and assigned the number of its winnings to that

1https://github.com/asarkany/ehcmodel

position. Then we colored each position within the arena with
a color between white, when the number is zero, i.e., none of
the neurons is responding in any of the directions, and black,
when the number is 18, i.e., the winner is the same neuron in all
directions. Middle values between 0 and 18 are colored from light
yellow to dark red in increasing order. Figure 4 depicts results for
different masks. The first column from the left is the case when
only a single direction is not masked. Other columns from left
to right correspond to cases when 3, 5, . . . 18 directions are not
masked.

One should ask (i) if the linear responses are local and
activities far from the position of the peak activity are close
to zero; (ii) if the number of dead latent units is small, (iii) if
responses are direction independent, that is, if we could derive
the discretization of space in allothetic coordinates. We found
that spatial sparsity with the 3 layer network rendered the output
of some or sometimes all hidden units to zero (Table 1). The
same happened for the 5 layer network with dense 2nd and
4th layers and sparse 3rd layer. On the other hand, lifetime
sparsity p = 3.33% with the 5 layer network produced excellent
results. Lifetime sparsity p = 6.66% also produce high quality
PCs. Figure 4 shows that including the mask, direction-invariant
activations start to develop at around about 100◦ (see the second
and the third lines), whereas without themask, similar activations
appear at around 230◦. For the sake of comparison, we also
provide the ICA responses in Figure 3.

4.2. Place Cells Assume Close to
Hexagonal Structure
Competition, as it was mentioned above, gives rise to hexagonal
close packing in two dimensions, that is in a triangular lattice
structure. In our experiments the symmetry is frustrated by the
squared boundary of the “arena.” The Delaunay triangulation
of Figure 5A shows a number of distorted hexagons, some
heptagons, pentagons and—closer to the edges of the “arena”—
a few quadrilaterals, too. The more dark red the color, the
smaller is the winning domain of the neuron. Sizes are more
similar and shapes are more circle-like in the internal part
of the “arena,” whereas they are more distorted around the
edges and at the corners. The size of the PCs are similar or
larger at around the edges and the corners (Figure 5C). The
paper written by Muller et al. (2002) reviews the different
variables of sensory information that affect the sizes and the
densities of PCs. We note that in the experiments, the bags
are almost empty at the edges (in 180◦) and in the corners (in
270◦).

4.3. Predictive Methods Can Form Grid
Cells from Place Cells
We use pseudoinverse and PLS regression methods to predict
the next activity based on a series of previous ones. These
methods work on magnitude ordered series and thus they are
not associated with individual place cells. Magnitude ordered
activities show oscillations along straight paths as shown in
Figure 6. Such behavior suits prediction.

We show results for this two linear methods below.
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FIGURE 3 | Linear responses of individual latent units selected randomly: we chose neuron with index 2 from the latent layer. ICA: values may take

positive and negative values. Other experiments: all units are ReLUs, except the output, which is linear. Color coding represents the sum of responses for all directions

at a given point. SP1: spatial sparsity with k = 1, LT3.3%: lifetime sparsity = 3.3%, Norm: for each 150 components, the ℓ2 norm of input is 1 if any of the

components is non-zero, Mask: autoencoding error concerns only the visible part of the scene (i.e., the non-masked part of the input) DL: dense layer.

“Norm-LT3.3%-LT3.3%-Mask” means normed input, masked error, 5 layers; the input layer, 3 layers with LT sparsity of 3.3% and the output layer. Columns

correspond to masks of different angular extents separated by 20◦ and covering viewing angle of 28◦, i.e., they overlap. Left column: a single viewing angle is

non-masked. Other columns correspond to 3, 5, . . . 17, 18 non-masked directions in increasing order to the right. (Lőrincz et al., 2016 with permission).

FIGURE 4 | Angle independence. Notations are the same as in Figure 3. The highest activity (winning) unit was selected for each input at each position in each

direction. We counted the number of wins at each position for each unit and selected the largest number. Results are color coded. Black (18): there is a single winner

for all angles at that position. White (0): no response at that point from any neuron in any direction. Values between 1 and 17: the darker the color the larger the

direction independence for the best winner at that position. Rows represent different algorithmic components. SP1: spatial sparsity with k = 1, LT3.3%: lifetime

sparsity = 3.3%, Norm: for each 150 components, the ℓ2 norm of input is 1 if any of the components is non-zero, Mask: autoencoding error concerns only the visible

part of the scene (i.e., the non-masked part of the input), DL: dense layer. “Norm-LT3.3%-LT3.3%-Mask” means normed input, masked error, 5 layers; the input layer,

3 layers with LT sparsity of 3.3% and the output layer. Columns correspond to masks of different angular extents separated by 20◦ and covering viewing angle of 28◦,

i.e., they overlap. Left column: a single viewing angle is non-masked. Other columns correspond to 3, 5, . . . 17, 18 non-masked directions in increasing order to the

right. (Lőrincz et al., 2016 with permission).

4.3.1. Prediction Outside of the “Arena”
Figures 7, 8 depict the results for the pseudoinverse method and
for PLS regression, respectively

PLS regression is a better predictor than the pseudoinverse
method. We show predictions starting from a straight line along
different directions. Both methods produce results that depend

on the position along the starting line. PLS also predicts periodic
changes along the paths and this structure is close to hexagonal
beyond the “arena”: pentagons and heptagons or other non-
hexagonal polygons are rare except around the edges of the
predicted region (Figure 9). Predicted signal fades in most cases
as prediction proceeds.
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TABLE 1 | Dead neuron count: number of non-responsive computational units.

Field of view [deg]

28 68 108 148 188 228 268 308 348 360

Norm-SP1-Mask 2 0 5 5 10 12 16 18 15 18

LT3.33% 0 0 0 0 0 2 2 6 8 9

Norm-LT3.33% 0 0 0 1 1 3 2 4 9 11

Norm-LT3.33%-Mask 0 0 0 0 0 0 1 2 7 11

Norm-LT6.66%-Mask 0 0 0 0 0 0 1 4 13 13

Norm-DL-LT3.33%-Mask 0 3 1 29 30 30 30 30 30 30

Norm-LT3.33%-LT3.33%-Mask 0 0 0 0 0 0 0 0 0 0

Figure 9 show predicted structures at angles 0◦

(Figures 9A–C) and in 340◦ (Figures 9D–F), respectively.
Prediction takes past values of 60, 80, and 100 steps, respectively
(see Figure 9). Outside the arena the number of predicted steps
are in the order of 200. Note one step is very small compared to
the PCs. If the size of the PCs is about the size of the rat, then the
steps are about one twentieth of the rat’s size.

For 0◦, hexagonal structure is the best for 60 steps, but it fades
quickly. Fading decreases for 80 steps, but the structure inherits
the PC errors of the arena. This is more so for 100 steps. The
case is somewhat different for predictions along 340◦. In this case,
fadings are similar. Visual inspection says that it is the smallest
for the 80 step case. Hexagonal structure is relatively poor for 60
steps and is considerably better for 80 and 100 steps.

The figures demonstrate that close to hexagonal predictions
can arise. The following notes are due here. The more the
information from the past, the more the squared arena frustrates
the hexagonal structure. Different directions approximate
hexagonal structure differently, depending on the error structure
within the squared arena. We also note that the ratio between
length of the boundary and the size of the arena decreases the
frustrating effect of boundary as the size of the arena increases.

From the point of view of model categories, the predictive
network that uses its own output to complement (increment) its
own input is an attractor network.

5. DISCUSSION

First, we review and discuss the general and specific features
of our results. We also link them to the neural substrate
and consider the computational potentials from the point of
view of semantic memory, episodic memory, and reinforcement
learning.

5.1. General Considerations
Our goal was to find hidden and abstract Cartesian Factor, that is,
the discretization of the factor and the related attractor network
that serves as an implicit representation of the related metric,
provided that we have the complementing one. The method is
general. We applied the approach as a model for the EHC. We
assumed that we are having the head direction cells. From the
point of view of the neuronal computations, attractor models
working on set of cells are the most promising (see e.g., Skaggs

et al., 1995; Redish et al., 1996 reviewed by Clark and Taube,
2012).

From the theoretical point of view, the abstraction that we
want to develop is similar to geometrical abstractions or algebraic
abstractions: they cannot be sensed directly, so they are latent.
They are also Cartesian in the sense that they are like coordinates
in an abstract space. In turn, they enable highly compressed
descriptions. According to our assumptions, Cartesian Factors
are low dimensional and only a few of them are needed for the
mental solving of certain tasks and for the execution of decisions.
Such elimination of variables is critical for reinforcement
learning (Kearns and Koller, 1999; Boutilier et al., 2000; Szita
and Lőrincz, 2009). The example in the context of navigation
is path planning. Path planning can be accomplished in a
discretized allothetic abstraction independently from idiothetic
visual observations. This property lowers computational needs
considerably. In turn, optimization of problem solving depends
on the capability of forming low dimensional Cartesian Factors
that are relevant for planning.

The concept of Cartesian Factors is closely related to Gestalt
principles. Gestalt psychologists considered objects as perceived
and as global constructs made of the constituting elementswithin
an environment. Gestalt psychology has a number of concepts
or laws on how to group things or events. Among these are the
Law of Proximity and the Law of Continuity: according to Köhler
(1929), “whatmoves together, belongs together” (see e.g., Paglieri,
2012 and the references therein). Self-motion, for example, allows
the separation of the self from the rest of the environment and can
be uncovered by temporal information. Such information drives
the SFA procedure explored by Wiskott’s group (Franzius et al.,
2007; Schönfeld and Wiskott, 2015). They found that in realistic
conditions and for large viewing angles, direction independent
place cells can be formed by means of the temporal information.
However, temporal information may be limited due to sudden
environmental changes or occlusions. Furthermore, limiting the
algorithm to temporal information limits the Gestalt principles
to a few of them.

Another Gestalt principle is the Law of Similarity. This
principle does not rely on temporal information and could be
more adequate for general databases. Our algorithms implicitly
exploit this principle through the concatenated input pieces
that correspond to different viewing directions and may have
identical, similar or very different information contents, subject
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FIGURE 5 | PC positions make close to hexagonal structure constrained by the non-hexagonal form of the “arena.” (A) Delaunay triangulation on the

linear activities of the first (largest) component of the magnitude ordered representation. (B) Linear activities of the second(-largest) component of the magnitude

ordered representation. (C) Individual PC activities. For more details, see text.

FIGURE 6 | Magnitude ordered examples at two different positions in two different directions. Activities are color coded. (A) 1st place and 1st direction.

Top: activities of place cells along a 60 step paths, bottom: magnitude ordered activities. (B) Alike (A), but for 2nd place and 2nd direction. Different place cells fire.

About four place cells produce non-negligible outputs in both cases.

to the position and the orientation. In our work, we used head
direction and idiothetic information. The idiothetic observation
was in the form of a bag model. Bag models are widely used
in natural language processing, called the bag of words (BoW)
representation, and in image processing, called the bag of
keypoints (BoK) representation in this case. It means that we
have access to the components being present at a time, but not
about their order in time or space. In other words, the bag model
is similar to the what system of visual information processing,
described first by Mishkin and Ungerleider (1982).

Considering the bag model from another point of view,
any component in the bag requires an invariant representation.
For BoW, stemming is the tool. BoK can be based, for
example, on local scale invariant features introduced by Lowe
(1999). Whereas stemming eliminates the details and becomes
invariant of the syntax, scale invariant features incorporate

scale and rotation variations in order to become invariant to
transformations. The case of PCs is similar, their outputs are
invariant to directional changes. In turn, our concept can be
formulated as follows: we assume that beyond having a Cartesian
Factor, (a) some “details,” such as suffixes or scaling and rotations
or orientation, can be measured, (b) the bag model has been
built and the “suffixes” are either explicitly embedded into the
complementing observations (i.e., into BoK) or neglected (i.e.,
from BoW), (c) the complementing observations hide a low
dimensional space and thus it can be discretized with limited
resources, and (d) this low dimensional space may have a related
metric. In the case of documents, discretization may correspond
to topics and the underlying structure is similar to a tree, since
each topic may have subtopics. In the case of scale invariant
features, the complementing space is the space of shapes and
textures and it is very large. However, if the bag of environmental
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FIGURE 7 | Pseudoinverse predictions along straight paths beyond the “arena.” Inset of (B) and the parallelogram framed with black line in (B) show how the

figures were created: oscillating paths along a straight line are color coded and numerous parallel lines were computed. Different directions are cumulated into different

parallelograms oriented according to the path traveled. Predictions start from the points of the lower edge of the “arena,” have (A) 60 and (B) 100 time steps measured

in different directions and proceed in that direction. Each direction had its trained predictive matrix that predicted activities from all neighboring oriented lines. Ideal

activity pattern forms a triagonal lattice structure. The predictive matrix learned some characteristics of the displacements in the structure, but the prediction is poor.

FIGURE 8 | PLS regression based predictions along straight paths beyond the “arena.” The subfigures are created alike to those of Figure 7. Predictions

start from the points of the lower edge of the “arena,” have (A) 60 and (B) 100 time steps measured in different directions and proceed in that direction. Each direction

had its trained predictive PLS algorithm. The predictions can represent displacement information along the parallel lines and periodic, approximately hexagonal

structure appear in a number of directions.

visual cues can be formed as we did here, then it can support the
discretization of the environment as we showed in our computer
studies.

We should note that similarity based grouping is an alternative
to temporal grouping and can be used if the latter is not available.
For example, temporal grouping is impaired in akinetopsia,
but the representation of the 3D world is not impaired. It
seems reasonable to expect that temporal and similarity based
algorithms together learn faster, performmore robustly and more
precisely, e.g., if the task is forecasting.

The novelty of our contribution is the concept of Cartesian
Factor. Such factors can be developed in many ways. Here, we
put forth a similarity based algorithm, studied it, and suggest to
unify it with other Gestalt principles. From the point of view of
Gestalt theory, the novelty in this work is that we are looking
for descriptors of the global context, that is, the environment
itself. Compression takes place via sparse autoencoding, when
encoding is based on the information that we apply via masking
part of the input representation. Note that the input is in the
form of a bag representation, which is a sufficient condition
here.

We added temporal clues and developed predictive systems
using pseudoinverse computations and PLS regression.
Pseudoinverse computation seem to fit the structure of
the superficial layers of the entorhinal cortex (Lőrincz and
Szirtes, 2009) and the non-linear extensions are feasible. For
pseudoinverse computation and for PLS, we found that PLS
regression can provide more regular predictions. Furthermore,
we found that the oriented hexagonal-like structures continued
beyond the observed “arena” can keep the hexagonal regularity,
sometimes to a better extent than the original set of PCs learned
in a non-hexagonal environment. We suspect that the highly
precise hexagonal grids (see e.g., the review written by Buzsáki
and Moser, 2013 and the cited references therein) may emerge
by including an interplay between the PCs and the oriented grids
when orientation free grids are developed, since the trigonal grid
is the common structure in the different directions.

5.2. Cell Types Developed
Using the bag model, we could develop place cells by covering
viewing angles of about 100◦. Further improvement can be
expected if (i) deeper networks are applied and (ii) if temporal
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FIGURE 9 | Delaunay triangulation fitted to the predicted structure from models. (A–C) Trained on 0◦ paths (D–F) trained on 340◦ paths. Training paths are

60, 80, and 100 steps long for (A)+(D), (B)+(E), and (C)+(F) subfigures, respectively.

changes are included. We found in our simulations that sparsity
should be kept for deeper networks at least for some of the
layers. No experiments were conducted on pixel based visual
information, a much higher dimensional representation that has
pixel-wise nonlinearities. Such nonlinearities can be overcome
in many ways, including temporal methods as demonstrated by
Franzius et al. (2007) and Schönfeld and Wiskott (2015). An
extension of our architecture to a hierarchy may also suffice.

While the first largest amplitude PC signal must belong to the
closest cell, the second largest must belong to its nearest neighbor
along the path. In turn, second largest amplitudes should uncover
the Voronoi tessellation of the PCs as demonstrated in our
computer experiments (Figure 5B).

From the algorithmic point of view, when a path proceeds
toward the border of the “arena” and gets close to it, the second
largest component becomes very small, since there is no cell
beyond the border and the second nearest neighbor can be far
at the sides. Assume that a cell responds to the ratio between
the largest activity and the second largest one. This cell will show
high activity when the path is directed toward the border and the
position is close to the border, since the second largest activity
belongs to a remote PC and is small. This cell would behave alike

to border cells even in dark. We should note that according to the
long held view, interneurons approximate arithmetic operations,
such as subtraction, division or shunting of the excitation.

By means of PCs, we could develop oriented grid cells
and could derive some precursors for border cells. Three
simple and justifiable algorithmic operations were exploited,
(i) the integrate-and-fire mechanism, (ii) features of the theta
waves, and (iii) a self-supervisory compression in the form of
pseudoinverse computation and PLS regression. Self-supervision
means that actual signals supervise delayed signals during
learning. Magnitude based ordering may occur in the neural
substrate, e.g., if magnitudes are converted to time giving rise to
time ordering. However, some kind of clock is needed for telling
the zero instant of the ordering. Intriguingly, the phase of theta
wave can play the role of such a clock. Indeed, during the first
half of the theta cycle, cells that fire represent current position,
whereas during the second half of the theta cycle temporally
ordered (future) place cells fire (Sanders et al., 2015). These
findings point to a more complex mechanism: cells that represent
the past cant fire in the second half of the theta wave. We used a
concatenation mechanism for prediction and, in turn, our model
suggests a predictive learning mechanism that overbridges theta
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cycles and exploits the activities of the second halves of the theta
cycles.

Recent results from Ferrante et al. (2016b) show that different
functional groups of pyramidal and inhibitory neurons are
present in the entorhinal cortex. Such groups may satisfy our
constraints that magnitude based ordering can support oriented
grid cell formation via self-supervised prediction as well as border
cell formation via shunting inhibition. Here is putative model
for the latter. Consider the integrate-and-fire model. Spikes that
come first excite the neuron and if delayed spikes that respond
to the second largest activities are not capable for the ignition
of shunting inhibition—e.g., if the animal is close to the border
and no PC is in that direction—then the cell will fire and the
cell will behave like a border cell. The head direction dependence
is, however, more complex as reported by the original work of
Solstad et al. (2008) calling for more detailed models based on
sophisticated features, see e.g., the review of Kepecs and Fishell
(2014) and the papers of Ferrante et al. (2016a), being outside of
the scope of this paper.

5.3. Order of Learning in the Model
We used HCs for learning PCs without temporal information.
We developed oriented grid cells from the PCs by means
of temporal information and self-supervised compression. We
showed that prediction becomes more regular (more hexagonal-
like) if it is continued beyond the area represented by PCs.
Temporal information on the second largest amplitudes gives
rise to the Voronoi polygons on the set of PCs and may uncover
border responses, e.g., by insufficient shunting inhibition. This
algorithmic feature remains valid in dark, since it relies on the
available set of PCs.

Other entorhinal cell types, such as speed cells and direction
independent grid cells pose further challenges for our model.
Speed cells described by Kropff et al. (2015), can be easily formed,
since the firing rate of oriented grids is a monotone function
of speed as found by Sargolini et al. (2006). For example, the
max pooling operation, being well documented for the primary
visual cortex (Movshon et al., 1978; Mechler and Ringach, 2002;
Touryan et al., 2005), suits the needs. The idea can be traced
back to the work of Fukushima (1980) and has gained attention
from the point of view of (i) invariant representations (Serre
et al., 2002), (ii) as a tool for efficient feature extraction, and
(iii) reduction of the dimension of the representation (Huang
et al., 2007). From the point of view of grid cells, a max pooling
neuron outputs the largest activity and thus it loses orientation
and displacement dependencies making the activity a monotone
function of the speed.

The model of direction independent grid cells is more
challenging, since there are additional constraints: firing should
be continued (a) at any point, (b) including the absence of learned
PCs, and (c) according to the displacement of the grid in any
changes of the direction. A number of neurally plausible models
based on different assumptions have been built see, e.g., the works
of Burgess and O’Keefe (2011), Giocomo et al. (2011), and Kesner
and Rolls (2015) and the cited references. The capability for
planning, however, seems crucial as emphasized by Buzsáki and
Moser (2013) and Sanders et al. (2015). It has been included into

a detailed model by Sanders et al. (2015). Compared to these
model, the Cartesian Factor principle is a high level description
that aims to shed light onto the origin of the key algorithmic
building blocks of the development of neural representations.

The Cartesian Factor principle suggests the following order
of learning: (i) head direction cells, (ii) place cells, (iii) oriented
grid cells, (iv) direction free grid cell representation by means of
an interplay between place cells and grid cells. According to the
recent paper from Rowland et al. (2016), there are two possible
routes for grid cell formation: it is either species specific or spatial
experience shapes the grid system. Our model proposes the
latter option and fits the experimentally found order of learning
reviewed in the cited paper.

We illustrated that the hexagonal like symmetry of the grid
cells can be maintained in the absence of information form
PCs. Planning and then traveling along loops, e.g., exploring
and then homing, can serve the tuning of the grid cells. It may
be worth noting that both grids and PCs change under slight
distortion of the “arena” showing the coupling between these
representations.

Along the same line of thoughts, our model is based on
an autoencoder, which—by construction—is also a comparator
(Lőrincz and Buzsáki, 2000) as suggested for the hippocampal
function by Vinogradova (2001) and others, see the cited
references. In the autoencoder, the input received is compared
with the representation generated output. In case of mismatch,
the adjustment of the representationmay take place and the same
error may drive Hebbian learning. Such error based optimization
of the representation and learning were suggested by Lőrincz
and Buzsáki (2000) and Chrobak et al. (2000) and elaborated by
Lőrincz and Szirtes (2009).

Our sparse autoencoder hypothesis is supported by the fact
that activity patterns are very sparse in the CA1 subfield of the
hippocampus. We found in our numerical experiments that two
stages are needed for the development of sparse representations,
one for real time processing that uses spatial sparsity, and another
one for off-line processing, when replayed inputs satisfy lifetime
sparsity constraints. Such differences may show up in statistical
evaluations of theta phase patterns and SPW-R patterns, with
the former representing the actual path, whereas the latter may
perform lifetime sparsification. However, behavioral relevance
may modulate this simple picture.

5.4. Special Features of the Algorithms
The particular features of our algorithmic approach are as
follows:

1. Sparse autoencoding requires two stage operation, one
for real time and another one for learning. The latter
should implement or approximate lifetime sparsity. Imperfect
lifetime sparsitymay give rise to silent neurons not responding
to inputs. Homeostasis can counteract this process, enabling
an adjustable reservoir of PCs for learning new information.
Homeostatic maintenance of the activity may manifest itself
through low spatial specificity. Such neurons have been found
by Grosmark and Buzsáki (2016), but the picture seems more
sophisticated.
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2. Temporal ordering is necessary for the predictive compression
in our model. This is the core step that sets the high-level grid
representation free from external observations. Theta-waves
or integrate-and-fire behavior, possibly both, are candidates
for temporal ordering.

3. The bag model simplifies both the algorithm and
representation; it decreases the dimensionality of the
input and neglects many of the details. It keeps track of
the components, but not their actual manifestations. The
bag representation is analogous of the “what system” that
has information about the objects present, but not about
their positions, for example. From the point of view of
component based representation, the bag model resembles
to the “recognition by components” principle put forth by
Biederman (1987) for visual inputs.

4. The model of Cartesian Factor formation needs neurons that
can multiply and can produce conjunctive representations,
e.g., between the visual cues and the head direction cells.
Candidates for such computations include (i) the logical
operations, such as the AND operation made possible by
coincidence detection (for a recent review, see the work of
Stuart and Spruston, 2015), (ii) the interplay between distal
and proximal dendritic regions—when the proximal input
enhances the propagation of the distal dendritic spikes—
can also support a multiplicative function (Larkum et al.,
2001; Jarsky et al., 2005). We note that the EHC has
sophisticated interconnections between distant and proximal
regions (Gigg, 2006). We exploited the multiplicative feature
in our representation by using the product space and zero
some of the inputs by (multiplicative) masking.

5.5. Relation to Meta-Level Cognition
Cartesian Factors select features of the world and a limited set
of features may be sufficient for solving distinct problems. Path
planning is an example. The grid like structure, its potentials
for path planning and distance estimation as described in Huhn
et al. (2009), for example, are high level descriptors of the
world. They tell very little about the actual sensory information.
The autoencoding principle can serve both functions that is (i)
the manipulation at the meta-, or symbolic level, such as the
computation of distances on the grid structure and (ii) the low
level input-like representation via the estimations of the inputs
or the inputs that follow. The autoencoding principle resolves the
homunculus fallacy by saying that “making sense of the input” is
the function of the representation that approximates the input
(Lőrincz et al., 2002). We undersign the view that the estimation
of the input occurs via hierarchical bag representations that
neglect more andmore details bottom-up and combinemore and
more (Cartesian) factors top-down. One may say that in the top-
down generation of the estimated input, meta level description
becomes semantically embedded by means of the contributing
Cartesian Factors.

One can also treat episodic memory in the context of the
autoencoding principle. The appearances or the disappearances
of sparse codes by time can be seen as starting and ending
points of events. Such description fits factored reinforcement
learning (Szita et al., 2003). Taken together, our algorithms and

the concept of Cartesian Factors can provide simple clues about
the working mechanisms of the “cognitive map” in such a way
that the computations avoid combinatorial explosions (Szita and
Lőrincz, 2009) and thus escape the curse of dimensionality,
explicated by Bellman (1958).

6. CONCLUSIONS

Weput forth the novel concept of Cartesian Factors. The working
was demonstrated by forming of place cells and grid cells, where
we exploited the complementary information, the head direction
cells. Our proposed cognitive mechanism does not work in the
absence of such information. We note that upon destroying the
vestibular system, which is critical for having head direction cells,
no place cell is formed (Taube, 2007; Winter and Taube, 2014).

Our algorithm is a sparse autoencoding mechanism that can
be deep, but should be sparse in the hidden layers according to the
numerical studies. Our algorithm relies on the bag model that we
related to thewhat system. The bag model works with a collection
of input portions that represent the same quantity type, or object
types, or episode types, such as idiothetic inputs collected at the
same position but in different directions, or the different views
of an object, or the different temporal variations starting from a
given state and ending in an other one, respectively. The different
mechanisms should support each other.

The particular feature of the Cartesian Factors is that a few
of them may be sufficient for solving cognitive problems. An
example is path planning on the “cognitive map” if neighbor
relations are available. Elimination of directions from the path
planning problem reduces the state space in the exponent. This is
a very important advantage in decision making.

We used the discretized form of the Cartesian Factors to
develop the (implicit) metric-like representation that can be
continued beyond the experienced portion of the factor. The
self-supervised predictive compression method was illustrated
in oriented grid formation. We found that the predicted grids
can be very regular and may compensate for the errors of the
underling discretization of the factor. We used magnitude based
ordering and suggested integrate-and-fire mechanism and theta
wave based firing as candidate mechanisms for this learning
stage. The attractive feature of magnitude ordering is that it
detaches sensory information from the underlying (metrical)
structure and enables extrapolation beyond the already observed
part of the world.

The interplay between (a) the detachment of the direct
sensory information, (b) the manipulation in the underlying
space, and (c) the association of new sensory information to the
extrapolated structure, in other words, the separation of grids
from visual sensory information, the prediction on the grids can
be seen as symbol learning, symbol manipulation, respectively.
The association of grid cell activities to visual information, on the
other hand, corresponds to symbol grounding in our framework
and offers a solution to the grounding problem targeted first by
Harnad (1990).

We found that the concept of Cartesian Factors approximates
well the learning order and impairment related features of head
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direction cells, place cells, and oriented grid cells. The concept
also provides hints about border cells that can fire in the absence
of visual information. We argued that border cells, direction free
grid cells, and speed cells can emerge in the model via neurally
plausible mechanisms, but they require further studies.

In sum, the concept of Cartesian Factors offers (a) a solution
for the curse of dimensionality problem of reinforcement
learning, (b) an explanation for a number of features of the
EHC, such as sparse representation, distinct cell types, and
the order of learning, (c) a framework for symbol formation,
symbol manipulation, and symbol grounding processes, and (d)
a mechanism for the learning of attractor models by means of
magnitude ordering.
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APPENDIX: DETAILS OF THE
ALGORITHMIC FORMULATION OF
CARTESIAN FACTOR LEARNING

Assume that a latent random variable Z and an observed random
variable Y are continuous and together they fully explain away
another observed binary random variable X. The ranges of Z
and Y are supposed to be grid discretized finite r- and one-
dimensional intervals, respectively. We denote the resulting grid
points by (z(m), y(l)) ∈ R

r×R; l = 0, . . . , L,m = 1, . . . , (M+ 1)r ,
L,M, r ∈ N. The indices m = 1, . . . , (M + 1)r are supposed to
be scrambled throughout training (i.e., we assume no topology
between z(m)). Then observation x(m,l) ∈ {0, 1}d is generated by
a highly non-linear function g : R

r × {1, . . . , L} → {0, 1}d from
grid point z(m) and grid interval [y(l−1), y(l)) as

x(m,l) = g(z(m), l) (7)

for m = 1, . . . , (M + 1)r ; l = 1, . . . , L. For each fixed m, one
is given masks Vi,· ∈ {0, 1}L;

∑L
l=1 Vi,l = v ∈ N indexing

pairs of the form (l, x(m,l)), where i = 1, . . . , I is a global index.
Provided such a sample from Y and X, we aim to approximate
the discretized version of Z.

We formulated the above problem as a multilayer feedforward
lifetime sparse autoencoding (Makhzani and Frey, 2015)
procedure with input matrix X ∈ {0, 1}I×J utilizing two
novelties: concatenated input vectors and a masked loss function
are motivated by the input structure. In order to construct the

inputs Xi,·; i = 1, . . . , I of size J = L · d, we coupled each v-tuple
of x(m,l) vectors for fixed m into a single block-vector using the
Vi,· values as follows:

Xi,· =
[
Vi,1 · x

(m,1), . . . ,Vi,l · x
(m,l), . . . ,Vi,L · x

(m,L)
]
. (8)

Then, we used the ℓ2 reconstruction error as the loss, but on a
restricted set of elements, namely, on the v non-zero blocks for
each input:

l(X, X̂,V) : =
1

I

∑

i=1,...,I
j=1,...,J

V
i,⌊ j−1

d
+1⌋

· (Xi,j − X̂i,j)
2 (9)

where X̂ denotes the output of the decoder network. Finally,
a sparse non-linearity was imposed on top of each encoder
layer, which selected the k percent topmost activations across
one component. We applied both lifetime (Makhzani and
Frey, 2015) and spatial sparsification (Makhzani and Frey,
2013). Multilayer autoencoders with rectified linear units,
k = 1 spatial sparsity, p%-sparse lifetime sparsity, and
linear decoder output layer make the non-linear units of the
network.

We implemented our method in the Python library Theano
(Bergstra et al., 2010) based upon the SciPy2015 GitHub
repository2.

2https://github.com/kastnerkyle/SciPy2015

Frontiers in Psychology | www.frontiersin.org 19 February 2017 | Volume 8 | Article 215

https://github.com/kastnerkyle/SciPy2015
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

	Semi-Supervised Learning of Cartesian Factors: A Top-Down Model of the Entorhinal Hippocampal Complex
	1. Introduction
	2. Background
	2.1. Review of Related Findings in the EHC
	2.2. Related Models

	3. Review of the Algorithms
	3.1. The Logic of the Algorithmic Components
	3.2. Autoencoder
	3.3. Spatial Sparsity and Lifetime Sparsity
	3.4. Predictive Partial Least Squares Regression
	3.5. Prediction via Pseudoinverse Computation
	3.5.1. Continued Prediction

	3.6. Magnitude Ordered Activities
	3.7. The Bag Model
	3.8. Algorithmic Formulation of Cartesian Factor Learning
	3.9. Simulation environment and numerical details
	3.9.1. The Arena
	3.9.2. Masks and Information on Closeness
	3.9.3. Normalization and Lifetime Sparsity
	3.9.4. Magnitude Ordering
	3.9.5. Prediction along Straight Paths


	4. Results
	4.1. Cartesian Abstraction Yields Place Cells
	4.2. Place Cells Assume Close to Hexagonal Structure
	4.3. Predictive Methods Can Form Grid Cells from Place Cells
	4.3.1. Prediction Outside of the ``Arena''


	5. Discussion
	5.1. General Considerations
	5.2. Cell Types Developed
	5.3. Order of Learning in the Model
	5.4. Special Features of the Algorithms
	5.5. Relation to Meta-Level Cognition

	6. Conclusions
	Author Contributions
	Funding
	Acknowledgments
	References
	Appendix: Details of the Algorithmic Formulation of Cartesian Factor Learning


