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ABSTRACT 
 

Model-free deconvolution of transient signals usually suffers from a wavy small-
frequency component as well as an increase of high frequency noise. The more these 
features are damped, the more the deconvolved signal becomes distorted. If we can 
include as much information concerning the genuine deconvolved signal as possible, the 
quality of the deconvolved transient can be greatly improved. 

We have developed a deconvolution procedure which does not make use of a pre-
supposed (often arbitrary) functional form of the transient signal. Instead, it is based on 
the inversion of the distortion effects of convolution, which means temporal compression, 
amplitude enhancement, increasing of the steepness of rise and decay of the measured 
convolved signal, and cutting initial data to zero to reproduce an eventual sudden jump. 
As our results have proved that the choice of a fairly good initial population is crucial for 
a successful deconvolution, we use additional genetic algorithms to generate an initial 
population with a relatively high fitness. 

The initial population is generated from the measured convolved signal in two 
subsequent stages, each consisting of a genetic algorithm and the check of the potential to 
improve the fitness of the population during further breeding, as a candidate for the 
deconvolved data set. This generation can be done “automatically” so that the user does 
not need to experiment much to get a good initial population and satisfactory final results. 

The final genetic algorithm performing the main iteration to get the estimate of the 
deconvolved data is constructed in such a way that it does not enhance either the low-
frequency wavy behaviour, or the high frequency noise. It is based on a smooth mutation 
in a range containing several data, and a dynamic adjustment of the mutation. 

The method is described in connection with the deconvolution of ultrafast laser 
kinetic (or femtosecond chemistry) data. The advantage of this method to find an 
underlying molecular mechanism via statistical inference is also discussed. 
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1. INTRODUCTION 
 
Deconvolution is a process to reverse the result of – usually unwanted – convolution 

which distorts measured signals.[1-3] In many cases, measured signals are not those we are 
interested in, but – due to the limited capacities of the measuring apparatus – they are 
distorted by a phenomenon that can be interpreted as collecting data by moving averages. If 
we consider a continuous time-dependent signal o(t) to be measured, the effect of convolution 
means that instead of this function, we can only measure  
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Using terms of image processing, the measured image function i(τ) is the integral with 

respect to time of the product of the true object function o(t) and the distorting spread 

function s(τ – t). Signals are typically measured as a discrete time-series of digital recordings. 
The discrete equivalent of the convolution equation (1) is the sum 
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where ik is the k-th recording of the time-series of the image function measurements, oi is the 
actual value of the object function between the recordings k – M and k + M, and sk – i is the 
integral of the spread function within one measured interval between k – M and k + M. This 
latter equation illustrates more transparently the moving average over 2M + 1 discrete (non-
zero) values of the spread function. (We get a genuine average without dividing by the sum of 
all the nonzero sk – i values if the spread function is defined so that the sum of its values 
between k – M and k + M is exactly unity. In this case, we can also consider the spread 
function as a kind of probability distribution characterizing the detection device. This is also 
why it is called the instrument response function.) As a result, the measured time series will 
be a distorted version of the original object function time series oi. Integral (1) or the sum (2) 
is usually written in a shorthand-type notation as 

 
soi ⊗= ,         (3) 

 
which is fully equivalent to either of the two equations. The symbol ⊗ denotes the operation 
of convolution. 

To get the true object function o from the known i and s, we have to solve the 
convolution equation (1) or (2). This procedure is called deconvolution. As we can see, the 
(analytical) task is to solve an integral equation; thus the operation of convolution does not 
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have a simple inverse. This problem can be circumvented with the help of an integral 
transformation. The Fourier transform (FT) of the image function (I) is simply the product of 
the Fourier transforms of the object (O) and the spread (S) functions: [3] 

 

SOI ⋅=          (4) 

 
As the product does have an inverse, it is easy to get the FT of the object function O 

when dividing I by S. The inverse Fourier transform then readily provides the original object 
function o. 

If the detection of the measured signal is free of any errors, the solution can be unique. 
However, if the measured signal contains some error (even if it is only a rounding-off error 
due to digital truncation of the recorded values), we get an infinite number of solutions. This 
means that no unique solution exists for any measured convolved data sets, which can easily 
be shown if we write the additional noise term explicitly: 

 
nsoi += ⊗  ,        (5) 

 
where n is the noise term. Due to the distributivity and associativity of convolution [3], this 
can be rewritten as 
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Accordingly, the convolved noisy signal is equivalent to the convolution of the sum of 

the true object function and the “deconvolved noise” n′. Due to the additivity, any function n′ 
added to the true object will give the measured image whose convolution with the spread 
function results in zero. Obviously, there exist infinite such functions with a high-frequency 
oscillation, as such oscillations disappear when their weighted average is calculated by 
convolution. Solution in the frequency domain – which makes use of the simple division of 
the Fourier transforms – does not help either. Both the image and the spread are relatively 
slowly varying functions (compared to the width of the sampling intervals), thus the high-
frequency components in the FT in both cases are very much close to zero. Due to 
experimental errors, this “zero amplitude” fluctuates quite substantially, which is further 
amplified by the division of the close-to-zero image FT by the close-to-zero spread FT. The 
resulting inverse FT – the estimate of the original object – typically contains much more noise 
than signal. 

This is a major problem during the deconvolution of measured signals, which inevitably 
contain some noise. The consequence is that a simple-minded deconvolution usually results in 
a rather noisy deconvolved data set, along with a lower frequency wavy behavior somewhere 
in the dominant frequency range of the spread function. There are several methods used that 
get rid of these unwanted features, which are more or less efficient. Most of them are based 
on the fact that the noise content results in a high-frequency oscillation, thus the elimination 
(or at least a severe limitation) of high-frequency components avoids this oscillation. 
However, if there are sudden changes in the true object function – which is typically the case 
in transient signals –, this damping of high-frequency components leads to a distortion of the 
reconstructed object function. Keeping in mind that the effect of noise is a kind of artifact in 
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the deconvolved function, information about the true shape of the original object function 
helps a lot to drive the solution towards a physically sound deconvolved. The more 
information we can enter into the deconvolution procedure, the better estimates of the true 
object we can get. 

In our previous research concerning ultrafast laser chemistry (or femtochemistry) 
measurements, we have tried to use deconvolution methods described in the literature. We 
have challenged several time-domain iterative methods, and many frequency-domain 
methods, including digital filtering and regularization.[4-6] We have found that proper 
adaptation of these methods leads to quite reasonable deconvolution results. However, none 
of them provide a genuine noise-free, unbiased deconvolved result, unless we know the 
functional form of the object function and search only for the parameters of this function so 
that the reconvolved – the calculated equivalent of the image function – best fits the measured 
image. However, this reconvolution is not a true deconvolution method; it is more of a fitting 
procedure that estimates the parameters of an already known function. In many physical 
problems, no model of the measured object is known a priori, thus it is necessary to calculate 
a model-free (or nonparametric) deconvolution of the measured signal. The nature of this task 
necessitates so called soft methods to search for a physically sound solution. One of the soft 
methods that has been found to be very effective in solving many problems is a genetic 
algorithm. [7] In addition to its great power to find a solution, a genetic algorithm also makes 
use of constraints, “herding” the solution by specifying several constraints derived from the a 

priori knowledge about the shape of the desired solution. This is the reason we have 
developed a method based on genetic algorithms to perform model-free deconvolution of 
transient signals. 

Genetic algorithms are not widely used for deconvolution purposes yet, but – as it turned 
out from our research presented here – they are rather promising candidates to be used more 
widely in the near future. We have only found relatively few applications in the literature 
including image processing [8-10], spectroscopy [11-12], chromatography [13-15], and 
pharmacokinetics [16]. Most of the applications are not using model-free deconvolution but 
reconvolution methods, where the fit of the reconvolved model function to the measured data 
is performed, thus only parameters of this fit are determined using a genetic algorithm. It 
should also be noted that the term “deconvolution” is often used for the process of 
decomposing a set of overlapping peaks into separate components via curve fitting of peak 
models to the measured data set. This is conceptually distinct from deconvolution, because in 
deconvolution the original peak shape is unknown, and the measured function is distorted by 
the spread function. In the decomposition procedure, there is no distortion of the composite 
peak resulting from the superposition of the components, only a resolution of the components 
is necessary. 

In this chapter we describe the use of genetic algorithms (GAs) that we successfully 
implemented for model-free (nonparametric) deconvolution of a special kind of transient 
signals: femtosecond kinetic traces. We do not deal with blind deconvolution where only the 
image is known and both the spread and the object are determined during the deconvolution 
procedure; only with deconvolution in case of known image and spread. After a brief 
description of the physical background concerning unwanted and unavoidable convolution in 
femtochemistry experiments, we describe synthetic functions to test deconvolution. The main 
part of the chapter deals with the description of the particular genetic algorithm used to 
estimate the deconvolved data set. This also includes a careful selection of the initial 
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population, which is automatically generated using two subsequent steps also based on 
genetic algorithms. Following the discussion of the performance of this procedure tested on 
synthetic images, we also show deconvolution of real-life experimental data. The chapter 
ends with a conclusion, discussing an outlook to use the described deconvolution procedure 
for other problems where convolved transient signals occur. 

 
 

2. CONVOLUTION OF THE MEASURED SIGNALS IN FEMTOCHEMISTRY 
 
Femtochemistry is a new branch of molecular science dealing with direct experimental 

observation of molecular events during the breaking of chemical bonds and the formation of 
new bonds. [17-18] These events typically happen at timescales ranging from a few tens to a 
few hundreds of femtoseconds (fs), i. e., between about 20 × 10–15 and 500 × 10–15 seconds. 
As the clocking speed of any available electronic devices is several orders of magnitudes 
lower, real-time measurements cannot be made at this timescale. To circumvent this 
limitation, the speed of light is used for clocking. First, an ultrashort laser pulse excites the 
molecules and thus starts the reaction, followed by a second laser pulse that tests some optical 
properties of the reacting system. The reaction time is coded into the delay between the two 
pulses. As 1 µm difference in the optical path length is equivalent to roughly 3 fs delay, a 
mechanical or electromechanical device is convenient to control the path length so that 1 fs 
delays can be adjusted easily. 

Ultrafast laser pulses can be as short as 10 fs. However, excitation and detection are 
expected to be selective, which necessitates that their spectral width be quite small. Due to the 
uncertainty relation between time and energy, the typical pulse width is usually limited to 
about 100 fs or more.[19] Thus, characteristic times to be measured are about the same as the 
width of the laser pulses used to measure them; which results in convolved measured signals. 
A detailed description of how the convolved signal emerges is given elsewhere.[7] Here we 
only recall the result: the detected signal is a convolution of the effective pulse (spread, or the 
instrument response function, which is the correlation of the exciting and measuring pulses) 
and the object, as given in Eq. (3). As a consequence, femtosecond kinetic traces are usually 
heavily distorted by the convolution described above. Consequently, it is necessary to 
deconvolve femtochemical transient signals when performing a kinetic interpretation of the 
observed data. Typical data sets can be seen in Figures 4-6. 

 
 

3. DECONVOLUTION USING GENETIC ALGORITHMS 
 
In the “classical” version of a GA, individuals are represented as a binary string, which 

codes either the complete solution, or parameters to be optimized. These strings are 
considered the genetic material of individuals, or chromosomes, while the bits of each string 
are regarded as genes, having two different alleles, 0 or 1. It is often problematic to represent 
a solution in the form of binary strings. Thus, for numerical optimization purposes, floating 

point coding is more convenient, which allows for a virtually infinite number of alleles. 
Classical (binary) genetic operators have also been replaced accordingly by arithmetic 
operators. The “art” of using GAs is in finding a suitable representation or data structure for 
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the solution, and using genetic operators that can explore the solution space in an efficient 
way, avoiding local optima and converging quickly to the global optimum. [20-21] 

Deconvolution methods described in the literature use different representations and a 
variety of genetic operators. While binary coding and classical binary crossover and mutation 
are appropriate for processing black and white images [9-10], quite different encoding and 
operators should be used to deconvolve measured kinetic signals.[21] Generation of the initial 
population may also be critical. One method is the completely random generation of the first 
individuals, while a careful generation of already fit individuals is sometimes important. 

When deconvolving femtosecond kinetic data using GAs, potential problems that may 
arise are similar to those of other methods: we should avoid the amplification of experimental 
noise and the oversmoothing of the image that results in – among other effects – a low 
frequency “wavy” distortion. The non-periodic nature and sudden stepwise changes of the 
transient signals should also be reconstructed without distortion. We have found that the 
above needs cannot be fulfilled if we start the GA with a randomly generated initial 
population. Therefore, the first task is to create individuals who already display some useful 
properties of a good solution. 

 
 

3.1. Data Structure 
 
The solution of the convolution equation (2) is a data set containing the undistorted object 

(instantaneous kinetic response) at the same time instants as the measured image function. 
Conveniently, the coded solution is this data set, which is an array containing floating point 
elements, with each element representing a measured value of the undistorted object. In terms 
of GAs, this is a single haploid chromosome containing as many genes as there are data 
points measured. As each parent and each offspring is a haploid, there is a haploid mechanism 
of reproduction to implement, in which two parent chromosomes are combined to form a 
single haploid chromosome of the offspring. There is no need to “express” the genes as 
phenotypes; the chromosome already represents the solution itself. 

Convolution – since it is a kind of weighted moving average – widens the signal 
temporally, diminishes its amplitude, makes its rise and descent less steep, and smoothes out 
its sudden steplike jumps. Accordingly, to create a fairly fit initial population, we started from 
the image itself and implemented an operator to compress the image temporally, another to 
enhance its amplitude, third and fourth ones to steepen its rise and decay, and finally, a fifth 
operator to restitute the stepwise jump by setting some leading elements of the data to zero. 
All five operators – which we may call creation operators – are constructed to conduct a 
random search in a prescribed modification range. To this purpose, normally distributed 
random numbers are generated with given expectation and standard deviation for the factor of 
temporal compression, of the enhancement of amplitude, for increasing the steepness of rise 
and decay, and for the number of data points to be cut to zero at the leading edge of the data 
set. The effect of these operators is schematically represented in Figure 1. 

The first implementation of the GA for deconvolution started with a user-defined set of 
creation operators, and the resulting initial population was displayed graphically, along with 
the original image. The best individual of this population and the result of the convolution of 
this individual with the spread function (the reconvolved), as well as the deviation of this 
reconvolved from the image were also displayed.  
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Figure 1. Schematic representation of the creation of initial individuals from the measured image 
function. The four steps depicted here show the effects of five different creation operators applied 
subsequently. 

If the user found that the reconvolved data set was too different from the image, or if 
there were spurious oscillations present in the best individual, the user initiated another 
selection of the initial population with different expectation and / or standard deviation 
parameters of the creation operators. The procedure was repeated until the user considered the 
selected initial population satisfactory.  

In order to arrive at fairly good estimates of the deconvolved data set that contained no 
spurious oscillations and had the desired shape, this trial and error procedure of finding 
satisfactory creation operators required somewhat tedious experimentation. The procedure 
also required good insight on the part of the user, not only in the details of the kinetic 
background involved, but also in the way the procedure responded to changes in the creation 
parameters. This was the reason that motivated the development of another method, also 
based on genetic algorithms, to replace user experimentation, which is explained following 
the description of the applied breeding procedure. 

 
 

3.2. Parent Selection and Crossover 
 
The quality of the deconvolved data set – an individual of the population – can be 

measured readily by the mean square error (MSE) of the reconvolution, given by 
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where ô is the estimate of the deconvolved, i. e., the actual individual of the population, and N 
is the number of data in the image data set. GA literature suggests that some kind of inverse 
of this error should be used so that the resulting fitness function is normalized. We 
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implemented a dynamic scaling of fitness by adding the minimal MSE of the population in the 
denominator:  
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which maintains the fitness values in the range from 1 / [min(MSE) + max(MSE)] to 
1 / [2 min(MSE)]. 

To choose parents for mating, we use stochastic sampling with replacement, implemented 
as a roulette-wheel selection. [20-21] Offsprings are produced by arithmetic crossover of the 
parents, resulting in an offspring whose data points are the average of the parents’ data. 
(Fitness-weighted averages did not result in an important difference concerning convergence 
and the quality of the winner.) This procedure of parent selection and crossover is made until 
the number of produced offspring becomes the same as in the previous population. 

 
 

3.3. Mutation and Selection of the New Generation 
 
Arithmetic crossover explores the potential solutions solely within the range represented 

by the initial population; it cannot drive the population out of this region. Mutation is 
therefore needed to further explore the fitness landscape of the solution space. In addition, a 
properly chosen mutation operator can also be used to avoid the usual noise amplification and 
low-frequency wavy behavior. A brute-force mutation by randomly changing the values of 
individual data points has the consequence of increasing the noise content of the signal, as 
reconvolution prior to the computation of fitness smoothes out even large differences in 
neighboring points, thus the population would evolve to a better fit by increasing high-
frequency noise. In contrast, a “smooth” mutation of neighboring data points results in an 
effective smoothing of the mutated individuals after a few crossovers. It has been 
implemented as an addition of a randomly generated Gaussian to the actual data set. The 
expectation (centre), the standard deviation (width) and the amplitude of the additive 
Gaussian correction is randomly selected within a specified range, including both positive and 
negative amplitudes. (Leading zeros of the initial population get never changed by mutation, 
which is equivalent to a semi-finite-support constraint. [1,6]) If the kinetic response function 
has a long tail (e. g. due to largely different characteristic times involved in the reaction 
mechanism), its slow decrease can also be reconstructed by this mutation, even if the initial 
population had a much sharper decrease without a long tail. 

There is another feature which proved to be useful in finding the fittest possible 
individuals; non-uniform mutation. [20] This is responsible for fine-tuning the mutations in 
such a way that it drives even a rather uniform and close to optimal population further 
towards the global optimum. If the mutation amplitude is small, the convergence at the start 
of the iteration is also small. A larger amplitude results in a faster convergence but makes the 
improvement of individuals quite improbable after the deviation of the solution from the 
optimum is much less than the mutation amplitude, as mutations typically result in a less fit 
individual compared to the one prior to mutation. To effectively get closer to the optimum, it 
is necessary to diminish the amplitude of the mutation as the number of generations increases, 
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or with decreasing deviation from the optimum. We perform this adjustment by estimating the 
experimental error as the standard deviation of measured image data in the range where its 
values are more or less constant. (E. g., in the leading zero level of the signal, or in an almost 
constant tail.) Comparing this experimental error to the difference between the MSE of the 
fittest and the least fit individuals, the amplitude parameter of the Gaussian mutation is 
multiplied by the factor 
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The factor f approaches zero as the ratio of the MSE difference between the most and 

least fit individuals to the experimental error approaches one. This correction avoids too large 
modifications, thus resulting also in a less noisy deconvolved data set. The higher the power 
p, the more enhanced the tuning effect of the factor. A value of the exponent p = 1.5 proved 
to be efficient when deconvolving the data shown in this chapter. To avoid problems arising 
from a possible overestimation of the experimental error, the factor f can be checked and set 
equal to a prescribed smallest value if the ratio in the exponent is too close to one, or even 
less. 

When the number of newly generated offsprings equals the population number minus 
one, selection of the new generation is done. All the parents die out except for the fittest one, 
which also becomes member of the next generation. This selection method is called single 

elitism and guarantees a monotonous improvement of the best individual. 
 
 

3.4. Termination and the Choice of the Winner 
 
After each generation, the quality of individuals is evaluated by the MSE between the 

image and the reconvolved, as this quantity is used to calculate the fitness. In addition, the 
differences between the reconvolved fittest individual (the winner) and the image – the 
residual errors – are calculated. For this residual data set, Durbin-Watson (DW) statistics 
indicate whether subsequent differences are correlated – pointing to systematic error. [22-23] 
The equivalent of the experimental error – the standard deviation of a few data points of the 
image data set, which can be considered constant – can be calculated similarly from the 
deconvolved data. 

As a termination criterion, we can check if the MSE between the image and the 
reconvolved set of the winner is less than or equal to the experimental error. However, this 
does not guarantee that the reconvolved solution closely matches the image; there might be 
some bias present in the form of low-frequency waviness. It is the Durbin-Watson statistics 
that sensitively indicates such misfits. For the large number of data in a kinetic trace 
(typically more than 200), its critical value for a test of random differences is around 2.0 [22-
23], and it is typically much lower than that for a wavy set of differences. Thus we may either 
use a DW value close to 2.0 as a criterion, or combine the experimental error criterion with 
the DW criterion so that both of them should be fulfilled. 

There are less specific GA properties that can also be used to stop the iteration. If the 
MSE of the best individual does not change for a prescribed number of generations, the 
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algorithm might have converged. Similarly, if the difference between the MSE of the best fit 
and the least fit individual becomes less than the experimental error, we cannot expect too 
much change in the population due to mutations. However, the use of these criteria only 
indicates that the GA itself has converged but it does not guarantee a satisfactory solution. 

 
 

3.5. Automatic Generation of a Fairly Good Initial Population 
 
Having explained the breeding procedure of the genetic algorithm, let us return to the 

problem of creating a fairly good initial population which can evolve to give a physically 
sound deconvolved data set, having all the properties the user expects. The first step of the 
creation is to get an estimate of the deconvolved signal by using inverse filtering. We use a 
modified adaptive Wiener filter for this purpose. [4,6] This filtering usually results in a wavy 
and somewhat noisy deconvolved data set, but its onset – the first nonzero data point – can be 
approximately calculated in the following way. The data point between the first nonzero value 
and the maximum of the Wiener-filtered deconvolved is determined. The onset of the object 
function is in the vicinity of this location. To explore the fitness landscape, typically 50 
individuals are created at each location within the range, considering it as the actual onset. 
Values of the other creation parameters are also generated with a uniform probability 
distribution, except for the maximum enhancement of the signal which is the same for all 
individuals. The fittest initial individual is chosen from all the initial populations, and the 
location of its onset will become the next estimate of the onset of the object function. 

The procedure then continues in a second stage with the creation of other initial 
generations, this time within a narrowed range of equally distributed onsets of the individuals 
around the new location. Values of the other creation parameters are now generated with a 
normal distribution using their expectation and standard deviation given in the project 
description file. Breeding is done usually for 50 generations in this stage. (This number can, 
of course, be different.) However, the search in this stage is not for the fittest individual 
within a generation, but for the initial population in which the fitness increases most, 
compared to that of the fittest individual at the end of the first stage, as it has the greatest 
potential to improve. To determine this, each initial generation is bred several times (we 
typically use 20 breedings) with a different series of random numbers. After each of the 20 
different breeding runs, the one that contained the fittest individual is noted. The “winner of 
the creation” will be the population that proved to increase in fitness most, with respect to the 
fittest individual at the end of the first stage, most frequently out of the 20 breedings. Its 
location of the onset and the rate of enhancement of amplitude will be used to generate the 
initial population of the final genetic algorithm to search for the optimal deconvolved data set. 

In some cases – when the transient signal does not have a steplike onset but a slower rise 
– the two stages described above do not always give a satisfactory result. They often miss the 
true onset of the object function (which is known for synthetic data) by a few data points. 
However, the user is able to see the mismatch and can manually correct for the onset which 
gives the best result visually. Therefore, there is also a possibility to fix the location of the 
onset, in which case the first two stages are skipped and the procedure begins with the third 
stage by creating an initial population using the input values of the creation parameters. 
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3.6. Implementation of the Deconvolution Procedure 
 
We have implemented the procedure described above as a package of user defined 

Matlab functions and scripts. The control of the deconvolution procedure is done by a 
graphical user interface (GUI). All the input data including filenames and operator parameters 
can be entered via this interface. As these data are then all written into a project descriptor 
text file, there is also a possibility to simply enter the name of a previously saved project 
descriptor file to reload all its data. The output file contains the entire project descriptor, 
statistical evaluations, and all relevant results. In addition, there is a four-panel figure 
displayed, containing most of the results for immediate graphical evaluation after each stage 
of the procedure. 

 

 

Figure 2. Screenshot after the first two stages searching for a fairly good initial population. For the 
description of the panels, see text. 

In case the value of the input parameter specifying the expectation of the location of the 
first nonzero element is zero, the procedure starts with the first two stages searching for the 
location of the onset of the deconvolved signal. At the end of this procedure, the results of the 
two stages are displayed graphically in a six-panel figure (see Figure 2). The upper left panel 
shows the initial population generated with onsets around the location obtained with Wiener 
filtering. The upper middle panel is the most important here; it shows the MSE errors of the 
best individuals at each location after the first breeding stage, as a function of the channel 
index. As we can see, in Figure 2 it is channel No. 6 which gives the fittest individual. The 
upper right panel shows the evolution of the MSE errors of the fittest individual in each 
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generation as a function of the number of iteration steps (i. e. the number of subsequent 
generations). In the figure we can see that an improvement of fitness (decrease of the MSE 
error) occurred until step No. 32, but there was no improvement from then up to step No. 50. 

The lower left panel shows the initial population generated with onsets around the 
location obtained as that of the fittest individual at the end of the first stage. It is clearly seen 
that the variety of the individuals in this population is greater than in the first stage, but in a 
narrower interval of the location of the onset (five channels instead of twelve). The lower 
middle panel shows again the MSE of the best individuals at each location after the second 
breeding stage, as a function of the channel index. However, this time it is not this statistics 
that is used to choose the winner, but the frequency at which an initial population becomes 
the fittest one after 20 breedings with different sets of random numbers to control the 
procedure of generating the initial population as well as the breeding procedure, which is 
shown in the lower right panel. In this particular case, it is the initial population generated 
with the onset at channel No. 1 which has the greatest improvement 20 times out of the 20 
runs, thus it had been chosen as the winner. (If there are more than one placements of the 
onset resulting in a few best scores, it is the one with the highest frequency which is chosen as 
the winner.) The winner of this second stage determines the placement of the onset, and this 
value is used as the expectation of this parameter to generate the initial population used in the 
“main” GA to search for the optimal deconvolved data set. 

After the first two stages, the user can observe the graphically displayed results described 
above, and can decide whether to launch the main GA, or halt the procedure and restart with a 
different set of creation parameters. If the decision is to continue the procedure, the number of 
iteration steps (the number of subsequent generations) can be determined before actually 
launching the main iteration. 

In case the value of the input parameter specifying the expectation of the location of the 
first nonzero element at the beginning of the procedure is different from zero, the procedure 
skips the first two stages and uses the location of the onset of the deconvolved signal entered 
to generate the initial population for the main GA iteration. 

At the end of the prescribed number of iterations, the program halts and a four-panel 
figure is displayed (see Figure 3). The upper left panel shows the image (measured) data set, 
the spread function (called “pulse” in the figure), the object function in case of a synthetic 
data set (in which case the object is known), along with the initial population. The upper right 
panel shows the evolution of the MSE of the best individual in subsequent generations, as a 
function of the iteration number (or generation number). The lower left panel shows the 
results; i. e. the deconvolved data set (the “winner”), its reconvolved with the spread function, 
along with the original image for comparison. In the case of synthetic data, the object 
function is also shown for comparison with the deconvolved result. (In the figure, due to the 
screen resolution, the differences between the image and reconvolved, as well as the 
differences between the object and winner cannot be seen.) The lower right panel helps to 
judge the nature of differences between the data sets shown in the lower left panel by 
displaying their (discrete) Fourier transforms. These transforms show the frequency behavior 
of the corresponsing time series, which sensitively detect mismatches and contain useful 
information on the success of the deconvolution. We do not deal with the details of the 
Fourier transforms here; the interested reader is advised to consult an earlier publication. [5] 
If the user is content with the final results, the procedure is finished. If the results are not 



Model-Free Deconvolution of Transient Signals Using Genetic Algorithms 13

satisfactory, a new run with or without the first two stages can be made, starting with a 
different set of input parameters. 

 

Figure 3. Screenshot showing the graphical display of the final results of deconvolution, after the main 
iteration. For the description of the panels, see text. 

 

4. RESULTS 
 
To test the performance of the algorithm, we used synthetic data calculated for a simple 

consecutive reaction containing two first-order steps; the first with a 200 fs, the second with a 
500 fs characteristic time, as described in previous publications. [4-6] They mimic different 
typical transient absorbance signals. The first one is recorded at a wavelength where a 
completely decomposing reactant species can be detected with no remaining absorptivity 
(“reactant”), the second one at another wavelength with an absorbing intermediate species 
and also a product with positive remaining absorptivity, while the third one is similar but with 
a negative remaining absorptivity (“bleaching”). Calculated object data have been convolved 
with a 255 fs fwhm Gaussian spread function, and an “experimental noise” of 2 % of the 
maximum of the signals was added to the convolved data set to become the model of 
measured data. As recent measurements in fluorescence detection explored extremely short 
characteristic times with simultaneous long-time components [24-25], we also tested a fourth 
synthetic data set mimicking this situation, with time constants of 100 and 500 fs, and a 
spread function of 310 fs fwhm. While the absorption data set with bleaching necessitates the 
most careful transformations using the creation operators, the fluorescence decay challenges 



László Bengi, Balázs Kovács, Máté Bezdek et al. 14

the power of the algorithm to reconstruct an extremely large stepwise jump followed 
immediately by a steep decay and ending in a long tail. 

 

4.1. Test Results for Synthetic Data 
 
Figure 3 shows the best result obtained for the reactant transient absorption signal. As it 

can be seen, there is no visible difference between the deconvolved set and the synthetic 
object data, except for the “experimental error” added to the synthetic image. However, 
fluctuations in the deconvolved data set are inferior to that of the image data set which means 
that an effective smoothing of the “experimental errors” has also been achieved by the genetic 
algorithm performing deconvolution. Due to the creation operator that renders the leading 
data prior to the onset of the signal to zero, the steplike jump of the signal is completely 
reproduced, without any wavy behavior. (Leading zero values are not modified by mutations 
either.) Thus, we can conclude that a transient with a sudden jump and fast decay that 
undergoes a severe distortion due to convolution can be deconvolved to an unprecedented 
level. 
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Figure 4. Deconvolution results for a non-periodic transient signal with a negative final level (in 
femtochemistry, it is an intermediate absorbing species with a residual bleaching). The two smoothly 
rising overlapping curves (solid lines) show the initial image data set to be deconvolved, and the final 
estimate of the deconvolved signal reconvolved with the spread function (labelled as reconvolved). The 
solid curve with a sudden jumplike rise is the object function without errors. Closed circles indicate the 
values obtained for the deconvolved at the end of the final iteration (labelled as winner). Residual errors 
are shown as a solid curve around zero signal level, calculated as the difference between the winner and 
the object. 

Figure 4 shows the results obtained for the transient signal with bleaching. This signal is 
not periodic, as its initial value is not identical to the last one; there is a large difference 
between the first and last data points. In the context of the genetic algorithms used, this 
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problem can be treated with a careful design of the creation operators in a way that the 
beginning and the end of the data set should not change while applying the changes 
schematically illustrated in Figure 1. The success of this procedure can be illustrated by the 
final result of the deconvolution, shown in Figure 4. The matching smooth continuous curves 
are again the “measured” image and the reconvolved data set, which can hardly be 
distinguished at the resolution of the figure. The object (continuous curve with a steplike rise) 
is almost completely fit by the winner of the GA iteration (circles). Residual errors are 
displayed as another continuous curve close to zero signal level, which indicate a randomly 
distributed small fluctuation of the winner around the true object, except for a few initial 
points following the onset of the signal. However, this initial part of the signal is always very 
hard to reproduce by deconvolution; it contains typically a few initial mismatches in a wavy 
form. This initial wavy bias is usually present even in the case of reconvolution using a 
known model function. 

It should also be added that the deconvolution procedure described in this chapter has 
been primarily optimized to the steplike transient function (reactant-like absorptivity or 
fluorescence decay). To illustrate the success of this optimization, deconvolution results for 
the simulation of the highly distorted fluorescence signal mentioned above are also shown in 
Figure 5. The notation of this figure is similar to that of Figure 4, with the matching 
“measured” and reconvolved data sets, the object and the winner, along with the residual 
errors concerning these latter data. The challenge of deconvolution in this case is to 
reconstruct the large maximum of the steplike jump which is more than four times the 
maximum of the image, and the long tail which begins with a much steeper decay than the 
image, and goes over into a shallower final part than the image. As we can see from the 
residual errors, there are no marked wavy mismatches at the very beginning of the signal, thus 
the maximum is also excellently recovered by the deconvolution. 
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Figure 5. Deconvolution results for a heavily distorted reactant signal with a sudden initial jump 
followed by a steep decrease and ending in a rather shallow tail (in femtochemistry, it can be a reactant-
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like absorption signal, or a fluorescence decay). The description of the signals and the notation used is 
the same as in Figure 4.  

An interesting feature of the procedure applied has been explored during the 
deconvolution of this transient signal. While the success of the deconvolution depends largely 
on a fairly close value of the signal maximum to that of the true object of the initial 
population, even a quite large mismatch in the tail part can successfully be eliminated during 
the final iteration. This is a much desired property of the procedure used if we want to 
deconvolve signals with largely different decay time constants. As this feature is discussed in 
a previous paper [7], we do not deal with it in details here. 

We have also conducted another test of the deconvolution procedure. Using the best 
deconvolved of the three synthetic data sets calculated for a simple consecutive reaction 
containing two first-order steps, determined with the described procedure, we have made a 
global estimation of the kinetic and photophysical parameters involved. (For the description 
of the model function and the global estimation, see ref. 7.) The results indicate that most of 
the parameters have a narrower confidence interval and a smaller (or nonexistent) bias than in 
the case of parameter estimation from the results of a reconvolution procedure. These results 
support that the procedure using GAs described here leads to deconvolved data sets whose 
analysis provides parameters that are less correlated with each other, and are thus also less 
biased. However, we consider these results only preliminary, for the deconvolution of the 
product species with a small transitory peak and a remaining positive absorptivity is not yet 
satisfactory. (As it is mentioned above, optimization of the deconvolution procedure focused 
on the reactant-like data set.).   

 
 

4.2. Test Results for Experimental Data 
 
Model-free deconvolution is necessary if we do not know even the functional form of the 

object function, only some of the qualitative properties concerning its expected shape. In a 
real-life experiment, the image and the spread functions are only known as measured data 
sets. Therefore, we cannot use the comparison of the object and the winner to monitor the 
development and the success of the iteration procedure. (For the same reason, it has not been 
used either as a criterion when testing the procedure with synthetic data.) In Figure 6, we 
show deconvolution results of a recent experiment still unpublished, where the fluorescence 
decay of adenosine monophosphate in aqueous solution was measured by femtosecond 
fluorescence upconversion (excited at 267 nm, observed at 310 nm).  

Data are collected at 33.33 fs intervals per channel, and the experimentally determined 
effective pulse has a width of 270 fs fwhm, i. e., 8 channels. [26] As we can see, the sudden 
jump characteristic of fluorescence data is completely recovered by deconvolution. Residual 
errors (the difference between the image and the reconvolved data sets) show an almost 
completely random distribution with no markedly wavy feature. Fluctuations of the residual 
error do not exceed the experimental noise contained in the measured image. The only 
seemingly systematic behavior can be seen between channels 31 and 36, where there is a 
humplike feature in the residual error. Observing the measured image, we can state that there 
is a marked shoulderlike feature in this data set as well, indicating that the deconvolution 
procedure truly reconstructs the behavior of the measured data. Though it might be an artifact, 
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it might also be a kinetic effect. It is up to the user to take it seriously as an effect, or consider 
it an erroneous result. Apart from this small feature, the deconvolved curve has all the 
properties we expect from an instantaneous fluorescence response, thus we can consider the 
deconvolution highly successful. 
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Figure 6. Deconvolution results for experimental transient fluorescence data. The two smoothly rising 
overlapping curves (thinner solid lines) show the initial image data set to be deconvolved, and the final 
estimate of the deconvolved signal reconvolved with the spread function (labelled as reconvolved). The 
solid curve with a sudden jumplike rise is the deconvolved data set at the end of the final iteration 
(labelled as winner). Residual errors (solid circles) are calculated as differences between the image and 
the reconvolved data sets. 

 

CONCLUSION 
 
Model-free deconvolution methods previously used to treat femtosecond transient kinetic 

data had two major shortcomings. Due to noise suppression, they resulted in deconvolved 
signals having a low-frequency wavy behavior, and the greater the noise suppression was, the 
more biased the overall shape of the reconstructed signal became. To overcome these 
shortcomings, we used GAs to achieve better deconvolution results. In order to adapt GAs for 
the purpose of deconvolving time-dependent transient signals heavily distorted by 
convolution, we have modified the classical GA and introduced a careful generation of the 
initial population and a special mutation changing neighbouring genes simultaneously. 

Modification of the data structure included the use of floating-point arrays as 
chromosomes, representing the solution of the deconvolution problem at the chromosome 
level. Accordingly, genetic operators performed floating point arithmetical operations, not 
binary ones. To create a fairly good approximation of the deconvolved data set, we have 
transformed the measured image function to invert the effects of convolution. Due mainly to 
the operator which cuts a series of leading data of the signal to zero, and to the mutation 
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procedure that maintains these leading zeros, the high-frequency part of transient signals with 
a sudden jump-like start can be fully reconstructed. Waviness of the solution is avoided by 
applying smooth arithmetic mutation of neighboring genes instead of single point mutations, 
along with a dynamically changing mutation that fine-tunes the amplitude of the changes 
according to the closeness of the population to the optimal solution. 

Deconvolution using this modified GA outperforms existing algorithms and produces an 
unprecedented quality of the reconstructed original signal for highly nonperiodic transient 
absorption as well as highly distorted fluorescence decay traces with a sudden initial steplike 
rise. Results on real-life experimental data also support the applicability of the proposed 
deconvolution method. Even if a few thousand generations are needed to reach an optimal 
solution, the iterations only take a couple of minutes on a moderately fast desktop PC. Further 
work is in progress to explore the full power of the applied genetic algorithm, and to develop 
an optimized procedure also for transients with a less sharp initial rise. 

It should be noted that deconvolution is a necessary tool in many applications where it is 
only possible to measure a convolved signal, independently from the actual timescale of the 
measurement. Examples are, among others, pharmacokinetic recordings at a few hours’ 
timescale, or transient electric signals of common devices at a few microseconds’ timescale. 
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