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Human-pathogenic  microbes  possess  various  means  to  avoid  destruction  by  our  
immune system. These include interactions with the host complement system that may 
facilitate pathogen entry into cells and tissues, expression of molecules that defuse the 
effector complement components and complexes, and acquisition of host complement 
inhibitors to downregulate complement activity on the surface of the pathogen. A growing 
number of pathogenic microorganisms have acquired the ability to bind the complement 
inhibitor  factor H (FH) from body fluids and thus hijack its host protecting function. In 
addition to FH, binding of FH-related (FHR) proteins was also demonstrated for several 
microbes. Initial studies assumed that these proteins are complement inhibitors similar to 
FH. However, recent evidence suggests that FHR proteins may rather enhance comple-
ment activation both directly and also by competing with the inhibitor FH for binding to 
certain ligands and surfaces. This mini review focuses on the role of the main alternative 
pathway regulator FH in host–pathogen interactions, as well as on the emerging role of 
the FHR proteins as enhancers of complement activation.

Keywords:  complement  deregulation,  complement  evasion,  microbial  virulence,  factor  H,  factor  H-related,  
opsonization

INTRODUCTION

Innate  and  adaptive  immune  mechanisms  work  in  a  collaborative  manner  to  effectively  eliminate  
invading microorganisms and develop immune memory. In turn, pathogenic microbes have acquired 
various means during their co-evolution with their host organisms to evade host immune responses. 
The  complement  system,  a  major  humoral  arm  of  innate  immunity,  includes  ~40  plasma  and  cell  
membrane-anchored proteins that act in a cascade-like manner to opsonize microbes and facilitate  
their phagocytosis, activate cellular responses, initiate inflammation, or directly lyse certain microbes 
by punching holes into them (1). Complement can be activated by three major pathways, the classical, 
the lectin, and the alternative pathway. The recognition molecules of the pathways initiate activation 
by interacting with enzymatically active components that propagate the cascade and generate active 
complement fragments and complexes that mediate the biological effects of the system (Figure 1A) (2).

Because complement is a powerful system to facilitate destruction of microbes or other target cells, 
host cells and tissues are protected by various combinations of fluid phase and membrane comple-
ment regulatory proteins that fine tune and/or block the activation steps of the complement cascade, 
restrict activation in both time and space, and prevent the potential deleterious effects of full-blown, 
excessive activation (Figure 1A) (3). Most complement regulatory proteins are negative regulators, 
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Figure 1 | Complement pathways and the human factor H (FH) protein family. (A) Schematic overview of the major complement activation and regulation 
pathways. Molecules acting as complement inhibitors are shown in red. (B) The five human FH-related (FHR) proteins retained domains homologous to complement 
control protein domains 6–9 and 18–20 of FH (showed by vertical alignment). Colors indicate domains identical between FH and FHRs; light shades indicate high 
sequence similarity (>80% identity) but not complete identity. The domains marked green are closely related to each other but only distantly to FH and mediate 
dimerization of FHR-1, FHR-2, and FHR-5. Functional sites in FH are shown by horizontal lines. FH-like protein 1 (FHL-1) is a splice variant of FH.
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i.e., inhibitors of the various activation steps, including the soluble 
regulators  C1-inhibitor,  C4b-binding  protein,  factor  H  (FH),  
vitronectin and clusterin, and the membrane-anchored regulators 
complement receptor type 1,  membrane cofactor protein,  decay 
accelerating factor, and CD59. Properdin is a positive regulator of 
complement activation. Recently, the FH-related (FHR) proteins 
have  emerged  as  additional  positive  regulators  that  promote  
activation of the system, particularly the alternative pathway (4, 5).

THE HUMAN FH PROTEIN FAMILY

Factor  H  is  a  conserved  plasma  glycoprotein  that  inhibits  the  
alternative  pathway and the  amplification loop (6, 7).  By  bind-
ing to C3b, a major cleavage product of the central complement 
component C3, FH prevents assembly of the C3bBb alternative 
pathway  C3  convertase  enzyme,  facilitates  the  decay  of  the  
convertase if already formed by displacing bound Bb from C3b 
(decay accelerating activity), and acts as a cofactor for the plasma 
serine  protease  factor  I  that  then  cleaves  C3b  into  the  inactive  
form  iC3b  (cofactor  activity).  Interaction  of  FH  with  C3b  also  
allows for regulating the C5 convertases.

Factor H is composed of 20 individually folding complement 
control  protein  (CCP)  domains.  The  complement  regulatory  
activities of FH are mediated by the N-terminal CCP1–4 domains, 
which harbor a C3b-binding site (8). CCP7 contains binding sites 

for certain ligands including glycosaminoglycans on host cellular 
surfaces, pentraxins, and malondialdehyde (MDA) epitopes gen-
erated by lipid peroxidation. The C-terminal CCP19–20 domains 
harbor  binding  sites  for  C3b/C3d,  pentraxins,  and  sialic  acid/
glycosaminoglycans, and thus anchor FH on host surfaces under 
complement attack (i.e., with deposited C3b) (9–11). This allows 
FH for restriction of complement activation on host cells and also 
on non-cellular surfaces lacking membrane complement regula-
tors, such as basement membranes. Thus, FH has an important 
function in self–non-self discrimination by recognizing specific 
host surfaces (12, 13).

The  FH-like  protein  1  (FHL-1)  is  derived  from  an  alternative  
transcript of the CFH gene, and includes the seven N-terminal CCPs 
of FH plus four amino acids at its C-terminal end. FHL-1 shares with 
FH complement inhibiting and ligand-binding capacities associated 
with these domains but may display functional differences, as well, 
that need to be more precisely defined in the future (14).

In  humans,  five  CFHR  genes  are  found adjacent  to  the  CFH 
gene  and  code  for  five  distinct  FHR  proteins.  These  proteins  
have  structural  homology  to  FH;  however,  they  lack  domains  
homologous to CCPs 1–4 of FH that are responsible for the com-
plement inhibiting activity (Figure 1B).  Initial  studies on FHRs 
investigated  their  complement  inhibiting  capacity,  and  some  
form of—generally weak—activity was indeed described for all of 
them. FHR-1 was reported to inhibit C5 and the terminal pathway 
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(15), FHR-2 was to inhibit the alternative pathway C3 convertase 
and activation of  the terminal  pathway (16),  FHR-3 and FHR-4 
were to enhance the cofactor activity of FH (17), FHR-3 was also 
to  possess  cofactor  activity  on  its  own  (18),  and  FHR-5  was  to  
display  weak  cofactor  activity  and  inhibit  the  C3  convertase  in  
fluid phase (19). However, some of these reported activities were 
not confirmed by other studies, e.g., the terminal pathway inhibi-
tion by FHR-1 (20–22). In general, FHR proteins appear to lack 
significant complement inhibitory activity (4), but further studies 
are needed to clarify if any of the FHRs possess some form of such 
activity. Because FHRs were shown to interact with C3b, they may 
modulate  C3b degradation by  competing  out  FH,  but  may also  
interfere with the assembly and/or activity of the C3b containing 
convertase  enzymes  (i.e.,  the  alternative  pathway C3 convertase  
and the C5 convertases), as suggested for FHR-5 and FHR-2.

The conserved domains of the FHR proteins are homologous 
to CCPs 6–9 and 18–20 of FH (Figure 1B). Because CCPs 6–7 and 
19–20 of FH mediate interactions of  the complement regulator 
with C3b, the pentraxins C-reactive protein (CRP) and pentraxin 
3 (PTX3), MDA epitopes, host cells, and basement membranes, 
due to the potentially overlapping ligand-binding capacity associ-
ated with the homologous domains,  FHRs could interfere  with 
FH  functions  through  competition  (23).  Recent  data  suggest  
that, contrary to previous assumptions, a major role of the FHR 
proteins  is  to  recognize  and  bind  certain  ligands,  surfaces  and  
cells, and thus act as competitive inhibitors of FH.

CCPs 1–2 of FHR-1, FHR-2, and FHR-5 were found to medi-
ate  dimerization of  these  proteins,  thus increasing their  avidity  
for  surface-bound  C3b  and  resulting  in  increased  competition  
with  FH,  termed  complement  deregulation.  Disease-associated  
mutants of these proteins with duplicated dimerization domains 
result in enhanced alternative pathway activation by diminishing 
FH binding to surface-bound C3b (21, 24, 25). FHR-5 can also 
compete  with  FH  for  binding  to  CRP,  PTX3,  and  extracellular  
matrix, resulting in enhancement of complement activation (26). 
Altogether, these recent data support a major role for the FHRs in 
modulating alternative pathway activation as antagonists of FH.

In addition, FHR-4 was shown to activate the alternative path-
way by binding C3b and allowing the assembly of an active C3bBb 
convertase, and also to promote classical pathway activation via its 
interaction with CRP (27–29). Similarly, FHR-5 was demonstrated 
to enhance alternative pathway activation by C3b binding (26).

Why would this enhanced complement activation be useful for 
us as hosts and what does that mean in the context of infectious 
disease? Host FH is sequestered by pathogenic microbes, facilitat-
ing  serum/complement  resistance  (Figure  2A).  This  can  be  an  
important  step  in  evading  first-line  immune  defense  and  aids  
dissemination of microbes and colonization of host niches. FHRs, 
in turn, were suggested to be decoys that due to their overlapping 
ligand spectrum with FH may displace this complement inhibitor 
from the surface of microbes, and may also fine tune complement 
activation  under  physiological  conditions,  e.g.,  on  altered  self  
(4).  Thus,  FHRs  may  increase  opsonization  of  microbes,  dying  
cells, and cellular debris, and help the resolution of inflammation 
(Figure 2A). Notably, most FH-binding microbial proteins also 
bind  within  those  FH  domains  that  are  conserved  among  the  
FHR proteins (4, 30).

ROLE OF FH IN HOST–MICROBE 
INTERACTIONS

Various  classes  of  microbial  pathogens  were  shown  to  bind  
human  FH;  these  were  reviewed  in  detail  elsewhere  [see,  e.g.,   
Ref. (30, 31)]. Instead of providing an ever-growing list of such 
microorganisms, this mini review aims to highlight general pat-
terns (to which exceptions may exist) regarding the relevance of 
FH binding to microbes, and critically evaluate available litera-
ture, by discussing selected representative examples.

Overall, binding FH (or FHL-1) from body fluids is thought to 
be of advantage for pathogenic microbes in their survival in the 
host (Figure 2A). Prominent examples include the OspE protein 
of Borrelia  burgdorferi  (32),  Sbi  of  Staphylococcus  aureus  (33), 
PspC  of  Streptococcus  pneumoniae  (34),  and  fHbp  of  Neisseria 
meningitidis  (35).  Sialylated  Neisseria  gonorrhoeae  binds  FH  
and provides  an  example  of  pathogen  mimicry  of  host  glycans   
(36, 31). Apparently, numerous and otherwise unrelated micro-
bial  proteins  target  the  same  conserved  domains  of  FH,  which  
thus  involve  pathogen-  and  host–ligand-binding  sites.  Such  a  
common microbe binding site was determined and characterized 
in CCP20 of FH recently (37). Microbes thus can misdirect the 
self-recognition domains and mimic host ligands/surfaces (38).

Selective binding of FH is one of the reasons of host restriction 
of certain infections: human FH is preferentially bound by, e.g., 
group  A  streptococci  (39), N.  meningitidis  (38, 40), N.  gonor-
rhoeae  (41),  and non-typeable Haemophilus  influenzae  (42).  By 
contrast, bacteria that infect various hosts, such as B. burgdorferi, 
bind FH from several species (43).

The  importance  of  FH  binding  for  bacterial  survival  is  well  
documented for N. meningitidis, and fHbp is one of the compo-
nents of N. meningitidis serogroup B vaccine (35, 38, 44, 45). In 
other  cases,  the  role  of  FH  as  being  beneficial  for  the  microbe  
is controversial. The hypervariable region of several M proteins 
of Streptococcus  pyogenes  binds  FH,  which  was  attributed  to  
downregulate  opsonization  and  promote  phagocytic  resistance  
of the pathogen (46). Later studies, on the other hand, found no 
clear benefit of FH binding in resisting killing in a whole blood 
model or in an in vivo infection model (47). The used strains and 
models may influence this;  recently,  in a human FH transgenic 
mouse increased virulence of the S. pyogenes strain AP1 (which 
expresses protein H) was observed (39). Similarly, while several 
borrelial proteins with FH-binding capacity have been described 
(48), in some cases they may be dispensable for virulence (49).

Furthermore, some microorganisms were shown to degrade 
FH  (50–52).  This  appears  counterproductive  because  cleaved  
FH then loses its ability to inhibit complement activation (51). 
However,  microbes  may  gain  advantage  from  a  more  inflam-
matory micro-environment (53, 54) or, because their proteases 
could also cleave complement factors necessary for the propaga-
tion of the cascade (55), the functional inactivation of FH may 
not  cause  significant  disadvantage  in  complement  resistance.  
In  addition,  the  kinetics  of  inactivation  may  allow  sufficient   
regulation  by  FH.  In  any  case,  this  issue  needs  further  
clarification.

Besides  its  role  in  the  regulation  of  the  alternative  pathway,  
FH was also shown to compete with C1q for binding to lipid A 
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Figure 2 | Role of the human factor H (FH) protein family in microbial immune evasion. (A) In addition to its role as plasma complement inhibitor, FH 
recognizes and binds to host surfaces and protects them from complement attack. Several microbes exploit this mechanism and recruit FH to their surface in order 
to escape from the complement system. FH-related (FHR) proteins may bind to certain host ligands or altered host surfaces that are exposed during inflammation or 
tissue damage (such as pentraxins, extracellular matrix proteins, or oxidative modifications of lipids) and displace FH, resulting in increased opsonization. FHRs may 
act as decoys and compete with FH for binding to microbial proteins. For example, FHR-3 was described to inhibit binding of FH to fHbp of Neisseria meningitidis.  
(B) FH was described to have additional functions. By simultaneously binding to certain microbes and receptors (such as CR3) on host cells, it may facilitate uptake 
of the microbe by immune cells and modulate cell activation, or facilitate entry of microbes into epithelial cells (left panel). FH was also shown to inhibit binding of 
C1q to apoptotic cells and E. coli and thus may modulate classical pathway activation and opsonization (right panel).
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component  of  LPS,  and  also  to  the  surface  of  the  E.  coli  strain  
TG1,  pointing  to  the  possibility  that  in  certain  cases  FH  may  
modulate the activity of the classical pathway (Figure 2B) (56, 57).  
This potentially important aspect needs to be further studied.

In addition, by binding to receptors on cells, FH can mediate 
microbe–host cell interactions (Figure 2B). In this non-canonical 
role,  FH  was  described  to  act  as  a  bridging  molecule  between  
complement receptor 3 (CR3; CD11b/CD18) and pathogens, and 
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helping  either  pathogen  entry  into  host  cells  or  the  antimicro-
bial response of the host cells (51, 58–62).  Such scenarios were 
described for FH bound to S. pneumoniae, N. gonorrhoeae, and 
Candida albicans (58–61). FH bound on C. albicans was shown 
to facilitate the adhesion, phagocytosis and antifungal responses 
by  neutrophilic  granulocytes,  such as  increased lactoferrin  and 
reactive oxygen species production (61). FH can also enhance the 
response of macrophages when exposed to C. albicans (51).

Thus, while for most studied microbes binding of FH (and in 
some cases  also  that  of  FHL-1)  and the  ability  of  FH/FHL-1  to  
act as a cofactor for C3b cleavage when bound on the surface or 
on certain microbial ligands were shown in vitro, direct evidence 
that  demonstrates  a  relevant  role  of  certain  FH/FHR-binding  
proteins in serum resistance is less substantial. It is important to 
define the relative contribution of such potential virulence factors 
to microbial survival in serum and in animal models of infectious 
diseases. Novel technologies and model organisms may help clari-
fying to which extent specific FH-binding proteins contribute to 
the survival of pathogens. Studying non-pathogenic strains for FH 
binding and activity in parallel would likely be also informative.

FHRs BINDING TO MICROBES

Interaction of FHR proteins with microbes (63) has not yet been 
extensively studied; particularly, functional studies are scarce. This 
is related to our limited knowledge on these proteins, as discussed 
above. However, some important observations suggest that FHRs 
could  emerge  during  evolution  as  decoys  that  counteract  the  
sequestration of FH from host body fluids (4). Notably, in FHRs the 
conserved domains are homologous to those of FH that mediate 
binding of FH to various ligands/surfaces, both self and non-self, 
thus FHRs likely share the capacity to bind microbes.  FHRs are 
also described in several non-human species, including mice, rats, 
and fish; these FHRs also lack the complement regulatory domains 
of FH and differ in number and domain composition from their 
human counterparts, there are no clear direct homologs (64–68).

In most cases, FHR-1 binding to microbes and microbial pro-
teins that otherwise bind FH (and in some cases also FHL-1) was 
demonstrated, such as for several borrelial proteins (48, 69, 70),  
Leptospira  interrogans  (71), S.  aureus  (33), Pseudomonas  aer-
uginosa (72), N. gonorrhoeae (60), Plasmodium falciparum (73), 
C. albicans  (61),  and Aspergillus fumigatus  (74).  So far,  in most 
reports, no functional role for FHR-1 when associated/bound to 
microbes was demonstrated; in most cases, it was merely assumed 
that FHR-1 inhibits complement terminal pathway based on the 
report of Heinen et al. (15). In the case of the streptococcal Scl1 
protein,  FHR-1  was  shown  to  inhibit  terminal  pathway  activa-
tion (75). Even so, FHR-1 was shown not to influence bacterial 
opsonization and survival in the case of B. burgdorferi (70).

FHR-1, FHR-2, and FHR-5 bind to B. burgdorferi. Functional 
analysis,  however,  could  not  demonstrate  a  contribution of  the  
FHR proteins to serum resistance of  this  microbe (70).  On the 
other hand, FHR-1 bound on C. albicans was shown to facilitate 
interaction  with  human  neutrophils  and  promote  neutrophil  
antimicrobial responses (61).

Fusobacterium  necrophorum  binds  FH,  FHL-1,  FHR-1,  and  
FHR-4. Various strains were compared, and a weakly FH-binding 

strain  showed  increased  C3b  and  terminal  C5b-9  complex   
deposition  on  its  surface,  and  decreased  survival  in  human  
serum, compared with strains that bind FH stronger. The role of 
FHR-1 and FHR-4 was not addressed (76). FHR-4 also binds to C. 
albicans, but the functional relevance of this interaction is unclear 
(61). In both cases, the FHR-4A isoform (77) bound from serum, 
which  shows  increased  C3b  binding  compared  with  FHR-4B,  
and activates the alternative pathway (29). Further studies need 
to assess its potential role in enhancing opsonization.

Direct evidence for an important role in infectious disease was 
described  for  FHR-3.  A  genome-wide  disease-association  study  
linked the CFHR3 gene to N. meningitidis infection (78). A follow-
ing functional study found that FHR-3 binds to this pathogen and 
competes with FH for binding to fHbp of N. meningitidis, thus acts 
as a competitive inhibitor of FH and enhances complement activa-
tion  (Figure  2A).  FHR-3  and  FH  bind  with  similar,  nanomolar  
affinities to fHbp, but relative affinities differ between fHbp variants. 
Altogether, the genes of both the human host (by determining FH/
FHR-3 levels) and the pathogen (by determining fHbp variants, e.g., 
that preferentially bind FH) influence disease susceptibility (79).

Additional indirect evidence supports such a role of the FHRs. 
For  example,  increased  FHR  concentrations  were  described  in  
the  middle-ear  effusion fluid of  patients  with otitis  media  with 
effusion (80). In the zebrafish, FHR expression was found to be 
upregulated  by  LPS,  indicating  a  role  for  them  as  acute  phase  
proteins (68). These and other data (81) indicate that FHRs may 
be upregulated during infection or inflammation.

CONCLUSION AND OUTLOOK

Although  the  role  of  FH  in  complement  evasion  is  of  medical  
importance for some microbes, further aspects of binding of this 
regulator need to be elucidated, such as the relevance of mediating 
cellular interactions and regulation of the classical pathway. The role 
of the FHR proteins is still poorly understood. While they emerge 
as positive complement regulators via competition with FH and by 
directly  activating the alternative pathway through C3b binding,  
important  questions  include  (1)  the  relative  concentrations  and  
their regulation, (2) affinity differences toward specific ligands, (3) 
functional redundancy among them, and (4) clarification of pro-
posed and still unknown complement inhibitory capacity. Further 
studies will  help to evaluate their  role in host–pathogen interac-
tions, identify novel vaccine candidates, and may also address the 
potential therapeutic use of FHR proteins in infectious diseases.
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