
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 1, 2018
DOI: 10.24193/subbi.2018.1.03

TRANSLATING ERLANG STATE MACHINES TO UML
USING TRIPLE GRAPH GRAMMARS

DÁNIEL LUKÁCS AND MELINDA TÓTH

Abstract. In this paper, we present a method that transforms event-
driven Erlang state machines into high-level state machine models repre-
sented in UML. We formalized the transformation system as a triple graph
grammar, a special case of graph rewriting. We argue in this paper that
using this well-defined formal procedure opens up the way for verifying
the transformation system, synchronizing code and formal documentation,
and executing state machine models among many other possible use cases.
We also provide an example transformation system and demonstrate its
application in action on a small Erlang state machine. We also present our
evaluation of our full system implementation tested on real world Erlang
state machines.

1. Introduction

In this paper, we introduce a method to generate formal UML state machine
models from executable Erlang state machine source code (e.g. gen_fsm
applications [13]). First, this transformation makes use of the RefactorErl
static analysis framework [11, 18] to analyse the application source code, then
it will transform and synthesize the program representation resulting from the
analysis, into a UML state machine model.

Received by the editors: March 31, 2018.
2010 Mathematics Subject Classification. 68N15, 68Q42.
1998 CR Categories and Descriptors. D.2.2 [SOFTWARE ENGINEERING]: Design

Tools and Techniques – Computer-aided software engineering (CASE); D.2.1 [SOFTWARE
ENGINEERING]: Requirements/Specifications – Languages; F.4.2 [MATHEMATICAL
LOGIC AND FORMAL LANGUAGES]: Grammars and Other Rewriting Systems –
Parallel rewriting systems; F.3.22 [LOGICS AND MEANINGS OF PROGRAMS]:
Semantics of Programming Languages – Program analysis.

Key words and phrases. Erlang, triple graph grammar, UML, CASE, state machine,
model transformation.

This paper was presented at the 12th Joint Conference on Mathematics and Computer
Science, Cluj-Napoca, June 14-–17, 2018.

The project has been supported by the European Union, co-financed by the European
Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

33

34 DÁNIEL LUKÁCS AND MELINDA TÓTH

1.1. Motivation. Currently, Unified Modeling Language (UML) [4] is mostly
used in practice as a documentation tool to present a diverse set of views (we
refer to as models in this paper) on high complexity software code.

As both time and tangible costs of formation and maintenance of documenta-
tion increases with software size, automatic generation of collective knowledge
representation becomes more and more important as the software grows. Apart
from automatically generating well-defined UML models of Erlang state ma-
chines, the focus of this paper is to achieve this in a formal way, specifically by
using a model transformation approach called triple graph grammar.

Triple graph grammars [17] (TGGs) are special kind of graph rewriting
systems, and as formal methods, they may have the same properties proved for
them, such as correctness, completeness, determinism, and confluence. Proven
transformation systems automatically produce verified documentation.

One property of special interest regarding TGG transformations is informa-
tion preservation, i.e. the expectation that result models can be transformed
back to the source models. Such bidirectional transformations, and the more ef-
fective model integration (finding correspondences between models) and model
synchronization (completing partially complete models and correspondences)
allow generation of software code from documentation and vice versa, providing
a way to keep the two in sync all the time. This enables developers to work on
the software in various abstraction levels.

As some UML metamodels (such as state machines) can be used to de-
scribe program semantics, model execution by automatic generation of Erlang
gen_fsm implementations of UML state machines is also a possible future
direction of this research.

Verification of the transformation system, automatic verification and synchro-
nization of documentation, bidirectional TGGs, model execution and round-trip
editing are future goals and possible applications of this research. This current
paper only focuses on the target model generation aspects.

1.2. Background. One way to represent the execution history of a computer
program is to take snapshots of the state of the program memory. State
machines can be used to abstract away this low level representation. A state
describes a segment of the program behavior, while a state transition describes
a change in such behaviors, usually triggered by an event [16].

Among many others, UML [4] is one of the more accepted standards to
represent state machines. The UML state machine language can be used to
formally describe event-driven systems, i.e. systems that wait for certain events,
and upon the occurrence of these events, they change their behavior and wait
for a possibly different set of events. etc.

TGG BASED ERLANG STATE MACHINE TRANSFORMATION 35

Erlang [13] is a general purpose, functional, dynamically typed, open source
programming language, mostly used to develop multithreaded, real time, fault
tolerant applications, like telecommunication systems, web servers, or dis-
tributed databases. The language provides various abstractions (called be-
haviors) to support these applications provided by the built-in OTP library,
including the state machine (gen_fsm) behavior.

The requirements of the gen_fsm behavior are to implement a callback
function, named init, and any number of transition functions. The function
init will designate, at a minimum, the initial state of the state machine. The
transition functions will designate, at a minimum, the next state the state
machine will be in when it receives a specific event, while in a specific state.
All the logic necessary to handle multiple threads, messages, events, etc. will
be handled by Erlang in accordance to the gen_fsm semantics [13].

In our research, we use the RefactorErl static analysis framework [18]
to analyse Erlang source code. RefactorErl analyses the source code and
stores discovered syntactic and semantic information in a database called the
semantics program graph (SPG). The framework provides several features to
run refactorings on the source code, to perform further analyses – like data flow,
and dynamic function call analysis –, to execute various queries, to calculate
certain metrics, and many other features.

2. Transformation pipeline

In this section, we overview our approach that we refer to as transformation
pipeline. The pipeline can be considered as a simple function composition,
where the output of earlier functions will be the input of the latter functions.

As depicted in Figure 1, the main input of pipeline is an Erlang SPG as
stored by the RefactorErl framework. This is transformed into an SPG model
(a highly detailed view of the transformed software code), in order to refine it
into a high-level state machine model using model transformation methodology.
Finally, this high-level state machine model is translated into a selected state
machine model, e.g. UML.

In order to properly understand models and model transformations, we need
to introduce basic modeling terminology. The Object Management Group Meta-
Object Facility (OMG MOF) [3] highlights four cognitive layers of software
modeling: concrete implementation, model, metamodel, and meta-metamodel,
each in order a higher-level abstraction (or language) that enables expressing
the layer below.

As most of the intermediate values in the pipeline are models, we also
indicated in Figure 1 the metamodels generating these models. Models of
SPGs are formalized using the SPG metamodel (see Figure 8), state machines

36 DÁNIEL LUKÁCS AND MELINDA TÓTH

RefactorErl SPG

SPG.ecore

SPG analysis

FSM.ecore

UML.ecore

Triple graph grammar

Triple graph grammar

myProgram.spg

myProgram.fsm

myProgram.uml

Figure 1. Transformation pipeline refining Erlang state ma-
chines to high-level UML models

are represented internally using the FSM metamodel (see Figure 2), and the
output state machines are formalized in UML.

As it is conventional in model-driven engineering (e.g. in UML and EMF
Ecore), we formally represent models using typed attribute graphs [7], where
nodes and edges are mapped to types and unique key-value stores.

2.1. Internal program representation of RefactorErl. The RefactorErl
analysis framework stores all information it gathers about Erlang programs via
static analysis in a special data structure, called the semantic program graph
(SPG) [11]. In this paper, we show how the SPG can be transformed into a
state machine, which corresponds to the original state machine described by
the original Erlang source code.

The first step in the transformation pipeline is the transformation of the
RefactorErl SPG into an SPG model (a highly detailed view of the source
program), which can be then transformed into a state machine model (a more
abstract view of the source program) using standard model transformation
tools. A diagram of our SPG metamodel can be found in our earlier work [15],
and it also is depicted by Figure 8. During the transformation, we have to
perform semantics queries, dataflow analysis and dynamic function call analysis

TGG BASED ERLANG STATE MACHINE TRANSFORMATION 37

provided by RefactorErl [20, 19, 10], and encode the results in the model. This
way we avoid re-implementing RefactorErl static analysis facilities for models.

Figure 2. Metamodel for representing state machine models
so they can be easily translated to UML

2.2. A metamodel for describing abstract state machines. In this sec-
tion we will describe a simple state machine metamodel, already published
in our earlier work [15], and depicted by Figure 2, with which we represent
the target state machines of the transformation. We showed in [14] how this
metamodel (and its instances) can be mapped onto the UML state machine
metamodel (and its instances). This intermediate state machine language
explicitly highlights the elements we utilize from UML. For implementation
purposes, the intermediate state machine can be omitted altogether, by sub-
stituting the UML state machine element descriptions for the corresponding
elements in our notation.

2.3. Triple graph grammars. The pipeline also includes two model trans-
formation steps expressed using triple graph grammars (TGGs). The term
graph grammar is a synonym for graph rewriting system (GRS), where the
term grammar signifies the intent of language generation as opposed to e.g.
program evaluation with graph reduction. TGGs constitute a special class
of graph grammars, where the graph is a triple graph (TG): a side-by-side
representation of two models with correspondence nodes connecting them. We
may consider the correspondence nodes as hyperedges that connect multiple
source and target nodes.

The domains given by the metamodels of the source and target models, plus
the domain of the correspondence graph always partitions the node and edge

38 DÁNIEL LUKÁCS AND MELINDA TÓTH

:Root

m:Module

name

:module

:RootToStateMachine
:StateMachine

name = m.name

:InitState

(a)

:Module

name = "id_validator"

fn:Func

:func

:RootToStateMachine

:CbToState

tupleFound = false

Set{"init"
 ,"handle_info"
 ,"handle_event
 ,"handle_sync_event"
 ,"code_change"
 }->includes(fn.name)

:InitState

:State

name = fn.name

:ChoiceState

name = fn.name

:ch

(b)

:AtomExpr

fn:Func

name

:funref

:Conn

tupleFound=true

:CbToState

tupleFound=false

:Transition

:State

name = fn.name

:Transition

:ChoiceState

name = fn.name

:cbRet

:endpoint

:ch

(c)

tuple:TupleExpr

expr:AtomExpr

value = "stop"

:esub

:CbMultiFunClauseConn

tupleFound=false

:TupleStop

tuple.esub->indexOf(expr)=1

:Transition

:StopState

:Transition

:cbRet

:endpoint:tuple

(d)

tuple:TupleExpr

:Func

expr1:AtomExpr

value

:esub

expr2:AtomExpr

value

:esub

:Conn

tupleFound=false

:TupleConn

tupleFound=true

:parentFunc

Set{"next_state"
 ,"ok"
 ,"reply
 }->includes(expr1.value)

:Transition

:Transition

:cbRet

:parentFunc :cbRet

tuple.esub->indexOf(expr1)=1

(expr1.value = "reply"
 and
 tuple.esub->indexOf(expr2) = 3)
or
(expr1.value <> "reply"
 and
tuple.esub->indexOf(expr2)=2)

(e)

:Func

form:Form

:def

corr1:CbToState

tupleFound

cl:Clause

:funcl

p:Pattern

stringRep

:patt

expr:Expr

:body

:CbSingleFunClauseConn

tupleFound=corr1.tupleFound

:State

:ChoiceState

:Transition

trigger = p.stringRep

:Transition

guard = cl.appliedCbGuard()

:ch

:parentFunc

:cbRet

cl.pattern->indexOf(p)=1

form.funcl->size()=1
or
form.hasUniqueEvent(cl)

cl.isLastBody(expr)

(f)

Figure 3. Example TGG transformation system

set of both data and rules TGs into three disjunct partitions: the source, the
target, and the correspondence domains.

A TGG consists of two kinds of rules: axioms and production rules. TGs
are generated recursively by first acquiring an initial TG using the axiom, and
then applying the production rules first to the initial TG and then to successive
TGs to acquire the final TG. As in GRSs, the left-hand side (LHS) of TGG

TGG BASED ERLANG STATE MACHINE TRANSFORMATION 39

production rules is matched using graph matching to a TG redex and the
matched values are substituted in the right-hand side (RHS) variables. The
resulting concrete RHS is then substituted in place of the redex. We say that
an element is bound if it was already matched or replaced at least once during
the transformation, otherwise we say it is unbound.

In this paper, we use a concise notation for diagrammatically representing
TGG rules using diagrams (see Figure 3). As side-by-side representation of
LHS and RHS usually includes large number of identical nodes, we merge
the two in one diagram and use color coding to keep the two comparable.
White elements (called context elements) appear on both LHS and RHS, so
these are “read-only” elements, that are matched and left unchanged. Context
elements can be matched both to bound and unbound elements in the data TG.
The meaning of green elements depends on whether they occur in the source
domain, or not. In the source domain they denote context nodes, that can
only be matched to unbound elements (thus preventing infinite applications of
the same rule to the same contexts). In other domains they denote RHS-only
elements (called product elements): instead they are instantiated when the
LHS matches.

The application semantics of axioms are identical to those of production
rules, but axioms never contain context nodes. This guarantees that axioms
are always matched and applied before production rules.

Reusable elements denoted by the color gray (see e.g. Figure 3f) can be
matched both to bound and unbound elements in the data TG, but if such a
match does not exist, then these elements are created in the data TG.

Most TGG formalisms also allow rules to be accompanied by OCL constraints.
These are boolean expressions pertaining the attributes and values of the
matched nodes. If a rule is successfully pattern matched, then the OCL
constrains are evaluated and the match will be accepted based on whether the
expression is satisfied or not.

2.4. Transformation system. In this section, we present a small, simplified
subset of our TGG transformation system that transforms model SPGs of
gen_fsm programs to state machine models. This rule set was included only to
illustrate and to aid in the comprehension of Section 3. To develop a TGG rule
set that assumes full coverage of the Erlang language, various problems had to
be solved: propagation of state between rule applications, transforming parallel
paths in the graph, transforming nodes with arbitrary number of incoming or
outgoing edges, transforming recursively nested expressions.

As it is difficult to demonstrate all these problems in a small example,
we avoided the discussion of related details in the rules not occurring in the
example. We detail in [14] the whole set consisting of 32 rules, of which the

40 DÁNIEL LUKÁCS AND MELINDA TÓTH

largest one has 16 nodes. According to [12] practical TGGs have in average
15-20 rules, with 10-40 nodes each. The larger number of rules in our case
is explained by the number of types and syntactic categories in the Erlang
language.

As the rules in the system have disjunct LHSs and/or mutually exclusive
OCL constraints, the system is guaranteed to be deterministic.

Figure 3a depicts an axiom rule. In the source domain, it matches in the data
TG the bound SPG root node and module node implementing the gen_fsm
behavior. It then generates and binds in the TG the root node of the state
machine and a globally unique initial state, and a correspondence node between
the source and target elements. The name attribute of the module will also be
matched to a value, and the state machine will be created with its own name
attribute set to this value.

The production rule in Figure 3b matches the SPG nodes of the initial
gen_fsm callback functions and creates a state for each of them, and a transition
into this state from the initial state. The name of the new state will be set to
the name of the matched function.

The transformation traverses the SPG model starting from the initial func-
tions and identifies next states in the function return values. As transition
functions bear the name of their source state, we can now identify the transition
function to traverse next. The leaves of the search tree are stop states and
already bound states.

Figure 3c illustrates the identification of new functions, assuming we already
matched the atom in the predecessor functions return value. It is similar to
Figure 3b, but we expect the tupleFound attribute of the correspondence node
to be true: this signifies that the atom in question is part of the expression tree
headed by a tuple. Successive correspondence nodes will have their tupleFound
attribute set to false again, as from here on we will analyse the body of another
function.

Figure 3d introduces a stop state if the return value of the transition function
is a tuple whose first element is the atom stop.

If the first element is not the stop atom, Figure 3e enables the traversal
of the expression tree of the second tuple element by rules specific to Erlang
expression types. It also sets tupleFound to true to allow Figure 3c to match
when an atom is found. To keep the rules simple we omitted the case where
the first element of the tuple is an unreduced expression, but this case can be
handled similarly.

As most functional languages, Erlang also allows functions to have multiple
clauses. When gen_fsm transition functions have multiple clauses, each clause

TGG BASED ERLANG STATE MACHINE TRANSFORMATION 41

may declare transitions into different states, therefore in such cases, we intro-
duce a ChoiceState for each event handled by the function. Clause conditions
(expression patterns and guards) will be mapped to guards of the transitions
commencing from the ChoiceState. On the other hand, when a transition
function has only one clause, we do not want to introduce a ChoiceState, as
it would only have a single transition. Figure 3f introduces a rule for handling
function clauses which have a unique state machine event pattern (this includes
clauses that are entirely single).

-module(id_validator).
-behavior(gen_fsm).

init(_) ->
{ok, pos1, []}.

terminate(_, _,_) -> ok.

pos1($\n, _, _) -> {stop, normal, {[], reject}, []};
pos1(X, _, _) ->

case alpha(X) of
true -> {reply, {[X], step}, posOther, []};
false -> {stop, normal, {[X], reject}, []}

end.

posOther($\n, _, _) -> {stop, normal, {[], accept}, []};
posOther(X, _, _) ->

case (alphanumeric(X) or X == $_) of
true -> {reply, {[X], step}, posOther, []};
false -> {stop, normal, {[X], reject}, []}

end.

(a)

1

\n 2

[A-z]

\n

[A-z0-9_]

(b)

Figure 4. Source code and schematic diagram of the Erlang
state machine that accepts the language of identifiers

3. Demonstration

The goal of this section is to demonstrate the example transformation
system on a small Erlang state machine. To keep the example system and the
demonstration section small and concise, we only transform the first part of
the model SPG of this program. We included a trace of the transformation of
the full syntax tree in [14].

Figure 4a depicts the code of an Erlang gen_fsm state machine that accepts
the language of identifiers, i.e. those words (event sequences) that start with a
letter and continue either with letters, numbers, or underscores (see Figure 4b).
Initially, the gen_fsm behavior first executes the init/1 function, and sets

42 DÁNIEL LUKÁCS AND MELINDA TÓTH

the current state to the state name (pos1) inside the tuple returned by this
function. When an event is sent to the state machine, the gen_fsm behavior
will evaluate the transition function corresponding to the current state (pos1/3)
and now in turn sets the current state to the return value of this function. The
state machine stops (and either rejects or accepts the event sequence received
beforehand) when one of the transition functions return a tuple with the (stop)
atom.

Figure 5 depicts the transformation trace, i.e. the triple graph resulting
from applying the transformation system in Section 2.4 to the model SPG
of this program. Nodes not featured in the final result were omitted for the
sake of simplicity. The left-hand side of the TG stores the original model SPG
unchanged, while the right-hand side stores the resulting state machine. In
middle, the correspondence graph tells us the history (i.e. the rule application
sequence) of the transformation.

First, the axiom rule (Figure 3a) was the only rule that could have been
matched to the root node, and thus the state machine root was created. Next,
the rule in Figure 3b is matched, as init/1 is part of the five callback functions
expected by the gen_fsm behavior specification. We handle these functions
similarly to transition functions, and therefore we create a special state for
init/1 too. On the only function clause, the rule in Figure 3f is applied. This
rule selects the last expression of the function body and assigns a transition
corresponding to this clause. The transition will be labeled by the wildcard
trigger which is the first parameter pattern of the clause. As the selected
expression may be nested, further rules must be applied to find the name of
the next state in this expression. In the current case, the expression is a tuple
and matches the rule in Figure 3e, since the first element of the tuple is the
atom reply and its third element is an atom. The tupleFound attribute of the
correspondence node is set, so that rules aimed to match only subexpressions
of the tuple may match. And indeed, the rule in Figure 3c matches: it finds
that the third element of the tuple is the atom pos1, and thus it binds the
node representing the transition function pos1/3 and creates the corresponding
state.

As pos1/3 has two clauses the rule in Figure 3f matches both. In the case,
where the event is the end-of-line character, the result is a tuple with the stop
atom as its first element, thus the rule in Figure 3d matches and creates a
stop state. The last expression of the other clause is a branching expression.
A choice state will necessarily correspond to these expressions, and then each
branch will have a corresponding transition from the choice state. For brevity,
we omitted the rules needed to perform these transformations, along with the
rest of the trace. Both can be found in [14].

TGG BASED ERLANG STATE MACHINE TRANSFORMATION 43

:Root

:Module

name = "id_validator"

:module

:RootToStateMachine

:Func

name = "init/1"

:func

:Func

name = "pos1/3"

:func

:Form

:def

:CbToState

:Clause

:funcl

:WildcardPatt

:patt

:TupleExpr

:body

:AtomExpr

value = "reply"

:esub

:AtomExpr

value = "pos1"

:esub

:CbSingleFunClauseConn

:funref

:TupleConn

:Form

:def

:CbToState

:Clause

:funcl

:Clause

:funcl

:CharPatt

stringRep ="\n"

:patt

:TupleExpr

:body

:AtomExpr

value = "stop"

:esub

:Variable

stringRep ="X"

:patt

:CaseExpr

:body

...

:exprcl

...

:exprcl

:StateMachine

name="id_validator"

:InitState

:State

name = "init/1"

:Transition

trigger = _

:State

name = "pos1/3"

:Transition

trigger = "\n"

:Transition

trigger = X

:StopState

:ChoiceState

... ...

:CbSingleFunClauseConn

:CbSingleFunClauseConn

:TupleStop

:BranchingExprToChoice

...

Figure 5. Partial trace of the transformation applied to the
SPG of the Erlang state machine in Figure 4a

The final result of the transformation (including the translation between our
abstract state machine metamodel and UML) is shown by Figure 6 visualized
by txtUML [6].

44 DÁNIEL LUKÁCS AND MELINDA TÓTH

Figure 6. The final UML state machine resulting from the
transformation of the Erlang state machine in Figure 4a

4. Evaluation

In this section, we discuss and evaluate our implementation of the approach
presented in this paper for transforming Erlang state machines to UML. As a
superset of the small example transformation system introduced earlier, our
implementation consists of 32 rules, of which the largest one has 16 nodes, and
in our experience it is capable of transforming arbitrary Erlang state machines
implementing the gen_fsm behavior. This larger system is detailed in [14].

In the implementation, we used the RefactorErl framework and its seman-
tic query, dataflow analysis, and dynamic function call analysis facilities to
construct the model SPG in EMF Ecore. We implemented the TGG trans-
formation system in the TGG Interpreter [8] tool, as it supports custom
correspondence metamodels, OCL constraints, and reusable nodes. Finally, we
used the txtUML [6] framework to visualize UML state machines.

For evaluating the implementation we select state machine modules from
large, open source Erlang projects: the Ejabberd communication server, the
Riak distributed NoSQL database, and the Erlang OTP library. The UML
state machine model resulting from the transformation of a smaller module is
depicted in Figure 7. For each module, we list the number of lines of code, the
average, variance, median, and extrema of required time (in miliseconds) for
performing the transformation based on 10 measurements, and the number of
states and transitions in the result. States include choice states and entry and
exit states, so the number of states and transitions in the model may exceed

TGG BASED ERLANG STATE MACHINE TRANSFORMATION 45

the actual number of states in the original Erlang state machine. Time values
only concern the transformation of SPG metamodel instances to abstract state
machine metamodel instances. The time needed to load the Erlang application
in RefactorErl is mostly independent of the state machine module, as in most
cases its (often much larger) dependencies also have to be loaded. In our
experience, the time needed to translate abstract state machines to UML was
negligible compared to the SPG transformation.

Module LoC #States #Transitions Avg (ms) Var (ms) Med (ms) Min (ms) Max (ms)
Ejabberd

ejabberd_c2s 3128 46 90 31614.7 9504.77 28402.0 22933 47799
ejabberd_http_bind 1236 22 23 26350.2 7598.95 23545.0 21857 47411
ejabberd_http_ws 355 14 13 4924.8 429.09 4742.5 4543 5879
ejabberd_odbc 692 7 10 3128.3 185.25 3109.5 2827 3498
ejabberd_s2s_in 712 34 48 22819.6 3478.57 22498.0 17400 29095
ejabberd_s2s_out 1367 80 104 75686.1 6822.30 73770.0 65274 86216
ejabberd_service 404 22 23 17991.3 3778.44 17035.0 13501 24403

eldap 1196 19 32 27353.0 7569.92 25156.5 21774 47353
mod_irc_connection 1581 26 25 28931.5 9540.48 24327.0 18330 40679
mod_muc_room 4501 32 73 37370.5 7095.74 36863.0 29746 52170

mod_proxy65_stream 291 29 32 14975.9 3016.94 13558.0 12955 22192
mod_sip_proxy 458 19 24 10418.7 1423.34 10162.5 8329 12292

Riak
riak_kv_2i_aae 695 15 22 11688.4 2191.49 10927.0 10183 17181
riak_kv_get_fsm 787 16 16 5521.9 1408.34 4878.0 4324 8377
riak_kv_put_fsm 1055 25 39 12630.0 1822.41 12816.0 10862 16779
riak_kv_mrc_sink 439 14 23 7795.4 1302.02 7417.0 6455, 10546

Erlang OTP
ssh_connection_handler 1721 42 65 67467.6 3578.80 66465.5 63174 73920

tls_connection 975 61 80 56788.5 3906.75 55821.5 50383 63514

Table 1. Runtime evaluation results
The time needed weakly positively correlates with the number of lines of code

(LOC). We can explain this by assuming that more complex state machines
also need more time to be processed, and complexity grows linearly in the best
case (exponentially in the worst case) with the depth of Erlang expressions (e.g.
larger call chains), which in turn may correlate with the LOC. And indeed,
based on Table 1, transformation time grows linearly with the number of states
in the state machines. Future work may consider more elaborate source code
and model metrics to provide better estimates of transformation time and
output.

Comparing the time demand of the TGG approach to our less formal, more
implementation-centered approach in [15], we can conclude – based on the
performance of the current implementation and TGG Interpreter – that the
price of the formal guarantees provided by TGGs is the decreased runtime
efficiency of the transformation. Still, we believe the advantages provided by
TGGs make this approach superior, especially as a reference implementation,
that can be used as a foundation for later optimizations.

46 DÁNIEL LUKÁCS AND MELINDA TÓTH

5. Related work

This work is the continuation of our earlier research published in [15]. There,
we present a less formal approach to automatically generate UML models from
Erlang state machines. The algorithm presented there is an extended depth
first search that selects the neighbouring nodes to discover based on predefined
rules, while it simultaneously constructs the output state machine. While this
procedure was more efficient, it lacked several features TGG promises for future
research: verification of transformation properties, model executability, and
model synchronization. We intend this current paper as a foundation to realize
these features.

One work with similar goals is Erlesy [1], a readily usable, lightweight
solution to visualize Erlang state machines in various output formats, like
Graphviz, PlantUML or D3.js. Unlike our approach, Erlesy uses loop edges to
model the handle callbacks of the gen_fsm specification: an advantage of this
approach is that it follows gen_fsm semantics more closely, a disadvantage is
that it inevitably clutters the resulting state machine graphs with loop edges.

There is also a mature methodology for discovering deterministic finite
state machines using dynamic code analysis, called state machine induction
and behavioral inference. Procedures applying this methodology execute the
analysed program based on specific use case scenarios (e.g. a sequence of
function calls), and collect information to generate a state machine model. The
Erlang language is also well suited for this task due to its statelessness and
advanced program execution tracing facilities [5].

To implement the transformation system introduced in this paper, we used
the TGG Interpreter [8] tool. A survey of various TGGs can be found in [9],
that compares MoTE, eMoflon and TGG Interpreter regarding their usability,
expressivity and provided formal guarantees. All three tools are based on the
EMF framework [2]. Other related tools are Henshin-TGG, EMorF, and OMG
QVT.

6. Conclusions and Future Work

In this work, we presented an approach to transform Erlang state machines
into high-level state machine models represented in UML using triple graph
grammars. For demonstrating this approach, we provided an example trans-
formation system, which we used to explain basic ideas about the semantics
of triple graph grammars and the core problems regarding transformation of
Erlang syntax trees to high-level state machine models. For the full system
consisting of 32 TGG rules, we referred the reader to our earlier technical
report. Our implementation of the system used the static analysis facilities of
the RefactorErl framework to construct the model SPG in EMF Ecore, and we

TGG BASED ERLANG STATE MACHINE TRANSFORMATION 47

implemented the transformation system in the TGG Interpreter tool. We also
evaluated the results and efficiency of this implementation.

One certain use case for a tool generating high-level models from code is
automatic documentation generation, but TGGs promise possibilities way
beyond that. Future research may consider the possibilities of developing a
system for reverse transformation to achieve executable UML state machines.
A bidirectional TGG system may make automatic synchronization of code and
documentation possible and open up the way for round-trip editing to enable
development on the most adequate abstraction level.

As TGGs are a special kind of graph rewriting systems, they may have the
same properties formally proved for them, such as correctness, completeness,
determinism, and confluence. To enable automatic verification of the result-
ing documentation artifacts, future research may also set out to prove the
transformation system introduced in this paper.

References

[1] Visualising Erlang development . https://github.com/haljin/erlesy.
Accessed: 2016-06-30.
[2] Eclipse Foundation. Eclipse Modeling Framework (EMF). https://
eclipse.org/modeling/emf/. Accessed: 2015.11.30.
[3] Object Management Group. OMG Meta Object Facility (MOF) Core
Specification. http://www.omg.org/spec/MOF/. Accessed: 2015.11.30.
[4] Object Management Group. OMG Unified Modeling Language Superstruc-
ture. www.omg.org/spec/UML/. Accessed: 2016-06-30.
[5] Arts, T. and Holmqvist, C. In the need of a design... reverse engineering
Erlang software. 10th International Erlang User Conference, EUC. 2004.10.
[6] Dévai, G., Kovács, G. F., and Ancsin, A. Textual, executable, translat-
able UML. Proceedings of 14th International Workshop on OCL and Textual
Modeling co-located with 17th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS 2014) Valencia, Spain, September
30, 2014., pages 3-12.
[7] Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. (2006). Fundamentals
of Algebraic Graph Transformation (Monographs in Theoretical Computer
Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ,
USA.
[8] Greenyer, J. and Rieke, J. (2012). Applying advanced tgg concepts for a
complex transformation of sequence diagram specifications to timed game
automata. In Schürr, A., Varró, D., and Varró, G., editors, Applications
of Graph Transformations with Industrial Relevance, pages 222–237, Berlin,
Heidelberg. Springer Berlin Heidelberg.

48 DÁNIEL LUKÁCS AND MELINDA TÓTH

[9] Hildebrandt, S., Lambers, L., Holger, G., Rieke, J., Greenyer, J., Schäfer,
W., Lauder, M., Anjorin, A., and Schürr, A. (2013). A Survey of Triple Graph
Grammar Tools. In Bidirectional Transformations, volume 57, pages 1–18.
EC-EASST.
[10] Horpácsi, D. and Kőszegi, J. (2013). Static analysis of function calls in
erlang. e-Informatica Software Engineering Journal, 7:65–76.
[11] Horváth, Z., Lövei, L., Kozsik, T., Kitlei, R., Víg, A. N., Nagy, T.,
Tóth, M., and Király, R. (2009). Modeling semantic knowledge in Erlang for
refactoring. In Knowledge Engineering: Principles and Techniques, Proceedings
of the International Conference on Knowledge Engineering, Principles and
Techniques, KEPT 2009, volume 54(2009) Sp. Issue of Studia Universitatis
Babeş-Bolyai, Series Informatica, pages 7–16, Cluj-Napoca, Romania.
[12] Kindler, E. and Wagner, R. (2018). Triple graph grammars: Concepts,
extensions, implementations, and application scenarios.
[13] Logan, M., Merritt, E., and Carlsson, R. (2010). Erlang and OTP in
Action. Manning Publications Co., Greenwich, CT, USA, 1st edition.
[14] Lukács, D. (2016). Erlang állapotgépek modell alapú és transzformációja
UML-re. Scientific Students’ Associations Conference, ELTE, Budapest,
Hungary.
[15] Lukács, D., Tóth, M., and Bozó, I. Transforming Erlang finite state
machines. In CEUR Workshop Proceedings 2046: pp. 197-218. (2018) Pro-
ceedings of the 11th Joint Conference on Mathematics and Computer Science
(MACS16). Eger, Hungary, 20-22 May, 2016.
[16] Samek, M. (2009). Practical UML Statecharts in C/C++: Event-Driven
Programming for Embedded Systems. Electronics & Electrical. Taylor &
Francis.
[17] Schürr, A. (1995). Specification of graph translators with triple graph
grammars, pages 151–163. Springer Berlin Heidelberg, Berlin, Heidelberg.
[18] Tóth, M. and Bozó, I. (2012). Static Analysis of Complex Software Systems
Implemented in Erlang. In Central European Functional Programming School,
volume 7241 of Lecture Notes in Computer Science, pages 440–498. Springer.
[19] Tóth, M., Bozó, I., Horváth, Z., and Tejfel, M. (2010). First order flow
analysis for Erlang. In Proceedings of the 8th Joint Conference on Mathematics
and Computer Science (MACS), ISBN:978-963-9056-38-1.
[20] Tóth, M., Bozó, I., Kőszegi, J., and Horváth, Z. Static Analysis Based
Support for Program Comprehension in Erlang. In Acta Electrotechnica
et Informatica, Volume 11, Number 03, October 2011. Publisher: Versita,
Warsaw, ISSN 1335-8243 (print), ISSN 1338-3957 (online), pages 3-10.

TGG BASED ERLANG STATE MACHINE TRANSFORMATION 49

7. Appendix

Figure 7. The final UML state machine resulting from the
transformation of the mod_proxy65_stream state machine in
Ejabberd

50 DÁNIEL LUKÁCS AND MELINDA TÓTH

Figure 8. Metamodel for representing RefactorErl semantic
program graphs as models

Eötvös Loránd University, Budapest, Hungary
Email address: {dlukacs,tothmelinda}@caesar.elte.hu

