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Abstract 

 
Gesture recognition has been a popular research field under the trend of IoT and intelligent 

devices. Air-writing is the most challenging and crucial topic in the gesture recognition field. 

In this paper, we propose a wearable air-writing system that makes users can write the English 

alphabet in the three-dimensional space without any write rules. The proposed system is based 

on the Inertial Measurement Unit (IMU), and it uses dynamic time warping (DTW), as the 

main recognition algorithm. On this basis, we also use DTW and KNN (K-Nearest Neighbor) 

algorithm to make a creative combination, and a creative algorithm for time series analysis is 

proposed, Peak-number algorithm. In addition, to improve the recognition accuracy and take 

better advantage of the DTW algorithm, we present an adjustment system that gives some new 

optimization methods to the application of IMU and DTW. 

In the experiment, the accuracy of recognition is 84.6% for the uppercase alphabet (from ‘A’ 

to ‘Z’) in user-dependent cases. And we also confirmed that the recognition method only based 

on the DTW algorithm is one kind of user-dependent method, which means this method is 

heavily dependent on personalization. For DTW enhancement algorithm, DTW-KNN 

algorithm that core idea is to use DTW distance to replace Euclidean distance in KNN, the 

accuracy can even reach 100% if the amount of input data is enough, but it also needs more 

computation and time. For our original algorithm, Peak-number algorithm, the accuracy of 26 

letters can reach 75.3%. The most important advantage of the algorithm is that it almost does 

not need recognition time. For each letter, it only needs 0.0003s. The recognition of DTW and 

DTW-KNN usually takes several seconds or even more than ten seconds. By contrast, our 

proposed algorithm is very good in line with the requirements of real-time recognition, which 

is also needed in the actual application scene. 
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To sum up, in this paper a new wearable air-writing system, and a variety of recognition 

algorithms are studied and extended, and a creative time series recognition algorithm is 

proposed.  

 

Keywords: Air-writing, DTW, DTW-KNN, Peak-number algorithm, gesture recognition, 

wearable devices, human-computer interface, optimization.   
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Chapter 1  

Introduction 

1.1 Background and Motivation 

 

With the rapid development of computer science, electronic devices, and the Internet of 

Things around the world, human-computer interaction (HCI) schemes have become a very 

crucial part of intelligent devices application. HCI refers to the process of information 

exchange between users and systems to complete a certain task by using a certain 

conversational language and interacting in a certain way. Systems can be a variety of machines, 

such as computers, or they can be computerized systems and software. HCI function mainly 

depends on the input-output external equipment and the corresponding software to complete. 

Equipment for HCI mainly includes keyboard, display, mouse, various pattern recognition 

equipment, etc. With the development of computer technology, there are more and more 

operating commands and more and more powerful functions. With the development of pattern 

recognition, such as speech recognition, Chinese character recognition and other input devices, 

people have more efficient human-computer interaction methods besides keyboard input. In 

addition, in recent years the graphic human-computer interaction is also developing very fast. 

These human-computer interactions can be called intelligent human-computer interactions.  

Gesture control is a new interactive method developed in recent years. Different from the 

general interactive methods such as keystrokes and voice, gesture control is easier to master 

and apply. Gesture control, as the name suggests, means that a human hand does not need to 

directly touch the machine, but makes corresponding postural changes in the air, and then gives 

the machine the input it needs to respond. Gesture controls offer several advantages over touch 

screens: for example, users can issue commands from a distance without touching the device. 

In the severe situation of the COVID-19 epidemic, the contactless gesture control HCI scheme 
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is in line with the requirements of human health and epidemic prevention. Even after COVID-

19 is controlled in the future, contactless HCI schemes will remain the trend of research and 

development. Gesture control is also an alternative to voice control, especially in public areas. 

For example, talking on a smart wearable device on the subway might be a little uncomfortable 

for some people and draw unwanted attention. Besides, gesture controls also expand the third 

dimension from a two-dimensional user interface. In previous research, gesture recognition has 

been wildly used in HCI applications such as sports sciences[1], intelligent wheelchair[2], gait 

detection[3], automatic television control systems [4], handwriting-based authentication 

systems [5], and air-writing. 

Traditional gesture recognition provides a new modality for HCI. Some simple motion 

gestures are that users can memorize and apply easily. Besides, recognition algorithms of these 

simple gestures have high robustness and accuracy. However, for many complex usage 

scenarios, simple gestures have not enough information to achieve efficient and convenient 

HCI. Writing is the way and tool for human beings to record and express information with 

symbols. Until now, text input is still the most efficient way of human-computer interaction, 

because text contents include more information than voice or other input methods in unit input 

time. In general, text input mainly primarily through a keyboard, touch screen, or new speech-

 
Fig. 1.1 The process of the proposed air-writing system. 
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to-text method. However, these old input methods may not meet the requirements of intelligent 

IoT scenarios. For example, in a smart home IoT system, we cannot equip every terminal or 

sensor with a touch screen or a keyboard. Air-writing is defined as writing linguistic characters 

or words in the free space by hand or finger movements [6]. It will be especially useful when 

users do not allow input text by traditional input methods. Besides, air-writing also has far-

reaching application potential in the accessible field and wearable devices. 

In this paper, we propose a wearable air-writing system that makes users can write the 

English alphabet in the three-dimensional space without any write rules. The recognition 

process of the proposed IMU is shown in Fig. 1.1. 

1.2 Accessibility 

 

Motor skills can be divided into fine motor skills and gross motor skills according to the 

muscles and range of movement involved. Fine motor skills are mainly achieved by small 

muscle movements (such as wrist and finger movements), carried out in a narrow space, 

requiring exquisite coordination of movement skills. Such as writing, typing, carving, 

embroidery, and other skills. Gross motor skills are the skills that use big muscles to achieve 

and require great strength and great movement. Such as running, swimming, playing ball games, 

weightlifting and so on. Undoubtedly, traditional writing is a fine motor skill because it requires 

subtle motions of the hand, the wrist, and fingers.  

Fine motor disability is a person's inability to perform tasks that require a certain degree 

of dexterity, and it is a symptom, not the disease itself. The intact fine motor function involves 

complex coordination between numerous central and peripheral nervous system structures. The 

following neuroanatomical areas play crucial roles in fine motor control, and therefore any 

lesion can cause fine motor disability. Causes of lesions/damage include a space-occupying 

lesion, infection, stroke, toxins, autoimmune inflammation, metabolic, trauma, and congenital 
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absence or abnormality. According to the data from NCBI (National Center for Biotechnology 

Information), the developmental disability in children in the US is 17.8%. There is a strong 

correlation between fine motor disability in children and development disorders. In adults, 

there are many diseases such as stroke (2.8% of the US population), rheumatoid arthritis (2% 

of North America), and traumatic brain injury (1.1% of the US population) will cause fine 

motor disability. In the medical field, Legibility and speed of writing have been used in children 

and adults as a way to determine patients' fine motor abilities. These data show that there are 

quite a few special people who cannot complete the traditional handwriting tasks very well. 

For some people with severe conditions, such as Parkinson's disease patients and Huntington's 

disease patients, they may not even be able to hold a pen. 

The proposed wearable air-writing system can help the disabled with fine motor 

disabilities to complete writing tasks and carry out efficient human-computer interaction. The 

air-writing system will mainly play a role in two aspects. The first one is the air-writing system 

can transform fine movement into gross movement, and Fig. 1.2 shows this process in the 

proposed air-writing system. When the user wears the air-writing system and does air-writing, 

the written letters can be successfully recognized even the user only uses the arm without the 

Fig. 1.2 The proposed system can transform fine motor movement into Gross motor movement 
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movements of fingers, the hand, and the wrist. The second one is the air-writing system is based 

on the DTW, DTW-KNN, Peak-Number-based algorithm. These algorithms are different from 

trajectory reconstruction or vision-based algorithms because they only focuses on the matching 

degree between the sample and the template, or some special recognition rules, not real letters. 

For example, even disabled users write some letters that are very different from the usual ones, 

the accuracy of air-writing will not decrease. Because personalization will ensure the sample 

and template match, thus ensuring a high recognition rate. 

 

1.3 Related Works 

 

Because of the rapid development of sensor and picture processing technologies, there are 

mainly two existing air-writing recognition schemes, IMU-based and vision-based. Because 

inertial sensors have some significant advantages, such as the small volume of hardware, low 

latency, and low computational cost, so they are wildly used in consumer electronic devices 

and the IoT field. In the initial research, researchers are aimed at combine pen with IMU. Wang 

et al. proposed an accelerometer-based digital pen. This digital pen can recognize handwritten 

digit from 0 to 9 and eight simple gestures, such as up, down, circle, and so on. Sepahvand et 

al. [8] introduced a new Persian/Arabic handwritten character recognition scheme with an 

IMU-based pen. It uses position signals collected by inertial pen to extract high-level 

geometrical features and then uses a new metric learning technique and a genetic programming 

algorithm. This scheme has high recognition accuracy of over 90%. However, even the sensor-

based digital pen method has high accuracy results, it still does not meet the design concept of 

wearable devices. Zhou et al. [9] proposed an IMU-based method and mainly using trajectory 

estimation. This system can recognize ten-digits air-writing with 91.2% accuracy. In [10], Pan 

et al. proposed a scheme that uses built-in IMU in a smartphone to do air-writing. Then they 
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investigate the performance of different letter recognition methods based on the reconstructed 

trajectories, including DTW and Hidden Markov Model (HMM)) and Convolutional Neural 

Network (CNN)). This method does not require additional sensors, and users can just hold their 

smartphones to finish air-writing. In [11], Tsai et al. proposed a vision-based air-writing method 

that mainly uses a camera to collect action information and a strong recognition algorithm. 

They present a novel reverse-time ordered stroke context, which can recognize the English 

alphabet and digital letters with 94.2% accuracy. In recent years, some creative and potential 

air-writing methods have been proposed. P. Wang et al. [12] proposed a new gesture air-writing 

tracking method based on 24 GHz SIMO Radar SoC. Their system has so many critical 

advantages such as very small size and enhanced sensitivity, without individual privacy risk 

and high robustness for environmental conditions, but the system can only recognize simple 

gestures and reconstruct the trajectory of ten-digits and English letters (without recognition). 

 

1.4 Dissertation Outlines 

 

The organization of the chapter is as follows: 

In the chapter 1, the concept of HCI and the application of gesture control are introduced. In 

addition, this chapter also explains that under the general trend of various new technologies 

and demands, efficient air-writing technology is a research direction with great potential. Then 

the accessibility is explained, especially, it mainly expounds the causes of fine motor disorders, 

and its impact on the population is very large. The proposed air-writing system can convert fine 

motion into gross motion, so that patients can interact with the computer normally and 

efficiently by the proposed system. Finally, we summarize some related studies and results in 

the field of air-writing and elaborate their advantages and disadvantages. 

The second chapter mainly expounds the hardware design of a wearable device. Firstly, we 
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introduced the structure, function, and the choice of specific model of IMU. Then the details 

of the overall wearable device are introduced, including how it connects to the PC and the Pin 

of IMU and TTL-USB converter. 

The third chapter mainly discusses three important algorithms being applied in the system, is 

the DTW algorithm, DTW - KNN algorithm, and Peak-Number algorithm respectively. We 

mainly discuss the mathematical principles of these three algorithms and their advantages in 

the application of air-writing systems. We also proposed some optimization tricks that make 

algorithms have better performance. Besides, we also discuss the time consumption of the 

algorithm, the most critical element of real-time recognition, in the practical application of air-

writing system.  

Besides, In chapter 4, several experiments and their results are described. For three different 

algorithms, we used the same data set to design different experiments and obtained the accuracy 

of comparative significance and other results. 

In the final chapter, chapter 5, we summarize the conclusions from experiments that our 

proposed air-writing system has good performance and high accuracy. Future research plans 

are also described, focusing on wireless design, advanced algorithms, and integration with 

machine learning and deep learning. 
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Chapter 2  

Hardware Design  

2.1 Inertial Measurement Unit 

 

IMU is Inertial Measurement Unit, a kind of sensor used to detect and measure acceleration 

and rotational motion. Generally, an IMU includes a three-axis accelerometer and a three-axis 

gyroscope. The accelerometer can detect objects in the reference coordinate system 

independent triaxial acceleration signal, and the gyroscope can detect the angular velocity of 

movement. These information from the acceleration and the gyroscope can be used to calculate 

the movement trajectory and the posture of objects, so it has a very important application value 

in navigation and movement speculation. IMUs are mostly used in devices that require motion 

control, such as cars and robots. It is also used in the application of precision displacement 

calculation with attitude, such as inertial navigation equipment of submarine, aircraft, missile, 

and spacecraft, etc.  

MEMS accelerometer is one of the earliest sensors in the MEMS field. After years of 

development, MEMS accelerometer design and processing technology have become 

increasingly mature. MEMS capacitive accelerometers are the cheapest, most common, and 

smallest of their kind. The operating principle boils down to changing the position of the anti-

seismic mass suspended on the spring. One end of the spring is connected to the comb capacitor 

plate, while the other end is connected to the mass block. Under the action of the force acting 

on the sensor, the vibrating mass block moves, which causes the distance between the plate and 

the mass block to change, thus changing the capacitance. MEMS capacitive accelerometers are 

mainly used in wearable devices, mobile devices, and consumer electronics. One of the biggest 

advantages of MEMS accelerometers is that they can be mounted directly on the PCB. 

Disadvantages of MEMS systems include low measurement accuracy, especially in the case of 
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higher amplitude and frequency measurements, which makes them unsuitable for specialized 

industrial applications. 

Since the 1980s, more and more attention has been paid to the angular rate-sensitive MEMS 

gyroscopes. Its working principle is to use the conservation of angular momentum and the 

Coriolis effect to measure the angular velocity of moving objects. It is essentially a rotating 

object whose axis of rotation does not change with the rotation of the bracket carrying it. Like 

an accelerometer, the gyroscope's upper layer of moving metal forms a capacitor with the lower 

layer of metal. As the gyroscope rotates, the distance between it and the capacitor plate below 

will change, and the upper and lower capacitors will change accordingly. The change in 

capacitance is proportional to the angular velocity, from which we can measure the current 

angular velocity. 

In our proposed air-writing system, we use an IMU which also includes a 3-axis magnetometer. 

The magnetometer uses Anisotropic magneto-resistance materials to detect the intensity of 

magnetic induction in space. The crystal structure of the alloy material is very sensitive to the 

external magnetic field, the strength of the magnetic field will lead to the change of AMR 

resistance value. In the proposed system, we use a WT901 (produced by Company WitMotion) 

    

Fig. 2.1(a) The very small size IMU WT901       (b) Pin of IMU chip 



19 

 

which is based on InvenSense MPU9250. This IMU can achieve motion tracking function and 

output accelerated velocity, angle, angular velocity, and magnetic field intensity. Fig. 

2.1(a)shows the very small size of the selected IMU, and Fig. 2.1(b) shows the Pin structure of 

this chip. 

 

2.2 Wearable Device 

In our proposed air-writing system, for data collection, the IMU is worn on the end of the index 

finger, like a ring. The realistic experiment picture is shown in Fig. 2.2. When the user moves 

the hand to do air-writing, the data produced by the IMU sensor will be transmitted to the PC 

by jumper wires and a TTL-USB conversion interface. The PC will start to conduct the 

recognition algorithm right after receiving the data. Fig. 2.3 shows the TTL-USB converter and 

its physical switch settings. 

 TTL-USB conversion interface is a six in one multifunctional serial port conversion module 

that can support the conversion of USB-TTL, USB-232, USB-485, TTL-485, 232-485, and 

                           
Fig. 2.2 The IMU on the end of the index finger           Fig. 2.3 The TTL-USB converter 
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TTL-232. It use USB 2.0 which is compatible with Windows XP/7/8/10 32bits/64bits, Linux, 

WinCE, Mac, Vista, etc. The indicator lamp uses red, yellow and green three colors to indicate 

the working state of the equipment. Com port selects the USB (yellow light) to be on normally, 

the data receives the RX (red light) flicker, the data sends the TX (green light) flicker. CP2102 

from SILICON LAB is used as the main chip and the baud rate is 300 bps to 1.5 Mbps. Table 

1 shows the Pin function of this converter. 

  

Table. 1 The Pin function of converter 
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Chapter 3  

Methodology of Algorithms and Optimization 

3.1 Dynamic Time Warping 

 

In time series analysis, Dynamic Time Warp (DTW) is an algorithm to measure the similarity 

of two time series, and both series may have different time durations. Based on the idea of 

dynamic programming (DP), this algorithm solves the problem of non-point-to-point matching 

for different lengths of time series. DTW is a classical algorithm, in the 1970s and early 1980s, 

DTW was extensively used in speech recognition research [13]. Besides, DTW is efficient and 

competitive for small-scale samples without the training part. To sum up, the DTW algorithm 

can obtain the similarity of two time series, one as a sample and the other as a template. This 

process is shown in Fig. 3.1. And the smaller the similarity number, the higher the similarity 

between two time series, and vice versa. 

In general, DTW is a method that calculates an optimal match between two given sequences 

with certain restriction and rules: 

1. Every index from the first sequence must be matched with one or more indices from the 

other sequence, and vice versa. 

 
Fig. 3.1 Output of DTW 
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2. The first index from the first sequence must be matched with the first index from the other 

sequence (but it does not have to be its only match) 

3. The last index from the first sequence must be matched with the last index from the other 

sequence (but it does not have to be its only match) 

4. The mapping of the indices from the first sequence to indices from the other sequence must 

be monotonically increasing, and vice versa. 

DTW is often compared with HMM (Hidden Markov Model) algorithm. Because DTW 

algorithm does not have an effective framework for training with statistical methods, and it is 

not easy to apply all kinds of knowledge at the lower level and the top level into the speech 

recognition algorithm, it is inferior to HMM algorithm in solving the problems of a large 

vocabulary, continuous speech and non-specific speech recognition. HMM is a kind of 

probabilistic model which is expressed by parameters and used to describe the statistical 

characteristics of the stochastic process. For isolated word recognition, HMM algorithm and 

DTW algorithm have little difference in recognition effect under the same condition. DTW 

algorithm itself is simple and effective, but HMM algorithm is much more complex. It needs 

to provide a large amount of speech data in the training stage, and the parameter model can be 

obtained through repeated calculation, while the DTW algorithm training almost does not need 

additional calculation. 

Assuming there are two sequences that one is template sequence T, and another is sample 

sequence S as (1): 

𝑇 = 𝑡1, 𝑡2, 𝑡𝑖, … , 𝑡𝑛 

𝑆 = 𝑠1, 𝑠2, 𝑠𝑗 … , 𝑠𝑚 (1) 

f n is not equal to m in (1), the DTW can automatically match two sequences with different 

durations. If n is not equal to m, the time warping process can also achieve the best match 

between two sequences, and the best match will provide a more accurate similarity index than 
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simply calculate the Euclidean distance of the template and the sample. Euclidean distance and 

the time warping are shown in Fig. 3.2. 

For the matching operation, firstly we must construct a distance matrix 𝑀, and matrix element 

𝑀(𝑖, 𝑗) represent the distance of 𝑡𝑖and 𝑠𝑗, it will be calculated by (2): 

𝑑(𝑇𝑖 , 𝑆𝑗) = (𝑇𝑖 − 𝑆𝑗)
2

(2) 

The second step of DTW is finding a path from the upper-left to the lower-right corner of the 

matrix that minimizes the sum of elements. The path will start from (1,1), and for a random 

point (𝑖, 𝑗), it will have three predecessor candidates, i.e. (𝑖 − 1, 𝑗), (𝑖, 𝑗 − 1), (𝑖 − 1, 𝑗 − 1). 

Assuming the shortest distance of the optimal path is 𝐿𝑚𝑖𝑛(𝑖, 𝑗), so the recursive algorithm can 

be used to calculate the shortest path length as (3): 

 

Fig. 3.2 Euclidean distance (a) and the Time Warping process (b) between two sequences. 
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𝐿min (1,1) = 𝑀(1,1) 

𝐿𝑚𝑖𝑛 (𝑖, 𝑗) = 𝑀(𝑖, 𝑗) + 𝑚𝑖𝑛{𝐿𝑚𝑖𝑛 (𝑖 − 1, 𝑗), 𝐿𝑚𝑖𝑛 (𝑖, 𝑗 − 1), 𝐿𝑚𝑖𝑛 (𝑖 − 1, 𝑗 − 1)}      (3) 

The time complexity and space complexity of DTW are both 𝑂(𝑀 ∙ 𝑁). For improving the 

speed of the DTW algorithm, an optimized algorithm, FastDTW was proposed in [14]. 

FastDTW mainly uses three key operations: coarsening, projection and refinement. The time 

complexity of FastDTW is 𝑁(8𝑟 + 14), and the space complexity is 𝑁(4𝑟 + 7), where 𝑟 is 

the radium parameter which controls the additional number of cells on each side of the projected 

path that will also be evaluated when refining the warp path. FastDTW significantly improves 

the speed of the algorithm with relatively high accuracy.  

Fig. 3.3 shows the distance matrix M and a possible shortest distance path. 

In chapter 2, we introduced the IMU which include a 3-axis accelerometer, a 3-axis gyroscope, 

and a 3-axis magnetometer. There is no doubt that the data output from the three sensors are all 

time series, based on the movement of the wearable device. The Fig. 3.4 shows the visualization 

of the time series of acceleration output under stationary state. Fig. 3.5 and Fig. 3.6 shows 

 

Fig. 3.3. The ditance matrix M (a). The red path in (b) means a possible shortest path to Mi j. 
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waveforms of gyroscope and magnetometer under stationary state. Fig. 3.7, Fig. 3.8, and Fig. 

3.9 show the time series of 3-axis accelerometer, gyroscope and magnetometer when air-write 

the letter ‘A’. Fig. 3.10 shows a single axis, The time series of X-axis in Accelerometer when 

the user air-write letter ‘A’, letter ‘B’, letter ‘C’ and letter ‘D. From the time series figures, we 

can find that the IMU output time series is clear and reliable. In addition, the duration of writing 

action may be different according to the waveform of different letters, and the time duration of 

the same letter written at different times may also be different. For these characteristics, DTW 

as a recognition algorithm will be efficient and reliable, and fit the actual gesture recognition 

application scenarios.  

 

 

 

 

Fig. 3.4 The time series of 3-axis Accelerometer in stationary state 
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Fig. 3.5 The time series of 3-axis Gyroscope in stationary state 

 
Fig. 3.6 The time series of 3-axis Magnetometer in stationary state 



27 

   

 

 

Fig. 3.7 The time series of 3-axis Accelerometer when air-write the letter ‘A’ 

 

 

Fig. 3.8 The time series of 3-axis Gyroscope when air-write the letter ‘A’ 
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Fig. 3.9 The time series of 3-axis Magnetometer when air-write the letter ‘A’ 

 
Fig. 3.10 The time series of X-axis in Accelerometer when the user air-write letter ‘A’, letter ‘B’, letter 

‘C’ and letter ‘D’ 
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3.2 K-nearest Neighbors and DTW-KNN 

 

KNN (K-Nearest Neighbor) method, originally developed by Evelyn Fix and Joseph Hodges 

in 1951 [16]. And then expended by Cover. T and Hart. P in 1968 [17]. It is a relatively mature 

method in theory and one of the simplest machine learning algorithms. The idea of this method 

is very simple and intuitive: if most of the K most similar (that is, the closest in the feature 

space) samples of a sample belongs to a certain category, then the sample also belongs to this 

category. In the classification decision, the method only determines the category of the samples 

is divided according to the category of the nearest one or several samples. 

In general, the KNN classification algorithm includes the following six steps: 

1. Prepare data and preprocess the data. 

2. Calculate the distance between the point in the known category data set and the sample 

point. 

3. Sort by increasing distance. 

4. Select K points with the smallest distance from the sample point. 

5. Count the occurrence frequency of the category of the first K points. 

6. The category with the highest occurrence frequency of the first k points is returned as the 

prediction classification of the sample point.  

Fig. 3. 11 shows the main idea of KNN. 

The Minkowski distance or Minkowski metric is a measure in Euclidean space, viewed as a 

generalization of Euclidean distance and Manhattan distance. 
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For two points: 

𝑋 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) 

𝑌 = (𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛) (4) 

The Minkowski distance is defined as: 

𝐷(𝑋, 𝑌) =  (∑|𝑥𝑖 − 𝑦𝑖|
𝑝

𝑛

𝑖=1

)

1
𝑝

(5) 

The Manhattan distance comes from the city block distance, which is the result of summing up 

the distance in multiple dimensions. When p is 1, the distance will be Manhattan distance: 

𝑑𝑖𝑠𝑡(𝑋, 𝑌) =  ∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (6) 

Euclidean distance is the most common measure of distance, which measures the absolute 

distance between points in multidimensional space. When p is 2, the distance will be Euclidean 

distance: 

𝑑𝑖𝑠𝑡(𝑋, 𝑌) =  √∑|𝑥𝑖 − 𝑦𝑖|2

𝑛

𝑖=1

 (7) 

 
Fig. 3.11 The concept of KNN algorithm 
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Because the calculation is based on the absolute value of the characteristics of each dimension, 

the Euclidean measurement needs to ensure that the indicators of each dimension are at the 

same scale level. For example, the use of Euclidean distance for two indicators with different 

units of height (cm) and weight (kg) may invalidate the results.  

Chebyshev distance comes from the moves of the king in chess. Extending to multidimensional 

space, Chebyshev distance is the Minkowski distance as p approaches infinity: 

𝑑𝑖𝑠𝑡(𝑋, 𝑌) =  lim
𝑝→∞

(∑ |𝑥𝑖 − 𝑦𝑖|
𝑝𝑛

𝑖=1 )
1

𝑝 = 𝑚𝑎𝑥|𝑥𝑖 − 𝑦𝑖| (8) 

fact, the Manhattan distance, Euclidean distance, and Chebyshev distance above are all 

applications of Minkowski distance under special conditions. In the mentioned step 2, we 

usually calculate the Euclidean distance for KNN algorithm. Fig. 3.12 shows the different K 

value choices. When K is 3, the classification result is Class 2, but when K is 7, the 

classification result will be Class 1. 

If a smaller value of K is selected, it is equivalent to using the training instance in the small 

neighborhood to make the prediction, and the approximation error of learning will decrease, 

and only the training instance that is close to the input instance will play a role in the prediction 

result. The single disadvantage is that the estimation error of learning will increase, and the 

 

Fig. 3.12 Different K value choices will affect the results of the same classification problem 
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prediction result will be sensitive to the instance point division in the nearby neighbor. If the 

adjacent instance point happens to be noise, the prediction will be wrong. In other words, the 

decrease of K value means that the overall model becomes more complex, and the division is 

not clear, so overfitting is likely to occur. 

If a larger value of K is selected, it is equivalent to using training examples in a larger 

neighborhood to make predictions. Its advantage is that the estimation error of learning can be 

reduced, but the approximate error will increase, that is, the prediction of input examples is not 

accurate. If K is worth increasing, it means that the overall model becomes simpler. 

(Approximate error: can be understood as the training error of the existing training set. 

Estimation error: Can be understood as a test error on a test set.) 

KNN method is simple, easy to understand, easy to implement, no need to estimate parameters. 

A major deficiency of this algorithm in classification is that when the samples are unbalanced, 

such as the sample size of one class is large while the sample size of other classes is small, it 

may lead to that when a new sample is input, the samples of the large-size class in the K 

neighbors of the sample are in the majority. Another disadvantage of this method is that it 

requires a large amount of computation, because the distance between each text to be classified 

and all known samples must be calculated to obtain its K nearest neighbors. 

From the introduction and output graph of IMU in Section 1 of Chapter 3, we can know that 

IMU mainly outputs multiple time series. However, the KNN algorithm uses the distance 

between the sample points to be classified and each point in the data set as the main input (It is 

also possible to enter information about the location of data sets and sample points). When we 

want to use KNN to analyze time series, the most critical part is how to calculate the distance 

between two time series. In the introduction part of the DTW algorithm, we profoundly 

expounded the advantages of DTW for the analysis of two time series, and it can get a number 

representing the similarity, or the distance, of two time series. So, the main idea is to use the 
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distance of two time series obtained by DTW algorithm to replace the Euclidean distance in 

the second step of KNN algorithm. In [15], the author proposed a method that DTW is applied 

for speech feature matching and KNN is employed as a classifier, this work is like the proposed 

DTW-KNN algorithm and inspires our work. 

The algorithm is essentially a multiple iteration of the KNN-based DTW algorithm, so it will 

undoubtedly perform better than the classical DTW algorithm. But this superior performance 

comes at a price. The DTW-KNN algorithm is the brute force algorithm, which is essentially 

the calculation of DTW distance for a large number of time series. Therefore, it is difficult for 

this algorithm to perform well in large scale or large data sets, and the main disadvantage is 

time consumption. The time consumption in the experiment will be explained and shared in 

detail in the experiment chapter 4. 

 

3.3 Peak-number Algorithm 

 

The DTW and DTW-KNN algorithms described above are all for the analysis of the whole air-

writing movement data. The advantage of these algorithms is that they don't miss any 

information in a complete air-writing movement. However, its drawbacks are also obvious that 

not all movement information is necessary for a successful and efficient recognition, besides, 

the computations that include all the information require strong computing power support and 

relatively long recognition time. For these inherent characteristics of air-writing recognition, 

Peak-number algorithm, a new algorithm is proposed in this paper. Obviously, pattern 

recognition itself is related to the classification problem, and the classification problem is the 

most critical similarity. In other words, if similarities and differences between samples and 

templates can be found, a successful classification task can be performed. The main idea of 

Peak-number algorithm is that different air-writing letters have different numbers of upward 
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peak points and downward peak points. This kind of ‘difference’ will ensure that we can 

successfully recognize among different letters of the English alphabet. Fig. 3.13 shows this 

kind of ‘difference’ in the X-axis of the accelerometer, IMU. 

In general, the Peak-number algorithm includes the following four steps: 

1. Prepare data and preprocess the data which collected by IMU. 

2. Calculate the number of upward peak points and downward peak points for a sample. 

3. Compare the result of step 2 with standard peak point numbers for each letter. 

4. The sample will be recognized as the matched standard letter. 

The effect (X-axis of accelerometer) of the automatic peak finding system is shown in Fig. 

3.14. It is designed in Python 3.8. It uses the same data as in Figure 3.13, and by comparison, 

it can be found that the results of automatic peak finding are completely correct. In [18], many 

peak searching algorithms and applications are clearly explained, in general, automatic peak 

searching is a relatively fast and simple task 

 

Fig. 3.13 Different air-writing letters have different peak points information 
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As we have mentioned, the IMU we have chosen has nine axes. However, in the actual 

experiment, we find that not all axes are suitable for using the Peak-number algorithm we 

proposed. Because on many axes, the peak information of the data is very unclear and messy, 

and that leads to if we use the data on these axes to extract information of peaks, the accuracy 

of the air-writing system will be very low. Fig. 3.15 shows the waveform that is not good 

enough from accelerometer X-axis and magnetometer X-axis. Unfortunately, not only X-axis, 

all the axes from the accelerometer and magnetometer are not perfect enough to make them 

difficult to use in the Peak-number algorithm. 

On the contrary, the data waveform of the three axes of the gyroscope is very clear and perfect, 

which is very suitable for the Peak-number algorithm we proposed. Fig. 3.16 shows the 

waveform of gyroscope X-axis. Therefore, in the actual experiment, we mainly use the data 

from the three axes of the gyroscope to carry out air-writing recognition. 

 

Fig. 3.14 The result of automatic peak finding for air-writing letters, ‘A’, ‘B’, ‘C’, ‘D’. 
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3.4 System Optimization 

For the DTW method, the most critical part for recognition accuracy is the quality of templates 

and samples, because it directly determines the matching degree between template sequences 

and sample sequences. After considering this character and the data characteristics of IMU, we 

design two schemes to improve the recognition accuracy, the idle-cutter and the multi-template 

 

Fig. 3.15 bad performance axes 

 

Fig. 3.16 Gyroscope X-axis (good performance axis) 
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system.    

In practical application and experiment scenarios, there are idle parts before the start point of 

an air-writing movement and after the end of the movement. If we slice the air-writing samples 

sequences by a fixed time, every sample will include the idle time, which will reduce the 

recognition accuracy and generate more time consumption by recognition algorithms. After 

considering IMU will output accelerometer values directly, we design the idle-cutter that will 

find the start point and endpoint automatically, then cut the idle time and the remaining 

sequences only include the air-writing information without idle information. Fig. 3.17 shows 

waveforms of the X-axis in the accelerometer when air-writing three "A", and after processed 

by idle-cutter, only these waveforms which include air-writing information in black frames will 

remain. The operating principle of the idle-cutter as follows. The algorithm calculates the slope 

range (fluctuation range) of slight involuntary shakes of the hand by accelerometer values from 

IMU, then calculates the sample slope by X-axis accelerometer values that include three time 

points (sampling rate is 10 times points per second). If the sample slope is included in the range 

of hand slight shakes, the algorithm will decide this data is still in idle time. Otherwise, the 

algorithm will decide the air-writing gesture has already begun and found the start point of an 

air-writing movement. The endpoint will be determined by the same principle. 

In actual experiments, there are considerable variations of results between air-writing samples 

of the same letters by the same user collected at different times. Eventually, we determine that 

this issue was caused by different angles (shown in Fig. 3.18) of the user’s hand when doing 

air-writing. This issue reduces the recognition accuracy because the mismatching between 

template and sample will affect the DTW algorithm. To solve this problem, a multi-template 

system was proposed which will match the air-writing hand angle of template sequences and 

sample sequences and then choosing the best group of templates. The matching principle as 

follows. Firstly, the 3-axis gyroscope will output the hand angles that relative to the horizontal 



38 

 

plane. As shown in Fig. 3.19, for 15° to 35° of the air-writing hand angles, samples will match 

with the template group that was recorded at 25° and then starting recognition algorithms. 

Samples from 35° to 55° will match with the template group at 45°, and those from 55° to 75° 

will match with 65° templates. As for the data that hand angle is below 15° or above 75°, people 

hardly do air-writing in these extreme ranges, so these ranges will not be taken into 

consideration. The multi-template system provides a better solution for users’ different air-

writing postures, and it also improves the recognition accuracy because of the better match 

quality. 

The proposed system uses a 9-axis IMU, which includes a 3-axis accelerometer, a 3-axis 

gyroscope, and a 3-axis magnetometer. All 9 axes provide movement data for the DTW 

algorithm, and some axes also provide data for special functions. The X-axis of the 

 

Fig. 3.17 Three waveforms of letter ‘A’. Idle-cutter will cut idle time in red frames and only remian 

useful information in black frames. 
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accelerometer provides data for the idle-cutter, which will use movement data to calculate the 

sample slope range, then determine the start point and endpoint. The X-axis of the gyroscope 

directly provides the hand angle values relative to the horizontal plane when doing air-writing, 

and hand angle values will be used to match the best template group for the DTW algorithm in 

the multi-template system. Fig. 3.20 shows the collaboration of these 9 axes in a single 

recognition process. 

In the proposed air-writing system, a template includes 9-axis movement data without idle 

information and a hand angle; and a sample usually includes 9-axis whole movement data. 

After processing by the idle-cutter and matching with the best template group, every sample 

axis of IMU will calculate by the DTW algorithm, with the matched axis in the template.  In 

our experiment, a template group usually includes 36 letters and numbers (uppercase alphabet 

and 10-digits), so every axis of the sample sequence will process by DTW 36 times, then output 

the most similar letter or number. At last the recognition algorithm will integrate the results of 

  

Fig. 3.18 Different air-writing hand angles       Fig. 3.19 The process of multi-template system. 

respectively are about 90°, 60°, 30°, and 0°  

relative to the horizontal plane. 
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nine axes together, then output a particular letter or number as the final recognition result which 

has 5 or more axes successfully match with template sequences. Cooperative work of 9-axis 

can guarantee high recognition accuracy and improve the system robustness greatly. 

In DTW-KNN algorithm, the idle-cutter will be used but the multi-template system will not be 

used, because we have a much more efficient and rigorous method, KNN algorithm. In a sense, 

DTW-KNN algorithm can be regarded as a more scientific and effective extension of a multi-

template system. In Peak-number algorithm, the idle-cutter is unnecessary, because idle time 

does not affect our peak selection, and it takes almost no computation. 

 

3.5 Time Consumption 

 

The purposed air-writing system is to be applied to real application scenarios, therefore, in 

addition to the accuracy rate, the time consumption required by the system from input to output 

 

Fig. 3.20 Collaboration of IMU 9 axes. 
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is also an important indicator to measure whether the proposed system conforms to real-time 

recognition. In many similar gestures recognition research, researchers are committed to real-

time recognition. For example, in [20], the author proposed an electromyography (EMG)-based 

method for gesture recognition, and their real-time standard is “A gesture must be recognized 

in less than 300 ms”. In vision-based methods, researchers also aim to real-time recognition. 

In [21], the researchers realized a constant processing speed of 30 (fps) for real-time 

performance. As we have mentioned before, the DTW algorithm and DTW-KNN algorithm 

mainly use all the information of the IMU data and calculate the distance. Not surprisingly, this 

kind of thinking will take a lot of time in the calculation. In particular, the optimization scheme 

we proposed requires more computation time. The Peak-number algorithm only cares about 

the peak point of time series and does not involve very complex calculation, because this 

algorithm does not have the problem of cross calculation between different time series, but 

only focuses on individual time series. According to experience, the peak searching algorithm 

is relatively mature and fast. The specific time consumption of each algorithm will be described 

in detail in Chapter 4. 
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Chapter 4  

Experiment and Result 

4.1 DTW based Experiment 

 

To evaluate the proposed air-writing system, we wear the IMU to write uppercase letters from 

“A” to “Z” in the air. To test the robustness of the air-writing system, users are required to 

deliberately write letters at different speeds. Every air-writing sample will last for 5 seconds, 

and generally, users will finish a letter between 1.5 and 3.5 seconds. The idle-cutter will slice 

the 5 seconds sample into a final sample which only includes air-writing information. Besides, 

participants can use their own writing ways and postures. We conducted three experiments 

involving a single user’s recognition, different users’ across recognition, and a beginning user’s 

recognition. All experiment participants are in the 20s, right-handed. 

A. Experiment I: Single user 

This experiment uses the templates and samples from the same participant. The participant is 

required to record 3 template groups for the multi-template system and DTW algorithm, and 

then the participant will start writing letters in the air. From "A" to "Z", "0" to "9", the English 

alphabet and ten-digits will be written repeatedly 12 times.  

The accuracy of letters is 84.6%, and the accuracy of numbers is 98.2%. So, the total air-writing 

recognition accuracy is 88.4%. The recognition result of every letter as Table. 2 shows. Half of 

letters have a 100% successful recognition rate and all numbers have 100% accuracy except 

two “2” were recognized as “7”. The experiment result shows that the proposed air-writing 

system has high total accuracy in personalized and user-dependent recognition scenarios. 

We also test the recognition accuracy without the proposed adjustment system (include the idle-

cutter and the multi-template system, stated in Chapter 3). The recognition accuracy of the  
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alphabet letters (“A” to “Z”) is about 64%. It confirmed that the proposed adjustment system 

plays a significant role in the air-writing system. 

B. Experiment II: Fixed template for different users 

This experiment uses fixed template groups which have used in Experiment I, and users just 

need to provide samples. Because fixed template groups are recorded by cursive, so participants 

in Experiment II will also do air-writing by cursive. Then we use the fixed template with 

Table. 2 The result of DTW-based method in single user case, Experiment I 

Letter Accuracy 

(%) 

Wrongly 

Recognized  as 

Letter Accuracy 

(%) 

Wrongly 

Recognized as 

A 100  S 100  

B 100  T 33.3 F,O,V, X 

C 100  U 50 A, V 

D 100  V 83.3 W 

E 83.3 I W 100  

F 100  X 100  

G 100  Y 83.3 G 

H 66.7 D, K Z 100  

I 83.3 A 0 100  

J 100  1 100  

K 75 N, Q 2 83.3 7 

L 50 S 3 100  

M 100  4 100  

N 100  5 100  

O 66.7 I, Q 6 100  

P 83.3 I 7 100  

Q 66.7 U 8 100  

R 75 P, Q 9 100  

Accuracy of letters 84.6% Accuracy of numbers 98.3% 

Total accuracy 88.4% 
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samples written by 3 different participants. This experiment is to verify the performance of the 

system in user-independent scenarios. Fig. 4.1 shows this process of Experiment. 

The letters recognition accurate rates from 3 different users respectively are 4%, 4.8%, 7%. It 

means the proposed air-writing system could hardly recognize letters if templates and samples 

are from different users. Besides, if we use their own data as templates for these 3 users, the 

air-writing system will have good accuracy as Experiment I. These results show that the 

proposed air-writing system is a high user-dependent system.  

C. Experiment III: For a beginning user 

In Experiment I and Experiment II, users are familiar with the IMU device and air-writing, 

because before record data, they have enough time to practice air-writing and cursive. To verify 

the extreme case, the user of Experiment III is not an English native speaker and firstly contact 

with cursive write way and IMU device. This user is only required to record a group template, 

which means the multi-template system will not work, and repeat the air-writing of the alphabet 

3 times without any cursive practice. In summary, we test the air-writing system by a very 

beginning user with a small number of samples.  

The total letters’ accurate rate of the beginning user is 73%. This result shows that the proposed 

air-writing system has good performance in extreme cases.  This experiment also shows the 

 

Fig. 4.1 Process of Experiment 2. 
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proposed system will be a competitive scheme when the sample size is limited or there is no 

enough training time. 

 

4.2 DTW-KNN based Experiment 

 

In the Chapter 3, we have elaborated the basic principle of DTW-KNN algorithm. And there 

are two key parameters for this algorithm: K value and Axes numbers. Undoubtedly, the K 

value will affect the recognition accuracy of our proposed air-writing system because of KNN 

algorithm characteristics, and theoretical analysis is also elaborated in the Chapter 3. The 

wearable IMU can output 9 axes data, but do we need to use all the axes to get good enough 

results, just like in the classical DTW algorithm. 

Aiming at these two key parameters and following the scientific experimental concept of 

control variables, we designed two experiments. These data sets of the two experiments were 

from the same user, because our goal is to compare results with Experiment I: Single user, 

which has the highest accuracy in DTW based method. 

A. Experiment IV: Fix the K value, change axes number 

We will change the number of axes in the input DTW-KNN algorithm, at the same time, the K 

value will be fixed at 5. This experiment uses the same test dataset as shown in Chapters 4.1, 

12 groups air-writing alphabets. However, this data set does not include numbers, because in 

the DTW based method, we found that the recognition of numbers is very simple, with almost 

a 100% success recognition rate. Therefore, the recognition of numbers will not be carried out 

in Experiments for Chapter 4.2 and 4.3. This means that after that, what we use the word 

“accuracy” only for 26 uppercase English letters. In this experiment, we will change the 

number of input axes, specifically, axis 9 means using all IMU data, axis 6 does not include the 

magnetometer, axis 3 does not include the magnetometer and gyroscope, and axis 2 and 1, all 
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use the data only from the acceleration. In addition, according to the principle described in the 

third chapter, the core of DTW-KNN algorithm is to use the similarity of DTW algorithm to 

replace Euclidean distance. DTW algorithm involves two time series, one is a template, the 

other is a sample, so in DTW-KNN algorithm, we will record six additional groups of templates 

(each group includes 26 English letters) for DTW calculation. It is worth noting that the number 

of template groups should not be less than k, otherwise it may lead to algorithm overlap or 

inconsistent. Table. 3 shows the result of Experiment IV. From the results, we can find that 

when k value is fixed, the recognition accuracy is directly proportional to the number of input 

axes. Especially, when the number of axes is 6 or more, the recognition rate of 26 English 

letters is 100%. Compared with the classical DTW algorithm, the recognition rate of letters is 

84.6%, which is a great progress that means that the recognition is almost error-free. We also 

notice that when the number of input axes is very small (including 2 axes and 1 axis), the 

recognition rate is still good, but the system is likely to be unstable, because the amount of data 

is too small, which leads to dramatic fluctuations in the recognition accuracy. We also found 

that DTW-KNN is a brute force algorithm that uses a lot of recognition time. The time 

consumption is directly proportional to the amount of data input. When the maximum amount 

of data input is 9 axes, it takes nearly 20 seconds to recognize a letter. 

Table. 3 The result of DTW-KNN based method when fixed K =5. 

K Value Number of Axes Accuracy (%) Time (s) 

5 9 100 20 

5 6 100 13 

5 3 92.3 7.0 

5 2 84.6 4.5 

5 1 (X-axis) 84.6 2.2 

5 1 (Y-axis) 69.2 2.1 

5 1 (Z-axis) 88.5 2.2 
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B. Experiment V: Fix the axes number, change K value 

We will change the K value that is the most crucial parameter in DTW-KNN algorithm, at the 

same time, the number of axes as input will be fixed at 3 (only use data from accelerometer). 

The test dataset used is the same as the previous experiments. Table. 4 shows the result of 

Experiment V. 

From the results, we can see that K value has a great influence on the recognition accuracy. 

High K value brings more computation and fault tolerance, thus ensuring a higher accuracy. 

And when the K value is too low (i.e. K = 2), it is likely to lead to the collapse of the model 

and the precipitous decline of the recognition accuracy, resulting in our system cannot complete 

the recognition task. But from the point of view of time consumption, the influence of K value 

on recognition time is very small, only less than 10%. Specific analysis of time consumption 

will be described in Chapter 4.4. 

 

4.3 Peak-number based Experiment 

 

The Peak-number algorithm has been clearly claimed in Chapter 3, but for the actual 

experiment, we have some specific rules: 

Table. 4 The result of DTW-KNN based method when fixed number of axes is 3. 

K Value Number of Axes Accuracy (%) Time (s) 

5 3 92.3% 7.02 

4 3 84.6% 7.28 

3 3 80.7% 7.19 

2 3 46.1% 6.91 
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1. Every letter has 3 peak number information because 3-axis gyroscope, but usually we only 

select 2 axes as the key axis that means the information is necessary. Only when the key 

axis information of two letters is the same, the algorithm will recognize letters according 

to the remaining axis. 

2. The peak number information will consist of three two-digit numbers, they represent the X, 

Y, Z-axes of the gyroscope in turn. The first digit of the two-digit number represents the 

upward peak and the second digit represents the downward peak. The specific rules are 

shown in Table. 5. Red means key axes. Key axes are selected by many repeated 

experiments, it can give the system fault tolerance and improve the robustness of the 

proposed air-writing system. 

The result of Peak-number based experiment is shown in Table 6. We use specific 

representation method in rule 2. Compared with the result of classical DTW algorithm, the 

recognition accuracy of this Peak-number method is reduced by 11%. Compared with the 

DTW-KNN algorithm, the recognition accuracy of this Peak-number method is reduced by 

18.4%. However, the Peak-number based method has a crucial advantage: Very short time 

consumption. 

 

 

Table. 5 The representation method of the result. 

Example, Letter ‘A’ Number of upward peaks Number of downward peaks 

Gyroscope X-axis 2 2 

Gyroscope Y-axis 0 1 

Gyroscope Z-axis 2 2 

Representation method 22 01 22  

 



49 

 

4.4 Result Summary 

Table. 7 shows the results of different experiments and their recognition time. 

The conclusion in Table 5 is obvious, each algorithm has its advantages and disadvantages. The 

classical DTW algorithm has a good performance in the case of user-dependent, and a balance 

between accuracy and time consumption is achieved. DTW-KNN algorithm sacrifices the 

recognition time to obtain higher accuracy. It can be regarded as an upgraded algorithm of 

DTW algorithm in terms of computation and complexity. The advantage is a very high accuracy, 

Table. 6 The result of Peak-number algorithm. 

Letters Peak number Accuracy 

(%) 

Letters Peak number Accuracy 

(%) 

A 22 01 22 100% N 22 11 12 75% 

B 12 21 11 66.7% O 11 10 11 83.3% 

C 01 10 11 91.7% P 11 11 11 75% 

D 12 11 11 100% Q 12 20 22 66.7% 

E 12 22 23 50% R 12 32 12 91.7% 

F 11 11 12 83.3% S 11 11 21 66.7% 

G 02 11 22 66.7% T 01 10 11 58.3% 

H 12 22 01 58.3% U 12 10 11 75% 

I 01 10 02 83.3% V 11 10 01 75% 

J 11 11 21 58.3% W 22 10 00 66.7% 

K 12 21 12 66.7% X 12 11 11 92% 

L 01 10 01 100% Y 01 10 01 41.7% 

M 23 32 12 66.7% Z 11 21 22 100% 

      

Total  75.3%    
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and can even reach 100% when enough data is used, but the time consumption is very long, 

and if too much input data is reduced, the recognition system will be lack of robustness and 

easily collapse. Finally, the accuracy of this algorithm is relatively low compared with the first 

two, but it is only about 10% lower, but it hardly needs recognition time (0.0003s), because the 

peak searching algorithm is very fast and mature. 

The ultimate goal of the proposed air-writing system is to use in the actual use of the scene, to 

help users or disabled people quickly and efficiently non-contact text output. So in addition to 

accuracy, which is very important for all pattern recognition tasks, real-time recognition is 

another equally important indicator for our system. Obviously, the two methods based on DTW 

and DTW-KNN algorithms are difficult to achieve real-time recognition, because they need a 

lot of data calculation to ensure the accuracy. And it is very difficult to optimize the time 

consumption. In fact, we have used the optimized FastDTW. Our proposed Peak-number 

algorithm is very suitable for real-time recognition tasks. Although its accuracy may not be 

enough for industrial products, there is still a great potential for optimization. The optimization 

of accuracy is much simpler than the optimization of time consumption. To sum up, we think 

that the proposed Peak-number algorithm is very effective and has potential for the real-time 

recognition task of air-writing. 

   

Table. 7 Summary of different experiments. 

Methods Accuracy Time Consumption 

DTW 84.6% 8.1 s 

DTW-KNN (K=5, 9 axes) 100% 20 s 

DTW-KNN (K=5, 6 axes) 100% 13 s 

DTW-KNN (K=5, 3 axes) 92.3% 7.0 s 

Peak-number algorithm 75.3% 0.0003 s 
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Chapter 5  

Conclusion and Future Plan 

5.1 Conclusion 

 

This paper presents an air-writing system based on an inertial measurement unit, And the 

wearable ring is designed based on IMU. The air-writing system uses DTW, DTW-KNN and 

Peak-number algorithms as the main recognition algorithms to do experiments. After 

consideration of DTW characters, an adjustment system has been proposed to improve the 

recognition accuracy and to minimize the recognition time consumption. The idle-cutter in 

adjustment system also gives a solution for the problem that the acceleration caused by the 

user's unconscious hand tremble might significantly affect gesture recognition results, which 

has influenced some researchers in gesture recognition works. Besides, the proposed multi-

template system also gives a new idea to optimize the DTW application, and this idea is not 

limited to the hand angle parameter and gesture recognition field. 

We creatively put forward the peak number algorithm, a new way to solve the problem of time 

series analysis. In the experiment, we have done experiments in three directions: DTW, DTW-

KNN, and Peak-number based method. Experiment results show that in the user-dependent and 

personalized case, the proposed air-writing system has good performance and high accuracy 

(84.6%). For extreme conditions, especially under the limitation of time and sample size, the 

DTW based system will be a competitive choice. Besides, the experiment results also show 

that user-independent across movement gesture recognition only based on the DTW algorithm 

is hard to achieve. We creatively combine DTW and KNN algorithms, the core idea is to use 

DTW distance to replace Euclidean distance in KNN. As an upgrade of DTW algorithm in 

computation, DTW-KNN algorithm has made great progress in accuracy. It can even achieve 

100% accuracy, which means that the recognition is almost error-free. We also discuss the K 
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value and the number of axes of the algorithm under the control variable idea, and draw a series 

of meaningful conclusions. However, the cost of increasing the amount of computation is that 

the time consumption becomes very long, as a result, this method is difficult to be used in real-

time recognition. The proposed Peak-number algorithm performs very well in time 

consumption, but the accuracy (75.3%) is about 10% - 18% lower than DTW and DTW-KNN, 

but it also has great potential to improve. And the algorithm only needs a very short recognition 

time (0.0003 seconds), so we believe that this method will be brilliant in real-time recognition 

in the future. 

 

5.2 Challenges and Future Plan 

 

From the conclusion of the experiment, no matter which algorithm is used, the accuracy of the 

system still has a large optimization space. And in the actual application scene, there are many 

very complex details to deal with, such as the meaningless movement of the user's hand, or the 

motion connection between letters and so on. Our goal is that users can recognize real-time and 

efficient air writing, and aim at complete sentences and words, not just letters. This is a 

challenging but meaningful work. 

For the classical algorithm DTW, it is very difficult to make considerable optimization in terms 

of accuracy or time consumption. We mainly consider the optimization of the proposed Peak-

number algorithm in the future. Specifically, we will optimize it from three aspects: 

1. Key axes. We propose key axes to do some non-strict one-to-one fuzzy recognition, so just 

like the Multi-template system we proposed, we will design multiple correct peak number 

information groups to correspond with the input samples. This will improve the overall 

recognition accuracy in non-laboratory application scenarios. 
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2. Adopt some machine learning ideas. We mainly want to design a network based on the idea 

of Generative Adversarial Networks (GANs) [19], including generator and discriminator, 

so that the network can train itself and adjust the parameters of the peak number algorithm, 

to obtain better accuracy. 

3. Expand the system and build more powerful algorithms to recognize complete words and 

sentences, not limited to letters. 

For wearable hardware design, wireless is very important. We almost use Bluetooth or other 

wireless communication methods to connect wearable devices and terminals (mobile phones 

or computers). In addition, improving the robustness of the system is also an important 

direction, because there may be some angle or position changes in the actual use. 

  



54 

 

Research Achievements 

 

Y. Luo, J. Liu and S. Shimamoto, "Wearable Air-Writing Recognition System employing 

Dynamic Time Warping," 2021 IEEE 18th Annual Consumer Communications & Networking 

Conference (CCNC), 2021, pp. 1-6, doi: 10.1109/CCNC49032.2021.9369458. 
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Appendix I 

DTW, Fast DTW and cDTWw 

 

The Dynamic Time Warping is used as the best method in time series analysis in many domains. 

Original DTW algorithm was proposed very early and it is generally believed by thousands of 

researchers that this algorithm is exact but very slow and needs optimization. Against this 

background, FastDTW has been put forward as a kind of “fast” algorithm, and many 

researchers have accepted it and used it instead of the original DTW, especially in the fields 

that are not familiar with computer algorithms, such as engineering, medical, communication 

and so on. 

But a recent study has come to some surprising conclusions, in [A.1], the authors Renjie Wu 

and Eamonn J. Keogh said that FastDTW is approximate and generally slower. It means 

FastDTW may decrease the accuracy of our experiments and use more recognition time. They 

also introduce cDTWw (DTW with the constraint). In short, w means the maximum percentage 

of algorithm warping allowed, as Fig. A.1[A.2] shows, w is r/n (From 0 to 100). 

 

Fig. A.1 Value of w 
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I have tested the time consumption for two long time series, the two sequences are data for my 

IMU devices, and both have 7800 data (means 780s). Table. A.1 shows the result. We can find 

it clearly that FastDTW is faster than DTW, that’s why thousands of researchers believe it. For 

mature algorithms such as DTW, many researchers tend to call their functions in package 

directly instead of making their own wheels, it's a kind of trust in the community. So, I speculate 

that there may be some problems in the source code of the DTW Python package, which makes 

it slow and gives many researchers wrong conclusions. Besides, we can find that the DTW 

distance of cDTW100 is different from FastDTW and DTW, the reason is in cDTW, every time 

we calculate the distance between two points, we do less square root operation. It’s a good 

operation trick that because in pattern recognition, as long as we use the same set of rules, the 

result will not be wrong. And obviously, the lack of square root operation will lead to less 

computation time. 

For w value, it is clear that w value is positively correlated with calculation time. However, a 

larger w value does not mean higher accuracy. Some results of real experiments in my air-

writing system are shown in the Table. A.2. The dataset includes a template and 6 samples, 

Algorithms Time Consumption(s) DTW Distance 

cDTW100 2.3 11768656 

FastDTW 4.6 170730 

DTW 320.9 169633 

 

Table. A.1 Results of two time series by DTW, FastDTW and cDTW 

Algorithms Time Consumption (s) Accuracy (%) 

FastDTW 8.3 80.1 

cDTW30 1.9 76.9 

cDTW10 1.55 81.4 

cDTW5 1.45 82.7 

 

Table. A.2 Results of real experiments. 
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both include 26 alphabet letters. It is clear that cDTW greatly reduces the recognition time, and 

the appropriate w value will result in a higher recognition rate than FastDTW. 

To a simple conclusion: We believe that cDTWw is a better algorithm compares with FastDTW, 

it can greatly reduce the recognition time and also has better performance in accuracy. The 

value of w is a very crucial part for accuracy. However, for our proposed air-writing system, 

because of the huge amount of computation, the recognition time still over 1 second that make 

it can not achieve real-time recognition.  

I would also like to express my sincere thanks to Prof. Keogh. He read my paper which 

published in CCNC2021 and send an email to me to show their new work in DTW and suggest 

me to use cDTWw. I also suggest that researchers who have read this thesis consider using 

cDTW, which is really a good method in time series analysis. 
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Appendix II 

Source Code 

 

I'm confident of the repeatability of the proposed air-writing system. Here is the source code 

of the system, please mark the source if you want to use or reprint it. There are mainly 3 parts, 

if you want to automatically loop through all the results, you must write an all function that 

synthesizes the 3 parts and more details in the code is needs. 

1. DTW: 

Package: 

from scipy.spatial.distance import euclidean 

from fastdtw import fastdtw 

import timeit 

import heapq 

import math 

import numpy as np 

IMU data reading: 

    def txtinput1(n, X=[]): 

        with open(r'C:\Users\xxxxx\xxxxx\samplexxx.txt', 'r') as f: 

            lines = f.readlines() 

            for line in lines: 

                value = [float(s) for s in line.split()] 

                X.append(value[n]) 

        return X 

Using DTW: 

def recognition(n, T): 
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     SAM = txtinput1(n) 

        sample = SAM[z:x] 

        TEM = txtinput2(n) 

        times = 0 

        Y = [] 

        while times < T: 

            template = TEM[0 + (50 * times):49 + (50 * times)] 

            dis, path = fastdtw(sample, template, dist=euclidean) 

            Y.append(dis) 

            times = times + 1 

        '''print(Y)''' 

 

        return Y 

        recogresult = dtwresult.index(min(dtwresult)) 

        return recogresult 

Synthesize the nine axis results: 

# Re 9-axis 

    axises = (0, 1, 2, 3, 4, 5, 9, 10, 11) 

    axisresult = [] 

    for axis in axises: 

        axisresult.append(recognition(axis)) 

    result = max(axisresult, key=axisresult.count) 

    allresult = [] 

    allresult.append(result) 

    return allresult 
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2. KNN 

def KNN_DTW(n,z,x): 

    def all(n, T): 

        def txtinput1(n, X=[]): 

            with open(r'C:\Users\Lenovo\Desktop\26letterX1.txt', 'r') as f: 

                lines = f.readlines() 

                for line in lines: 

                    value = [float(s) for s in line.split()] 

                    X.append(value[n]) 

            return X 

 

        def txtinput2(n, X=[]): 

            with open(r'C:\Users\Lenovo\Desktop\LUO26X6.txt', 'r') as f: 

                lines = f.readlines() 

                for line in lines: 

                    value = [float(s) for s in line.split()] 

                    X.append(value[n]) 

            return X 

 

        # DTW 

        SAM = txtinput1(n) 

        sample = SAM[z:x] 

        TEM = txtinput2(n) 

        times = 0 
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        Y = [] 

        while times < T: 

            template = TEM[0 + (50 * times):49 + (50 * times)] 

            dis, path = fastdtw(sample, template, dist=euclidean) 

            Y.append(dis) 

            times = times + 1 

        '''print(Y)''' 

 

        return Y 

 

    # Get k of smallest dtw distance 

    m = all(n, 156) 

    min_number = heapq.nsmallest(6, m) 

    min_index = [] 

    for t in min_number: 

        index = m.index(t) 

        min_index.append(index) 

        m[index] = 0 

    '''print(min_number)''' 

    '''print(min_index)''' 

    result = heapq.nsmallest(2, min_index) 

    '''print(result)''' 

    # label, 1 is A, 26 is Z 

    n = 0 

    final = [] 



64 

 

    while n < 2: 

        mathres = math.ceil((result[n] + 1) / 6) 

        n = n + 1 

        final.append(mathres) 

    maxlabel = max(final, key=final.count) 

    return maxlabel 

'''print(KNN_DTW(0))''' 

 

3. Peak-number method 

from scipy.signal import find_peaks 

#get peak number's information 

    peaks1, _ = find_peaks(x[n:n + 50], height=45, distance=8) 

    peaks_neg1, _ = find_peaks(-x[n:n + 50], height=45, distance=8) 

    peaks2, _ = find_peaks(y[n:n + 50], height=45, distance=8) 

    peaks_neg2, _ = find_peaks(-y[n:n + 50], height=45, distance=8) 

    peaks3, _ = find_peaks(z[n:n + 50], height=45, distance=8) 

    peaks_neg3, _ = find_peaks(-z[n:n + 50], height=45, distance=8) 

    print(len(peaks1),len(peaks_neg1)) 

    print(len(peaks2), len(peaks_neg2)) 

    print(len(peaks3), len(peaks_neg3)) 

 


