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A spiking neural network model inspired by synaptic pruning is developed and trained

to extract features of hand-written digits. The network is composed of three spiking

neural layers and one output neuron whose firing rate is used for classification. The

model detects and collects the geometric features of the images from the Modified

National Institute of Standards and Technology database (MNIST). In this work, a novel

learning rule is developed to train the network to detect features of different digit classes.

For this purpose, randomly initialized synaptic weights between the first and second

layers are updated using average firing rates of pre- and postsynaptic neurons. Then,

using a neuroscience-inspired mechanism named, “synaptic pruning” and its predefined

threshold values, some of the synapses are deleted. Hence, these sparse matrices

named, “information channels” are constructed so that they show highly specific patterns

for each digit class as connection matrices between the first and second layers. The

“information channels” are used in the test phase to assign a digit class to each test

image. In addition, the role of feed-back inhibition as well as the connectivity rates of

the second and third neural layers are studied. Similar to the abilities of the humans

to learn from small training trials, the developed spiking neural network needs a very

small dataset for training, compared to the conventional deep learning methods that

have shown a very good performance on the MNIST dataset. This work introduces a

new class of brain-inspired spiking neural networks to extract the features of complex

data images.

Keywords: deep spiking neural network, back-propagation, synaptic pruning, MNIST database, feature detection

INTRODUCTION

The human brain has demonstrated amazing cognitive capabilities to learn and recognize complex
visual patterns in noisy contexts (Kasabov, 2019; Langner et al., 2019). Information processing in
the human brain is performed via the activation of sensory neurons and subsequently sending
the inputs into cortical neurons that lead to complex spiking patterns of neuronal populations to
either make a decision or to store the information (Arce-McShane et al., 2018). Cortical neurons
are sparsely connected via dynamical synapses that can be weakened or strengthened (Waters
and Helmchen, 2006; Seeman et al., 2018) by some mechanisms, such as activity-dependent or
retrograde signaling from other neurons. Understanding such network architectures andmolecular
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mechanisms, and then implementing them in the artificial
systems may lead to brain-like machines that are able to
perform complex tasks (Faghihi and Moustafa, 2017; Li et al.,
2019; Wu et al., 2022). Biological neurons are composed of
dendrites that take up the signals from other neurons, the soma
that is involved in information processing, and the axon that
passes on the generated action potential (AP) into the terminal
synapses of the axon (Figure 1A). These signals seem to carry
information to other neurons about the overall state of the
corresponding neurons (Brunner and Szabadics, 2016). Activity-
induced retrograde messengers, as simple molecules or short
peptides, are crucial for the formation of some synapses in some
regions of the brain through learning andmemory (Suvarna et al.,
2016).

During neural development, synapses are over-produced and
then eliminated over time. This neuronal event is known as
“synaptic pruning.” Developmental synapse formation as an
activity-dependent process plays a key role in the function
of the healthy brain, where synaptic pruning may be mostly
regulated by activity-dependent mechanisms (Chechik et al.,
1998; Paolicelli et al., 2011; Südhof, 2018). However, for
engineered network design, connections are usually added over
time from an initially sparse topology. To design engineered
networks, adding connections that will soon be removed is
considered wasteful (Navlakha et al., 2018).

The artificial intelligence society has been considering
neuroscience as a rich source of inspiration for developing
cognitive systems that do complex tasks which the artificial
systems are not currently able to perform (Ullman, 2019).

Deep neural networks are artificial neural networks
composed of more than two neural layers that are extremely
simplified structural and functional analog of cortical networks
(Riesenhuber and Poggio, 1999; LeCun et al., 2015). In addition,
deep learning models can give explanations and assumptions
on how the brain may achieve complicated tasks in uncertain
environments (Vogt, 2018). Deep learning models usually
perform well on many kinds of data but a large dataset is
necessary to train them to produce meaningful results (LeCun
et al., 2015).

In the recent years, progresses have been accomplished
in neuroscience-inspired algorithms by developing spiking
neural networks (SNNs; Hassabis et al., 2017). The SNNs
that use different dynamical models of biological neurons are
computational models which encode and process information in
the time domain. Incoming spikes raise the membrane potential
to higher values, and at the moment of crossing the predefined
threshold, the neuron generates spike. After firing, the state
variable is reset to its base value (Figure 1B). In SNNs, sparse
and asynchronous binary signals are used as communication
tools and synaptic weights between neurons that are subjected
to time and activity dependent parameters. The SNNs have
demonstrated capabilities for information processing of data of
different sources. In addition, the models based on SNNs have
demonstrated the capability to successfully simulate neuronal
dynamics underlying the cognitive functions (Deco et al., 2008).

Direct application of back-propagation algorithm in the SNNs
as used in convolutional neural networks (CNNs) is a challenge

for developing the spiking deep learning methods (Pfeiffer
and Pfeil, 2018). One of the attempts of the modern deep
learning research is to develop the spiking deep networks by
understanding how the networks of biological neurons learn to
achieve visual tasks and perform feature extraction (Fu et al.,
2012; Tavanaei et al., 2019). One interesting example of human
capabilities to recognize noisy and complicated information is
the recognition of hand-written digits. The MNIST is a database
of hand-written digits, which is currently considered as an
evaluation benchmark for deep learning methods and improving
the machine learning models (Deng, 2012).

The visual system of a human extracts features from noisy
and incomplete information in the images of the dataset.
Handwritten digit recognition is critical in some machine
learning application, e.g., postal mail sorting and bank check
processing. The complexity of the problem arises from some
facts; the handwritten digit images are not always of the same
size, width, and orientation, so the general problem would be to
recognize the similarity between the images of the digit classes
(Tavanaei and Maida, 2015).

Different artificial neural network architectures have been
applied to the MNIST database for digit recognition, while the
best performance has been shown by the deep neural networks
(Cireşan et al., 2010). The CNNS have demonstrated the best
performance (about 99%) on this dataset (Baldominos et al.,
2019; Patil, 2020). Deep SNNs (DSNNs) that are brain-inspired
information processing systems have shown their interesting
capabilities, such as fast inference and event-driven information
processing for image classification (Kulkarni and Rajendran,
2018) including the problem of handwritten digit recognition
(López-Vázquez et al., 2019).

Event-driven means that SNNs generate spikes in response
to stimulation from other neurons and show very small firing
activity when they receive sparse inputs; such a strategy results in
power-efficient computing (Thiele et al., 2018). The DSNNs have
been developed for supervised, unsupervised, and reinforcement
learning paradigms (Frémaux et al., 2013).

The learning rule of SNNs is among the most challenging
components for developing deep SNNs because the transfer
function of the spiking neurons is usually non-differentiable.
This prevents the usage of back-propagation algorithm, which is
often used in training artificial neural networks (Lee et al., 2016;
Kheradpisheh et al., 2018). To overcome this challenge, some
back-propagation algorithms have been proposed by treating the
membrane potential of the neuron as a differentiable signal to
act analogously with the nonlinear activation functions in the
artificial neural networks (Lee et al., 2016) or by using “spike-
based learning rule” for rate-coded deep SNNs, where the spike
count of each neuron is used as a surrogate for back-propagation
(Wu et al., 2019). Other learning rules used in SNNs are based on
spike-timing dependent plasticity (STDP; Zhou et al., 2020).

“Few-shot learning” refers to a variety of machine learning
algorithms that use a very small amount of training data. Few-
shot learning uses machine learning methods to recognize and
classify new data after being exposed to few training instances.
Several few-shot learning methods that are categorized into
“data-bound approaches” and “learning-based approaches” have
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FIGURE 1 | (A) A schematic representation of biological neurons. Biological neurons are connected to some other neurons through synapses, where signals are

transmitted in the form of released neurotransmitters from the terminal of the axon. The signals from the dendrites are joined in the soma. Action potential (AP),

triggered at the soma, travels down the axon and ends at the terminal of the axon. The axon is the elongated fiber that extends from the soma. (B) Integrate and Fire

neurons are dynamical models of the biological neurons. Incoming spikes push the state of the neuron [membrane potential (V)] higher. The neuron fires at the

moment of threshold (Vth) crossing. After firing, the state variable is reset to its base value (Vreset ).

been proposed (Kadam and Vaidya, 2018). The data-bound
approaches use data to find a richer representation of data. These
algorithms are based on using prior knowledge to reduce the size
of the hypothesis space of the classification task (Wang et al.,
2020).

The learning-bound approaches rely on improving the
learning processes. Transfer learning (Wu et al., 2020) and the
meta-learning approaches (Sun et al., 2019) are the most effective
learning approaches for few-shot approaches.

In this work, a SNN-based approach is constructed for the
classification of hand-written digits. Specifically, a method to
extract features from the images of MNIST is developed and a
learning rule is used to train the network as well. The learning
rule is combined with a synaptic pruning method resulting in a
sparse neural connection between two spiking neural layers. The
classification accuracy of the model is evaluated over different
model parameters to find the best values of these parameters.

METHODS

The human neocortex demonstrates high performance for
pattern recognition tasks by presenting a few training samples
while artificial systems often need a very large number of training
samples (e.g., deep learning methods). A well-known example of
such tasks is the recognition of hand-written digits. In the human
brain, the vertical and horizontal patterns, circles, and their
combinations that construct digits is learned to assign a digit to
a picture (Wyss et al., 2003). The underlying neural mechanisms
of learning digits by the brain seem to be fundamentally different
from learning algorithms that are used in deep learning methods.
In this work, we have developed a DSNN for the MNIST
classification that uses simplified synaptic mechanisms and
activity-dependent synaptic connections. Unlike prior works, the
network is trained with a few training samples. The basic synaptic
mechanism used in this work is a proposed learning rule and a
simplified model of synaptic pruning.

Each written-digit image from the MNIST dataset is a matrix
of 28∗28 pixels (with values between 0 and 255). As data
preprocessing the intensity of the pixels is divided by 4 to
transform each pixel into a probabilistic neuron that spikes
with firing rates between 0 and 63Hz (0.63 as firing probability
corresponding to the maximum pixel intensity; Diehl and Cook,
2015). These probabilistic neurons randomly generate spikes
over time (for 1 s in this model) proportional to their firing
probabilities (Figure 2B).

In addition, we set the values of the pixels to be equal or higher
than 0.4. Different threshold values were used in the experiments;
however, no optimal value for the threshold was found. Any
threshold between 0.3 and 0.7 compared to other values, resulted
in higher classification accuracies. To extract the features of
a digit image, each image after preprocessing is partitioned
into eight regions by a hypothetical vertical, horizontal or a
diagonal line to divide each image equally into halves (Figure 2A,
left panel).

Then each pixel of the selected-set of pixels as horizontal,
vertical, or diagonal segments are considered as “spike train
generators” whose mean firing frequency is proportional to the
intensity of the pixels (Figure 2B). To represent the information
of the pixel as a spiking activity of a probabilistic neuron, uniform
distribution was used to generate vectors that are composed of
sequential 1 s and 0 s with length that is set to 1,000ms (Figure 2B
shows 10-time bins of the simulation). Each selected set of pixels
in the vertical, horizontal, and diagonal lines are fully connected
to a single Integrate and Fire neuron (IF-neuron) where the
sum of the spikes is calculated per time bin and is used in the
IF-neuron (Equation 1; Figure 2B).

Consequently, the first neural layer is constructed as a neural
layer of 224 neurons (28∗8); about eight regions and 28 neurons
in each region are concatenated to construct the first layer
(Figure 2A, right panel). The second layer is composed of
150 “IF-neurons.” The number of neurons is arbitrary in this
study but we have considered a converging architecture (from
224 neurons to single output neuron). The second layer is
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FIGURE 2 | Schematic representation of the architecture of the model. (A) The feature representation of the image as spiking neurons in the first layer. After data

preprocessing, the image is presented as a matrix of pixels with values between 0 and 0.4. The matrix is divided into eight regions. The information of each region

(shown from I to VIII) is represented as 28 spiking neurons. The first spiking neural layer as a feature representation is constructed by concatenation of spiking neurons

of the regions as a neural layer with 224 spiking neurons. (B) Each pixel of the selected-set of pixels as horizontal, vertical, or diagonal segments are considered as

“spike train generators” with mean firing frequency proportional to the intensity of the pixels (here horizontal set of pixels as the 13th row). To represent the information

of the pixel as a spiking activity of a probabilistic neuron, a uniform distribution is used to generate vectors composed of sequential 1s and 0s (10 time bins are

(Continued)
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FIGURE 2 | shown). (C) The model architecture. The model is composed of three spiking neural layers and one output neuron (that is fully connected to the third

layer). Firing rate of the output neuron is used in the test phase to assign a digit class to the test sample. During the training phase, the proposed learning rule and the

synaptic pruning takes place in the connection between the first and the second layers. Different connectivity rates between the second and third layers are used. The

feed-back inhibition in the first layer is defined by its parameter value that controls the activity of the network and prevents the over firing of the neurons.

fully connected to the first layer with values of initial random
synaptic weights between 0 and 1. During the training phase, the
weights are dynamically changed according to the learning rule
(Figure 2C).

The second layer is connected to the third neural layer that is
composed of 50 IF-neurons with a connectivity rate between 0.1
and 1 (as a model parameter). For this purpose, each connectivity
value is considered as the mean connection of each neuron in the
second layer with the neurons of the third layer. The synaptic
weight between the second and the third layers were set to 1.
In the connection between the second and the third layers, the
synapses are not updated using the learning rule. An output
neuron that is also an “IF-neuron” is fully connected to the third
layer. The synaptic weight between the neurons of the third layer
and the output neuron were set to 1, to provide enough inputs to
the output neuron to fire. The firing rates of the output neurons
in the trained networks are used in the test phase to assign a digit
class to a given image (Figure 2B).

In the training phase, for each digit class, one neural network
as described above, is trained. Training is performed by using
training samples (with a defined size) for each digit class such
that in each experiment, the size of the sets is equal in all the digit
classes. In addition, the impact of the size of the training set is
studied. For each experiment with a defined training samples size,
the experiments are performed 100 times tomeasure the accuracy
of the mean classification.

In the test phase, the entire MNIST test set, composed of
10,000 samples, is used to evaluate the output of the 10 trained
networks and the mean firing rate of the output neuron of each
trained network is compared to each other to assign the class
label to a test sample according to the maximum firing rate of
the corresponding output neuron.

In the experiments, the classification accuracy is measured as
the ratio between the number of correctly assigned images to a
digit class and the total number of images of that digit class in the
test data. In this respect, the training set of MNIST provides the
required information on the class label of each test image.

Table 1 shows the parameter values used in the simplified
IF-neuron model in the neural layers and the output neuron.
Equation 1 shows the dynamics of the IF neuron.

dV/dt = 1/τ ((EL − V (t)) + Isyn (t)) (1)

if V (t) > Vth spike = 1 & V (t) = Vreset

Isyn (t) =
∑

f

δ

(

t − t(f )
)

(2)

Where δ (t) is called theDirac δ function. It is defined by δ (t) = 0
for t 6= 0 and

∫∞

−∞
δ (t) dt = 1.

In Equation 2, f indices denote the incoming spikes from
the dendrites.

TABLE 1 | The parameters of the IF in the first, second, and third layers and in the

output neuron.

τ = 0.01 The membrane time constant

EL = −0.065 The resting potential (v)

Vreset = −0.065 The reset voltage

Vth = −0.01 The threshold voltage

V0 = − 0.03 The initial membrane voltage

To solve Equation 1 numerically, time-step (dt) was set to 0.01
and the initial value of V was set to−0.03.

Table 1 shows the neuron parameters as the
electrophysiological data of the olfactory system of a honeybee
(Sakemi et al., 2021). These parameter values are used for the
output neuron except for the threshold value for which different
values between −0.03 and 0.03 were used to evaluate the impact
of the firing threshold of the output neuron on the maximum
classification efficiency of the method.

The spiking activities of each IF-neuron in the first layer are
controlled by an inhibitory neuron (Figure 2C); its activity is
described by Equation 3.

P(t) = e
−

ϕ

∁(t) (3)

Where P(t) is the probability to inhibit spike generation by
neurons in the first layer at time t.

In this respect, a vector with random values of 0 s and 1 s (with
the length equal to the number of neurons in the first layer) are
generated and used to suppress “1 s” as the neural activity of the
neurons of the first layer. The frequency of 1 s is proportional
to P(t).

The symbol, ϕ denotes the “inhibition parameter” that
controls the inhibition and ∁ denotes the average activity of
neurons of the first layer at time t. The role of different ϕ values
induced on the classification efficiency of the model are studied.

To extract image features, an activity-dependent synaptic
plasticity rule is developed.

Biological neurons fire in response to dendritic inputs that
are received at a given time. A learning rule was developed,
in order to select strong presynapses from neurons with high
firing rates (compared to the firing rate of postsynaptic neuron)
that are involved in stimulating the postsynaptic neuron. This
learning rule was developed to extract the important features of a
given training image while removing information from the image
that is not strong enough to represent the pattern. Figure 2A
demonstrates an image of digit class “5” (left panel) and patterns
that are desired to be extracted (middle panel). The learning
rule allows for the first and the second layers to store the strong
information inputs from the image in the synapses.
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This learning rule results in sparse connectivity between
spiking neural layers that indeed is a method to extract features.

To update the initial random synaptic weights between the
first and second layers, the difference of the average firing rate
between each pair of neurons in the second layer and the first
layer is measured and represented by 1(i,j) (Equation 4). The
change in the synaptic weight of the pairs of neurons (1w(i,j))
is calculated by Equation 5. This equation allows for a mapping
between 1(i,j) and 1w(i,j). Although many other equations can
be used in this learning rule, the impact of different possible
equations on the learning rule and the model is not studied in
this work. The parameters of the learning rule determine the rate
of weakening or strengthening of the synapses. Therefore, the
efficiency of the learning rule strongly depends on a proper range
of the value of the used parameters.

1(i,j) = f 1i − f 2j (4)

if : f i > fj; 1w(i,j) = α∗

(

1− e
−1(i,j)

1+ e
−1(i,j)

)

α ∈ [0 , 1] (5)

if : f i < fj ; 1w(i,j) = β∗

(

1− e
−1(i,j)

1+ e
−1(i,j)

)

β ∈ [0 , 1]

fi : firing rate of a neuron in the first layer.
fj : firing rate of a neuron in the second layer.

In the proposed learning rule, α and β are model parameters that
are evaluated to find their estimated values for the maximum
obtained classification efficiency of the method. In the learning
rule, comparing the mean firing rate of a given neuron in the
second layer with the mean firing rate of the neurons in the first
layer, either f i > fj or f i < fj plays a critical role in updating the
synaptic weights between the given neuron in the second layer
with the neurons in the first layer. The training time of the sample
presentation (1,000ms) is divided into four time windows (250,
500, 750, and 1,000ms), and at the end of each time interval, the
synapses are updated using Equation 5.

At the end of presenting the training samples, a threshold
(here denoted by µ) is used to set synaptic weights lower
than the value of 0 (synaptic pruning). Different threshold
values are evaluated to estimate the value of µ to obtain high
classification accuracy.

For each digit class, an independent neural network is trained
and in the test phase, the test sample is used to evaluate the output
of all 10 trained neural networks. Through the test phase, the
synaptic weights are not updated and consequently, no synapse is
deleted by synaptic pruning. The firing rate of the output neurons
of all the trained neural networks are measured and the network
with the maximum firing rate is selected to assign a digit class to
the test sample.

EXPERIMENTS

The developed spiking neural network was used for digit
classification using the training set of the MNIST dataset (LeCun
et al., 1998).

For this purpose, two experiments were conducted. In one
of them, to train the network, training samples were selected
randomly from the 60,000 training samples of the MNIST data.
To achieve this goal, in each experiment, a different size of the
training set per digit class was considered. In another paradigm,
the training samples that are similar to the canonical form of the
written digits were selectedmanually. The classification efficiency
of the neural network was calculated using 10,000 test samples of
the MNIST dataset. Experiments were performed using different
parameter values of the learning rule, connectivity rate of the
second and third layers, and the threshold of IF neuron model
used in the output neuron.

RESULTS

To use the MNIST dataset to evaluate the classification accuracy
of the model, all images are preprocessed such that the pixels
get the values between 0 and 0.4 (Figure 3A). Each presented
training image to the network stimulates a spiking activity of 224
neurons in the first layer. Average firing rates of these neurons for
a sample of digit “3” from the MNIST dataset after partitioning
of the data (Figure 3B) are shown in Figure 3C.

One can expect that the information of images that are
represented as the neuronal activity of the first layer would be as
much as possible similar for the samples from the same digit class
while showing different activity patterns for different digit classes.
In doing so, two images of digit “4” and two images of digit
“7” were selected manually from the training set of the MNIST
dataset and the pattern of the average spiking rate of the neurons
in the first layer for a pair of digits are shown in Figures 4A,B.

The spiking activity pattern of the neurons in the first layer for
the images of different classes of digits are shown in Figure 4C.
The Euclidian distance of the activity patterns, as a measure of
their similarity for pairs of training samples from all digit classes,
are shown in Figure 4D.

To achieve this, activity patterns are considered as vectors with
the length of 224 and values between 0 and 1. About 100 pairs
of samples (for a pair of digit class) are randomly selected from
the training data of the MNIST dataset, and the mean of the
distances of these 100 pairs of samples are measured and shown
in Figure 4D.

The results show that the selected digits from the same class
are more similar compared to the images from different digit
classes (Figure 4D, right panel).

Regarding the variation in the hand-written digits in the
dataset where digits are written with different thicknesses and
shapes (Figure 5A), the impact of image intensity on the spiking
of neurons in the developed spiking network for two written
zeroes is shown in Figure 5B. The mean firing rate of the
activated neurons in zero images on the right and left panels
are 0.23 and 0.13, respectively (ϕ = 0.9). However, after
preprocessing the images, the difference shows a lower value.
Feed-back inhibition with different parameter values were used
to control the activity level of the neurons in the first layer.

Figure 5B demonstrates the activity pattern of neurons in the
first layer for two inhibition values; the lower value leads to more
inhibition on the spiking activity of the neurons in the first layer.
Figure 5C shows the dependency of inhibition probability on the
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FIGURE 3 | (A) Image preprocessing. A hand-written image is used as a matrix of pixel values ranging from 0 to 255 that is normalized between 0 and 0.4. (B)

Representation of the information of the image as the neuronal activity of neurons in the first layer. For this purpose, matrices of pixels are divided into eight regions.

The neuronal activity of 28 neurons of each region is shown in (C).

inhibition parameter (ϕ) in Equation 3. The lower ϕ values lead
to more inhibition on a given firing rate of the neurons in the first
layer (Figure 5C).

The inhibitory activity of feed-back inhibition leads to
decrease in the geometric distance of the activity pattern of
the first layer where two images from the same digit class
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FIGURE 4 | Comparison of the neuronal representation of images from same classes and from different classes. (A) Two samples from the dataset are selected for

digit “4”’and (B) for digit “7”. (C) Two samples from digit “4” and “7” and the neuronal activity of the first layer are compared. (D) Matrix of the average distance

between the pairs of the neuronal representation of training samples. The results show that images from the same digit class have lower distance compared to the

samples from different digit classes (right panel).
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FIGURE 5 | The impact of feed-back inhibition on the neuronal representation of images by the first layer. (A) For each digit, there are many samples written thick and

this normally makes noise in the pattern of the images from the same class. (B) In the model, feed-back inhibition with different parameter values are implemented in

the first layer. The figure shows the neuronal representation of two images using low and high inhibition parameter values. (C) The dependency of the inhibition

(Continued)
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FIGURE 5 | probability of the inhibitory neuron on parameter value. (D) Lower inhibition parameter values induce higher inhibition on the neural spiking of the first layer

that results in a lower distance between the neuronal representations. Two cases are considered: images are used either before or after preprocessing. For each data

point, 200 pairs of images per digit class were randomly selected from the training dataset. (E) Average classification accuracy using different inhibition parameter

values on the entire test data. The right panel shows the results of the mean classification accuracy of all digit classes using 40 “selected training samples” per digit

class without preprocessing. The left panel shows the results using 40 “preprocessed” training samples per digit class.

FIGURE 6 | Training of the network for 4 samples of digit class “7” using the learning rule and synaptic pruning. (A) The random synaptic weights between the first

and second layers are changed according to the learning rule for different epoch numbers of image presentation. Increase in the epoch number leads to gradual

changes in the synaptic weights between the activated neurons in the first and second layers. (B) A pruning threshold (here 0.8) is used to set weak synapses to 0

such that strong connections of neurons that represent the features of an image are selected.

are evaluated (Figure 5D). In these experiments, 200 pairs of
images per digit class were randomly selected from the training
dataset. In addition, the impact of images preprocessed on the
distance of neural activities corresponding to these images is
shown in Figure 5D. Maximum estimated classification accuracy
using 40 selected training samples per digit class was obtained
using an inhibition value set to 0.1 and is shown in the left
panel of Figure 5E (using preprocessing) and is compared to the
results on the training samples without preprocessing (Figure 5E,
right panel).

Figure 6A shows the dynamics of the change in the synaptic
weights for an incremental epoch number. To do this, time was
considered as 1,200ms, and divided into 12 equal windows, and
4 training samples for the digit class, “7” were used. At the end of
12 epochs, the connections that have values less than a threshold
(here set to 0.8) are set to zero (implemented synaptic pruning)
(Figure 6B).

For each digit class, the training phase is performed such that
eventually 10 connection matrices between the first and second
layers are constructed (Figure 7A). These connection matrices
named, information channels: constructed in the training phase
are used as the extracted features of each digit class. In order
to obtain high classification accuracy, the similarity between
these connection matrices of the trained networks should be

minimized such that each information channel acts specifically to
select the corresponding digit class. The similarity between these
information channels is updated by using more training samples
and the parameter values of the learning rule.

The Euclidean distance of the activity patterns was used as a
measure of similarity, which is expressed as Equation 6.

S (A,B) = 1− d (A,B) (6)

Where “S” and “d” denote the similarity and the Euclidean
distance of pair of patterns (A, B), respectively.

Figure 7B demonstrates the average similarity between the
pairs of connection matrices (10 sets per digit class). In the
experiments, each image is partitioned into eight regions.
Figure 7C demonstrates the dependency of the change in the
synaptic weight of the pairs of neurons (1w(i,j)) on the difference
of the average firing rate between each pair of neurons in the
second layer and the first layer (1(i,j)) in Equation 5 using
different sets of the values of the learning parameters. Among the
values of the learning parameters used in the plot, the pair of α =

0.2, and β = 0.6 results in the highest estimated classification
accuracy.

Figure 8 shows the role of the incremental number of
partitioning regions on the classification accuracy of the model.
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FIGURE 7 | (A) Connectivity matrices of the trained networks for digit classes. Connections and their strengths between the first and second layers are shown. One

sample per digit class was used and the number of epochs was set to 12. (B) The similarity of the connectivity matrices after training by image presentation. The

results show remarkable discrimination of the representation of images after training. (C) The relation between the change in the synaptic weight of the pairs of

neurons (1w(i,j)) and the difference of average firing rate between each pair of neurons in the second layer and the first layer (1(i,j)). Among the values of the learning

parameters used in the plot, the pair of α = 0.2, and β = 0.6 results in the highest estimated classification accuracy.

Through the training phase, the synaptic weights between the
first and the second layers are changed according to the proposed
learning rule and synaptic pruning. Hence, the classification
accuracy of the model depends mainly on learning parameters
(α, β) and synaptic pruning threshold (µ).

Figure 9 shows the selected pruning threshold value (µ= 0.8)
corresponding to a pair of learning parameters, α = 0.2 and β

= 0.6, for each experiment. The 10 selected training samples per
digit class were used and the experiments were performed 100
times. Another parameter of the model is the firing threshold
of the output neurons (as used in IF neurons in other layers,
Table 1). Figure 10 shows the impact of the firing threshold on
the classification accuracy. The selected threshold value, which
was 0.01, led to the maximum classification accuracy.

The connectivity rate of the layers in deep network structures
may play a role in information processing through network

training. Figure 11 shows the classification accuracy of the model
using different connectivity rates between the second and third
layers. Low connectivity rate equal to 0.2 corresponds to the
maximum average classification accuracy in the experiments. In
each experiment, 10 selected training samples per digit were used.
The experiments were performed 50 times and the mean of the
results are shown in Figure 11.

Figure 12 shows the results on the classification accuracy
of the model with estimated parameter values that were
measured in the above experiments. Figure 12A shows the
results using selected training samples, from 1 to 40 samples
per digit and the mean of the classification accuracy over 100
sets of experiments. In Figure 12B, random training samples
per digit were used, from 10 to 1,000 training samples per
digit. The maximum classification accuracy (about 72%) was
obtained when 40 training samples were selected and used
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FIGURE 8 | The average classification accuracy of the model on the MNIST

test data for the incremental number of used partitioning regions for image

representation (from I to VIII). In the experiments, other parameter values were

used. The number of selected training samples per digit class was set to 10.

FIGURE 9 | The average classification accuracy for the parameter values of

the learning rule (α, β) and the synaptic pruning (µ) parameter values. Average

classification accuracy was measured for different pruning thresholds from 0 to

1 after training the network using 10 selected samples per digit class (using

100 experiments per parameter set) and testing on the entire test set. Different

learning parameter values were used for a given pruning threshold. The β

values from 0 to 2, and α values from 0 to 1 were evaluated. The results show

a maximum classification accuracy for the pruning threshold set to 0.8, α =

0.2 and β = 0.6. All possible combinations of α, β, and µ parameter values

were used in the experiments and the best results of the parameter sets are

shown. In these experiments, 0.01 was used as the firing threshold of the

output neuron and 0.2 was used as the connectivity rate between the second

and third layers.

in the network training. In these experiments, 10 epochs
(each 100ms) were performed in the network training. The
results show the impact of the size of the training set on the
classification accuracy.

Figure 13 shows the classification accuracy for each digit class
individually tested on the complete test data. The results were

FIGURE 10 | The dependency of classification accuracy on the firing threshold

of the output neuron. Average classification accuracy was measured for

different firing threshold values from −0.03 to 0.03, by training the network

with 10 selected samples per digit class and testing on the entire test dataset.

The results show maximum classification accuracy for the firing threshold set

to 0.01. In these experiments, α and β values were set as 0.2 and 0.6,

respectively. The µ value set to 0.8 and the connectivity rate between the

second and third layer was set to 0.2.

FIGURE 11 | The dependency of classification accuracy on the connectivity

rate of the second and third neural layers. Average classification accuracy was

measured for different connectivity rates between 0 to 1 by training the

network with 10 selected samples and testing on the entire training set. The

results show maximum classification accuracy for rates set to 0.2. In these

experiments, α, β, and µ values were set as 0.2, 0.6, and 0.8, respectively.

obtained using estimated parameter values of the model and 40
selected training samples per digit class that led to 72% accuracy.
The classification accuracy above 70% was obtained for digit
classes, 0, 1, 3, 6, 7, and 8. In addition, the results allow to observe
a distribution of wrongly assigned samples per digit class.

Other SNN models for classification have shown an average
accuracy of about 98% on the test samples of the MNIST using
the entire 60,000 training samples (Lee et al., 2016; Kheradpisheh
et al., 2018) and about 97.2% in another study (Zhou et al.,
2020). Higher average classification accuracy on the test data of
the MNIST dataset has been obtained in the proposed method
(Wu et al., 2019) as 99.26%. Other recent supervised SNNs
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FIGURE 12 | (A) The average classification accuracy using “selected training samples per digit class.” About 1 to 40 samples from the training dataset were selected

and tested on the test data. A maximum classification accuracy of the model was about 72% using 40 training samples. (B) The average classification accuracy using

“random training samples per digit class. About10 to 1,000 samples from the training dataset were selected and tested on the test data. Maximum classification

accuracy of the model was about 58% using 1,000 training samples.

for the MNIST classification using the entire MNIST training
set include methods based on STDP back-propagation with
96.6% accuracy (Tavanaei and Maida, 2019) and temporal back-
propagation learning rule (Mostafa, 2017; Zhang et al., 2020;
Sakemi et al., 2021) with classification accuracies of 98.1, 98.0,
and 97.2%, respectively.

For more details on other supervised SNNs and their
classification accuracies on the MNIST dataset and other datasets
as well, refer to Kheradpisheh et al. (2020).

One of the few-shot learning methods is supervised non-
associative auto-encoder (SNAAE) for the MNIST classification.
In this method, stacking layers of auto-encoders (ANNs) are
trained in a supervised manner. The performance of SNAAE
on the MNIST dataset for 10-shot experiments has been 83.06%
while CNNs show 31.52% using 10-shot experiments for each
digit class (Gooya et al., 2020).

Recently, some SNNs-based few-shot learning methods have
been proposed and tested on some benchmark datasets. In one
of these works named surrogate-gradient online error triggered
learning (SOEL; Stewart et al., 2020) for online few-shot learning,
was tested on IBM Gesture dataset (Amir et al., 2017) or on
DAVIS 240C (Lake et al., 2015). This method has shown 64.7%
for 1 shot, 65.1% for 5 shots, and 80.2% for 20 shots learning
(Stewart et al., 2020).

Our proposed few-shot based classification method as a
learning-bound approach selects relevant features of the MNIST
images to train the network.

DISCUSSION

The capabilities of the human brain to learn and retrieve complex
and noisy visual patterns while using small training data have
inspired researchers and computer scientists to develop artificial
systems that demonstrate similar capabilities. These amazing

capabilities originate from neuronal architectures and synaptic
mechanisms in different neurons in the brain that are partially
known and can be used in developing future artificial systems
(Faghihi and Moustafa, 2017). Deep learning methods need
large amounts of training data in order to show remarkable
performance on pattern recognition tasks (Najafabadi et al.,
2015). Therefore, developing deep networks that need training
data as small as possible is one of the main goals of the modern
machine learning researches.

We constructed a novel spiking neural network for
hand-written digit classification that extracts image features
automatically using a few training samples per digit class. Our
work was based on a hypothetical written digit recognition that
includes detecting lines and circles that construct written digits.
For this purpose, an approach to extract the features of an image
was proposed. Each image is represented as neuronal activities
of the first layer in the model. In this work, the information
of the image is presented as eight regions. The results show
the importance of increasing the number of partitioning in
improving the classification accuracy.

The results show that there is a correlation between
misrecognized digits with a similarity of neuronal representation
of digit classes. For example, digit “0” is mainly misrecognized
with “6” (Figure 4D), and the distance between their neuronal
representations is low, compared to the other distances
(Figure 13).

In this work, a firing rate-based learning rule was proposed to
train a deep SNN that does not use back-propagation algorithm.
After training the networks, a synaptic pruning mechanism
was modeled simply by setting weak synapses to zero using
some thresholds; in each experiment, only one threshold is
used. In this regard, at the end of each epoch of network
stimulation, synaptic weights between the first and second
layers are updated according to the proposed learning rule.
The learning rule compares the firing rates of a neuron in
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FIGURE 13 | Classification performance for individual digits class. Red bars show the performance of each digit class and blue ones are misrecognized samples

assigned by the network. The model demonstrates that digit class “0” is mainly misrecognized with “6”; digit class “1” is misrecognized with “2”; digit class “2” is

misrecognized with “4”; digit class ‘3” IS misrecognized with “8”; digit class “4” is misrecognized with “8”; and digit class “8” is misrecognized with “6”.

the second layer and a presynaptic neuron in the first layer.
If the postsynaptic neuron has a higher rate compared to the
presynaptic neuron, the corresponding weight is weakened;
otherwise, it is strengthened according to the difference of

the mean firing rates of the pre- and postsynaptic neurons.
The learning rule allows for detecting and then deleting
unimportant synapses which result in the construction of a
sparse connection between the spiking neural layers. Using
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the architecture and mechanisms of the proposed network,
we obtained on average, 72% of classification accuracy using
10 samples per digit class for training and corresponding
estimated parameter values. However, the efficiency of our
method should be evaluated on other types of data for
classification problems.

Deep learning methods including CNNs for the MNIST
classification started in the 1990’s but then for years of
research, focused on the support vector machines (LeCun et al.,
1998; DeCoste and Schölkopf, 2002). Recently, new CNNs
architectures have shown very high classification accuracy on
the MNIST dataset that is about 99% but they require the
entire training dataset (includes 60,000 samples) and presenting
it to the network from 10 to 15 epochs (Wan et al., 2013;
Patil, 2020). The SNN-based methods have been developed to
extract discriminative features from images for hand-written
digit classification. In a study, a two-layer SNN was developed
using spike-time dependent plasticity (STDP) along with lateral
inhibition and adaptive spiking threshold (Thiele et al., 2018).
This method demonstrated 95% of classification accuracy on
the MNIST dataset but it required 40,000 training samples. For
brain-inspired DSNNs, the importance of sparse connectivity
in DSNNs for supervised and reinforcement learning has been
recently shown while observing high performance on theMNIST
database but using very large training data (Kheradpisheh et al.,
2020).

A parameter involved in the classification accuracy of the
model is the feed-back inhibition that controls the stimulation
of the network in response to images with different intensities.
The role of balanced excitation–inhibition in biological neural
systems in feed-back and feed-forward inhibitory circuits is
known (Yang et al., 2013; Sun et al., 2019). The results
have demonstrated the role of strong feed-back inhibition in
classification accuracy (Figure 5E). To our knowledge, this is
the first study on the role of feed-back inhibition in SNN-based
classification methods.

Normal synaptic pruning by microglia cells in the mouse
brain is an essential neuronal process and also its contribution
to abnormal pruning in the neurodevelopmental disorders have
been known (Zhou et al., 2020).

In this work, synaptic pruning helps the network to extract
important features of each digit class that are represented as
connectivity matrix between the first and second layers. By
applying the proposed learning rule and the synaptic pruning
model in the training phase of the model, the initially fully
connected neurons in the first and second layers have evolved
into sparse-connected layers.

The results show maximum classification performance using
synaptic pruning parameter value (µ) that is equal to 0.8 when
the parameters α and β of the learning rule are set to 0.2
and 0.6, respectively. We expect that these parameter values
depend strongly on the data type. The image data used in this
study is not temporal; therefore, the proposed learning rule
should be evaluated for the classification of spatio-temporal data
(e.g., electroencephalography data) in which data information

strongly depends on the recording time and the source of the
location data.

In addition, the electrophysiological values used in the IF-
neurons play an important role in the classification accuracy. We
have not studied the impact of different sets of electrophysiology
parameter values obtained from different biological neurons;
only an electrophysiology dataset from a study on the olfactory
neurons of an insect were used. The spiking activity of the output
neuron was modeled using different values of spiking thresholds.

The results show that using a higher spiking threshold value
(set to 0.01) in the output neuron, compared to the value set to
−0.01 results in better classification accuracy.

Therefore, studying the electrophysiological parameters of IF-
neurons may play an important role in developing bio-inspired
SNNs for real applications.

The resulting sparse connectivity matrix constructed after
training, named in this work as “information channel,” and its
potential for being applied in other deep learning architecture
(e.g., convolutional neural networks) need intensive studies. In
addition, the connectivity rate between the second and third
layers can impact the classification accuracy. The simulations
have demonstrated the role of low connectivity rates in themodel.
To select the training samples from the MNIST dataset, two
different paradigms were used, “selected samples” and “random
samples.” The results show the impact of selecting training
images on the classification accuracy. We think that any better
feature extractionmethod to detect lines and circles that compose
the written digits can result in better classification performance.

In conclusion, we suggest that the basic synaptic and network
mechanism used in this DSNN performs complex feature
selection efficiently with a few training samples and proposes a
method to develop a class of machine learning methods. The
proposed neuroscience-inspired DSNN has demonstrated good
performance to accomplish complicated tasks where the inputs
are subjected to noise and uncertainty. We argue that in future,
models like the proposed SNN in this study, may play a critical
role in developing DSNNs to perform cognitive tasks for modern
machine learning techniques.
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