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Many engineering structures naturally possess a periodic architecture 
because of the ease of their manufacture, as repetitive units can be assembled 
during mass production and fitted together to build a large complex structure. 
Such fabrication is common in traditional assemblies such as bridges, grillages, 
trusses, honeycombs, and so on. In these situations, periodicity is a consequence 
of the manufacturing process, as the production of identical units can be scaled 
up. Spatial periodicity is also a feature in processes that require filling a space 
with material. Traditional example of this could be textiles that show weave 
patterns. Many industrial textiles have a similar geometric feature and are 
technically classified as soft matter. These include woven composites, where a 
woven phase is usually the reinforcement phase that is embedded inside a matrix 
which may be a resin. Space filling in a regular pattern is also carried out during 
additive manufacturing, where a layer within a 2D area needs to be filled using 
an algorithm that drives a material dispenser. Such space filling inevitably has 
repetitive features in its geometry. 

One of the most celebrated of power-law relationships is that concerning 
the apparent elasticity of honeycombs (Gibson and Ashby, 1997) for which it 
can be shown that in the low apparent density limit (i.e., cell walls much smaller 
than characteristic cell size), the apparent modulus of elasticity scales as 𝐸𝐸~𝜌𝜌3. 
The origin of this power law can be traced to the inherent mechanism of cell 
wall deformation, which is flexure, and the fact that bending stiffness scales 
according to ~𝑡𝑡3 , where 𝑡𝑡 is the cell wall thickness, whereas the apparent 
density scales according to 𝜌𝜌~𝑡𝑡. Likewise, for a triangular lattice, whose in-
plane deformation is dominated by cell wall stretch, rather than flexure, the 
apparent modulus of elasticity obeys the power law 𝐸𝐸~𝜌𝜌 because the stiffness in 
stretch scales according to 𝐴𝐴~𝑡𝑡. 
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Here we consider a commonly encountered lattice architecture that arises 
naturally in additive manufacturing in addition to being the preferred geometry 
in biomedical scaffold applications. The elastic elements are stacked in 
alternating layers with orthogonal direction of their run (Figure 1). We will call 
such lattices as woodpiles, because of the association with wood logs frequently 
being stacked in this manner. Here we consider two variants of the stacking 
arrangement: those above and below a given layer are aligned, and those that are 
staggered. In the first case, when such elastic lattices are compressed in the 
stacking direction, the individual cylindrical struts are diametrically compressed. 
For the latter, they are primarily in bending. While the mechanics of bending for 
cylindrical cross-sections gives the modulus scaling as 𝐸𝐸~(𝑟𝑟/𝜆𝜆)5, whereas the 
apparent density for woodpiles is given by 𝜌𝜌~(𝑟𝑟/𝜆𝜆), which leads to the power 
law 𝐸𝐸~𝜌𝜌5. The details of the analysis are omitted here (see Cuan-Urquizo, et al., 
2020). 

 

 
 Figure 1 - Finite element computational modelling (left). Lattice geometry (top right). SEM 

images of aligned vs staggered arrangements in 3D printed samples of lattices. 

The mechanics of the aligned arrangement is considerably more complex 
because the struts are neither in plane stress, nor in plane strain. A detailed 
analysis is mathematically cumbersome, which we avoid in favour of simple 
scaling argument based on dimensional consistency. The result of such a simple 
analysis leads to a power law for modulus-porosity relationship as 𝐸𝐸~𝜌𝜌2 
(Shalchy, 2020, Shalchy and Bhaskar 2021). These power law relationships 
were verified for both lattice configurations using laboratory experiments on 
additively manufactured samples of different strut diameter. The results were 
consistent with the power law predictions obtained using simple ideas such as 
scaling and simplified mechanics. More importantly, such results are useful for 
industrial applications as they provide insight into the apparent elastic behaviour 
via simple analytical formulae. 
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In the above we considered a few simple cases of the static response of 
repetitive elastic structures under remote loading and the resulting dependence 
of the apparent elasticity on the porosity in the form of power laws. When 
elastic wave travel through such media, i.e., when such structures vibrate, the 
spatial periodicity leads to interesting propagation behaviour frequently 
encountered in solid state physics, especially in electromagnetic waves in 
lattices and light through crystals. While the physics of waves is considerably 
different in these contexts, the features of propagation that are a consequence of 
the spatial periodicity remain valid. Therefore, elastic waves show the so-called 
Band-structure with stop bands and pass bands. In a stop band, there are no 
propagating waves, and hence any disturbance does not propagate and is 
attenuated. This offers the possibility of tailoring the geometry of lattices so that 
vibration transmission can be suppressed. An example that we consider here is 
taken from engine air cooler structures (Fig 2, top left) in which fins are 
perforated in a lattice. One such elastic plate with periodic holes is shown in 
Figure 2 (top right). The lattice considered here is a square lattice. 

 
Figure 2 - Propagation of flexural elastic waves in a periodically perforated plate. The 

computations were carried out in the Comsol environment 
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The horizontally running bands denote stop bands (see, e.g., Kittel, 2004), 
where there is wave attenuation. Figure 2 shows the propagation behaviour for 
flexural waves in a plate with lattice perforations. It is customary to show the 
dispersion of such waves along the edges of the so-called irreducible Brillouin 
zones (IBZ) in the wave-number space that contain information about all 
possible propagation (Brillouin, 1946). The attenuation is confirmed on the right 
side of this figure. Note that there are partial stop bands in certain directions 
(along Γ-X edge) where the attenuation efficiency is only moderate. In a thin 
pass band, there is considerable amplification, by contrast. 

Summary. A host of industrial parts and additively manufactured 
materials possess the feature of spatial periodicity. This inherent periodicity can 
be exploited to simplify analysis. In particular, the apparent properties can be 
derived by considering a unit cell subjected to remote loading. Results in the 
form of power laws offer practical usefulness to practicing engineers. The 
possibility of producing a designer material can also be explored. Unusual 
dynamic phenomena in structural vibration can also be studied, which, in turn, 
can be used for vibration attenuation. Details of the work cited here will be 
presented elsewhere. 
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