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Currently, transcatheter aortic valve implantation (TAVI) represents the most efficient

treatment option for patients with aortic stenosis, yet its clinical outcomes largely depend

on the accuracy of valve positioning that is frequently complicated when routine imaging

modalities are applied. Therefore, existing limitations of perioperative imaging underscore

the need for the development of novel visual assistance systems enabling accurate

procedures. In this paper, we propose an original multi-task learning-based algorithm

for tracking the location of anatomical landmarks and labeling critical keypoints on

both aortic valve and delivery system during TAVI. In order to optimize the speed

and precision of labeling, we designed nine neural networks and then tested them

to predict 11 keypoints of interest. These models were based on a variety of neural

network architectures, namely MobileNet V2, ResNet V2, Inception V3, Inception ResNet

V2 and EfficientNet B5. During training and validation, ResNet V2 and MobileNet V2

architectures showed the best prediction accuracy/time ratio, predicting keypoint labels

and coordinates with 97/96% accuracy and 4.7/5.6% mean absolute error, respectively.

Our study provides evidence that neural networks with these architectures are capable

to perform real-time predictions of aortic valve and delivery system location, thereby

contributing to the proper valve positioning during TAVI.

Keywords: keypoint tracking, multi-task learning, transcatheter aortic valve replacement, deep learning—CNN,

medical image analysis, aortography

INTRODUCTION

Transcatheter aortic valve implantation (TAVI) is a relatively novel and highly efficient
treatment option for medium- and high-risk patients with aortic stenosis. Short- and long-term
survival of patients after TAVI is similar to those after surgical aortic valve replacement
(1, 2). The number of TAVI procedures has been steadily growing since the first procedure
performed in 2002, and the indications for TAVI continue to expand (3). Minimally invasive
procedures are associated with lower mortality and fewer postoperative complications such
as atrioventricular block which requires immediate pacing and may cause paraprosthetic leak
affecting survival rates (4, 5). Recent studies have reported that specific complications of
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TAVI are commonly related to a prosthesis-patient mismatch (6–
8) and device malpositioning (4). Most peri- and postprocedural
complications are operator-dependent but physiological
movements of patients during device delivery and deployment
may temporarily interrupt the cardiac cycle, limit blood flow,
and cause respiratory problems (9, 10). These patient-dependent
complications largely depend on the quality of intraoperative
imaging which is necessary for accurate device positioning
(6). However, routine imaging modalities are limited by the
need to reduce the radiologic exposure and to eliminate
repeated contrast injections. Therefore, the development of
visual assistance systems for intraoperative guidance is of
paramount importance.

Several interventional angiography systems integrate
commercially available software to facilitate the navigation
during TAVI for reducing the risk of complications. To date,
such products have been developed by Philips (HeartNavigator),
Siemens Healthcare (syngo Aortic Valve Guide), GE Healthcare
(Innova HeartVision) (11), and Paieon Inc. (C-THV) (12)
and were successfully introduced into clinical practice. The
existing guidance systems align the computed tomography
(CT)-based 3D anatomical model of the aortic root generated
preoperatively and overlay it onto live fluoroscopy images during
valve positioning, ensuring the optimal angiography system
orientation and vascular access (Figure 1).

However, these systems do not allowreal-time tracking of
the keypoints and detailing of the aortic root geometry during
TAVI, as they imply preoperative model reconstruction (13).
Hence, the operator is still responsible for controlling the
position of the device and its deployment by means of the
aortography data and pigtail position tracking. The logical step
forward is to design visual assistance systems providing an
opportunity for the real-time tracking of keypoints and aortic

FIGURE 1 | (A) Typical images provided by the commercially available TAVI guidance system (Siemens) that delineates the aortic root anatomy, performs its

segmentation; (B) overlays onto live fluoroscopy, visualizing the key basal hinge points of the leaflets, coronary ostia, the aortic root contour, and suggesting the

optimal angiography system orientation.

root contour utilizing automated processing of the aortography
images, regardless of the image acquisition equipment. For this
task, neural networks capable of detecting regions of interest
(12, 14) on image series can be employed. Deep learning

is currently becoming widespread in cardiovascular imaging
(15) for examining aortic root hemodynamics (16, 17), aortic
dissection (18), aortic valve biomechanics (19), and coronary
artery occlusion (20). Nevertheless, it has not been applied for
the valve implantation guidance.

Here, we aimed at developing a tracking system and
an algorithm to label the keypoints of the aortic valve
anatomical landmarks and TAVI delivery system by using

original aortography images obtained during the transcatheter
implantation of CoreValve, a self-expanding prosthetic aortic
valve, and by applying the multi-task learning (MTL). Previously,

MTL has been successfully used in medical imaging (21),
computer vision (22, 23), and drug discovery (24). In contrast

to single-task learning (STL), MTL acts as a regularizer by

introducing an inductive bias, thereby reducing the risk of
overfitting as well as the Rademacher complexity of the model,

i.e., its ability to fit random noise (25). The ability of the MTL
model to find an efficient data representation minimizing the

overfitting directly depends on the number of tasks.

MATERIALS AND METHODS

The development of the tracking system and labeling algorithm
consisted of three main stages:

• Stage 1. Data preparation: data labeling for developing
training and validation sets; image annotation by an
interventional cardiologist.

• Stage 2. Data analysis: estimation of the distribution of the
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TABLE 1 | Demographic and clinical data of the patients who underwent TAVI

procedures.

Parameter Value

Total number of procedures 14

Mean age (mean ± SD), years 76.3 ± 5.8

Male patients, n (%) 5 (35.7%)

Female patients, n (%) 9 (64.3%)

Prosthesis size

26mm, n (%) 6 (42.9%)

29mm, n (%) 7 (50%)

31mm, n (%) 1 (7.1%)

Transfemoral access, n (%) 14 (100%)

labels and coordinates of the keypoints.
• Stage 3. Training and screening of neural networks: selection

of available neural network architectures, loss function and
descriptive metrics, assessment of qualitative and quantitative
parameters from the training and validation data.

Source Data
Original aortography imaging series collected during
the implantation of 14 CoreValve self-expanding aortic
valve bioprostheses to patients with aortic valve stenosis
from 2015 to 2018 were used as the source data for
training and validation of neural networks. All TAVI
procedures (Table 1) were performed by the same
operator at the Department of Cardiovascular Surgery
within the Research Institute for Complex Issues of
Cardiovascular Diseases.

During the TAVI, we collected 35 video series of 1,000
× 1,000 pixels with an 8-bit depth (a scale from 0 to
255). The final sample consisted of 3,730 grayscale images,
of which 2,984 (80%) images were used as the training
set and 746 (20%) images were used as the validation
set. TAVI allowed obtaining a series of anonymized images
illustrating three essential steps: positioning of the catheter
and delivery system (Figure 2A); beginning of the capsule
retraction and exposing the prosthesis (Figure 2B); deployment
of the prosthesis (Figure 2C). The maximum of 11 keypoints
of interest (from 1 to 11 over each image) was labeled and
annotated (Figures 2D–H). A brief description of the keypoints
is provided below.

Anatomical Landmarks
• Aortic annulus, a target landmark for TAVI: Aortic root 1

(AA1) and Aortic root 2 (AA2).
• Aortic sinotubular junction, an additional landmark for

correct determination of the aortic annulus plane: Sinotubular
junction 1 (STJ1) and Sinotubular junction 2 (STJ2).

Delivery System Landmarks
• Delivery system anchors, a landmark defining the degree of

prosthesis extraction: Catheter Proximal (CP).

• Bending point of the catheter, a landmark of the sinotubular
portion of the stent: Catheter Middle (CM).

• The radiopaque capsule marker band on the upper shaft
portion to the distal ring, a landmark of the outer shaft bending
degree used for defining the extent of prosthesis extraction:
Catheter Distal (CD).

• Catheter tip, a landmark determining the location of the
catheter and aortic annulus plane: Catheter Tip (CT).

Additional Landmarks
• Distal part, a landmark for the valve implantation indicating

an aortic annulus plane: Pigtail (PT).
• The distal portion of a self-expanding prosthesis determines

the location of the stent during implantation and its deviation
from an aortic root plane: Distal part of the stent: Frame Edge
1 (FE1) and Frame Edge 2 (FE2).

To visualize three sequential steps in Figures 2A–C,
we selected imaging series during the contrast
injection. Data labeling was performed using the
Supervisely AI platform.

Description of the Neural Networks
We usedMTL (26) based on the Hard Parameter Sharing because
of the need to simultaneously predict the labels and coordinates
of the keypoints. To solve this task, the MTL-based model
included three main components (Figure 3):

• Feature Extractor: the component responsible for delineating
features and converting them into the lower dimension, i.e.,
an input image (input tensor) is converted into a vector
of features. This vector (output tensor) is a set of optimal
descriptors. The dimension of the output tensor is much less
than the dimension of the input tensor.

• Classifier: the component responsible for predicting the
labels of the keypoints over the image. The output vector
of the classifier has 11 outputs, reflecting the probabilities
of detecting the keypoints of interest over the image.
Since the images contained a different number of points
independently of each other, the classifier performed multi-
label classification. Thus, the task of the classifier was to
determine the keypoints (from 1 to 11) on the image
and predict their probabilities. Technically, the multi-label
classification task is to find a model that automatically maps
an input example to the correct binary vector rather than
scalar values.

• Regressor: the component responsible for predicting the
coordinates of the keypoints on the image. The output vector
of the regressor has 22 outputs, representing the normalized
(x, y) coordinates of the keypoints of interest on the image.

We applied available neural networks that extract features
and implement the abovementioned approach in image
processing (Table 2). Training of neural networks was
performed with and without fine-tuning. Fine-tuning
implied training all parts of the network (feature extractor,
regressor, and classifier). Without the fine-tuning, training
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FIGURE 2 | Algorithm for labeling intraoperative aortography images and defining the keypoints for the TAVI tracking system. (A) represents the positioning of the

delivery system; (B) represents the transcatheter aortic valve deployment and the actuator rotation; (C) highlights the 1/3 of the valve deployment; (D) shows the

labeling of the keypoints on the catheter; (E) shows the labeling of the keypoints indicative of the aortic root; (F) shows the labeling of the keypoints on the valve stent

at the stage of its 1/3 deployment; (G) is a visualization of the keypoints on the distal part of the delivery system according to the segmented aortograms; (H) is a 3D

model of the target aortic valve structure.

was performed exclusively for regressor and classifier. Fine-
tuning significantly increased the number of weights and the
training time.

Neural Network Training
Since the MTL-based models solve several tasks (e.g., multi-
label classification and regression), their training requires
the optimization of multiple loss functions. In our study,

the generic loss function was the weighted sum of binary
cross-entropy (multi-label classification loss function)
and Log-Cosh (regression loss function). It was calculated
as follows:

Loss = w1 · Loss1 + w2 · Loss2 (1)

Loss1 = −
1

N

N
∑

i=1

yi · log ŷi + (1− yi) · log (1− ŷi) (2)
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FIGURE 3 | An illustration of the proposed MTL model predicting the labels and coordinates of the keypoints.

Loss2 =

N
∑

i=1

log[cosh(ŷi − yi)] =

N
∑

i=1

log(
e(ŷi − yi) + e−(ŷi − yi)

2
)

(3)

where yi is the ground-truth value, ŷi is the model prediction,N is
the number of classes/points. Since the contribution of Log-Cosh
to the generic loss function is much less, the value of the weight
w2 was chosen equal to 10, and the value of the weight w1 was
chosen equal to 1 to maintain the balance.

We have chosen Log-Cosh because it combines the advantages
of both Mean Absolute Error (MAE) and Mean Squared Error
(MSE) loss functions. This loss function is approximately
equal to

∣

∣ŷi − yi
∣

∣ − log(2) for large values of the prediction

error and (ŷi − yi)
2

/ 2 for small values of the prediction
error. Unlike MSE, Log-Cosh is less sensitive to random
incorrect predictions or outliers. It also has all the advantages
of Huber loss. Importantly, Log-Cosh is twice differentiable
and may be used in several specific machine learning
models [e.g., many ML solutions like XGBoost use Newton’s
method to find the optimum, where the second derivative
(Hessian) is needed].

Early Stopping, a form of regularization, was used to
avoid the model overfitting. The training of the model was

terminated once the model performance stopped improving
at least 0.005 during 5 epochs on a hold-out validation
set. To train the models, we used the Rectified Adam

(33) with a learning rate of 0.00001 and a batch size
of 64.

All neural networks were trained using Intel Core i7-4820K
3.7 GHzCPU, 32GbRAM,NVIDIAGeForce RTX 2080 Ti 11Gb,
Ubuntu 18.04.4 LTS (Bionic Beaver). We selected the following
metrics to assess classification and regression components of the
neural networks:

Classification Metrics

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 =
2 · TP

2 · TP + FN + FP
(6)

Accuracy =
TP + TN

TP + FN + TN + FP
(7)

Regression Metrics

MAE =
1

N

N
∑

i=1

∣

∣yi − ŷi
∣

∣ (8)

MSE =
1

N

N
∑

i=1

(

yi − ŷi
)2

(9)

RMSE =

√

√

√

√

1

N

N
∑

i=1

(

yi − ŷi
)2

(10)
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TABLE 2 | Description of the neural networks.

Model Fine-tuning Size of the

input tensor

Size of the

output

tensor

Number of

trainable

parameters

Number of

non-trainable

parameters

Total number of

parameters

Model size,

Mb

References

MobileNet V2 Yes 224 × 224 × 3 1280 4,881,185 34,112 4,915,297 58 (27)

No 2,657,313 2,257,984 40

ResNet V2 Yes 224 × 224 × 3 2048 27,749,537 45,440 27,794,977 326 (28, 29)

No 4,230,177 23,564,800 142

Inception V3 Yes 299 × 299 × 3 2048 25,905,322 34,432 25,939,754 305 (30)

No 2,085,921 23,853,833 118

Inception

ResNet V2

Yes 299 × 299 × 3 1536 57,900,650 60,544 57,961,194 681 (31)

No 2,085,921 55,875,273 244

EfficientNet B5 No 456 × 456 × 3 2048 4,230,177 28,513,520 32,743,697 162 (32)

FIGURE 4 | Distribution of the number of keypoints in the initial dataset.

FIGURE 5 | The total number of images for the studied keypoints.
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FIGURE 6 | Scatter plots of the keypoints in the source images.

where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, FN is the
number of false negatives, yi is the ground-truth value, ŷi is the
predicted value, N is the number of samples.

We use the general method for computing the F1-score (Eq.
6). The micro-F1 represented the total number of TP, FN, and
FP. The macro-F1 was a weighted average of the F1 scores of
each class.

Software Used in the Study
During the performance of our study, we used several key
libraries, packages, and frameworks such as:

• Python Version 3.6.9 (RRID:SCR_008394) and PyCharm
Version 2020.1 (RRID:SCR_018221) were used as the
main programming language and integrated development
environment for performing data processing/wrangling and
neural networks development;

• R Version 3.6.3 (RRID:SCR_001905) and RStudio Version
1.2.5001 (RRID:SCR_000432) were used as an additional
programming language and integrated development
environment for performing statistical analysis;

• TensorFlow (RRID:SCR_016345) is an open-
source software library used for the development

of the deep learning networks trained using the
MTL approach;

• Scikit-learn Version 0.20.3 (RRID:SCR_002577) is an open-
source software machine learning library for the Python
programming language;

• SciPy Version 1.4.1 (RRID:SCR_008058) is an open-source
library for the scientific computing including numerical
integration, interpolation, optimization, linear algebra,
and statistics;

• NumPy Version 1.18.2 (RRID:SCR_008633) is a numerical
computing tool used for processing multi-dimensional arrays
and matrices;

• Pandas Version 0.24.2 (RRID:SCR_018214) is a software
library for data manipulation and analysis of different data
structures including numerical tables and time series;

• OpenCV Version 4.0.1.23 (RRID:SCR_018214) is a computer
vision library used for image processing and visualization;

• Seaborn Version 0.10.0 (RRID:SCR_018132) and Matplotlib
3.0.3 (RRID:SCR_008624) are comprehensive libraries for
creating static, animated, and interactive visualizations
in Python;

• ggplot2 Version 3.2.1 (RRID:SCR_014601) is a data
visualization package for the statistical programming
language R.
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FIGURE 7 | Dynamic changes in the loss function for the studied neural networks.
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FIGURE 8 | Prediction of the keypoint labels and coordinates. Dots are the ground-truth keypoints defined by the expert. Crosses are the predictions of neural

networks. Ideally, the number and the coordinates of the ground-truth and predicted keypoints should coincide. (A) Beginning of the training (epoch 1), (B) middle of

the training, and (C) end of the training (the last epoch).

RESULTS

Analysis of the Source Data
We first analyzed the distribution of the keypoint number

using exploratory data analysis. Figure 4 shows that the number

of keypoints on images has a normal distribution. However,
we noticed the imbalance of the initial dataset due to a
small number of images where the keypoints of the aortic
valve landmarks and TAVI delivery system were visualized
during contrasting. This imbalance could affect the predictive

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 July 2021 | Volume 8 | Article 697737

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Danilov et al. Aortography Keypoint Tracking for TAVI

TABLE 3 | Model comparison according to the classification metrics*.

Model Precision Recall Macro F1 Micro F1 Accuracy

Train Valid Train Valid Train Valid Train Valid Train Valid

ResNet V2 FT 0.99 0.97 1.00 0.97 0.99 0.93 1.00 0.97 0.99 0.97

ResNet V2 0.97 0.96 0.95 0.95 0.89 0.89 0.96 0.95 0.96 0.95

MobileNet V2 FT 0.99 0.96 0.99 0.97 0.98 0.92 0.99 0.96 0.99 0.96

MobileNet V2 0.96 0.95 0.94 0.93 0.86 0.84 0.95 0.94 0.95 0.93

Inception V3 FT 0.99 0.96 1.00 0.97 0.99 0.93 0.99 0.97 0.99 0.96

Inception V3 0.96 0.95 0.94 0.93 0.88 0.85 0.95 0.94 0.95 0.94

Inception ResNet V2 FT 0.99 0.96 0.99 0.97 0.98 0.92 0.99 0.97 0.99 0.96

Inception ResNet V2 0.96 0.95 0.93 0.92 0.85 0.82 0.94 0.94 0.94 0.93

EfficientNet B5 0.96 0.96 0.93 0.93 0.86 0.86 0.95 0.94 0.94 0.94

*The higher the metric value, the better the model predicts the labels of the keypoints.

TABLE 4 | Model comparison according to the regression metrics*.

Model MAE RMSE MSE

Train Valid Train Valid Train Valid

ResNet V2 FT 0.035 0.047 0.049 0.079 0.002 0.006

ResNet V2 0.062 0.067 0.092 0.100 0.009 0.010

MobileNet V2 FT 0.045 0.056 0.066 0.088 0.004 0.008

MobileNet V2 0.070 0.074 0.102 0.109 0.010 0.012

Inception V3 FT 0.049 0.053 0.070 0.086 0.005 0.007

Inception V3 0.068 0.074 0.100 0.108 0.010 0.012

Inception ResNet V2 FT 0.048 0.046 0.070 0.082 0.005 0.007

Inception ResNet V2 0.071 0.073 0.105 0.109 0.011 0.012

EfficientNet B5 0.065 0.067 0.100 0.103 0.010 0.011

*The lower the metric value, the better the model predicts the coordinates of the keypoints.

power of the models but may be eliminated by increasing the
number of images of the minor class. In some cases, images
containing 1, 2, 3, 10, and 11 keypoints of interest can be
predicted incorrectly.

Additionally, we analyzed the distribution of the keypoints
in the images (Figure 5). Most of the keypoints represented
the delivery system (CP, CM, CD, and CT) and pigtail (PT).
There were fewer keypoints of anatomical landmarks (AA2 and
STJ2) and distal portion of the stent (FE1 and FE2) that can be
explained by a limited imaging time during the TAVI procedures.
Most of the analyzed images were made without contrasting that
prohibited the visualization of the keypoints indicating aortic
valve anatomical landmarks (AA1, AA2, STJ1, and STJ2). Since
the valve is pre-attached to the delivery system, FE1 and FE2
were tracked only at the last stage of the procedure. Thus, the
classifier may be biased toward predicting the majority class (PT,
CD, CM, CT, and CP). To assess the distribution of the keypoint
coordinates, scatter plots were used (Figure 6).

Point cloud density and data scatter of the distal portion
of the stent (FE1 and FE2) displayed a small number of
these points, suggesting the presence of the imbalance in
the source dataset. We noted the presence of the statistical
outliers, i.e. single points that are shown in Figure 6 (AA2,

STJ1, STJ2, CD, CM, and CP). In addition, the keypoints
of interest were distributed unevenly over the images and
localized in small areas. The latter, theoretically, can lead to
the memorization of the coordinates by the model, resulting
in poor accuracy on the validation set. In case the model is
overfitting, the augmentation of images using affine or geometric
transformations (image rotation, reflection, translation, etc.) may
be applied.

Neural Network Training
Figure 7 shows the training progress of the studied neural
networks. The graphs present the dynamic changes in the
values of the loss function for both fine-tuned and non-fine-
tuned models. The dashed line shows the dynamic changes in
the loss function on the validation set. Despite the number
of epochs for training was set to 100, none of the models
reached the set number. The largest number of epochs spent
in training was 76 (EfficientNet B5), the smallest was 22
(Inception ResNet V2 FT). According to the loss function
analysis, it was shown that fine-tuned models were more
prone to overfitting (Supplementary Table 1) that is typical
for all fine-tuned models. However, Early Stopping allowed
partial elimination of the model overfitting. Importantly, heavier
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FIGURE 9 | Visualization of the key performance indicators of neural networks. Each circle represents the performance of the model in terms of frames per second on

the validation set (the larger the circle, the higher the model prediction speed).

models (Inception ResNet V2 and EfficientNet B5) were less
likely to overfit.

Figure 8 shows the learning dynamics of three models,
MobileNet V2 FT, ResNet V2 FT, and Inception V3 FT. After the
initial weights were initialized and the models were trained for
one epoch, they predicted the labels and the keypoint coordinates
incorrectly. By the middle of the training, almost all models
performed classification and regression with a high degree of
accuracy, except some models did not reach their optimum in
training [e.g., MobileNet V2 FT still predicted the presence of
STJ1 in the image with a probability of 53% (Figure 8B)]. By the
end of the training, all models predicted the presence of keypoints
and their coordinates over the images with a fairly low error
rate (Figure 8C).

Quantitative Analysis of the Models
After the training process, we compared the selected metrics
described in the Materials and Methods section. Tables 3, 4 show
the results of the comparative analysis. Color scale formatting
reflects the distribution of models by their accuracy, where deep
blue shows a better prediction, and white indicates a worse
prediction. All metrics are normalized in the range [0; 1].

We determined four models (ResNet V2 FT, MobileNet
V2 FT, Inception V3 FT, and Inception ResNet V2 FT) that
were capable of performing both multi-label classification and
regression with high accuracy. Fine-tuning better solved the
set tasks by demonstrating the best performance, F1-score,
and MAE (Figure 9). These models demonstrated a higher
generalization capability than standard models, better extending
the dependencies and patterns found on the training set
to the validation set. However, fine-tuned models are more

prone to overfitting and may require the introduction of
additional regularizers.

Time Analysis of the Models
To assess the efficiency of the selected approach, we assessed the
training time and the prediction time of each model. We found
a strong positive correlation between the number of weights
and the training/prediction time. Importantly, fine-tunedmodels
trained twofold longer than non-fine-tuned ones. However, fine-
tuned models converged faster, leading to fewer epochs for
training. A detailed comparison of the time metrics in relation
to the selected models is shown in Supplementary Table 2.

DISCUSSION

Our approach to the tracking of the intraoperative data using
a unique labeling algorithm represents a novel software that
may improve clinical outcomes of patients undergoing TAVI. To
better evaluate the reliability of the results, we should distinguish
two primary indicators: precise, real-time operation of the
algorithm and its high accuracy. Theoretically, the performance
of this software can be compared with the previously described
TAVI imaging software solutions (HeartNavigator, syngo Aortic
Valve Guide, etc.). However, this comparison cannot be
conducted in real clinical settings since all commercially available
imaging software solutions are used for the preoperative planning
and vascular access rather than for the intraoperative guidance as
an additional imaging modality. Our tracking software facilitates
the valve implantation, guiding the operator to adequate valve
positioning and deployment. Therefore, it is reasonable to discuss
specific parameters that may prove its efficiency and safety. For
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FIGURE 10 | An illustration of TAVI visual assistance system output generated by the proposed algorithm. (A–C) visualize the catheter location and the target

implantation site, where (A) is a target implantation site tracked by the pigtail location during the contrast injection; (B) is a tracking of catheter location relative to the

aortic annulus plane with an acceptable implantation error in the absence of contrast; (C) is an example of imaging with partial extraction of the valve from

the delivery system.

instance, frame per second indicator is critical for neural network
software solutions but not for routine imaging modalities. Future
research may focus on the validation of the intraoperative
modalities for tracking aortic valve anatomical landmarks using
clinical or mixed data.

In comparison with a hard parameter sharing utilized in our
study, an ensemble of soft parameter sharing MTL-generated
models may reduce coordinate scattering and increase the
generalization capability of the approach. However, surgical
interventions require real-time data processing, limiting the pool
of the models that can be applied. In addition, the use of
time-distributed architecture for our neural network ensemble
permitted involvement of both spatial and temporal components
to reduce oscillations of the keypoint coordinates.

The proposed algorithm and its further optimization will
allow to develop a virtual TAVI assistant capable of providing
relevant information to interventional cardiologists (Figure 10).
Tracking and labeling of 11 keypoints within the aortic root and
TAVI delivery system will support the operator in determining
the intraoperative deviation of the delivery system from the
optimal trajectory recommended by the manufacturer. Further, it
will perform real-time visualization of the target implantation site
and TAVI delivery system based on the algorithmic binding of the
pigtail catheter to the coordinates without the need for repeated
contrasting (Figure 10C).

Another promising research area is the development of a
feedback loop for robotic-assisted TAVI systems that have been
designed for experimental purposes (10, 34). The main concept
of this approach is the use of manipulators compatible with
the commercial TAVI systems that would deliver and position
valves instead of interventional cardiologists, who will then
monitor and control the work of the robotic assistant. The

performance of these systems depends on the input parameters
from the angiography system to control real-time tracking of the
catheter location and aortic valve anatomical landmarks. In this
respect, our neural network ensemble for the real-time tracking
of 11 keypoints is a source of the input data for the hardware
complexes of the robotic assistants that perform semi-automated
TAVI procedures.

The main limitation of the real-time tracking in this study was
the relatively high error in predicting the keypoint coordinates
due to a small number of images with aortic valve anatomical
landmarks (AA2 and STJ2) and the distal portion of the stent
(FE1 and FE2). The pixel distance between predicted and
ground-truth points varied from 40 to 60 pixels with an image
size of 1,000× 1,000 pixels. Therefore, our further studies will be
focused on optimizing the MTL-based algorithm for imbalanced
datasets (Figure 11) that will guide the operator for optimal
valve positioning. The algorithm is based on the tracking of
11 keypoints: the aortic root (AA1, AA2, STJ1, STJ2), pigtail
(PT), delivery system (CP, CM, CD), and transcatheter valve
(FE1, FE2). Tracking the aortic root during contrasting, the
algorithm generates a local orthogonal coordinate system in
two dimensions, where AA1 and AA2 keypoints form the X-
axis (aortic annulus plane) perpendicular to the Y-axis. Once
the contrast injection has passed and these points cannot be
longer tracked, PT acts as a duplicating element suggesting the
origin of coordinates and ensuring the binding of AA1 and
AA2 to PT. Simultaneously, the algorithm tracks and labels
the keypoints of the catheter (CP, CM, CD), providing relevant
information to the TAVI operator for the proper positioning of
the delivery system and starting valve deployment. FE1 and FE2
indicated the outer shaft of the delivery system, suggesting the
accuracy of valve positioning and any potential dislodging from
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FIGURE 11 | An illustration of an updated algorithm for tracking and labeling the keypoints of the aortic valve and TAVI delivery system.

the aortic annulus plane. Thus, our software performs a two-stage
assessment of the errors that may occur during valve positioning
and deployment (i.e., “annulus-catheter” and “annulus-stent”
coordinate difference). In addition, CP-CD keypoints provide
relevant information on the extraction degree of the outer shaft.

Despite relatively small sample size might limit the quality
of neural network training, the selected neural network
architectures and learning approach resulted in <5% mean
absolute error for both classification and regression functions

in training and validation samples. The single-center single-
operator design is another limitation of this investigation. Yet,
we think that it is acceptable in the proof-of-concept study which
suggests a novel experimental tool rather than an instrument for
the direct implementation into cardiovascular surgery. Despite
an extensive search, we could not find any studies regarding
the application of any convolutional neural network algorithm
for the real-time tracking of aortic valve and delivery system
keypoints during TAVI, even for one patient. Further, in
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combination with a single-prosthesis (CoreValve, Medtronic)
study design a single-operator approach minimizes the sample
heterogeneity that is of crucial importance when designing
artificial intelligence tools. Implantation of all prosthetic valves
by a single operator excluded variability of the technique and
increased the precision ofmachine learning, thereby contributing
to the accuracy of the algorithm. Among all commercially
available prosthetic valves, we selected CoreValve with regards
to: (1) a large amount of research regarding this valve prosthesis
model, including those investigating the correlation between its
inadequate positioning and postoperative complications; (2) it
has a self-expanding frame similar to most of prosthetic valves
employed in TAVI; (3) a specific experience of cardiovascular
surgeons in our center. Notwithstanding, we suggest that further
investigations should include several models of prosthetic heart
valves. In addition, the neural networks designed in this study
require validation in a two- or multi-center (and therefore multi-
operator) study.

CONCLUSION

To summarize, we suggest a novel real-time tracking system for
the facilitation of TAVI procedures. Here, we provided a proof of
concept that such a system can recognize and track the keypoints
indicating the location of the aortic root, delivery system,
and heart valve prosthesis during TAVI. Based on the hard
parameter sharing, MTL approach ensured the simultaneous,
real-time prediction of the keypoint labels and coordinates with
an overall accuracy above 95%: fully trained ResNet V2 and
MobileNet V2 networks predicted labels with an F1-score of
97 and 96%, and coordinates with a mean absolute error of
4.6 and 5.6%, respectively. We suggest these neural networks
might be employed both as a supporting tool to optimize valve
positioning and as a component of a robotic-assisted system for
performing TAVI.
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