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Abstract

Unmanned aerial vehicles (UAV) assisted edge computing has risen as an assuring tech-
nique to accommodate ubiquitous edge computation for resource-limited devices. Thus,
this paper proposes an approach to maximize the latency fairness in a UAV-assisted multi-
access edge computing (MEC) system. To maximize latency fairness, the authors focus on
minimizing the maximum latency experienced among the users. In here, multiple ground
users (GUs) offload their tasks to MEC UAV in the absence or unavailability of ground
servers due to a disaster or heavy traffic where an iterative algorithm is proposed to min-
imize the maximum latency among the users subject to minimum control link rate and
total power constraints. Sequentially, the UAVs’ 3D location, offloading ratio, GUs’ trans-
mit power and GUs’ computational capacity are optimized. The location of the UAV is
optimized by using the novel approach, guided pattern search algorithm while the altitude
of the UAV is optimized by analyzing the elevation angle dependant behaviour of the chan-
nel gain. A simple approach is utilized for optimizing the offloading ratio of the users by
considering the problem as minimizing the point-wise maximum of two convex functions
while the bisection method is used to optimize the power allocation. Numerical simulation
results illustrate that the proposed approach outperforms other baseline approaches in
convergence, minimizing the maximum latency and maximizing and maintaining the fair-
ness among the GUs. Furthermore, it is proved that the guided pattern search algorithm
converges at least 3.5 times better while the proposed combined optimization gives 400%
fairness gain, in comparison with the baseline approach.

1 INTRODUCTION

Unmanned aerial vehicles (UAVs) are a promising solution con-
sidering on-demand deployment in wireless networks thanks to
their low implementation cost, mobility and adaptability. More-
over, the ability to make a strong line-of-sight (LoS) connec-
tion plays a prominent role in providing high-standard aerial ser-
vices. Consequently, several research attempts have been carried
out to develop a range of UAV-assisted wireless platforms, such
as aerial base stations (ABSs) and relays[1–5]. In [2], a pattern
search algorithm is proposed to find the optimal 3D position
that maximizes the system profit. A disaster-resilient system is
studied in [3] where the intelligent 3D placement of UAV ABS is
investigated to maximize the total spectral efficiency of the sys-
tem. In [4], UAV is deployed as an aerial base station. They have
jointly optimized user scheduling, transmit power allocation and
UAV trajectory such that they maximize the energy efficiency
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of the NOMA downlink communication. A UAV-assisted relay
communication system is studied in [5] where a UAV is served
as an aerial relay to maintain a communication link between a
user and a remote destination. The transmission power and the
UAV’s trajectory are jointly optimized such that the average out-
age probability is minimized.

Recently, the rapid development of smart devices has led
to the exponential growth in computationally rigorous and
low latency service requirements, such as remote surgery,
tactile internet, augmented and virtual reality, pedestrian re-
identification, mobile crowd-sensing etc. [6, 7, 9, 10]. The afore-
mentioned applications are restricted by resource-constrained
edge devices with lower computing capability and limited energy
supply. Thus, Offloading computation tasks of such devices
to a centralized server can conceivably reduce the computing
delay and energy dissipation of edge devices [7, 9]. There are
several challenges involved in enabling MEC systems such as
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privacy, prediction [11], time complexity in decision-making
[12], burst load evacuation and scheduling [13], virtual and phys-
ical resource allocations [14] etc. These problems are studied in
the current literature. However, it is possible that a centralized
ground server or cloud network may result in network conges-
tion or could experience malfunction [7, 8]. In such an event,
UAVs can be deployed as an MEC server to assist the central
server or temporarily to do the computation for time crucial
tasks until the recovery [7, 9]. In conclusion, the main appli-
cation scenarios of UAV-assisted multi-access edge computing
(MEC) networks can be categorized as improving user expe-
riences in hot-spot areas, offer stable wireless access and edge
computing services for edge devices and enabling computing
capability in remote areas [8].

There are several benefits in UAV-assisted MEC networks
compared to traditional ground MEC networks. It can cover a
larger region thanks to mobility and the ability to create strong
LoS propagation. Additionally, low deployment cost makes it
feasible to enable MEC services in rural areas. Moreover, less
infrastructure requirement makes it suitable for on-demand
deployment. However, all these benefits come with ample chal-
lenges to overcome, such as intelligent planning for deployment
and trajectory, efficient power allocation considering the limited
power source and self-organizing network capability to enable
on-demand deployment [1, 3].

To overcome these challenges, considerable research efforts
have been dedicated [9, 16–21]. In [9], a game theoretic based
hierarchical system is proposed to improve the quality of data
offloading. Stackelberg game-based model is utilized to corre-
late the relationship between the UAV and the ground users
with simultaneous data gathering through a coalition formation
game. Based on the above models, the position of the UAV and
the formation of the ground nodes are optimized to increase
the reward. In [16], a collaborative computation offloading
design is proposed to maximize the long-term utility of the
MEC enabled Internet of Things (IoT) network while contem-
plating interference reduction. The long-term utility is maxi-
mized by optimizing offloading decisions and resource man-
agement. In [17], a game-theoretic approach is proposed for
effective computing resource allocation among MEC servers
and ground users in mobile edge cloud computing networks.
Although the MEC enabled system provides the platform for
efficient computing, there is always a security concern in the
offloading of the task. Thus a physical layer security-enabled
system is proposed in [18]. In there, a joint optimization
approach is proposed to optimize users’ transmission power,
UAV’s position, offloading ratio, UAV computing power and the
user association such that it maximizes the minimum secrecy
capacity of the user constrained to total power and minimum
offloading requirement.

By considering the limited power available in the edge
devices, a wireless powered edge computing system is pro-
posed in [19] where sum computation rate maximization is
investigated for different computational offloading modes. In
the binary offloading mode, it simply takes a binary decision
whether to offload the task or not by comparing the best
offloading computation and the local computation. In partial

offloading mode, sum computation rate is maximized by opti-
mizing processing capacity, user offloading time and the trans-
mit power of the users constrained to energy harvesting causal-
ity and UAV’s speed. Another challenge that arises in congested
MEC systems is the efficient spectrum utilization as spectrum
requirement experiences exponential growth and it is not always
feasible to extend the spectrum resources. Therefore, to relieve
the spectrum demand in MEC systems, cognitive radio (CR)
enabled UAV MEC system is proposed in [15]. Here, the energy
efficiency maximization problem is studied by jointly optimiz-
ing the sensing time, offloading power and the association.
To include the subjectivity of the users’ in the data offload-
ing decision-making, user risk awareness is incorporated in [20]
for the decision-making strategy. It is modelled based on the
principles of prospect theory. The offloading decision is opti-
mized such that it maximizes users’ overall expected prospect-
theoretic utility. However, they have not considered the intel-
ligent power utilization of the available power at the users for
computing and data offloading such that it will help to reduce
the overall latency and power consumption which will indirectly
increase the utility. In [21], the most suitable MEC server iden-
tification by the end-user and the optimal way of setting prices
by the MEC servers are studied.

There are some drawbacks in the current literature which
fails to include some important characteristics of UAV-assisted
MEC networks. One of the major advantages of UAVs in com-
munication is that it helps to improve the channel quality by
increasing the possibility of LoS propagation. However, it will
not always guarantee pure LoS propagation where the contribu-
tion of LoS depends on the elevation angle in between the UAV
and the user. In current literature, most of the research attempts
have assumed pure LoS propagation regardless of the eleva-
tion angle [9], [16–20]. To reflect the actual behaviour, we have
considered the probabilistic LoS model proposed by the Inter-
national Telecommunication Union (ITU) which calculates the
contribution of the LoS component based on the environmen-
tal parameters and the elevation angle. Another key advantage of
UAV is the mobility which allows the UAV to adjust its position
such that the system performance can be maximized. Therefore,
positioning of the UAV plays a major role in UAV-assisted MEC
systems which is not considered as a primary fact in the existing
literature [9, 16–18, 20]. However, we have considered position
optimization such that the expected performance is maximized.
Furthermore, the end-user devices are limited in power which
requires intelligent power utilization where most of the works
assume fixed power allocation for computing and data offload-
ing [9, 16–20]. In contrast, we have optimized the power alloca-
tion for computing and data offloading such that it will reduce
the overall latency.

Notably, latency is an essential and crucial requirement in
MEC systems considering raising interest in time-critical appli-
cations. Most of the existing works fail to characterize the
latency in the MEC system [9, 16, 17]. There are only a few
works that have considered processing latency in UAV-assisted
MEC systems [18–20]. Surprisingly, no work can be found in
the literature which focuses on maximizing the latency fair-
ness among the users. Therefore, in this paper, we propose an
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FIGURE 1 System model for UAV-assisted multi-access edge computing
systems; ground server unable to assist the offloaded computing; UAVs are
deployed as edge computing node to assist the computation; non-offloading
users perform their computation locally

iterative combined optimization approach to maximize latency
fairness among the users. To the best of the authors’ knowl-
edge, this is the first work that proposed an approach to
increase the latency fairness among the users in UAV-assisted
MEC networks. The main contributions of the paper are as
follows:

∙ 3D placement of MEC UAV is considered to maximize the
offloading rate fairness. A guided pattern search is proposed
for finding the 2D position and LoS map is utilized for find-
ing the optimal altitude which guarantees a quicker conver-
gence.

∙ Identified a simple approach of optimizing the offloading
ratio of the users by considering the problem as minimizing
the point-wise maximum of two convex functions where one
is not strictly upper bound or lower bound of the other.

∙ Total available power of the user is jointly allocated for com-
putation and transmission and it is optimized such that it
increases the latency fairness.

2 SYSTEM MODEL

Figure 1 illustrates the proposed system model. There are
ground users (GUs) with limited computing capabilities which
are required to process a set of tasks. The non-offloading users
are the ones whose processing power is adequate to compute
their respective tasks while adhering to the QoS requirements.
However, due to the limited computing capacity, some users are
unable to completely compute their tasks locally. Those users
should offload their task to a ground server (GS) to meet the
latency requirements who are labelled as offloading users. As
our analysis is focused on offloading users, from here onwards
the GUs only refer to the offloading users. There are M GUs
who are randomly located in the area of interest. The set of GU
is defined as . Due to a natural disaster or any other tech-
nical malfunction, GS could not process the offloaded tasks.
Therefore, a UAV can be deployed as an MEC server to pro-
cess the offloading tasks until the rescue or reconstruction of

GS. Simultaneously, the UAV-assisted MEC system will be con-
trolled by the next nearby GS. As spatial flexibility is an essential
requirement in these types of critical applications, rotary-wing
UAV is considered for deployment. The GUs are equipped with
a single antenna. Considering the multiple access technology,
non-orthogonal multiple access (NOMA) is a promising solu-
tion that will help to increase the spectral efficiency by allowing
multiple users to communicate through a single frequency-time
resource block. However, it requires a complex transmitter and
receiver processing to cancel out the intra-channel interference.
Moreover, each user requires channel state information (CSI) of
every other user which will create a huge overhead. In light of
these facts, employing NOMA is not suitable for the proposed
system as it focuses on a disaster-resilient application. There-
fore, we assume all the ground users can offload their tasks
to the MEC UAV concurrently through the dedicated channel.
Thus the co-channel interference can be neglected.

2.1 Communication model

The GU’s location is considered as fixed within the frame of
analysis and the coordinates of mth GU is denoted as sm , where
sm = [xm, ym], ∀m ∈ . UAVs’ location is denoted as su , where
su = [sh

u,Hu]. sh
u = [xu, yu] represents the 2D ground coordi-

nates of the UAV and Hu denotes the altitude of the UAV. The
location of the nearby GS is denoted as sg, where sg = [xg, yg].
Considering the control channel between UAV and the GS, it
will be dominated by LoS due to the altitude of the UAV and the
height of the GS tower. Therefore, the channel gain between the
UAV and the controlling GS (hU-GS) is modeled as

hU-GS =
G1

H 2
u + ||su − sg||2 , (1)

where G1 = gt gr (
𝜆

4𝜋d0
)2 is the channel gain at the reference dis-

tance (d0 = 1 m). gt and gr are the antenna gain of the transmit-
ter and the receiver, respectively, and 𝜆 denotes the wavelength.
The data rate of the control link is given as

RU−GS = Bc log2

(
1 +

pGS
t

hU-GS

N0

)
, (2)

where Bc is the bandwidth allocated for the control channel, pGS
t

is the transmit power of the GS and N0 is the noise power.
However, the channel from the GU to the UAV will be

referred to as the ground-to-air (GTA) channel that could
experience LoS propagation or NLoS propagation based on the
altitude of the UAV and the environmental parameters. To pre-
cisely identify whether the GTA channel will experience LoS or
NLoS propagation, we should have accurate and precise infor-
mation related to the geometrical structure of that particular
environment. As we do not have access to such information, we
have to think of an effective alternative method to characterize
the LoS and the NLoS effect propagation of the channel. There
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are no widely accepted matured channel models to characterize
the GTA channel. However, if we analyse the current literature,
mostly there are four kinds of models that have been used to
characterize the GTA channels. First, the geometrical channel
models which take into account the exact geometrical structure
of the environment and the reflective nature of the wavefront to
characterize the channel [24–26]. Second, the channel models
that are based on empirical measurements [27–29]. Third, the
free-space path loss model with the assumption of pure LoS
propagation [16–19, 30–32]. Finally, the channel model based
on the probabilistic information of the LoS propagation [7, 8,
23, 33–35].

In our work, the geometrical channel model cannot be used
as we do not have the access to the exact geometrical struc-
ture of the environment. It is also not possible to model it using
empirical models as we do not have access to an empirical mea-
surement database. Modelling the channel using free-space path
loss model will not help to study the altitude diversity of the
system which is one of the advantages of UAV-assisted systems.
Also, in there, the optimal altitude of the UAV always would be
the minimal possible altitude as the performance of the chan-
nel only depends on the distance. However, this is not the case
in the practical scenario where one would be able to gain more
advantage by enabling the LoS by adjusting the position and the
altitude of the UAV. Moreover, the effect of multipath propaga-
tion also varies with the elevation angle of the channel. Although
the channel model based on the probabilistic information is
not practically accurate, it helps to capture the above-discussed
characteristics. Thus, in the proposed system, we focused on a
probabilistic model proposed by the ITU [22]. It is notewor-
thy that our proposed approach also can be accurately applied
if we have the access to the exact LoS map of the environment.
For tractability, we are adopting the approximated version pro-
posed in [23] where the probability of having LoS propagation
between the UAV and the mth GU can be given as

P (LOS , 𝜃m ) =
1

1 + a exp(−b[𝜃m − a])
, (3)

where 𝜃m is the elevation angle between the UAV and the mth

GU, a and b are the parameters that depend on the propagation
environment. Considering the LoS and NLoS propagation,
GTA channel gain from the mth GU to the UAV is modeled as
[16]

hk
U-GU(m) =

Gk√
H 2

u + ||su − sm||2𝛼k
, (4)

where k ∈ {L,N } such that L and N denote the LoS and NLoS
propagation, respectively, Gk is the combination of average mul-
tipath propagation gain and antenna gains. 𝛼k is the large-scale
path loss exponent, where 𝛼L < 𝛼N . The effective channel gain
of the off-loading link between the mth GU and the MEC UAV
is given as

h(m) = P (LOS , 𝜃m )hL
U-GU(m) + P (NLOS , 𝜃m )hN

U-GU(m) , (5)

and the rate of the off-loading link between the mth GU and the
MEC UAV is given as

RU−GU (m) = Bo log2

(
1 +

pt
mh(m)
N0

)
, (6)

where Bo is the channel bandwidth allocated for the off-loading
link and pt

m is the transmit power of the mth GU.

2.2 Computing model

We consider that the computation task can be partially executed
both locally and externally at the same time. The power required
for local computing for the mth GU (pc

m) is given as [18]

pc
m = 𝜓

(
fm
)3
, (7)

where fm is the computing capacity of the mth GU.𝜓 is the effec-
tive capacitance depending on the chip architecture. In local
computing, we assume that we have the flexibility to adjust the
computing capacity according to the computing power. There-
fore, the total power available at the GU can be flexibly divided
between offloading transmission and local computing. There-
fore, the total power consumption at the mth GU (Pm) is given
as

Pm = pt
m + pc

m. (8)

Time taken to complete one bit of computing locally at the
mth GU is given as,

T c
m =

(1 − 𝜂m )𝜌
fm

, (9)

where 𝜂m is the task offloading ratio of the mth GU, 𝜌 is the
average number of CPU cycles required to compute one bit of
the task.

The latency related to the offloaded computation is the com-
bination of data transmission latency, processing latency and
downloading latency. However, the downloading latency can be
neglected compared to others as the data sent back to the GU
is much smaller compared to the data offloaded. Therefore, the
downloading latency is neglected. The time taken to offload one
bit of task from the mth GU (T t

o (m)) is given by

T t
o (m) =

𝜂m

RU−GU (m)
. (10)

Time taken to complete one bit of computing offloaded by
the mth GU at the MEC UAV is given as,

T c
o (m) =

(1 − 𝜂m )𝜌

f UAV
m

, (11)
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where f m
UAV

is the computing capacity allocated to the mth

GU. The total time to complete the processing of one bit of
offloaded task To is

To(m) = T t
o (m) + T c

o (m). (12)

As we are considering partial computation offloading mode,
effective latency is bottle-necked by higher latency among T c

m

and To(m). Therefore, the effective latency T e
m is given by,

T e
m = max

{
T c

m , To(m)
}
. (13)

2.3 Problem formulation

In this work, we aim to maximize the latency fairness among
the offloading GUs. Therefore, the objective is to minimize
the maximum latency per bit experienced by the GUs. Here,
we seek to optimize four essential variables which influence
the latency. Those are UAVs 2D location sh

u and the altitude
Hu , offloading ratio 𝜂 ≜ {𝜂m, ∀m ∈ }, GU’s transmit power
GU ≜ {pm

t , ∀m ∈ } and GU’s computing capacity GU ≜
{ fm, ∀m ∈ }. The optimization problem is formulated as,

minimize
su ,𝜂, ,GU

Max
m∈

Tm
e (14a)

subject to pmt + pmc= Pm, ∀m ∈  (14b)

RU−GS≥ Rth (14c)

Hu≥ hmin (14d)

Hu≤ hmax (14e)

𝜂m∈ [0, 1], ∀m ∈ , (14f)

where Rth is the minimum rate requirement of the control
link, hmin and hmax minimum and maximum altitude allowed,
respectively, to operate the UAV. (14b) is the total power
constraint of the GU; (14c) is the rate constraint imposed
in the control link that should be greater than the given
threshold; (14f) is the offloading ratio constraint. Consider-
ing the control link between the UAV and the GS, it would
have greater strength compared to GTA link as it experi-
ences LoS propagation. Moreover, it will not demand higher
data rate compared to the offloading links. Also, the required
rate can be achieved by adjusting pGS

t as GS does not have
crucial power constraints. Therefore, we are not considering
the (14c) in the proposed optimization problem assuming it
can be achieved by adjusting the transmit power of the GS.
However, this constraint would be essential in a multi UAV
deployment problem.

3 PROPOSED ALGORITHM FOR
FAIRNESS MAXIMISATION IN UAV
ASSISTED MEC SYSTEMS

In this section, we explain our proposed algorithm to mini-
mize the maximum latency among the GUs which will increase
the latency fairness between the GUs. The above optimiza-
tion problem is non-convex since there exist non-linear cou-
plings among the variables su, 𝜂,

GU ,GU and the objective
function is non-convex with respect to the variables. In order
to solve it, the problem is decoupled into three subproblems.
Namely, UAV positioning, offloading ratio and power alloca-
tion. UAV positioning subproblem is solved using guided pat-
tern search optimization technique. Subsequently, the offload-
ing ratio is optimized through minimizing point-wise maximum
of two convex functions. Finally, power allocation for computa-
tion and transmission is optimized through bisection optimiza-
tion.

3.1 UAV positioning subproblem

Initially, the UAV positioning problem is given priority as it is
independent of other subproblems. Moreover, it is related to
the data offloading rate which is a bottleneck in a MEC system.
Therefore, it is essential to maximize the minimum offloading
rate among the GUs. Thus the utility of this subproblem is the
minimum offloading rate among the GUs where it should be
maximized. This problem is approached in two phases. Initially,
the 2D position is adjusted through a guided pattern search opti-
mization technique. Next, the altitude of the UAV is adjusted by
considering the LoS propagation. The altitude adjusting phase
would be highly effective if we have the exact LoS map of that
environment. As we do not have the access to such databases,
we are adapting the probabilistic LoS map of the environment
suggested by ITU. Notably, our approach is also feasible with
the exact LoS map of the environment. For a given GU and
GU , the utility of the subproblem can be replaced as channel
gain of the respective link instead of offloading rate. Therefore
the objective function for this subproblem S0 at UAV’s position
su is given by

S0(su ) = min
m∈

h(m), (15)

where

m0 = arg min
m∈

h(m). (16)

To obtain the 2D location, we propose a guided pattern
search (PS) technique. Although PS is simple and easy to imple-
ment, the initial location should be wisely selected to achieve
lower search time. Therefore, UAV’s initial 2D position is set
as the centroid of GUs coordinates. The GU which has the
minimum channel gain m0 will be referred to as minimum gain
user (MGU). From the centroid position, UAV will be moved
towards MGU as long as it gives an ascending behaviour for
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S0. After that, PS begins by finding a new MGU which gives a
higher S0 around the current position with Δ steps. If it could
not find a new one around the current location, then it is the
optimal 2D position for the given altitude. If it finds a new
MGU which gives a higher S0, then the UAV will be moved
towards that GU as long as it gives an ascending behaviour for
S0. This process will repeat until it could not find a new MGU
which gives a higher S0 than the current MGU. The convergence
position is the optimal position in terms of maximizing S0 for a
given altitude.

Subsequently, altitude will be adjusted by Δ steps towards the
ascending direction of the objective function. Update of the alti-
tude can be given as

H N
u = H C

u + sign

[
𝜕h(m0)

𝜕𝜃m0

]
.Δ , (17)

where H N
u and H C

u are next and current altitude of the UAV,
respectively. sign[⋅] will return the sign of the argument. The
altitude will be updated as long as it gives ascending behaviour
in S0. As h(m) is quasi-concave with respect to 𝜃m , convergence
altitude is the optimal altitude for the given 2D position. Then
it will be followed by guided pattern search in the horizontal
direction to find a new MGU. If it finds a new MGU then it will
again follow altitude update as per (17). This process will con-
tinue until it could not find a new MGU which gives a higher
S0 than the current MGU. The whole process will run iteratively
with the reduction of step size until the convergence. The con-
vergence position will give the maximum S0 possible. Thus it is
the optimal 3D position of the UAV with the expected precision.
The number of iteration for convergence 𝛾 will be assigned as
per the precision requirement. These ideas are formally stated
in Algorithm 1.

3.2 Offloading ratio subproblem

For any given UAV position, transmit power, and GUs comput-
ing capacity, the offloading ratio optimization is to minimize the
point-wise maximum of two convex functions. This optimiza-
tion can be cascaded into M parallel optimization each focusing
on minimizing the maximum latency of each GU. The optimiza-
tion subproblem is formulated as

minimize
𝜂m

max
{

T c
m , To(m)

}
, ∀m ∈  (18a)

subject to 𝜂m∈ [0, 1], ∀m ∈ , (18b)

where T c
m and To(m) are convex with respect to 𝜂m where other

parameters are fixed. Therefore, our objective is to minimize
the point-wise maximum of two convex functions. The point-
wise maximum of two convex functions itself is also a convex
function. The minimum of such convex function comes at a
point where both the functions are equal given one is not strictly
the upper bound of the other. If there exist multiple such points,
the point which gives the minimum value would be the optimal

ALGORITHM 1 UAV Positioning - Guided Pattern Search

Data: a, b,Gk, αk, sm : k ∈ [N,L], m ∈ M
Result: su

1 begin
2 Hu ∼ U(hmin, hmax)
3 UAV’s initial 2D position is set as the centroid of GUs coordinate,

4 i = 1 ⇐ Iteration index
5 Initialize Δ value, Set δS0 to a postive value
6 γ ⇐ Number of iteration defined for convergence
7 while i < γ do
8 Block-A
9 m0 = arg minm∈M h(m)

10 while δS0 > 0 do

11 shu = shu +
shu−sm0

‖shu−sm0‖
Δ

12 Calculate δS0

13 δS0 ⇐ Increment in the objective function (15).

14 Block-B
15 S1

0 = S0(xu + Δ, yu, Hu), S2
0 = S0(xu − Δ, yu, Hu),

S3
0 = S0(xu, yu + Δ, Hu), S4

0 = S0(xu, yu − Δ, Hu)

S0 = max
�
S1

0 , S
2
0 , S

3
0 , S

4
0

�

16 Calculate δS0

17 if δS0 > 0 then
18 Go to Block-A

19 while δS0 > 0 do
20 Altitude of the UAV will be updated as per

(17)
21 Calculate δS0

22 Run Block-B
23 if δS0 > 0 then
24 Go to Block-A

25 Reduce Δ

26 i = i + 1

point. Thus for this subproblem, The optimal offloading ratio
of the mth GU 𝜂∗m is given as

𝜂∗m =
𝜌RU−GU (m) f UAV

m

fm
[

f UAV
m + RU−GU (m)

]
+ 𝜌RU−GU (m) f UAV

m

. (19)

3.3 Power allocation subproblem

In this subproblem, our objective is to allocate the available
power of GUs for offloading transmission and local comput-
ing such that it minimizes the effective processing latency per
bit. For any given su, 𝜂 power allocation subproblem can be for-
mulated as,

minimize
GU ,GU

max
{

T c
m , To(m)

}
, ∀m ∈  (20a)

subject to pt
m + pc

m= Pm, ∀m ∈ . (20b)

Substituting (19) to T c
m and To(m) will give

T c
m = To(m). (21)
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Thus the point-wise maximum of (20a) can be removed an
replaced with T c

m or To(m).

minimize
GU ,GU

T c
m , ∀m ∈  (22a)

subject to pt
m + pc

m= Pm, ∀m ∈ . (22b)

Given the other parameters, both the functions T c
m and To(m)

are convex with respect to pc
m and pt

m , respectively, within the
constraint set (22b). Therefore, power allocation subproblem is
a convex optimization problem. Thus, it is solved using bisec-
tion method.

In UAV positioning algorithm, each user will access one
time within a single iteration. Therefore, the time complexity of
each iteration of the UAV positioning algorithm is (M ) where
the time required for positioning will linearly increase with the
number of users. The time complexity involved in the other two
subproblems is (1) where it does not depend on the number
of users. If all the algorithms are implemented in a centralized
manner, the overall time complexity of the algorithm is (M ).
Implementing a centralized server will add a huge overhead to
transfer all the relevant information to the centralized server.
Therefore, the UAV positioning algorithm will be implemented
in the UAV and the other two subproblems will be solved in
the GU device. Therefore, the UAV processing will have the
time complexity of (M ) and the GU device processing will
have the time complexity of (1). As the UAV has higher com-
puting power than the GU device, it is acceptable to distribute
in this manner. At the same time, this setup will immensely
reduce the overhead compared to the centralized system. The
only information to be shared is the location of the GUs and
the UAV.

4 SIMULATION RESULTS

In this section, the numerical simulation results are presented
to validate our analysis and indicate the effectiveness of our
approach. All the experiments are implemented in MATLAB
R2017a on a desktop computer with an Intel Core-i7-8700 pro-
cessor running at 3.19 GHz using 16 GB of RAM, running Win-
dows version 10. We consider that M = 8 GUs are randomly
and uniformly distributed inside a 300 m × 300 m square area
(). hmin = 80 m and hmax = 500 m are the minimum and max-
imum legally allowed altitude to operate the UAV. The average
gain values are set as GL = 3.5, GN = 1.5 as the average gain due
to multipath is higher for LoS compared to NLoS, the pathloss
coefficients are set to 𝛼L = 2.5, 𝛼N = 3 [26] as the NLoS prop-
agation experience quicker loss compared to LoS propagation
and the noise power is set to N0 = −110 dBm. Environmental
and other related parameters used in the simulation setting are
summarized in Table 1.

Figure 2 illustrates the movement of the MEC UAV towards
the optimal 3D position which maximizes the minimum
offloading rate among the GUs. Offloading rate of the link
mainly depends on two parameters. One is the euclidean dis-

TABLE 1 Simulation settings

M 8 GL 3.5

hmin 80 m GN 1.5

hmax 500 m 𝛼N 2.5

Bo 1 MHz 𝛼L 3.0

𝜓 10−27 N0 −110 dBm

Pm 1 W 𝜌 100

f UAV
m 1 GHz  300 × 300 m2

4.8800 (Suburban) 0.4290 (Suburban)

a 9.6117 (Urban) b 0.1581 (Urban)

12.0810 (Dense urban) 0.1140 (Dense urban)

24.5960 (High-rise urban) 0.1248 (High-rise urban)
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FIGURE 2 Illustration of the movement of the MEC UAV in the 3D
plane for urban environment

tance of the link which accounts for the pathloss and the ele-
vation angle of the link which accounts for the probability of
LoS. It is observable that the UAV converges to the position
which is approximately equidistant from all the GUs. At the
same time, the hovering altitude of the UAV is adjusted such
that the rate fairness is maintained by manipulating the strength
of LoS. The red colour points denote the movement related
to the guided pattern search technique in the 2D plane which
moves the UAV approximately equidistant from all the GUs and
the green colour point indicates the altitude adjustment that is
done through (17) which controls the elevation angle to further
decrease the objective function (i.e. (15)) to move towards the
optimal solution of UAV positioning subproblem.

The convergence speed of our proposed approach Algo-
rithm 1 is compared with the PS approach proposed in [2].
It is illustrated in Figure 3 where it shows the convergence of
Algorithm 1 (guided PS) and typical PS algorithm [2] for urban
and dense urban environments. Since the UAV positioning algo-
rithm is implemented in the UAV, we assume that the computing
power of the UAV is fully utilized for the execution of the algo-
rithm. With that assumption, the execution time is calculated.
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FIGURE 3 Max–min offloading rate versus execution time, illustrating
the convergence of guided pattern search (proposed approach) and typical
pattern search algorithm

The graph shows that the proposed algorithm quickly converges
compared to the typical PS algorithm. This is because in our
problem the decent direction of our objective function is pre-
dictable with the nature of our objective. The decent direction
can be predictable with the current position of the user which
has the minimum offloading rate. Guided PS based Algorithm 1
utilizes the predicted knowledge to make a quicker convergence.
In contrast, typical PS does not utilize the knowledge of decent
direction which results in a slower convergence. It is observable
that guided PS based Algorithm 1 gives 3.8 fold and 3.6 fold
reduction in the convergence time compared to typical PS for
urban and dense urban environments, respectively. As we dis-
cussed earlier, the time complexity of each iteration of guided
PS algorithm is (M ). Similarly, the time complexity involved in
each iteration of a typical PS algorithm is also (M ). However,
guided PS takes less number of iteration compared to typical PS.
Thus, guided PS gives quicker convergence in time compared to
the typical PS. Furthermore, we can observe that a dense urban
environment gives a lower max–min offloading rate compared
to the urban environment. This is because it is difficult to make
LoS connection in the dense environment; thus it is needed to
climb a higher altitude to enable the LoS which will increase
the pathloss of the links. Therefore, as it is discussed earlier, the
algorithm balances the trade-off between the euclidean distance
and the probability of LoS to achieve the optimal solution for
the UAV positioning subproblem.

The number of required CPU cycles 1 is calculated as per the
execution time obtained through our simulation servers. As the
UAV position algorithm is implemented in UAV, it fully utilizes

1 Number of required CPU cycles can slightly vary with the architecture of the processors

TABLE 2 Illustrates the execution time of each subproblem. UAV
positioning, offloading ratio and power allocation subproblems are referred to
as subproblems 1, 2 and 3, respectively. M = 8

Subproblem 1 Subproblem 2 Subproblem 3

Number of CPU cycles 1.3 × 106 0.001 × 106 0.009 × 106

Processing capacity (GHz) 8 1 1

Execution time (μs) 16.25 1 9
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FIGURE 4 Execution time of UAV positioning algorithm versus number
of users. For guided pattern search (proposed approach) and typical pattern
search algorithm

its processing capacity of 8 GHz to execute it. Offloading ratio
and power allocation subproblems are solved in GU device uti-
lizing its full capacity of 1 MHz. As per that, the respective exe-
cution times are calculated. Table 2 shows the execution time of
each subproblem. The UAV will take 16.25 μs to determine the
position. Similarly, the GU device will take 10 μs to decide the
offloading ratio and the power allocation. Both the durations
can be neglected compared to the processing latency which is in
the order of milliseconds.

The offloading ratio and power allocation subproblem’s exe-
cution time does not depend on the number of users. However,
the UAV positioning sub problem’s execution time depends on
the number of users. Figure 4 illustrates the behaviour of execu-
tion time of the UAV positioning algorithm along with the num-
ber of users. The graph shows that given the threshold of real-
time execution, our proposed algorithm is able to serve 4 times
more users compared to the baseline approach. For example, if
we set the threshold for the real-time execution as 100 μs, our
approach can handle up to 60 users where the baseline approach
is only able to handle 14 users in real time.

UAVs are energy-constrained device as it is powered by lim-
ited battery power. Therefore, energy consumption is a cru-
cial factor when it comes to UAV related applications. In MEC
UAV, energy consumption happens due to three operations,
namely mechanical movement, computational processing and
data transmission. Considering the data transmission from the
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FIGURE 5 Energy consumption for mechanical movement in various
environment. Our proposed approach approach is compared with the
approach in [2]. We assumed energy required for per meter movement with the
given constant speed as 2 J/m

UAV, it will only send back the processed information to the
user which is negligible compared to the size of the task. Thus
the energy consumption for data transmission can be neglected.
As these UAVs are dedicated to edge computing, we assume
there is a dedicated power to perform the computational task
which can provide the guaranteed computational capacity for a
limited time period. However, compared with the overall energy
consumption, the energy utilization for mechanical movement
plays the dominant role. Thus the other two facts considered
are negligible. Therefore, the energy consumption for mechani-
cal movement is compared between our proposed approach and
the approach proposed in [2]. It is illustrated in Figure 5.

Figure 5 illustrates that our proposed approach consumes
less energy compared to the scheme proposed in [2]. This is
because our approach always tends to follow the shortest path
by moving towards the minimum gain user. In contrast to that,
the approach proposed in [2] tend to move to the best utility
around it regardless of the position of the minimum gain user.
Therefore, most of the time it results in a longer path.

Figure 6 plots the min–max latency for different sizes of
tasks of different approaches. Our approach is compared with
the fixed offloading ratio and fixed computing capacity based
solutions. In a fixed offloading ratio based solution, we fix the
offloading ratio to the average normalized value where the 3D
position of the UAV, computing and transmit power of the GU
will be optimized as per the proposed approach. Similarly, for
a fixed computing capacity based solution, computing capac-
ity is fixed and other variables are optimized. This comparison
is to illustrate the importance of iterative combined optimiza-
tion rather than going for an averaged solution. As it illustrates,
our proposed iterative combined optimization approach out-
performs fixed offloading ratio and fixed computing capacity
based solutions by at least 84% and 113%, respectively. Also,
it provides an insight on the sensitiveness of the performance
with different variables. As we can see that fixing the comput-
ing capacity has done more damage than fixing the offloading
ratio, the performance is more sensitive for computing capacity
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FIGURE 7 Deviation of maximum latency from the average threshold
value in various environments. The fairness gain achieved through our
proposed approach is indicated

optimization compared to offloading ratio optimization. More-
over, the performance of our approach increases with the size
of the task. Therefore, the proposed approach would be more
effective in applications which have massive tasks to compute.

Figure 7 illustrates the deviation of maximum latency from
the average threshold latency in the proposed approach and
fixed offloading ratio based approach for all general propaga-
tion environments. Fixed offloading ratio based approach is
chosen for the fairness comparison as it performs better than
fixed computing capacity based solution. Also, it illustrates the
fairness gain achieved through our proposed approach com-
pared to the fixed offloading ratio-based approach. As it out-
performs the fixed offloading variable based approach, it will
outperform the fixed computing capacity based solutions with
a larger margin as Figure 6 illustrates. Also, it is observable that
our proposed approach keeps the latency deviation almost con-
stant regardless of the type of environment. This is because it
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adopts the offloading ratios and power allocation to maintain
fairness among all the GUs.

5 CONCLUSION

In this work, we have studied the latency performance of UAV
enabled MEC systems with randomly distributed ground users
and an MEC UAV. Considering the vital role of latency fair-
ness in such systems, we proposed a combined optimization
approach to minimize the maximum latency among the GUs by
performing adoptive adjustment in UAVs’ 3D position, offload-
ing ratio, GUs’ transmit and computing power. We have pro-
posed guided pattern search optimization approach for 3D
positioning of the UAV; an approach to minimize the point-wise
maximum of two convex functions is utilized to find the opti-
mal offloading ratio and the bisection method is used to find the
optimal transmit and computation power allocation. Numeri-
cal results illustrate that our proposed approach outperforms
other baseline approaches in convergence, minimizing the max-
imum latency and maximizing and maintaining fairness among
the GUs.
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NOMENCLATURE: Indices and parameters

 Set of ground users (GU) with the offloading
requirement

sm 2D location coordinates of mth GU
xm X coordinate of mth GU
ym Y coordinate of mth GU
su 3D location coordinates of the MEC UAV
xu X coordinate of the MEC UAV
yu Y coordinate of the MEC UAV
sg 2D location coordinates of the ground station

(GS)
hU-GS channel gain between the UAV and the GS

d0 Reference distance
gt & gr Transmitter and receiver antenna gain, respec-

tively
pGS

t
Transmit power of the ground station

RU−GS Data rate of the control link
Bc Bandwidth allocated for the control link

N0 Noise variance
P (LOS , 𝜃m ) Probability of line of sight for the mth GU

𝜃m Elevation angle between the UAV and the mth GU
a & b Environment dependant S-curve parameters

hk
U-GU(m) Channel gain from the mth GU to the UAV

𝛼k Path loss coefficient
Gk Average multipath propagation gain and antenna

gain
h(m) Effective channel gain of the offloading link

Bo Bandwidth allocated for the offloading link
pt

m Transmit power of the mth GU
pc

m Power required for computation at the mth GU
fm Computing capacity of the mth GU
𝜓 Effective capacitance of the processing chip

Pm Maximum power constraint of the mth GU
T c

m Time taken to complete one bit of computing
locally at the mth GU

𝜂m Task offloading ratio of the mth GU
T t

o (m) Time taken to offload one bit of task from the
mth GU

T c
o (m) Time taken to complete one bit of computing

offloaded by the mth GU
To Total time to complete the processing of one bit

of offloaded task
T e

m Effective latency for one bit of computation task
for mth GU

Rth Minimum QoS rate threshold
hmin Minimum altitude allowed to hover the UAV
hmax Maximum altitude allowed to hover the UAV
𝜌 Average number of CPU cycles requires to com-

pute one bit of the task
f m
UAV

Computing capacity allocated to the mth GU by
the UAV

Decision variables

sh
u 2D ground location coordinates of

the MEC UAV
Hu Hovering altitude of the MEC UAV

𝜂 ≜ {𝜂m, ∀m ∈ } Offloading ratio of the GUs
GU ≜ {pm

t , ∀m ∈ } Transmit power of the GUs
GU ≜ { fm, ∀m ∈ } Computing capacity of the GUs.
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