
A Robust and Efficient Autonomous Exploration
Methodology of Unknown Environments for Multi-Robot

Systems

by

Lillian Goodwin

A thesis submitted to the School of Graduate and Postdoctoral Studies in partial
fulfillment of the requirements for the degree of

Master of Applied Science in Mechanical Engineering

Faculty of Engineering and Applied Science
University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada
May, 2022

©Lillian Goodwin, 2022

THESIS EXAMINATION INFORMATION

Submitted by: Lillian Goodwin

Master of Applied Science in Mechanical Engineering

Thesis Title: A Robust and Efficient Autonomous Exploration Methodology of Un-

known Environments for Multi-Robot Systems

An oral defence of this thesis took place on May 5th, 2022 in front of the following

examining committee:

Examining Committee:

Chair of Examining Committee Dr. Martin Agelin-Chaab

Research Supervisor Dr. Scott Nokleby

Examining Committee Member Dr. Meaghan Charest-Finn

Thesis Examiner Dr. Xianke Lin

The above committee determined that the thesis is acceptable in form and content

and that a satisfactory knowledge of the field covered by the thesis was demonstrated

by the candidate during an oral examination. A signed copy of the Certificate of

Approval is available from the School of Graduate and Postdoctoral Studies.

ii

Abstract

Multi-robot systems can provide effective solutions for exploring and inspecting en-

vironments where it is unpractical or unsafe for humans, however, adequate coordi-

nation of the multi-robot system is a challenging initiative. A robust and efficient

methodology for exploration of unknown environments is presented using a k-means

method to improve traditional task allocation schemes. The k-means method pro-

posed is an efficient technique due to the algorithm’s quick convergence time and its

ability to segment a previously unknown map in a logical manner. In this method,

a global executive receives frontiers from local robots, filters them, clusters them us-

ing the k-means method, and then reassigns them to the agents. A framework is

developed in Robot Operating System (ROS) to test the effectiveness of the k-means

method. The method is tested over a series of simulations and real-world tests, where

it provided significant reductions in exploration time and distance travelled compared

to other methods.

Keywords: Multi-Robot Systems (MRS), frontier exploration, K-means, Robot Op-

erating System, Optimization

iii

Author’s Declaration

I hereby declare that this thesis consists of original work of which I have authored.

This is a true copy of the thesis, including any required final revisions, as accepted

by my examiners.

I authorize Ontario Tech University to lend this thesis to other institutions or individ-

uals for the purpose of scholarly research. I further authorize Ontario Tech University

to reproduce this thesis by photocopying or by other means, in total or in part, at

the request of other institutions or individuals for the purpose of scholarly research.

I understand that my thesis will be made electronically available to the public.

iv

Statement of Contributions

Part of the work described in Chapters 3 and 5 has been published as:

L. Goodwin and S. Nokleby, 2021, “Multi-Robot Exploration of Unknown

Environments,” in Proceedings of the 2021 CCToMM Symposium on

Mechanisms, Machines, and Mechatronics

At the time of writing, part of the work described in Chapters 3 and 5 has been

accepted for publication as:

L. Goodwin and S. Nokleby, 2022, “A K-Means Clustering Approach to

Segmentation of Maps for Task Allocation in Multi-Robot Systems Explo-

ration of Unknown Environments,” in Proceedings of the 2022 USCToMM

Symposium on Mechanical Systems and Robotics,

v

Acknowledgements

I would like to express my deepest thanks to my supervisor Dr. Scott Nokleby for

his support, encouragement and time. Your insight and great leadership provided me

with everything I needed to flourish throughout my research.

I would also like to thank my family for their belief in me and in my abilities. I

would especially like to thank my fiancé, Matthew for your warm encouragement and

enthusiasm. Your continual support throughout my life has made all the difference

for me in my everyday and in my research.

I would also like to express my gratitude to the DND IDEaS program for the financial

support of my research.

I would also like to express my appreciation for the financial support I received from

the Ontario Graduate Scholarship (OGS) program.

vi

Table of Contents

Thesis Examination Information ii

Abstract iii

Author’s Declaration iv

Statement of Contributions v

Acknowledgements vi

Table of Contents xi

List of Tables xii

List of Figures xv

1 Introduction 1

1.1 IDEaS Project Outline and Goals . 2

1.2 Thesis Problem Statement and Goals 3

1.3 Scope . 4

1.4 Summary of Contributions . 4

1.5 Thesis Outline . 5

2 Literature Review 6

2.1 Communication Architectures . 6

2.1.1 Centralized Architecture . 7

vii

2.1.2 Distributed Architecture . 8

2.1.3 Hybrid Architecture . 9

2.2 Exploration Methods . 10

2.2.1 Frontier Exploration . 10

2.2.2 Utility-Based Methods . 11

2.2.3 Role-Based Methods . 12

2.2.4 Swarm-Based Methods . 12

2.3 Utility Model . 13

2.3.1 Cost . 14

2.3.2 Utility . 15

2.3.3 Task Assignments . 15

2.4 Map-Merging . 18

2.4.1 Online Map-Merging Using a Central Server 19

2.4.2 Online Map-Merging Using Distributed Methods 19

2.4.3 Online Map-Merging Using Hybrid Methods 20

2.4.4 Unknown Initial Positions . 21

2.5 Summary . 22

3 Methodology 24

3.1 Framework Overview . 24

3.2 Open Source Hardware . 26

3.3 Open Source Packages . 27

3.3.1 Navigation Stack . 27

3.3.2 SLAM . 29

3.3.3 Map Merging . 29

3.4 Exploration Method . 30

3.5 Exploration Assignment . 31

3.5.1 Overview of the Assigner Node 31

3.5.2 Filtering Method . 33

3.5.3 K-means Method . 35

viii

3.5.4 Assignment . 37

4 Experimental Design 38

4.1 Simulation . 38

4.1.1 Simulation Environments . 38

4.1.2 Simulation Tests . 39

4.1.2.1 Bench-Marking Tests 39

4.1.2.2 Scalability Tests . 42

4.2 Real-World . 45

4.2.1 Real-World Environments . 45

4.2.2 Real-World Tests . 47

4.2.2.1 Hallway Tests . 47

4.2.2.2 Lab Tests . 47

4.3 Summary . 48

5 Results and Discussion 49

5.1 Simulation Results . 49

5.1.1 Benchmarking Tests Results 49

5.1.1.1 Benchmarking Experiment 1 Results 50

5.1.1.2 Benchmarking Experiment 2 Results 51

5.1.1.3 Benchmarking Experiment 3 Results 53

5.1.1.4 Benchmarking Experiment 4 Results 54

5.1.1.5 Benchmarking Experiment 5 Results 56

5.1.1.6 Benchmarking Experiment 6 Results 58

5.1.2 Benchmarking Tests Discussion 59

5.1.3 Scalability Tests Results . 65

5.1.3.1 Scalability Experiment 1 Results 65

5.1.3.2 Scalability Experiment 2 Results 68

5.1.4 Scalability Tests Discussion 70

5.1.4.1 Scalability Experiment 1 Discussion 70

5.1.4.2 Scalability Experiment 2 Discussion 73

ix

5.2 Real-World Results . 76

5.2.1 Hallway Tests Results . 76

5.2.2 Lab Tests Results . 78

5.2.2.1 Lab Experiment 1 Results 78

5.2.2.2 Lab Experiment 2 Results 80

5.2.2.3 Lab Experiment 3 Results 81

5.2.3 Real-World Tests Discussion 82

5.2.3.1 Hallway Tests Discussion 82

5.2.3.2 Lab Tests Discussion 85

5.3 Discussion . 86

6 Conclusions and Recommendations for Future Work 89

6.1 Conclusions . 89

6.2 Future Work and Recommendations 92

A Experimental Results 101

A.1 Simulation: Benchmarking Tests . 101

A.1.1 Benchmarking Experiment 1 102

A.1.2 Benchmarking Experiment 2 103

A.1.3 Benchmarking Experiment 3 104

A.1.4 Benchmarking Experiment 4 105

A.1.5 Benchmarking Experiment 5 106

A.1.6 Benchmarking Experiment 6 107

A.2 Simulation: Scalability Tests . 108

A.2.1 Scalability Experiment 1.1 . 108

A.2.2 Scalability Experiment 1.2 . 109

A.2.3 Scalability Experiment 1.3 . 109

A.2.4 Scalability Experiment 1.4 . 110

A.2.5 Scalability Experiment 2.1 . 111

A.2.6 Scalability Experiment 2.2 . 111

A.2.7 Scalability Experiment 2.3 . 112

x

A.2.8 Scalability Experiment 2.4 . 112

xi

List of Tables

4.1 Benchmarking Experimental Design Parameters 40

4.2 Scalability Experiment 1 Design Parameters 42

4.3 Scalability Experiment 2 Design Parameters 44

4.4 Hallway Tests Design Parameters . 47

4.5 Lab Tests Design Parameters . 48

5.1 Benchmarking Experiment 1 Results 50

5.2 Benchmarking Experiment 2 Results 52

5.3 Benchmarking Experiment 3 Results 53

5.4 Benchmarking Experiment 4 Results 55

5.5 Benchmarking Experiment 5 Results 56

5.6 Benchmarking Experiment 6 Results 58

5.7 Scalability Experiment 1 Results: Far Starting Points 66

5.8 Scalability Experiment 1 Results: Close Starting Points 67

5.9 Scalability Experiment 2 Results . 68

5.10 Hallway Tests Results . 76

5.11 Lab Experiment 1 Results . 78

5.12 Lab Experiment 2 Results . 80

5.13 Lab Experiment 3 Results . 81

xii

List of Figures

1.1 IDEaS Project Overview . 2

2.1 Centralized Architecture . 7

2.2 Distributed Architecture . 8

2.3 Hybrid Architecture . 9

2.4 Inefficiencies in the Nearest Based Allocation Method 11

2.5 Inefficiencies in the Utility-Based Method 14

2.6 Map-Merging Dilemma [37] . 19

3.1 Framework Structure Overview [37] 25

3.2 Turtlebot3 Burger Footprint [44] . 26

3.3 A Simple Example of Dijkstra’s Algorithm [43] 28

3.4 A Simple Example of the DWA Method [43] 29

3.5 Black-box Unmodified Explore lite 30

3.6 Black-box Modified Explore lite . 31

3.7 Black-box Assigner Node . 32

3.8 Assigner Structure . 32

3.9 Filter Flowchart [37] . 33

3.10 Neighbourhood Sampling . 34

3.11 K-means Flowchart [37] . 36

3.12 K-means Sample Iteration . 37

4.1 Simulation Environments . 39

4.2 Benchmarking Tests: Starting Positions 41

xiii

4.3 Scalability Experiment 1: Starting Positions 43

4.4 Scalability Experiment 2: Starting Positions 44

4.5 Real-World Environment: Hallway [37] 45

4.6 Real-World Environment: Lab . 46

4.7 Real-World Tests: Starting Positions 46

5.1 Benchmarking Experiment 1: Path Comparisons [37] 51

5.2 Benchmarking Experiment 1: Merged Maps [37] 51

5.3 Benchmarking Experiment 2: Path Comparisons 52

5.4 Benchmarking Experiment 2: Merged Maps 52

5.5 Benchmarking Experiment 3: Path Comparisons 54

5.6 Benchmarking Experiment 3: Merged Maps 54

5.7 Benchmarking Experiment 4: Path Comparisons 55

5.8 Benchmarking Experiment 4: Merged Maps 55

5.9 Benchmarking Experiment 5: Path Comparisons 57

5.10 Benchmarking Experiment 5: Merged Maps 57

5.11 Benchmarking Experiment 6: Path Comparisons 58

5.12 Benchmarking Experiment 6: Merged Maps 59

5.13 Benchmarking Experiments: Average Time Comparisons 60

5.14 Benchmarking Experiments: Percent Improvement K-means Time . . 61

5.15 Benchmarking Experiments: Average Distance Comparison 62

5.16 Benchmarking Experiments: Percent Improvement K-means Distance 62

5.17 Benchmarking Experiments: Standard Deviation Time 63

5.18 Benchmarking Experiments: Standard Deviation Distance 63

5.19 Benchmarking Experiment 1: Map Coverage Comparisons [37] 64

5.20 Scalability Experiment 1a: Merged Maps for Far Starting Points . . . 66

5.21 Scalability Experiment 1a: Paths for Far Starting Points 66

5.22 Scalability Experiment 1b: Merged Maps for Close Starting Points . . 67

5.23 Scalability Experiment 1b: Paths for Close Starting Points 67

5.24 Scalability Experiment 2: Merged Maps 69

xiv

5.25 Scalability Experiment 2: Paths . 69

5.26 Scalability Experiment 1: Average Time Comparison 70

5.27 Scalability Experiment 1: Average Distance Comparison 71

5.28 Scalability Experiment 1: Standard Deviation Time Comparison . . . 72

5.29 Scalability Experiment 1: Standard Deviation Distance Comparison . 73

5.30 Scalability Experiment 2: Average Time 74

5.31 Scalability Experiment 2: Average Distance 74

5.32 Scalability Experiment 2: Standard Deviation Time 75

5.33 Scalability Experiment 2: Standard Deviation Distance 75

5.34 Hallway Experiment 1: Merged Maps [37] 77

5.35 Hallway Experiment 1: Path Comparisons [37] 77

5.36 Lab Experiment 1: Merged Maps . 79

5.37 Lab Experiment 1: Path Comparisons 79

5.38 Lab Experiment 2: Merged Maps . 80

5.39 Lab Experiment 2: Path Comparisons 80

5.40 Lab Experiment 3: Merged Maps . 81

5.41 Lab Experiment 3: Path Comparisons 82

5.42 Hallways Experiments: Time . 83

5.43 Hallway Experiments: Average Distance 83

5.44 Hallway Experiments: Map Coverage Comparisons [37] 84

5.45 Lab Experiments: Time Comparisons 85

5.46 Lab Experiments: Average Distance Comparisons 86

6.1 Examples of K-means Segmentation of the Map 91

xv

Chapter 1

Introduction

Unmanned Grounds Vehicles (UGVs) have become a daily part of many peoples lives,

using them as vacuums for cleaning their houses [1], as transportation agents for man-

ufacturing environments [2], and even as autonomous disinfecting agents for fighting

COVID-19 [3]. UGVs can provide practical solutions for inspecting and exploring

dangerous environments where humans are unable to go, or providing quicker, more

efficient inspections and exploration where it might take humans a long and tedious

time. Even more flexible is the use of coordinated robotic teams to complete tasks.

For example, in a Search and Rescue (SAR) scenario a team of robots could be de-

ployed into an unknown environment to quickly search the area for survivors, damage

to buildings, or other tasks with little to no control being provided by an operator.

The full autonomy of the system can prove advantageous in remote areas where there

is limited communication. However, there is little research and implementation on

the use of robotic teams in unknown environments.

In this thesis, a framework is developed for use in a Multi-Robot System (MRS)

to efficiently explore unknown environments autonomously and with scalable robotic

teams. This framework allows the MRS to enter into an unknown environment and

1

map the area in a robust and efficient manner.

1.1 IDEaS Project Outline and Goals

This thesis is being developed for a project with the Department of National Defense

(DND) investigating the development of effective human-machine cooperation with

autonomous systems. The motivation behind this project is to further the design

of Intelligent Adaptive System (IAS) for Autonomous Unmanned Vehicle Systems

(AUVS). The project is broken into five main areas of research: trust modelling,

trust experimentation, trust management, intelligent automation, and interface adap-

tation. In Figure 1.1 an overview of the different tasks associated with this project

are visualized.

As a part of the IDEaS project intelligent automation is one of the five areas of

Figure 1.1: IDEaS Project Overview

focus. This area of focus includes the improvement of the current state-of-the-art for

MRS. For this thesis the focus is on the intelligent automation side of this project

2

specifically in UGV robotic teams, this includes the use of a MRS for exploration of

unknown environments.

1.2 Thesis Problem Statement and Goals

The problem addressed in this thesis is the development of a framework for a MRS

that can be used to explore an unknown environment in a time-efficient and adaptable

manner. This larger goal was separated into different smaller goals listed below. A

detailed description of the tasks is explained in the paragraphs following.

• Determine a novel, robust and efficient method to facilitate a cooperative explo-

ration task. This task includes a method for segmentation of an unknown map and

task allocation.

• Develop the new method using a programming platform to facilitate the proposed

new method.

• Develop a framework to facilitate the testing of the newly developed method.

• Test the method in simulated environments.

• Test the method in real-world environments.

For the first goal, MRS exploration of unknown environments is a well researched

topic in the literature. However, it is difficult to develop a system that facilitates

a well coordinated exploration that improves the time for the exploration task, the

overlap in map coverage and efficient task allocation methods. A new MRS explo-

ration method is to do be developed to take into account the primary factors of a

time-sensitive exploration, scalable and coordinated MRS exploration task.

Next, the proposed MRS exploration method will be implemented into a software

environment. This is challenging as it requires the use of effective real-time program-

ming. This is because algorithms can take a long time computationally and this

makes implementation into real-time applications ineffective.

The third goal is to then develop a framework for testing in the Robot Operating

3

System (ROS) environment. This requires the manipulation of many different open

source packages and heavy modification of some other packages.

The last two goals relate to testing and bench-marking the new MRS exploration

method in both simulated and real-world environments.

1.3 Scope

The scope of this thesis is the design and implementation of a MRS framework for

the exploration of unknown environments, to develop the system to minimize the

distance travelled by each individual robot, to minimize the overlap in map coverage,

and to minimize the execution time. The framework should be scalable and capable

of handling different environments and numbers of robots.

1.4 Summary of Contributions

The main contributions of this thesis are:

• Development of a time-sensitive, scalable and coordinated MRS exploration using

a novel application of the k-means method.

• Development of a new method in C++ to facilitate k-means segmentation of a map

in a MRS.

• Development of a ROS framework to facilitate the implementation of the new

method.

• Simulated experimental testing of the new MRS exploration method.

• Real-world experimental testing of the new MRS exploration method.

• Benchmarking of the current state-of-the-art with the newMRS exploration method.

4

1.5 Thesis Outline

The remainder of this thesis is as follows: Chapter 2 presents a review of the state-of-

the-art in regards to exploration tasks in MRS. This includes the review of different

task allocation methods. Chapter 3 includes an in-depth presentation of the method-

ology utilized for this system, including open source packages used and new methods

developed. Chapter 4 consists of a review of the different experiments and why they

were conducted, as well as hypothesized results. Chapter 5 includes the experimental

results for all the different experiments conducted and a detailed discussion of the

results. Chapter 6 concludes the findings of this thesis and suggests future work for

the development of this research.

5

Chapter 2

Literature Review

This chapter consists of a review of the state-of-the-art with regards to MRS au-

tonomous exploration of unknown environments. For the purposes of this literature

review, the review has been split into five different sections: a review of different ar-

chitectures for communication in MRS, a review of different methods for exploration,

a review of frontier exploration and the utility model, and a review of map merging

techniques in MRS.

2.1 Communication Architectures

The method of communication used between the agents in a MRS is called the com-

munication architecture. When working in MRS there are three different architectures

that can be used to facilitate communication including centralized, distributed, and

hybrid architectures.

6

Figure 2.1: Centralized Architecture

2.1.1 Centralized Architecture

As seen in 2.1, a centralized architecture relies on one computer/robot to control all of

the other robots’ movements, data processing, etc. In the figure shown the blue boxes

represent individual agents, the red and orange circles represent the communication

range of the central server and agents, respectively, and the blue arrows represent the

flow of data of the central server and agents. While this can be an efficient algorithm

for a few robots, the addition of more robots into a system can become problematic

with increased communication overhead and possible information losses [4, 5]. A

centralized approach also results in a lack of redundancy and a single point of failure

in the MRS. Recent work has proposed the usage of a centralized server system to

communicate with embedded system robot nodes [4]. This approach allows for lower

level tasks to be computed in an embedded system, such as local path planning,

drivers for sensors, etc., while the upper level tasks, such as complex computation

and visualization, are handled on the server. This is advantageous but still suffers

from the single point of failure issue.

7

Figure 2.2: Distributed Architecture

2.1.2 Distributed Architecture

Distributed architectures rely solely on the individual robots to do all of the path

planning, information processing, etc., without any guidance from a master robot. As

can be seen in Figure 2.2, the blue boxes represent individual agents, the orange circles

represents the communication range of the agents, and the blue arrows represent

the flow of data between the agents in communication range. The communication

happens between all the individual robots; this requires the need for complex and

robust communication protocols/bandwidth [4]. This is advantageous because the

MRS is non-reliant on a single point of contact which adds to the robustness of the

system as a whole. However, this can become challenging as coordination of the

MRS becomes much more complex. Some examples of distributed approaches are

Yamauchi’s frontier exploration [6] and Particle Swarm Optimization (PSO) used for

exploration [7].

8

Figure 2.3: Hybrid Architecture

2.1.3 Hybrid Architecture

The final architecture is a hybrid architecture which allows for the communication

between a master robot and between all the individual robots. This can be pic-

tured in Figure 2.3, where the blue boxes represent individual agents, the red and

orange circles represent the communication range of the central server and agents,

respectively, and the green and blue arrows represent the flow of data of the central

server to agents, and agent to agent, respectively. This can become advantageous for

applications such as role-based exploration, like that of Hoog and Cameron, where

communication between individual robots and to a central server is needed [8]. This

can become advantageous in providing a more robust system without a single point

of failure, but limits the system in relying on a central server/robot.

As shown, there are three main different architectures used for communication in

MRS. Centralized architecture is advantageous as it allows for easier coordination

of the MRS and real-time global map construction, but this method introduces a

single point of failure. Distributed architectures do not rely on a single point of

contact which solves the single point of failure issues, but require more complex com-

munication protocols. Hybrid architectures can have applications in communication

9

restricted environments, offer easier global map construction, but the architecture

does not have the ability to create a real-time global map. The choice in architec-

ture highly depends on the type of exploration and Simultaneous Localization and

Mapping (SLAM) algorithm chosen for the exploration application, which will be

explained in the next sections.

2.2 Exploration Methods

For the purposes of this thesis, MRS exploration is defined as the task of placing

multiple robots in an unknown area and having them adequately search and map

the area autonomously. Different methods exist in the literature to facilitate this

exploration task. In this section, a brief review of frontier exploration and some other

exploration method variations are reviewed.

2.2.1 Frontier Exploration

Frontier-based methods run on the concept of exploring an environment based upon

the boundary of explored and unexplored space [9]. This allows robots to navigate

to a centroid of the border of an unexplored region using shared maps [10]. A simple

strategy for frontier-based area coverage is the nearest based allocation method as

proposed by Yamauchi in 1997 [9]. Yamauchi utilizes a completely distributed archi-

tecture where each robot will share their local sensor information to produce frontier

lists. This method is attractive because it does not require centralized communication

to coordinate the robots, making the system more fault tolerant [11]. However, this is

not the most efficient method as multiple robots may navigate to the same frontier [5]

as can be seen in Figure 2.4.

10

Figure 2.4: Inefficiencies in the Nearest Based Allocation Method

2.2.2 Utility-Based Methods

To solve the frontier assignment issues in the previous approach, utility-based nav-

igation models were developed for frontier assignment using a cost-based analysis.

Simmons proposed a method where the robots make bids to a central computer

based upon adding the information gain and subtracting the cost [10]. Recognizing

the reliance on a centralized method, Zlot et al. minimized the need for a central-

ized server and utilize a distributed cost-utility or market-based approach [12]. The

utility model is advantageous compared to the nearest frontier model in preventing

navigation to the same points, but still requires overlap in area coverage at times [5].

This method can also become computationally inefficient as the number of robots and

frontiers increases because the algorithm performs iteratively. Seeking to minimize

the overlapped area, a rank-based frontier allocation method is proposed by Bautin

et al. to not only take into account the distance to the frontier, but also the distribu-

tion of the robots among the frontiers [11]. An extension of the rank-based method

in [13] also keeps track of the frontiers within a certain threshold distance to ensure

all frontiers are explored.

11

2.2.3 Role-Based Methods

In SAR applications, limited communication can also be a factor as investigation

of remote areas may not allow for heavily communicative reliant methods to be de-

ployed [8]. To address this, an area of interest has become the exploration of en-

vironments in restricted communication areas. Role-based exploration was mainly

developed to mitigate the problem of limited communication within an exploratory

robotic network [14]. Rooker and Birk, proposed a method to ensure robots did not

travel outside of communication range [14]. They did this by assigning penalties in a

utility function for a robot outside of communication range. Another role-based so-

lution that emerged proposed a modification to sequential greedy assignment, where

the decision making for assignment of frontiers is distributed to several different robot

planners [15]. This method is advantageous for scalability applications, but still the

research assumes a completely connected network among the agents. In another role-

based work, robots are assigned roles of either explorer or relay [8]; the explorer can

go beyond the wireless communication limits and return to meet relays at previously

defined rendezvous points. Still another application looks to reduce the communi-

cation burden by proposing a role-based method where only the frontier points are

shared with a leader [16]. This leader is in charge of assigning goals to other robots

called explorers.

2.2.4 Swarm-Based Methods

Another exploration strategy is the leader-follower strategy. Leader-follower methods

focus on the team and its role as opposed to the structure of the environment itself [5].

Desai proposed decentralized control to coordinate robots by assigning a group leader

and individually controlling all the other robots to follow in formation [17]. Only the

group leader in this case knows the trajectory information. Reynolds work with

12

motion coordination for animals is the starting place for most flocking based MRS

exploration [18]. Reynolds developed flocking behavior based upon the principles of

matching velocity, flock centring and avoidance of collisions. This approach has been

expanded to exploration in a couple of sources where a hybrid frontier-based and

flocking-based strategy are used [19], [20]. Inspired by flocking and limited commu-

nication with large robotic teams, swarm robotics approaches have also been used

in MRS exploration [7], [21, 22]. The method as presented by Wang et al. [7] uses a

distributed frontier-based algorithm with PSO. In this approach, the map is broken

into sub-map areas where the robots will not enter an area already covered; the ex-

ploration state is used to explore its own sub-area and the walking state uses PSO

to determine paths based upon already explored areas and the positions of the other

robots. More recently Kumar et al. presented a SAR application based upon Dar-

winian PSO and simulations within the ROS [23].

In summary, the starting point for most exploration techniques has been the frontier-

based method as proposed by Yamauchi [9]. Since then different methods for the

exploration of unknown areas using MRSs have emerged, namely the utility-based

method, role-based method, swarm-based method, and more. The focus of this thesis

is on utility-based exploration methods to develop a more efficient exploration task.

2.3 Utility Model

Based upon the inefficiencies in Yamuachi’s distributed model, the need to coordinate

the robotic exploration becomes apparent as seen in the previous section. Simmons

et al. [10] first developed a utility-based analysis for assigning tasks to each of the

agents. However, using this method requires fine-tuning of the cost, utility, and goal

assignments to provide an efficient exploration process. In Figure 2.5, it can be seen

that the two agents in the system travel to two frontiers closest to them both while a

13

large frontier at the top of the map is being left unexplored as a result of some utility

based methods. In this section an in-depth review of the utility model outlining the

Figure 2.5: Inefficiencies in the Utility-Based Method

definition of cost, utility and task assignment methods will be conducted.

2.3.1 Cost

Determining the cost of reaching a frontier cell is important because it allows for the

quantification of resources used in order to reach a frontier. The majority of methods

in frontier exploration seem to have a similar approach when dealing with the cal-

culation of costs, namely calculating the resources based upon distance travelled to

reach the frontier. There are some slight variations found within the literature such

as in [24], where Burgard et al. computed the cost using a dynamic programming

algorithm called value iteration. They defined the cost using an iterative approach,

that considers the cost as equivalent to the distance to the cell multiplied by the

occupancy value. In this method convergence is guaranteed, as long as the cost is not

negative and the environment is bounded. Fox et al. [25] utilized a similar approach

for cost, seeking to find the minimal cost path using an A* search algorithm. Another

14

less utilized approach is mentioned by Zlot et al. [12] calculated the costs based upon

the time estimate to reach a frontier, as opposed to the distance. In [26], the cost to

reach a point is modified to not only calculate cost based upon the distance, but also

to take into account the energy consumption associated with travelling to that point.

2.3.2 Utility

The utility of frontier cells is a quantifiable representation of the usefulness associated

with a robot reaching a specific frontier cell. The utility is said to be an estimate of the

information gain expected when reaching a certain cell. Burgard et al. [24] computed

utility by starting off each frontier cell with the same utility value and changing the

utility based upon the target selected points for each robot. Their utility value also

takes into account the probability of a sensor covering the range of the adjacent cells

as to avoid overlap in coverage. In work by Rooker and Birk [27], a proposed solution

in communication limited environments included a constraint to the utility function

to not allow a loss of communication between all robots to the base station. Later

Rooker and Birk expanded their research to robotic packs [28], as to remove the need

for connectivity to a base station. Fox et al. [25] defined utility by taking into ac-

count the unknown area visible from the frontier as a way to estimate the total utility.

2.3.3 Task Assignments

Selecting goal points for each robot becomes necessary when dealing with robots in

teams. The utility model basic algorithm for assigning tasks usually consists of de-

termining the costs associated with reaching a goal point and subtracting that value

from the utility associated with reaching that point. Different methods are used for

assignment and for optimizing the assignments. Following after Yamauchi [6], in

15

Simmons work [10] the idea of constructing bids was utilized. Bids were quantified

by subtracting the cost from the utility, as stated above. Tasks are then assigned

by the central executive. The first robot is awarded the task who had the high-

est net utility and then the central server subtracts that robot’s bid from all other

frontiers. This process iterates until all the frontiers are assigned. Zlot et al. [12]

build upon Simmons bidding approach and applied a market economy approach to

task allocation. This method improves the performance and optimization of the task

assignment by changing the negotiations to local robots. Gerkey and Mataric [29]

followed Zlot’s work and utilized an auctioneer type of system to manage the assign-

ment of the frontiers, this includes anonymous broadcasting in order to communicate

with the other robots and eliminates the need for the operations executive. This

system works more as a fully distributed method. However, it was found that the

dynamic system is very sensitive to changes in the environment. Burgard et al. [24]

used a while loop approach to optimize the task assignment until each robot has been

assigned a frontier point. The utility associated with each goal point is updated after

each assignment of a target point. Burgard et al. also looked into how to apply this

algorithm into limited communication environments. Following a bidding approach,

Sheng et al. [30] developed a system that seeks to optimize the distributed approach

for goal assignment. They used a similar broadcasting type of framework as in [29],

but now they make no assumption of connectivity to the same network. The bidding

works by broadcasting to robots within its local network a bid for a specific amount

of time, if no other robot joins the session and beats the bid, the robot wins that

bidding session. If there is new map information gained within that time constant,

the bids are re-evaluated after the maps have been updated. This process repeats

until no more frontier cells are left. Building on the utility based model for frontier

navigation, a rank-based allocation method is proposed by Bautin et al. [11], which

seeks to further optimize not only the utility of each robot, but the distribution of

the robots along each of the frontiers.

Another cost-based method used for assigning roles is the Hungarian method as de-

fined by Kuhn [31]. This method finds the optimal solution for role assignment given

16

the costs in an nxn matrix. In step 1 the matrices are modified to compute a reduced

cost matrix, subtracting the minimal element in each row and then repeating for the

columns. In step 2 the minimal number of lines to cover all of the zeros in the matrix

is found, if the number of lines is equal to the dimension, n, of the matrix, then op-

timal values can be found. If this is not the case, step 3 requires the minimum value

in the matrix to be subtracted from each value in the matrix not covered by the lines

and added to each value covered by both horizontal and vertical lines. Steps 2 and

3 are repeated until the number of lines equals the dimension, n. In work by Wurm

et al. [32] targets for MRS exploration are assigned using the Hungarian method. In

their work, not only are frontiers considered, but segmentation of the map is intro-

duced in order to facilitate more time efficient exploration.

K-means has also been used for task assignment in some areas of the literature. In

work by Elango et al. [33] k-means is used to balance task allocation by clustering

different tasks together based upon distance and then assigning them using an auc-

tion based mechanism. Solanas and Garcia [34] used k-means in frontier exploration

to cluster frontier cells of an occupancy grid into different clusters to be assigned to

agents. The number of clusters are determined to be equal to the number of robots

within the system. Each robot is assigned to its closest cluster. In work by Puig et

al. [35] an optimization algorithm is applied to the the k-means exploration algorithm

to ensure optimal task assignments. K-means is also used in work by Faigl et al. [36]

and is used to solve a travelling salesman problem for MRS exploration. From these

publications, k-means has been proven to show improvement in task allocation and in

MRS exploration. In [34–36], the assumption is made that each agent knows a global

map when clustering frontier points and ignores the process of merging information

from local agents to a global centralized server. This assumption is not practical when

dealing with many agents in real-time applications. These methods do not consider

how a global map is being created, how each of the local agents know their position

within the global map, how communication from the agents in the system to cen-

tralized server effects the exploration process, and how their method can be used in

real-time applications.

17

In summary, within frontier navigation, to facilitate efficient coordination in MRS,

there must be a defined cost, utility and goal point assignment method. Costs often

are represented as a function of the resources needed to reach a frontier cell or as a

function of the distance travelled. Utility is defined as the expected information gain

associated with reaching a frontier cell. The goal point assignment is a form of a

multi-objective optimization problem being carried out in real-time and the different

techniques employed greatly change the efficiency of the system. However, within

goal point assignment a main distinction exists regarding whether the assignment of

goals is done for the global system or local sub groups of the robotic team.

2.4 Map-Merging

How to facilitate the making of a global map can become one of the most challenging

topics in multi-robot exploration in unknown environments. This is because the

robots must not only know their position within their own map through SLAM, but

also must have some representation of their relative positions in relation to each

other or the world to facilitate online map-merging. In addition, when mapping an

environment a robot has to deal with two types of uncertainty or noise within the

data, the noise from the sensors and the uncertainty in the odometry [24]. In Figure

2.6 robots are pictured within a map, and different laser scans of the environment are

taken. The dilemma shows that the when merging two maps into one global map,

the maps must be transformed into the correct coordinate frame. If map-merging

can be done offline, different techniques to merge the maps exist, often based upon

graphical methods, such as in [38]. Chang et al. merge individual graphical maps by

adding the defined edges from the different maps. For the purposes of this review it is

assumed online map-merging is the desired approach, with an emphasis on real-time

map updates.

In the following sections, map-merging techniques will be explored, including, online

map-merging using a central server, a decentralized approach, a hybrid approach, and

18

Figure 2.6: Map-Merging Dilemma [37]

some techniques managing unknown initial positions.

2.4.1 Online Map-Merging Using a Central Server

One technique commonly used for map-merging within an online approach is proposed

by Simmons et al. where each robot builds its own local map, a centralized server

receives the local map and then builds them into one global map using a maximum

likelihood estimate [10]. The drawback is that this method rests on the assumption

that each robot will begin the exploration task within view of each other and a given

relative global location.

2.4.2 Online Map-Merging Using Distributed Methods

A distributed approach to map-merging relies on each individual robot to store their

own maps of the environment and will facilitate sharing of information to reduce

inefficiency in exploration. This approach starts off most basically like that in [6].

In Yamauchi’s approach each robot holds their own global evidence grid, this grid

contains information about the environment they currently have, and every time a

robot arrives at a frontier the local evidence grid is constructed and broadcast to

the other robots. The robots will then take this information and update their global

evidence grids. Sheng et al. [30] utilize a scheme that includes each robot storing both

19

a raw map table and a local map. This raw map table contains the raw information

obtained by each robot and the order of the map data obtained, as to not double the

data transfer. The local map is constructed using a map fusion mechanism. Sheng

et al. assume that the relative position of each robot is known and the robots start

at positions close to one another. Fox et al. [25] does not assume known relative

locations and implements a system where robots exchange laser range scans and

odometry information whenever they are in communication range. They then use a

particle filter to estimate their relative locations. In this method, maps are merged

using probabilistic constraints. Another method, as proposed by Meier et al. [39],

deals with low bandwidth constraints and reduces the amount of communication

necessary by approximating the map broadcast as a polygonal shape.

2.4.3 Online Map-Merging Using Hybrid Methods

A hybrid approach for map-merging often facilitates individual map-merging, as well

as the end goal of returning all of the information to a centralized server to build

one global map. Zlot et al. [12] make use of explicit map sharing between the robots’

local maps, and as mentioned before, utilize an operations executive to facilitate

the merging of the total global map. To do this, the operations executive sends

out a request for the map data to be sent out and all robots within communication

range send their local maps back. However, the assumption made is that the relative

orientations of the robots are known in regards to one another, this follows from the

earlier assumption in their work that the robots must be kept a reasonable distance

from one another [12]. Hoog et al. [40], in their role based approach, utilized an

explorer/relay system. Their proposal for map-merging consisted of merging maps

based upon their relative location through their own localization, but accounts for

some error in localization when the explorer and relay meet a rendezvous point.

20

2.4.4 Unknown Initial Positions

Based upon the sections above, it can be seen that most map-merging techniques

seem to favour knowing the initial positions due to the decreased complexity. As

mentioned in the previous section, Fox et al. [25] looked into the possibility of un-

known initial position. Some other techniques have been explored, such as in [41],

where map-merging was made using two steps. The first step happens when two

robots come within communication range they then estimate their location in the

other robot’s map by matching the received map to the patch from the other robot.

The second step requires the robot to verify the validity of the hypothesis by attempt-

ing to meet the robot at an expected location based upon the merged map, if they

do not meet as expected the hypothesis is rejected. In work by Zhou and Roumelio-

tis [42] a rendezvous solution is utilized. In their solution, when robots come within

communication range a relative pose and distance measurement are taken to compute

the transformation matrix between the maps.

In summary, map-merging using centralized methods is defined by the use of a central

server to merge all of the local maps into one global map. Distributed methods

usually consist of broadcasting information to other robots in their communication

range to update their own local maps. Hybrid methods leverage the use of local

robots broadcasting information to each other, but still pursue the need for a central

server to receive the total global map at the end. Finally, the majority of these

methods count on the availability of the initial positions of each robot [6, 10, 12, 40],

but sometimes this is not the case. If there are unknown initial positions, rendezvous

methods [42], probabilistic methods [25], and hypothesis based methods [41] can be

used to determine the localization of each robot.

21

2.5 Summary

In the literature three different types of architectures are presented, namely central-

ized, distributed, and hybrid methods. Centralized methods present advantages for

real-time online approaches and when an operator is being kept in the loop of control

such as in military applications. Distributed methods provide a more robust explo-

ration as each agent only requires itself to perform a successful exploration. Hybrid

methods allow for a global representation to a centralized server, but also are not

susceptible to the single point of failure issues that centralized methods have. How-

ever, distributed methods do not provide information to a central agent as needed for

this project and hybrid methods require complicated, robust communication proto-

cols which introduces a large chance of error.

Many exploration techniques exist such as the frontier-based method [9] and its vari-

ations like the utility model [10], role-based methods, and unique methods such as

swarm-based methods and more. For the purposes of this thesis the utility model is

explored.

The utility model defines a bid as the expected information gain upon reaching a

frontier subtracting the cost associated with reaching this frontier [10]. The model

then solves a multivariate optimization problem to assign goal points to the different

agents, this could be achieved by iterative assignment methods [10], local negotia-

tion [12,29,30], or with other techniques such as the Hungarian method [32]. K-means

has been shown to provide a more efficient task allocation scheme as seen in [34–36].

However, these works assume each agent has access to a known global map and ignore

the real-time process of map merging and its effect on k-means task allocation.

Map-merging techniques utilized within the literature were reviewed for their appli-

cation to frontier-based exploration. It was found that map-merging often assumes

initial relative positions or global positions are known [6, 10, 12, 40]. However, some

techniques exist that try to eliminate the need for initial relative locations to always

be known [25,41,42].

22

In SAR applications, some of the important variables become, a time efficient and

robust exploration process, the availability of real-time updates to a central server,

and accurate map-merging for in-depth views of disaster environments. Under these

assumptions for the purposes of this thesis frontier exploration in a MRS is conducted

using a centralized communication architecture, k-means clustering to optimize for

task assignments using the utility model and map-merging using known initial po-

sitions. K-means is utilized without making assumptions about each agent having

access to a global map and considering the effect the communication architecture has

on a real-time exploration process.

23

Chapter 3

Methodology

In this chapter the methods used for the novel MRS exploration framework are pre-

sented. First, the proposed framework is presented. Next, a review of the open source

hardware and packages utilized within the framework are covered. Then, the novel

methods developed for this work are presented. Parts of the methodology are also

presented in work by Goodwin et al. [37, 43].

3.1 Framework Overview

An overview of the framework and nodes running on the central computer and an

individual agent’s on-board computer is shown in Figure 3.1. In this figure, the

TurtleBot3 (TB3) has an embedded node which runs on the on-board Raspberry Pi

computer. This embedded node is running the TB3 node for bringing up the robot.

The bring up node sets up different publishers and subscribers for the robot. It pub-

lishes the sensor information, battery state, transformations, odometry information

and more. It subscribes to topics such as the velocity commands, motor power, and

more. The centralized server runs five different types of nodes: the modified ex-

24

Figure 3.1: Framework Structure Overview [37]

plore lite nodes, the navigation nodes, the gmapping nodes, the map merge node and

the assigner node. The modified explore lite node runs an instance for each robot

in the MRS. The modified explore lite node takes in the occupancy map information

from an agent and finds frontiers. The frontier points are grouped into frontier re-

gions and published to a topic. The explore lite node also subscribes to a goal points

topic. The navigation node runs an instance for each agent. The navigation node

receives goal points for an agent and then provides global and local path plans to

facilitate the autonomous navigation of an agent to the proposed goal point. The

gmapping node runs an instance for each agent. The gmapping node takes in laser

scans and odometry information from an agent and then creates an occupancy map.

The map merge node runs one instance for the MRS and uses estimated poses to

create a global map by combining multiple local agents’ maps. The assigner node

runs one instance for the MRS and takes in all of the frontier region centroid points

published by each agent in the system. The assigner node clusters the points into

clusters using a k-means method and then publishes the goals to a topic.

25

3.2 Open Source Hardware

For the purposes of this thesis open source robots namely TB3 Burgers were used

along with a PC. The TB3 Burger is a small mobile robot designed to run on ROS.

More information can be found at: https://emanual.robotis.com/docs/en/platform/

turtlebot3/overview/. The TB3 Burgers are differential drive robots featuring an

on-board Raspberry Pi model 3 B+, CR driver board, dual motors, and a Light

Detection and Ranging (LiDAR) sensor. The footprint for the TB3 Burger can be

seen in Figure 3.2. As seen in previous work by Goodwin and Nokleby [43], the

Figure 3.2: Turtlebot3 Burger Footprint [44]

26

https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

equations of motion can be defined as:


ẋ

ẏ

θ̇

 =



cos(θ)
2

cos(θ)
2

sin(θ)
2

sin(θ)
2

1
l

−1
l


vR
vL

 (3.1)

where ẋ, ẏ, and θ̇ are the translation and angular velocities of the robot, θ is the

heading angle, and l is the distance between wheels. For the TB3s, l is 160 mm.

3.3 Open Source Packages

The development of this work was done in ROS version Kinetic Kame. ROS is a

series of open source packages created for the development of robotic control and

simulation. The TB3 has a set of open source packages pre-configured for use with

ROS and were downloaded for use in this thesis [45]. In this section a review of the

different open source packages used will be conducted.

3.3.1 Navigation Stack

The navigation stack is a set of packages designed for motion and path planning

for mobile robots. In this thesis, the package move base from the navigation stack

[46] is used after goals have been set to determine a global and local path plan for

autonomous navigation. The libraries of this package allow for the choice of different

kinds of global and local path planning.

The global path planner chosen is entitled Navfn in the navigation stack [46]. Navfn

seeks to find the lowest cost to travel from the robot’s current location to the goal

27

point. The code implements a variation of Dijkstra’s algorithm [47]. The algorithm

finds the minimum cost by using a graphical technique which represents different

points on a map as nodes. The algorithm keeps track of the shortest distance from

each node to the starting point. Upon every iteration, the algorithm visits the current

lowest cost node and visits all the unvisited neighbours to that node updating the

current lowest cost node. It repeats this pattern until the shortest path to the goal

is found. A basic example of Dijkstra’s algorithm can be seen in Figure 3.3.

Figure 3.3: A Simple Example of Dijkstra’s Algorithm [43]

The local path planner chosen is the dwa local planner from the navigation stack [46].

This algorithm uses the Dynamic Window Approach (DWA) as proposed by Fox et

al. [48]. The main purpose of a local path planner is to control the robot to follow

the global path. In the DWA approach this is achieved by treating the local path

plan as an optimization problem, i.e., trajectories are limited to circular trajectories

able to be reached within a short period of time. The robot is also assumed to be

circular. A series of forward simulations are performed and illegal trajectories are

discarded, meaning trajectories that would cause a collision. The best path is chosen

by optimizing the multi-objective function that considers the local path that is closest

to the global path, stays furthest away from all obstacles present, remains closest to

the goal, and achieves the fastest velocity. In Figure 3.4 a simplified graphic for

the DWA planner is shown. In the figure, possible trajectories are in blue, illegal

trajectories are in red and the global path plan is in green.

28

Figure 3.4: A Simple Example of the DWA Method [43]

3.3.2 SLAM

Gmapping is a package in ROS used for Simultaneous Localization and Mapping

(SLAM) [49]. The package is written to take in the robot’s odometry information

and laser range information from the LiDAR. The package then uses a probabilistic

approach to determine the occupancy of each grid cell from the readings. A transfor-

mation from the base link of the robot to the LiDAR range scanner is also needed to

determine these maps.

3.3.3 Map Merging

The multi robot map merge by Hörner [50] is a package that takes in multiple agents’

maps and merges them into one global representation. There are two assumptions

that can be made to use this package the first is that the global or relative starting

points of all the agents in the system are known and the second is the global or rela-

tive starting points are unknown.

If the global or relative starting positions are known this package uses a simple stitch-

ing algorithm to merge the two maps together. The algorithm in this case takes in

29

multiple occupancy grids and merges them together using rigid transformations given

from the initial positions.

If starting positions are not known this package uses a more intense feature matching

algorithm to determine the merged map. This algorithm uses a heuristic approach

where a feature detector is used to try and find matches using pairwise matching. If

enough features are matched, a transformation will be estimated and applied if the

confidence is high enough.

3.4 Exploration Method

In the new MRS exploration framework as described in section 3.1, one package was

modified at the source to provide the function needed. A detailed explanation of the

package’s original purpose and modified purpose will be reviewed.

Explore lite is also a package created by Hörner [50]. This package’s intention is to

facilitate a single robot exploration, where frontiers are assigned greedily until there

are no more frontiers on the map. In Figure 3.5 a black-box version of the original

explore lite algorithm is shown. In the original explore lite package an occupancy

Figure 3.5: Black-box Unmodified Explore lite

grid and occupancy grid updates topic from the SLAM node is needed, as well as the

robot’s global position. The algorithm then finds frontiers and prioritizes them based

upon distance and size. A centroid location of a grouping of frontiers is sent to the

move base node producing the movement commands as the output.

In the modified explore lite the goals are not being set by the node itself, instead it

is receiving goals from a published topic and the list of centroids of frontier regions

30

are being published to a topic. In Figure 3.6 the black-box version for the modified

explore lite can be seen, the changes are in yellow.

Figure 3.6: Black-box Modified Explore lite

3.5 Exploration Assignment

The novel contribution of this thesis is the novel method for exploration entitled

assigner developed for MRS exploration. This assigner node was first introduced in

other work by Goodwin and Nokleby [37]. In this method, a version of k-means is used

to determine task allocation for the MRS. The use of k-means in MRS exploration is

not novel [33–36], but the approach given in this research is. In this work, k-means

is used to group centroids from regions of frontiers, not group frontier cells as in the

work by Solanas and Garcia [34]. Additionally, the k-means algorithm is run when

updates to local maps are passed to the central server and compared to a global

map. A global map is not assumed available to each agent as in other works [34,36],

therefore this method is suitable for real-time and real-world applications. For the

purposes of this section, centroids of regions of frontiers will be referred to as Points

of Interest (PoI). In this section, details of the assigner node will be presented.

3.5.1 Overview of the Assigner Node

The assigner node has the basic function of taking in all new local PoI information

from each agent in the MRS and then grouping these points into n, number of robot

clusters. These clusters are then assigned to the closest robot in the system. In Figure

31

3.7 the basic black-box function of the assigner node can be seen. The assigner method

Figure 3.7: Black-box Assigner Node

takes in three topics: the published PoI from each agent, the locations of each of the

robots, and the global map topic from the multi map merge node. The basic structure

of this node can be seen in figure 3.8. In this figure one can see three main distinctive

Figure 3.8: Assigner Structure

portions of this node. The first is to initialize the parameters, subscriptions and

publishers. The main parameters used in this system are for setting the names of

different topics and how many agents will be a part of the system. Subscriptions are

needed for the global map topic and for the PoI lists. The subscriptions for the PoI

lists are performed in loops where the names are modified depending on the number

of robots in the system. The publisher is a customized structure of messages filled

with vectors of goal lists. The number of goal lists in the structure is dependent

on the number of robots in the system. Each robot is initialized with a unique ID

number starting at 1, 2, 3, ...n and this is used to access the correct goal list in

32

the structure. The second portion of this node is for the different callback methods.

Callback methods are used in real-time operations to update the global map topic

when the multi map merge package provides updates and to update the proposed

new frontier vector when local agents find new PoI. The third portion of this node is

the method for updating the global frontier list. The basic function of this portion of

the node serves to filter proposed new PoI against a global map, cluster the globally

unknown PoI, and then assign these clusters to the nearest robot or agent. This

portion will be discussed further in the next section.

3.5.2 Filtering Method

The filtering method serves to check PoI coming from each agents local map and

determine which points are unknown globally. If the points are unknown globally they

are added to a list of global points of interest (i.e., the PoI list). In Figure 4.6(b) the

algorithm for filtering the new PoI is detailed. The psuedocode, as seen in previous

Figure 3.9: Filter Flowchart [37]

33

Algorithm 1 Filter [37]

1: for i← −n : n do
2: for j ← −n : n do
3: x and y global coordinates converted to occupancy coordinates k and r
4: if Occupancy Map(k + i, r + j) ← unknown then
5: Counter ← Counter + 1
6: end if
7: end for
8: end for
9: if Counter < Threshold then
10: Remove from frontier list
11: end if

work by Goodwin and Nokleby [37], is also presented in this thesis in Algorithm

1. The algorithm is detailed as follows, the point of interest is first converted from

world (x, y) coordinates to map coordinates (i, j). Then the occupancy at the map

coordinates is checked for a neighbourhood of values. A neighbourhood of values in

this case refers to the closest 24 squares region or a 5x5 square region. In Figure

3.10 an example of this sampling is shown. In the figure, the blue dot represents

Figure 3.10: Neighbourhood Sampling

the conversion of the (x, y) coordinates to the map coordinates (i, j). The grey grid

square represents the closest square grid to the coordinate. The red squares represent

the closest 3x3 square values or the closest 8 neighbours to the converted coordinate.

Considering only one grid value can often lead to inaccurate conclusions as to the

34

status of an area. The purpose in sampling an area is to gain a more accurate

picture as to whether a point is unknown globally or not. Through experimentation,

increasing this to a square neighbourhood more accurately shows whether the point

is truly known globally or not. The size of the grid chosen for the occupancy map

can also change the size of the neighbourhood needing to be sampled. The smaller

the grid, the bigger the neighbourhood would have to be to get an accurate picture

and vice versa. Through experimentation for a grid scale of resolution 0.05 m/cell

(meters per cell), it was found that if out of 25 (5x5) occupancy values greater than

11 of them are unknown, it is very likely this spot is unknown on the global map. In

binary occupancy grids if the position is unknown it will equal a value of -1. So, for

every cell in the 5x5 neighbourhood region the occupancy is checked and if it equals

a value of -1 a counter will be increased. If at end of checking all of the neighbours

the counter value is greater than or equal to 11, then the point is determined to be

unknown. If the counter value is less than 11 the point is determined as already

known and deleted from the PoI list.

3.5.3 K-means Method

After the vector of unknown PoI is returned, a k-means algorithm is then run. K-

means was first introduced by Macqueen [51], a modified and simple version is used

in this framework. The basic function of this method is to optimize for n clusters

from a given data set. The pseudocode, as presented in other work by Goodwin and

Nokleby [37], can be seen in Algorithm 2.

The algorithm works as follows, for each system the initial cluster centroids are chosen

at random to be different entries in the vector of globally unknown PoI. The number

of clusters is chosen to equal the number of robots given in the system for easy

assignment. After the initial cluster centroids are chosen, each point in the vector is

assigned to its nearest cluster. The new centroid of each cluster is found by averaging

the x and y values. This is evaluated for a certain number of generations/epochs

35

Algorithm 2 K-Means Clustering of PoIs [37]

1: Random points from the PoI list are chosen as centroids
2: Centroids← random(PoI list)
3: for i← 0 : epochs do
4: for i← 1 :size(Centroids) do
5: for j ← 1 :size(PoI list) do
6: Find the closest centroid to each PoI on the list
7: if dist(centroid(i), PoI list(j) then
8: PoI list(j).cluster ← i
9: end if
10: end for
11: end for
12: Find sum of x and y values for each cluster
13: for j ← 1 :size(PoI list) do
14: SumX(clusterID)← PoI list(j).x
15: SumY (clusterID)← PoI list(j).y
16: end for
17: Find the new x and y values for the centroids
18: for j ← 1 :size(PoI list) do
19: Centroid.x← SumX(clusterID)/number points
20: Centroid.y ← SumY (clusterID)/number points
21: end for
22: end for

or until a termination criteria is met. In Figure 3.11 a simple flowchart can be

seen detailing the algorithm. An example of the algorithm is shown in Figure 3.12,

Figure 3.11: K-means Flowchart [37]

where one can see the agents in navy blue with several points of interest in light blue

36

around them. A random centroid is chosen to be the orange point and each of the

blue points are assigned and pointing to their cluster centre. After optimization the

cluster centres have moved to the gray point in the second part of the image and then

as per the method outlined in this thesis they are assigned to the nearest agent.

Figure 3.12: K-means Sample Iteration

3.5.4 Assignment

The assignment method used for the sake of this methodology is simply an iterative

assignment method. The reason this was chosen is for the simplicity in computational

load for the system. The iterative assignment simply assigns the nearest cluster to

each agent starting with the lowest agent ID to the highest ID and each agent can

only be assigned one cluster at a time.

37

Chapter 4

Experimental Design

In this chapter a review of the different experiments and the parameters used for the

evaluation of the new framework is explored. The experiments are broken into two

different sections: simulation and real-world experiments.

4.1 Simulation

For the simulation portion of the experiments Gazebo [52] is used as the environment.

A few different open source environment models are used along with different size

robotic teams. Average results are recorded in a table in the main body of the thesis.

Full results can be found in Appendix A.

4.1.1 Simulation Environments

In Figure 4.1, one can see the three different environments being used for the tests.

The first is the TB3 World environment this is used for a small team of robots. The

second is the medium size TB3 Stage 4 environment that is more complex than the

first environment. The last is the larger TB3 House environment used to determine

38

(a) TurtleBot3 World (b) TurtleBot3 Stage 4 (c) TurtleBot3 House

Figure 4.1: Simulation Environments

the versatility of the algorithm. The second and third environments are used for

testing variable size robotic teams. All of these environments are from the open

source TB3 Gazebo environment models [45].

4.1.2 Simulation Tests

The types of tests for this framework can be broken into two different categories:

benchmarking tests and scalability tests.

4.1.2.1 Bench-Marking Tests

For the benchmarking tests in this system, there are three different methods evaluated

to create a baseline of whether the proposed framework is performing efficiently.

The first method consists of an uncoordinated experiment where multiple robots

explore the environment but have no communication with each other. This method

serves as a baseline for determining how long it would take an individual robot to

perform the same task on average. The second method utilizes a shared map. The

39

Table 4.1: Benchmarking Experimental Design Parameters

Experiment
Number

Environment Number of
Robots

Starting
Points

1 TB3 World 2 Fig. 4.2(a)
2 TB3 Stage 4 2 Fig. 4.2(b)
3 TB3 Stage 4 3 Fig. 4.2(c)
4 TB3 Stage 4 3 Fig. 4.2(d)
5 TB3 Stage 4 4 Fig. 4.2(e)
6 TB3 House 3 Fig. 4.2(f)

idea behind this approach is to show how MRS exploration would react if only the

map is shared and there is no method to coordinate the exploration between the

different agents. This method serves to show the benefit of the proposed k-means

algorithm for task assignment over having a method with only a shared global map.

The last method considered is the new proposed k-means method.

For the benchmarking tests, each of the methods will be tested for a robotic team

size of n = 2, 3, 4. All three environments found in Figure 4.1 are used in the different

experiments. Each experiment is repeated five times for each method to get an

accurate picture of the repeatability of the results. In Table 4.1 the parameters for

each of the experiments in this section are detailed.

The starting positions for each of the benchmarking experiments are shown in Figure

4.2. To increase the visibility, the starting positions are circled in red.

40

(a) Starting Positions Ex-
periment 1

(b) Starting Positions Ex-
periment 2

(c) Starting Positions Ex-
periment 3

(d) Starting Positions Ex-
periment 4

(e) Starting Positions
Experiment 5

(f) Starting Positions Experi-
ment 6

Figure 4.2: Benchmarking Tests: Starting Positions

41

Table 4.2: Scalability Experiment 1 Design Parameters

Experiment
number

Environment Number of
Robots

Starting Posi-
tions

1.1a TB3 Stage 4 2 far, Fig. 4.3(a)
1.1b TB3 Stage 4 2 close, Fig. 4.3(b)
1.2a TB3 Stage 4 3 far, Fig. 4.3(c)
1.2b TB3 Stage 4 3 close, Fig. 4.3(d)
1.3a TB3 Stage 4 4 far, Fig. 4.3(e)
1.3b TB3 Stage 4 4 close, Fig. 4.3(f)
1.4a TB3 Stage 4 5 far, Fig. 4.3(g)
1.4b TB3 Stage 4 5 close, Fig. 4.3(h)

4.1.2.2 Scalability Tests

The scalability tests seek to determine how scalable the new k-means method is.

These tests are only conducted for the k-means method. The performance of the

method is considered over a large range of robotic team sizes, including robotic team

sizes of n = 2, 3, 4, 5, 7, 9. For each of the robotic team sizes the experiment is re-

peated five times.

For the first set of experiments, the Stage 4 environment is used for four different sizes

of robotic teams and two different starting positions: close and far. The TB3 Stage

4 environment is used in these experiments for robotic team sizes of n = 2, 3, 4, 5.

The starting points are also varied as close and far for these experiments. This is

done to isolate the effects of starting the robots close and far from each other on

the completion time, distance travelled, and quality of the completed merged map.

Table 4.2 outlines the parameters for the different experiments for Experiment 1.

The different starting positions and environments can be seen in Figure 4.3. To in-

crease the visibility, the starting positions are circled in red.

For the second set of experiments, the TB3 House environment is used for robot team

sizes n = 3, 5, 7, 9. The second set of experiments is run so the scalability can be

tested over a much larger environment and determine the effect that the robotic team

size can have versus the size of the environment. Table 4.3 shows the parameters for

the different experiments for Experiment 2.

42

(a) Experiment 1.1a Far (b) Experiment 1.1b Close (c) Experiment 1.2a Far

(d) Experiment 1.2b Close (e) Experiment 1.3a Far (f) Experiment 1.3b Close

(g) Experiment 1.4a Far (h) Experiment 1.4b Close

Figure 4.3: Scalability Experiment 1: Starting Positions

In Figure 4.4 the different starting points for the experiments are noted in the envi-

ronment, starting points are circled in red.

43

Table 4.3: Scalability Experiment 2 Design Parameters

Experiment
number

Environment Number of
Robots

Starting Posi-
tions

2.1 TB3 House 3 Fig. 4.4(a)
2.2 TB3 House 5 Fig. 4.4(b)
2.3 TB3 House 7 Fig. 4.4(c)
2.4 TB3 House 9 Fig. 4.4(d)

(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

(d) Experiment 4

Figure 4.4: Scalability Experiment 2: Starting Positions

44

4.2 Real-World

A set of real-world tests and experiments are run to confirm the findings of the

simulated results. The environment and different tests are detailed in the sections

below.

4.2.1 Real-World Environments

The real-world tests are carried out in two different locations, a hallway and lab en-

vironment. The hallway environment is shown in Figure 4.5, where a view of the

left side and right side of the hall is shown. For these experiments full results are

recorded in the main body of the thesis. The lab environment is shown in Figure 4.6,

(a) Hallway Left (b) Hallway Right

Figure 4.5: Real-World Environment: Hallway [37]

where a picture facing north and south in the environment is shown. The starting

points for both of the environments were the same in relative location to each other.

Each robot is placed 20 cm away from the other robots and the starting locations

were determined in relative locations to the first robot. The starting points for the

45

(a) Lab Environment North (b) Lab Environment South

Figure 4.6: Real-World Environment: Lab

(a) 2 Robots (b) 3 Robots (c) 4 Robots

Figure 4.7: Real-World Tests: Starting Positions

experiments can be seen in Figure 4.7. For each of these tests the results are recorded

for one run. The experiments are broken in two different sections based upon the

environment used.

46

Table 4.4: Hallway Tests Design Parameters

Experiment
number

Environment Number of
Robots

Benchmark Starting
Positions

1 Hallway 2 yes Fig. 4.7(a)
2 Hallway 3 no Fig. 4.7(b)
3 Hallway 4 no Fig. 4.7(c)

4.2.2 Real-World Tests

The real-world tests are explained in the sections below starting with the hallway

environments tests and moving onto the lab environment tests.

4.2.2.1 Hallway Tests

The preliminary tests are carried out in the hallway environment. The tests are

detailed in Table 4.4. In this experiment some of the tests are benchmarked, meaning

performed for all three of the methods: the no coordination, shared map, and k-means

methods. The experiments were carried out for robotic team sizes n = 2, 3, 4. If the

test is conducted for all three of the methods, it is recorded in the column labelled

“Benchmark” this is shown as either “yes” or “no”. Benchmarking was not carried

out for all three robotic team sizes because the hallway environment proved to be too

small for bigger sizes of robotic teams.

The relative starting locations can be seen in Figure 4.7. The placement in the

environment can be seen in Figure 4.5(a).

4.2.2.2 Lab Tests

The tests carried out for the lab environment are detailed in Table 4.5. All of the test

results for this environment were carried out for all three methods. The experiments

were carried out for robotic team sizes n = 2, 3, 4.

The relative starting locations can be seen in Figure 4.7. The placement in the envi-

47

Table 4.5: Lab Tests Design Parameters

Experiment
number

Environment Number of
Robots

Benchmark Starting
Positions

1 Lab 2 yes Fig. 4.7(a)
2 Lab 3 yes Fig. 4.7(b)
3 Lab 4 yes Fig. 4.7(c)

ronment can be seen in Figure 4.6(a).

4.3 Summary

There are two main distinctions in the tests carried out for the validation of the de-

veloped k-means method: the simulated and real-world experiments.

For the simulated experiments two types of tests are performed, the benchmarking

tests and scalability tests. The benchmarking tests are performed to determine the

performance of the method versus two other methods. The diversity of these tests

is maximized in the use of three different simulated environments, four different size

robotic teams (n = 2, 3, 4, 5), and close and far starting locations. The scalability

test seeks to test the limits of the number of robots the method can facilitate and

the effect of far and close starting points on the method. These tests are performed

over a robotic team sizes of n = 2, 3, 4, 5, 7, 9 and in two different environments to

identify trends. Each of the experiments is repeated five times for all of these tests

to determine the repeatability of the results obtained.

The real-world tests seek to validate some of the findings from the simulated experi-

ments. This involves the use of two different environments, the use of three different

robotic team sizes n = 2, 3, 4 and benchmarking with the two other methods. Only

close starting points are considered for the real-world tests due to the increased com-

plexity of close starting points on the system. Each of these experiments is performed

once.

48

Chapter 5

Results and Discussion

In this chapter the results from the experiments as mentioned in Chapter 4 are

recorded. Full results from all the individual runs can be found in Appendix A.

First a review of the simulation results is presented. This is followed by a review of

the real-world results.

5.1 Simulation Results

In this section a review of the different results obtained from the simulations are

discussed, starting with the benchmarking experiments and then the results from the

two scalability experiments.

5.1.1 Benchmarking Tests Results

The benchmarking experiments were completed for various robotic team sizes, in vari-

ous environments, and using close and far starting locations. A review of the different

results for the methods can be seen in the following tables and figures. For each ex-

periment the average time, average distance and standard deviations are recorded.

49

Table 5.1: Benchmarking Experiment 1 Results

Measure No Coordi-
nation

Shared Map K-means

Avg. Time (s) 140.551 140.186 76.960
Std. Time (s) 31.112 27.627 7.462
Avg. Distance (m) 5.542 4.633 2.960
Std. Distance (m) 1.157 1.184 0.569

Figures of the paths taken and merged maps are also shown.

5.1.1.1 Benchmarking Experiment 1 Results

Experiment 1 involved a robotic team size of n = 2 robots. The results from this

experiment are also published in previous work by Goodwin and Nokleby [37]. The

experiments were carried out with all three methods as described in the experimental

design section. The environment and starting points can be seen in Figure 4.2(a).

The results can be seen in Table 5.1. From this table it can be seen that the k-means

method outperforms the two other benchmark methods by far in average distance

and time measures. The new method improves the exploration task with by reducing

the exploration time by a minimum of 45.1% and a reducing the distance travelled

by a minimum of 36.1% compared to the other methods. Additionally, the standard

deviation for the k-means method in both time and distance are significantly smaller

values that the other methods. This means the results for the k-means method are

more repeatable and reliable.

The path comparisons can be seen in Figure 5.1. The different agents’ paths are in

different colours on the maps and the starting points are shown as black circles. It

can be seen that using the k-means method provides a more logical path where one

robot focuses on the top half of the map and the other focuses on the bottom half. It

is also seen that the paths are much shorter than the other methods in comparison.

Figure 5.2 shows the merged maps. As can be seen in the figure, the k-means method

50

(a) No Coordination (b) Shared Map (c) K-Means

Figure 5.1: Benchmarking Experiment 1: Path Comparisons [37]

(a) No Coordination (b) Shared Map (c) K-Means

Figure 5.2: Benchmarking Experiment 1: Merged Maps [37]

provides a much cleaner merged map. This is because less overlap in the map reduces

the amount of error introduced by dead-reckoning.

5.1.1.2 Benchmarking Experiment 2 Results

Experiment 2 was carried out again with a robotic team size of n = 2. However, the

environment was changed and the agents were started farther away from each other

as can be seen in Figure 4.2(b). The average results can be seen in Table 5.2. From

the table it becomes clear again that the proposed k-means method outperforms both

the other methods. The completion time was reduced by a minimum of 43.7% and

the distance travelled was reduced by a minimum of 53.3% compared to the other

methods.

51

Table 5.2: Benchmarking Experiment 2 Results

Measure No Coordi-
nation

Shared Map K-means

Avg. Time (s) 266.865 262.579 147.837
Std. Time (s) 94.090 46.021 28.946
Avg. Distance (m) 11.155 9.776 4.568
Std. Distance (m) 2.674 2.877 0.904

The different paths taken by one run for each of the methods can also be seen in

Figure 5.3. It can be seen that there is a significant improvement in the paths taken

(a) No Coordination (b) Shared Map (c) K-Means

Figure 5.3: Benchmarking Experiment 2: Path Comparisons

by the k-means method. The k-means method promotes keeping the two robots in

two separate halves of the map and the paths taken are much shorter by inspection.

The merged map topics can be seen in Figure 5.4. It can be noted that starting the

(a) No Coordination (b) Shared Map (c) K-Means

Figure 5.4: Benchmarking Experiment 2: Merged Maps

robots farther away from each other seems to introduce more error in the merged

52

Table 5.3: Benchmarking Experiment 3 Results

Measure No Coordi-
nation

Shared Map K-means

Avg. Time (s) 425.300 535.700 174.477
Std. Time (s) 139.165 150.407 22.568
Avg. Distance (m) 11.775 10.377 3.778
Std. Distance (m) 2.879 4.122 1.288

maps than starting them closer together. However, even with this considered there

is a slight improvement in the quality of the merged map observed by the k-means

method. Also, there is a small section missed in the top left corner of the k-means

map, however this may be due to the explore lite algorithm which only recognizes

frontier regions of a certain threshold size.

5.1.1.3 Benchmarking Experiment 3 Results

For Experiment 3, the robotic team size was increased by 1 to a size of n = 3. The

starting points and the environment can be seen in Figure 4.2(c). The average results

can be seen in Table 5.3. It can be seen from the values in this table that the k-means

method outperformed the other methods again with a minimum reduction in com-

pletion time of 59.0% and a minimum reduction of 63.6% in the distance travelled.

The new method shows a significant improvement in the repeatability and reliability

due to the small standard deviation values.

The paths taken for a run of each method are compared in Figure 5.5. As can be seen

in the figure the paths taken by the k-means method are much shorter and provide

better segmentation of the map. The other methods provide a lot of overlap in the

paths taken.

The merged maps can be seen in Figure 5.6. From these maps it becomes clear that

the k-means method provides a more accurate merged map. As in the previous exper-

iment some pieces of the map are missing, again this may be due to the explore lite

53

(a) No Coordination (b) Shared Map (c) K-Means

Figure 5.5: Benchmarking Experiment 3: Path Comparisons

(a) No Coordination (b) Shared Map (c) K-Means

Figure 5.6: Benchmarking Experiment 3: Merged Maps

algorithm setting the minimum threshold values for a frontier region.

5.1.1.4 Benchmarking Experiment 4 Results

In Experiment 4 the same environment was used as in the two previous experiments.

The starting points were farther away from each other as can be seen in Figure 4.2(d).

The results for the experiment can be seen in Table 5.4. As can be seen in the table

the k-means method outperforms the other two methods by far. The method reduces

the completion time a minimum of 52.8% and reduces the distance travelled a mini-

mum of 58.1% compared to the other methods.

The paths are compared for an average run of the simulation in Figure 5.7. As seen

54

Table 5.4: Benchmarking Experiment 4 Results

Measure No Coordi-
nation

Shared Map k-means

Avg. Time (s) 405.903 339.908 160.464
Std. Time (s) 136.791 131.804 35.572
Avg. Distance (m) 10.445 8.965 3.756
Std. Distance (m) 2.878 3.083 0.478

(a) No Coordination (b) Shared Map (c) K-Means

Figure 5.7: Benchmarking Experiment 4: Path Comparisons

in the figure the paths taken by the k-means method are much shorter and provide

better segmentation of the map. There does not seem to be much improvement be-

tween the no coordination and the shared map methods.

In Figure 5.8 the merged map topics can be seen. There is quite an improvement in

(a) No Coordination (b) Shared Map (c) K-Means

Figure 5.8: Benchmarking Experiment 4: Merged Maps

the k-means method merged map as compared to the other methods. It can also be

seen for the k-means method that the quality of the merged map is slightly worse

55

Table 5.5: Benchmarking Experiment 5 Results

Measure No Coordi-
nation

Shared Map K-means

Avg. Time (s) 638.573 1288.532 295.895
Std. Time (s) 180.680 258.532 44.236
Avg. Distance (m) 11.155 11.013 4.226
Std. Distance (m) 2.821 4.445 1.463

than the Experiment 3 merged map in Figure 5.6. This is due to the increased error

when starting the robots farther apart.

5.1.1.5 Benchmarking Experiment 5 Results

In Experiment 5 the number of robots is increased to n = 4. The environment is

the same as the three previous experiments and the robots start off in close posi-

tions. The starting positions can be seen in Figure 4.2(e). In Table 5.5 the average

results are recorded for the three different methods. It can be seen again that the

k-means method far outperforms the other methods. The method outperforms the

other methods with a minimum reduction in completion time of 53.7% and a min-

imum reduction in average distance travelled of 61.6%. The standard deviation for

the k-means method is also much lower meaning the results are more repeatable than

the other methods. A few things to note in these results, there is a spike in the time

needed for the shared map method as compared to the other results. This is hypoth-

esized to be due to the increase in the number of robots and the starting positions

being so close. Also, the shared map method did not finish the exploration task two

out of five runs.

The paths are compared in Figure 5.9. In these figures by inspection it is observed

that the k-means method provides a much more well-organized exploration of the

environment. It also provides much greater segmentation of the map, even with so

many robots starting off close together. As mentioned previously the shared map

56

(a) No Coordination (b) Shared Map (c) K-Means

Figure 5.9: Benchmarking Experiment 5: Path Comparisons

method struggles with the coordination of four robots starting so close as can be seen

in the paths taken.

The merged maps are presented in Figure 5.10. From the merged maps it can be seen

(a) No Coordination (b) Shared Map (c) K-Means

Figure 5.10: Benchmarking Experiment 5: Merged Maps

again that the accuracy of the map is improved using the k-means method. The no

coordination merged map and the shared map methods provide very fuzzy borders

for their maps. By inspection the quality of the k-means merged map is better than

in Figure 5.8 due to the robots starting close together.

57

Table 5.6: Benchmarking Experiment 6 Results

Measure No Coordi-
nation

Shared Map K-means

Avg. Time 1515.485 1169.024 657.644
Std. Time 534.157 361.310 45.388
Avg. Distance 61.649 28.213 20.218
Std. Distance 15.931 16.044 3.797

5.1.1.6 Benchmarking Experiment 6 Results

Experiment 6 was conducted in a much larger environment to test the algorithm in a

more complex exploration task. The starting points for the experiment are shown in

Figure 4.2(f). In Table 5.6 the average results for the experiments are shown. Again

it can be seen that the results of the k-means method show a significant improvement

over the other methods. The k-means method performs the exploration task with

a minimum reduction of 43.7% in the completion time and a minimum reduction of

12.9% in the distance travelled compared to the other methods. The shared map

method performed much more efficiently in this big environment with starting posi-

tions farther away, however, the method did not finish one of the five experiments.

The path comparisons for Experiment 6 can be seen in Figure 5.11. From the paths

(a) No Coordination (b) Shared Map (c) K-Means

Figure 5.11: Benchmarking Experiment 6: Path Comparisons

58

taken by the three different methods it can be clearly seen that the k-means method

takes a much more logical path for the experiment. The shared map method also

performs much better than many of the previous experiments, further confirming the

hypothesis that far starting positions is an easier task for the shared map method.

The merged map topics for Experiment 6 can be seen in Figure 5.12. The merged

(a) No Coordination (b) Shared Map (c) K-Means

Figure 5.12: Benchmarking Experiment 6: Merged Maps

map figures from this experiment are much less accurate than some of the previous

experiments. This is believed to be due to how far the starting points are for this

experiment. However, even with this taken into account, the k-means method does

seem to marginally improve the merged map as compared to the shared map method

and greatly improve the quality compared to the no coordination method.

5.1.2 Benchmarking Tests Discussion

For the benchmarking tests it becomes clear that the k-means method outperforms

the no coordination and shared map methods in average time, distance travelled,

paths taken and merged map accuracy.

In Figure 5.13 a graph of the different time results is shown to compare the differ-

ent methods’ performance over the experiments. The graph shows that the k-means

59

Figure 5.13: Benchmarking Experiments: Average Time Comparisons

method performs better for all of the experiments in completion time. An interesting

note is that the shared map method did not always outperform the no coordination

method. As noted before, the shared map method performs less efficiently when the

agents start closer together as in Experiment 3 and 5.

However, to get a more accurate picture of the performance of the k-means method

another graph is shown in Figure 5.14. In this figure the percentage improvement is

shown for the k-means method. The graph shows that the k-means method improves

the exploration task time by over 40% for all of the experiments and methods. It also

shows that the k-means method tends to show a higher percentage improvement over

the no coordination method for larger robotic teams. For the first two experiments

with a robotic team size of n = 2 the k-means method shows a 45% improvement over

both the methods. However, for robotic teams sizes of n = 3, 4 the percent improve-

ment over the no coordination method jumps to a value of 55-60%. The k-means

method percent improvement over the shared map method varies greatly for the last

four experiments. This is due to the shared map method performing more efficiently

for far starting position experiments.

60

Figure 5.14: Benchmarking Experiments: Percent Improvement K-means Time

The k-means method also outperformed the other methods in average distance trav-

elled by each of the agents. In Figure 5.15 the average distances for each of the

experiments are plotted. From this figure it is easy to see that the k-means method

decreases the distance travelled by each agent substantially on every experiment. The

shared map method and no coordination method are similar in distance travelled by

the individual agents except for in Experiment 6. This is because the map is much

larger and the starting points are farther away. In Experiment 6 the shared map

method performed much better than the no coordination method. Again to further

show the improvement of the k-means method a percent improvement graph is plot-

ted in Figure 5.16 for the average distances. From this figure the k-means method can

also be seen to show significant improvement over the distances for both methods.

For the no coordination method the k-means method reduced the distance travelled

by over 45% for all the experiments and showed around 60-70% improvement for 5

out of 6 of the experiments. For the shared map method the k-means method im-

provement by over 27% for all the experiments and showed a 50-65% improvement

for 4 out of 6 of the experiments.

61

Figure 5.15: Benchmarking Experiments: Average Distance Comparison

Figure 5.16: Benchmarking Experiments: Percent Improvement K-means Distance

The standard deviation of the time and distance results were also considered, as the

standard deviation shows the predictability and repeatability of the results obtained.

62

In Figures 5.17 and 5.18 both the standard deviation for the time and distance results

are shown respectively. In these figures the trends show that the k-means method

Figure 5.17: Benchmarking Experiments: Standard Deviation Time

Figure 5.18: Benchmarking Experiments: Standard Deviation Distance

63

display a much smaller standard deviation in both time and distance measures than

the two other methods presented. The two other methods also seem to have a positive

correlation (an increase in the standard deviation) with the size of the environment;

as the size of the environment is small in Experiment 1, medium in Experiments 2-5,

and large in Experiment 6. The k-means method does not present much of a differ-

ence in standard deviation of the time results for all six experiments. Though the

standard deviation for the distance results shows a small spike when the environment

is changed to the biggest environment in Experiment 6.

Another trend to note in these experiments is the overlap in map area coverage.

In Figure 5.19 a comparison of the merged maps from Experiment 1 of the shared

map and k-means method is shown. By inspection it can be seen that the k-means

(a) Shared Map Robot 1 Map (b) Shared Map Robot 2 Map (c) Shared Map Merged Map

(d) K-means Robot 1 Map (e) K-means Robot 2 Map (f) K-means Merged Map

Figure 5.19: Benchmarking Experiment 1: Map Coverage Comparisons [37]

method decreases the overlap in map area covered. In the shared map method, the

individual robots created two full maps even though they were sharing map informa-

64

tion. So, it can be seen that the k-means algorithm for task assignment decreases

the overlap in area covered. This decrease in overlap of map area covered also seems

to improve the quality of the merged map topic as seen in Figures 5.19(c) and 5.19(f).

5.1.3 Scalability Tests Results

In this section a review of the different experiments carried out to show the scalability

of the system and determine the effect of differing starting points is reviewed. This

sections’ results correspond to Tables 4.2 and 4.3 found in Chapter 4.

5.1.3.1 Scalability Experiment 1 Results

For Experiment 1 the TB3 Stage 4 environment was used in Gazebo, as seen in Figure

4.1(b). The different starting points for the experiments can be seen in Figure 4.3.

Experiment 1 is performed for both close and far starting points for robotic teams

sizes of n = 2, 3, 4, 5.

The results for scalability Experiment 1 can be seen in Tables 5.7 and 5.8, where the

experiment number, number of robots, average time (avg. time), standard deviation

time (std. time), average distance (avg. dist.), and standard deviation distance (std.

dist.) are recorded. In the results section the results are presented in two tables, the

first table for far starting points, the second table for close starting points.

In Table 5.7, the results for scalability Experiment 1a for far starting points can be

seen. For far starting points it can be seen that the average time increases as the

robotic team size increases. This is likely due to the time it takes for the algorithm

and simulation to run on the main computer. Additionally, the standard deviation

also has a slightly positive correlation with the size of the robotic team, which in-

dicates as the robotic team size increases the results are less predictable. However,

65

Table 5.7: Scalability Experiment 1 Results: Far Starting Points

Experiment
Number

Number
of Robots

Avg.
Time (s)

Std.
Time (s)

Avg.
Dist. (m)

Std.
Dist. (m)

1.1a 2 147.837 28.946 4.568 0.904
1.2a 3 160.464 35.572 3.921 0.345
1.3a 4 195.441 46.493 2.859 1.106
1.4a 5 303.777 41.767 2.346 1.100

the average distance travelled by each agent steadily decreases with the increase in

robotic team size, but again the standard deviation increases as the robotic team size

increases.

The merged map topics are shown side-by-side for the four experiments starting far

apart in Figure 5.20. There are no significant changes seen in the quality of the

(a) 2 Robots (b) 3 Robots (c) 4 Robots (d) 5 Robots

Figure 5.20: Scalability Experiment 1a: Merged Maps for Far Starting Points

(a) 2 Robot Paths (b) 3 Robot Paths (c) 4 Robot Paths (d) 5 Robot Paths

Figure 5.21: Scalability Experiment 1a: Paths for Far Starting Points

maps produced by the four different robotic team sizes, but the maps created by a

robotic team size of n = 2 and n = 5 are by inspection the sharpest.

The paths taken by each of the agents are shown for all of the far starting experiments

66

Table 5.8: Scalability Experiment 1 Results: Close Starting Points

Experiment
Number

Number
of Robots

Avg.
Time (s)

Std.
Time (s)

Avg.
Dist. (m)

Std.
Dist. (m)

1.1b 2 216.920 19.240 7.523 1.374
1.2b 3 174.477 22.568 3.777 1.359
1.3b 4 295.895 44.236 4.752 1.533
1.4b 5 309.678 96.259 4.073 1.473

in Figure 5.21. The paths taken by each of the agents by inspection are logical and

provide a good segmentation of the map. For a robotic team size of n = 5, only four

of the five agents moved during the exploration because the robotic team size became

too large compared to the size of the environment.

In Table 5.8, the results for scalability Experiment 1b, close starting points can be

seen. For close starting points the average time decreased from n = 2 to n = 3 robots,

but then increased as the size of the robotic team increased. The standard deviation,

(a) 2 Robots (b) 3 Robots (c) 4 Robots (d) 5 Robots

Figure 5.22: Scalability Experiment 1b: Merged Maps for Close Starting Points

(a) 2 Robot Paths (b) 3 Robot Paths (c) 4 Robot Paths (d) 5 Robot Paths

Figure 5.23: Scalability Experiment 1b: Paths for Close Starting Points

however, steadily increased with the size of the robotic team. The average distance

67

Table 5.9: Scalability Experiment 2 Results

Experiment
Number

Number
of Robots

Avg.
Time (s)

Std.
Time (s)

Avg.
Dist. (m)

Std.
Dist. (m)

1 3 657.644 45.388 19.932 3.999
2 5 737.805 148.070 13.119 2.923
3 7 744.856 187.992 9.035 2.476
4 9 743.499 169.701 5.234 2.037

travelled displayed more of a wave pattern. The standard deviation of the distances

travelled remained fairly constant through all the experiments.

The merged map topics for the four different experiments can be seen in Figure 5.22.

The merged map topics by inspection degrade in quality as the number of robots in

the exploration increase. However, the merged map topic for robotic team size of

n = 2 provides a seamless merged map.

The paths taken by each of the agents is shown for all of the close starting experi-

ments in Figure 5.23. The paths in the figure still provide good segmentation of the

map, even though this is a much more difficult task than when starting from farther

apart.

5.1.3.2 Scalability Experiment 2 Results

For scalability Experiment 2 the larger Gazebo environment was used, as seen in

Figure 4.1(c). This test was performed over robotic team sizes of n = 3, 5, 7, 9. The

results for Experiment 2 are found in Table 5.9. By inspection it can be seen that

the average time and standard deviation of the time for the experiments increases

from n = 2 to n = 3 robots, but remains fairly constant for robotic team sizes of

n = 5, 7, 9. The average distance travelled for each agent decreases significantly with

the increase in robotic team size. The standard deviation of the distance travelled

also slightly decreases with the robotic team size.

The merged map topics for one of the runs for each experiment can be seen in Figure

68

5.24. From the merged map topics it can be seen that merging maps from far starting

(a) 3 Robots (b) 5 Robots (c) 7 Robots (d) 9 Robots

Figure 5.24: Scalability Experiment 2: Merged Maps

points can be a difficult task. By inspection the quality of the maps does not seem

to be much different for the four different experiments.

The paths from the four different experiments are shown in Figure 5.25. From the

(a) 3 Robot Paths (b) 5 Robot Paths (c) 7 Robot Paths (d) 9 Robot Paths

Figure 5.25: Scalability Experiment 2: Paths

paths taken it can be seen for the robotic team size of n = 3 the map is accurately

separated into three horizontal sections. The challenge of segmenting the environ-

ment is greatly increased as the size in robotic team increases, however, the last three

experiments still provide little to no overlap in the paths taken by each of the indi-

vidual agents.

69

5.1.4 Scalability Tests Discussion

In this section a discussion and comparison of some of the results received for scala-

bility Experiment 1 and Experiment 2 are detailed.

5.1.4.1 Scalability Experiment 1 Discussion

For scalability Experiment 1 the average time, average distance, and standard devi-

ations of both time and distance are plotted for close and far starting points. This

is to determine the effect of starting position on the performance of the developed

k-means method.

In Figure 5.26 an average time comparison for Experiment 1 with close and far start-

ing points is shown. From this figure, it can be seen by inspection than starting the

Figure 5.26: Scalability Experiment 1: Average Time Comparison

robots close together is more challenging that starting the robots farther apart in

70

terms of average exploration time. However, the trend with far starting points shows

that the increase in robotic team size seems to increase almost exponentially. For

close starting points, there is a dip in the graph initially from robotic team size of

n = 2 to n = 3. Both close and far starting points tend to perform less efficiently

with robotic team size of greater than n = 3. This is possibly due to the size of the

environment being too small for a robotic team size of greater than n = 3, because

increasing the robotic team size over this number makes the environment too crowded

with obstacles.

Figure 5.27 shows the average distance travelled for each of the agents versus the

number of robots for both close and far starting points. Again it can be concluded

Figure 5.27: Scalability Experiment 1: Average Distance Comparison

that starting the robots far from each other provides an easier exploration task in

both terms of time elapsed as well as distance travelled. The average distance trav-

elled for the far starting experiments provides a linear decrease as the robotic team

size increases. The close starting points, however, show a large decrease in distance

travelled with a robotic team size of n = 3.

The standard deviation for the time is plotted in Figure 5.32. The standard devia-

71

Figure 5.28: Scalability Experiment 1: Standard Deviation Time Comparison

tion for close starting experiments seems to grow almost exponentially on the graph.

For the far starting experiments, the standard deviation for the completion time is

fairly consistent. The standard deviation in the completion time for the close starting

experiments start off with a lower value than for the far starting experiments, but

surpasses the far starting experiments at the robotic team size of n = 4.

The standard deviation for the distance is plotted in Figure 5.29. For close starting

points the standard deviation of the distance travelled stays fairly consistent for the

four robotic team sizes. When considering the far starting points the standard devi-

ation of the distance travelled decreases greatly when the robotic team size is n = 3

and remains close to a value of 1 for the remaining experiments. It is also seen that

the standard deviation of the distance travelled for far starting points is much lower

than for close starting points.

72

Figure 5.29: Scalability Experiment 1: Standard Deviation Distance Comparison

5.1.4.2 Scalability Experiment 2 Discussion

For scalability Experiment 2 the average time, average distance, and standard devia-

tions of both time and distance are plotted to determine the effect of the size of the

robotic team on the performance of the developed k-means method.

The average time was trended on a plot shown in Figure 5.30. It can be seen that the

average time takes a large jump from a robotic team size of n = 3 to n = 5. Though

the average time seems to plateau after the initial jump.

The average distance for the different experiments is also plotted in Figure 5.31. The

average distance travelled by each agent for scalability Experiment 2 seems to have

a fairly linear slope and a negative correlation to the number of robots in the team.

This is a similar trend to scalability Experiment 1 for far starting points as observed

in Figure 5.27. This is also confirmed by inspection when viewing Figure 5.25 where

the average agents path length tends to decrease in size as the number of agents in

the robotic team increases.

The standard deviation of the time is also plotted for Experiment 2 in Figure 5.32.

73

Figure 5.30: Scalability Experiment 2: Average Time

Figure 5.31: Scalability Experiment 2: Average Distance

Experiment 2 displays a similar trend in the standard deviation of the time to the

trend shown in Figure 5.30 for the average time. This means the results become less

74

Figure 5.32: Scalability Experiment 2: Standard Deviation Time

Figure 5.33: Scalability Experiment 2: Standard Deviation Distance

reliable after the robotic team size increases to n = 5, but there is no significant

change for robotic team sizes of n = 5, 7, 9.

75

Table 5.10: Hallway Tests Results

Experiment
Number

Number
of Robots

Method Time
(s)

Avg. Dist.
(m)

1 2 no coordination 151.556 22.764
1 2 shared map 190.939 23.686
1 2 k-means 83.525 10.120
2 3 k-means 98.850 9.822
3 4 k-means 114.655 14.689

Lastly, the standard deviation of the distance travelled is also plotted for the scala-

bility Experiment 2 in Figure 5.33. Similarly to the average distance measures seen

in Figure 5.31, the standard deviation of the distance travelled also decreases as the

robotic team size increases. This means that with a higher size robotic team the av-

erage distance travelled will be more repeatable than with a smaller size robotic team.

5.2 Real-World Results

The following section includes a review of the results for the real-world hallway and

lab tests as detailed in tables 4.4 and 4.5.

5.2.1 Hallway Tests Results

The hallway tests were conducted in the environment shown in Figure 4.5 and were

conducted for robotic team sizes of n = 2, 3, 4. The tests were only benchmarked with

the no coordination and shared map methods for a robotic team size of n = 2. The

results for the experiments are found in Table 5.10. Some of the results in this section

have been published in previous work by Goodwin and Nokleby [37]. From the results

it can be seen that the k-means method greatly outperforms the no coordination and

shared map method in time and average distance measures for Experiment 1. The

k-means method outperforms both other methods reducing the completion time a

76

minimum of 44.9% and reducing the distance travelled by a minimum of 65.5%.

Figure 5.34 shows the merged map topics for the first hallway experiment. This in-

cludes the no coordination, shared map, and k-means methods for a robotic team size

of n = 2. From the merged map topics it can be seen that the k-means map provided

(a) No Coordination (b) Shared Map (c) K-means

Figure 5.34: Hallway Experiment 1: Merged Maps [37]

a more accurate map of the environment as the hallway forms a right angle.

The paths taken by the three methods are also presented for Experiment 1 in Figure

5.35. The starting points for the agents are labelled as a single circle on the map due

(a) No Coordination (b) Shared Map (c) K-means

Figure 5.35: Hallway Experiment 1: Path Comparisons [37]

to the agents beginning very close to each other. As can be seen in the figure, the

77

Table 5.11: Lab Experiment 1 Results

Method Time (s) Avg. Dist. (m)

no coordination 119.973 20.529
shared map 151.578 16.346
k-means 90.344 11.283

k-means method logically separates the hallway into two different sections and sends

the two robots down the different sides of the hallway, as opposed to the two other

methods. Additionally, the paths taken by the k-means method are much shorter by

inspection compared to the no coordination and the shared map methods.

5.2.2 Lab Tests Results

The lab environment is shown in Figure 4.6 and was used to carry out three different

experiments. The experiments were carried out for three robotic team sizes (n =

2, 3, 4) and all three methods were performed for each of the experiments. Recorded

in the tables for each method is the time and average distance travelled by the agents

for one run.

5.2.2.1 Lab Experiment 1 Results

The first experiment was for a robotic team size of n = 2 in the lab environment. In

Table 5.11 the results for each of the different methods are recorded. From the table

it can be seen that the k-means method reduces the time for the exploration task

by a minimum of 25.7% and reduces the average distance travelled by a minimum

of 31.0%. Another interesting note is that the shared map method takes more time

than the no coordination method but the average distance travelled by each agent is

smaller.

In Figure 5.36 the merged map topics for the Experiment 1 are presented. From the

78

(a) No Coordination (b) Shared Map (c) K-means

Figure 5.36: Lab Experiment 1: Merged Maps

merged map topics it can be seen that the no coordination method provides the least

accurate merged map while the shared map and k-means methods seem to perform

similarly by inspection.

The paths for Experiment 1 are shown in Figure 5.37. The approximate starting

(a) No Coordination (b) Shared Map (c) K-means

Figure 5.37: Lab Experiment 1: Path Comparisons

points for the agents are shown as a single circle on the map due to the starting

points being close together for these experiments. From the figures it can be seen

that the k-means method provides the most segmentation of the map by sending one

robot to the left of the environment and one to the right. The shared map method

provides some segmentation as compared to the no coordination method. The figure

shows that the shared map methods inadequate task allocation causes a lot of back

and forth in the agents’ paths.

79

Table 5.12: Lab Experiment 2 Results

Method Time (s) Avg. Dist. (m)

no coordination 123.304 19.676
shared map 145.612 19.527
k-means 86.345 8.790

5.2.2.2 Lab Experiment 2 Results

The second lab experiment used a robotic team size of n = 3. The time and dis-

tance results are recorded in table 5.12. From the table it can be seen that the

k-means method outperforms both methods in time and distance measures. The k-

means method reduced the completion time by a minimum of 30.0% and reduced

the distance travelled by a minimum of 55.0%. The same trend is seen here as seen

previously in Experiment 1 where the shared map method out performs the no coor-

dination method in average distance, but not in time.

The merged maps are presented in Figure 5.38. This time the k-means method shows

(a) No Coordination (b) Shared Map (c) K-means

Figure 5.38: Lab Experiment 2: Merged Maps

(a) No Coordination (b) Shared Map (c) K-means

Figure 5.39: Lab Experiment 2: Path Comparisons

a significant improvement in the quality of the merged map over the no coordination

and shared map methods.

80

Table 5.13: Lab Experiment 3 Results

Method Time (s) Avg. Dist. (m)

no coordination 147.517 24.892
shared map 187.951 18.699
k-means 83.909 9.839

The paths for Experiment 2 taken by each agent are shown in Figure 5.39. From this

figure it is easy to see that the k-means method provides a segmented exploration

and greatly reduces the overlap seen by the shared map method.

5.2.2.3 Lab Experiment 3 Results

For the last of the lab experiments a robotic team size of n = 4 was used. The results

for Experiment 3 are shown in Table 5.13. As seen in the previous experiments the

k-means method outperforms the no coordination and shared map method. This time

the k-means method reduced the completion time by a minimum of 43% and reduced

the distance travelled by a minimum of 47.4%. The same trend as the other two lab

experiments is observed in Experiment 3, the shared map method reduces the average

distance travelled but not the completion time as compared to the no coordination

method.

The merged maps for Experiment 3 can be seen in Figure 5.40. Looking at the merged

(a) No Coordination (b) Shared Map (c) K-means

Figure 5.40: Lab Experiment 3: Merged Maps

maps one can see that the k-means method provides a much cleaner map than the

other methods.

81

The paths taken by each of the methods for Experiment 3 are seen in Figure 5.41.

Again the k-means method shows a significant improvement over the shared map

(a) No Coordination (b) Shared Map (c) K-means

Figure 5.41: Lab Experiment 3: Path Comparisons

method. However, this time the segmentation of the map is not as clean as in the

other experiments. This may be due to the geometry of the environment and the

starting positions used for the experiment.

5.2.3 Real-World Tests Discussion

In this section a discussion of the different results for the real-world tests in the hall-

way and lab environments are detailed.

5.2.3.1 Hallway Tests Discussion

For the hallway tests a review of the performance of the k-means method for the

different size robotic teams considered. The time and average distance is plotted for

the experiments. In Figure 5.42 a graph is shown comparing the time for exploration

versus the number of robots. From the figure it becomes clear for the hallway tests

that the k-means method performed less efficiently in time measures as the robotic

team size became larger.

82

Figure 5.42: Hallways Experiments: Time

Figure 5.43: Hallway Experiments: Average Distance

In Figure 5.43 the average distance travelled by each of the individual agents is plot-

ted for the hallway experiments. In this figure the hallway experiment follows the

83

trend found in other experiments up to this point until the robotic team size became

n = 4. A possible reason for this may be the fact that the hallway environment is

too small to work efficiently for a robotic team size of greater than n = 2.

The hallway experiments were also benchmarked for a robotic team size of n = 2.

The individual robot maps for the shared map and k-means methods are shown in

Figure 5.44. As seen in the figure the shared map method provides a lot more overlap

(a) Shared Map Robot 1 Map (b) Shared Map Robot 2 Map (c) Shared Map Merged Map

(d) K-means Robot 1 Map (e) K-means Robot 2 Map (f) K-means Merged Map

Figure 5.44: Hallway Experiments: Map Coverage Comparisons [37]

in the map area that is covered, in fact Robot 1 completed the entire map by itself.

The k-means method provides much better task allocation and less overlap in the

map area covered creating a much quicker exploration process. The no coordination

method is not included in this discussion because the no coordination method neces-

84

sitates that each agent completes its own individual map.

5.2.3.2 Lab Tests Discussion

For the lab experiments all three of the different methods were performed for three

different sizes of robotic teams. The performance of the three methods is compared in

this section by plotting the time and average distance comparisons for the methods.

In Figure 5.45 the times for the different methods are compared over the different size

robotic teams. The no coordination and shared map methods both trend upwards as

Figure 5.45: Lab Experiments: Time Comparisons

the size of the robotic team goes up. This is the same as the trends seen in all of the

previous simulations and real-world experiments. However, in the lab experiments

the k-means method decreases in time as the size of the robotic team increases.

The average distance for each of the agents is also plotted in Figure 5.46. The average

distance for the no coordination method and the shared map method has a slightly

upward trend as the size of robotic team gets larger. The k-means method also trends

85

Figure 5.46: Lab Experiments: Average Distance Comparisons

slightly downward as the size of the robotic team increases.

5.3 Discussion

In summary, the developed k-means method was tested for simulated and real-world

environments.

The benchmarking experiments were performed over three different environments,

four different robotic team sizes, and with varied starting points. The results for the

benchmarking tests showed the k-means method outperformed the other methods by

reduced the exploration time by over 40% and up to 77% for all of the six experi-

ments. The k-means method resulted in an average of 53% reduction in exploration

time compared to the no coordination method and 55% reduction in exploration time

compared to the shared map method. The k-means method also greatly outperformed

both methods in reducing the average distance travelled by over 25% and up to 67%

86

for all six experiments. The k-means method reduced the distance travelled on av-

erage by 61% compared to the no coordination method and 50% compared to the

shared map method. The k-means method also provided much lower standard devi-

ation values in both time and distance measures proving the method is much more

reliable and repeatable as compared to the no coordination and shared map meth-

ods. The k-means method also resulted in much less overlap in map area coverage as

presented in the text.

For scalability Experiment 1 the results showed that starting the robots close together

proves to be a much more difficult exploration task than starting the robots farther

apart in both time and distance measures. However, the quality of merged maps

increase when the robots are placed closer together to start. The time measures for

far starting points seem to grow exponentially as the robotic team size increases. For

close starting points the time increase is less predictable from the results seen, but

appear to have a positive correlation with the size of the robotic team. The average

distance for both far and close starting points decreases as the size of the robotic

team increases. The standard deviation of the time for far starting points remains

constant at a low value as the robotic team size increases, meaning the results are

very repeatable. The standard deviation of the time for close starting points grows

exponentially as the robotic team size increases meaning the results will vary greatly

as the size in the robotic team increases. The standard deviation of the distance for

the far starting points is lower than for close starting points, but they both seem to

remain more constant throughout the increase in robotic team size.

For scalability Experiment 2 the results showed that the method is scalable to much

larger robotic team sizes. However, the time needed for the exploration increases

greatly before a robotic team size of n = 5 and then remains fairly constant. The

average distance linearly decreases as the robotic team size increases.

The real-world results provide validation to a lot of the simulated experiment obser-

vations. The hallway tests showed that the average time for the exploration increases

linearly as the robotic team size increases. The distance travelled does not decrease

linearly as expected. This may be due to the size of the environment being too small

87

for the robotic team sizes being utilized. The k-means method also outperformed the

other two methods in the hallway tests.

For the laboratory experiments all of the methods were tested for robotic team sizes

of n = 2, 3, 4. The k-means method performed better in all of the experiments than

the no coordination and shared map methods. The k-means method reduced the

exploration time by an average reduction of 33% compared to the no coordination

method and 45% compared to the shared map method. The k-means method reduced

the distance travelled by an average reduction of 54% compared to the no coordina-

tion method and 44% compared to the shared map method. The paths taken for the

k-means approach showed great improvement as compared to the shared map and

no coordination methods. An important note is the time for the k-means method

exploration decreased as the size of the robotic team increased, which is the first time

this trend was observed.

Overall for all of the experiments presented the k-means method showed significant

improvement as compared to the no coordination and shared map methods. The

average time was reduced significantly in both simulated and real-world experiments,

as well as the average distance travelled. The k-means method is proven to be scal-

able through the testing of robotic team sizes of n = 2 to n = 9. The effects of

starting points as either close or far were studied and it was determined that the

closer starting points creates a more difficult exploration in terms of time. However,

the merged map topics are more accurate using close starting points as compared to

far starting points. The k-means method presents a reliable system for segmentation

of a previously unknown map, which decreases overlap in map coverage and in turn

decreases the time and distances travelled required for each exploration task.

88

Chapter 6

Conclusions and Recommendations

for Future Work

6.1 Conclusions

This thesis was created for the IDEaS project developed with the DND to research

the development of effective human-machine cooperation with autonomous systems.

A review of the literature was conducted and it was determined that frontier ex-

ploration is an efficient and time effective method for exploring new environments.

However, the coordination of MRS exploration proved to be a more difficult task. In

the literature a common method for task assignment in MRS is a cost-based anal-

ysis where each robot would be rewarded a goal point based upon presenting the

lowest cost to reach a goal. The cost can be represented in different ways in the

literature. Task assignment is handled either via a centralized, distributed or hybrid

form of communication amongst the agents in the MRS. It was discovered that using

a purely cost-based analysis for task allocation does not always provide an efficient

exploration process. It was determined that segmentation of the map can provide

a good alternative to purely cost-based task allocation scheme. Segmenting a map

89

allows for less overlap in map coverage by the robots in a MRS which leads to less

elapsed time for the exploration task and a smaller distances travelled by each robot.

Providing a method to segment the map without previously knowing the map before-

hand is a difficult task. A k-means method to segment the map is determined to be

a fast and simple approach to segmenting an unknown environment.

A framework was developed using ROS and open source TB3 Burgers. A series of

already developed packages in ROS were used for SLAM, autonomous navigation and

map merging. Explore lite was modified to be used in MRS where each agent will

broadcast points of interest to a topic. A new method called the “assigner” method

was developed to receive these points and redistribute them to the different robots

in the system. The assigner method consists of multiple modules to facilitate this

task. The first is the filtering module. The filtering module filters points of interest

against the already known global map using a neighbourhood sampling method. The

second is the k-means method. The k-means method takes in all unknown points of

interest and clusters them into n clusters, where n is the number of agents. Thirdly an

assignment method is used to assign the clusters using a simple cost based analysis.

Experiments were designed for the testing of this method in both simulated and real-

world environments. For simulations three different environments were used to show

the versatility of the method and two different types of tests were created. The first

tests created were bench-marking tests. The bench-marking tests were developed to

show the improvement of the k-means method over the no coordination and shared

map methods. The no coordination method seeks to provide a baseline value for how

long it would take an individual agent to complete the entire exploration task. The

shared map method seeks to show the effects of sharing a map without adequate task

allocation for MRS exploration. Testing was designed to be performed over six differ-

ent experiments with both close and far starting points for variability. The scalability

tests were designed to showcase the scalability of the system and the effect of starting

location on the performance. Two different environments were used with different

sizes of robotic teams ranging from n = 2 to n = 9 and varied starting points. Real-

world tests were carried out first with preliminary testing in a hallway environment

90

Figure 6.1: Examples of K-means Segmentation of the Map

and secondary testing in a lab environment. Both tests featured different sizes of

robotic teams (n = 2, 3, 4). Most of the real-world experiments were bench-marked

against the no coordination and shared map methods to validate the findings.

The results for the different simulated tests showed that the proposed k-means method

provides good segmentation of a previously unknown map. In Figure 6.1 some ex-

amples from the different experiments are shown. In the figure white dotted lines

are used to show how the map is being segmented for the different agents in the

system. When compared to the other methods in the bench-marking experiments,

the k-means method greatly outperformed both the no coordination and shared map

methods. The k-means method reduced the time needed for the simulated explo-

ration tasks by over 40% for all experiments and up to 70%. The method reduced the

average distance travelled by each robot by over 25% for all experiments and up to

67%. The method also produced a much smaller standard deviation in all of the time

and distance values, proving the method to be much more repeatable and reliable.

The scalability tests proved that the method can be scaled to many different sizes

of robotic teams with tests featuring up to n = 9 robots. The time, however, in-

91

creased as the robotic team size got larger. The distance travelled linearly decreased

as the robotic team size increased. It was also observed that closer starting points

generated more accurately merged maps, but farther starting points resulted in faster

exploration times.

The results for the real-world tests proved the reliability of the proposed method.

The results for the hallway experiments showed improvement over the other methods

for exploration. The k-means method did not perform as well when the robotic team

size increased, as the time and distance travelled increased when the robotic team

became n = 4. This was theorized to be due to the size of the environment being too

small.

The laboratory experiments proved that the k-means method improved the time re-

sults by a minimum of 25% for all experiments and up to 55%. The time taken for

the k-means method exploration task decreased as the robotic team size increased for

the first time in the results. This is a drastic improvement as compared to the other

two methods that increase in time as the robotic team size increases. The average

distance measure for the k-means method decreased as the size of the robotic team

increased, while both the no coordination method and shared map method increase.

The k-means method proves to be a reliable, scalable, and time-efficient exploration

method for MRS. The method performed better in time and distance measures than

the no coordination and shared map methods in every experiment performed.

6.2 Future Work and Recommendations

The developed k-means method has been proven to provide an efficient method for

segmentation of a previously unknown map in real-time. The method faces some

challenges to providing an even better exploration task. A few recommendations for

improving the method are outlined below.

92

The method requires a more efficient cluster assignment method. The current method

used for the purposes of this thesis has each cluster assigned iteratively to the closest

agent, however, there are cases when this leads to agents not being assigned to the

most cost efficient cluster from a global perspective. Methods such as the Hungar-

ian method [31] for task assignment could be implemented to determine better task

assignments. Though this method requires longer computational times, which could

greatly increase the run time of the method in real-time applications.

The next improvement would be to incorporate a quantifiable level of trust displayed

by each of the agents. At times agents could encounter errors in their odometry which

can pose problems when merging the maps into one global representation. If a level

of trust was defined, the central agent could determine if an agent is not displaying an

accurate map representation. On a similar note, a level of trust in each of the agents

could help define if one of the agents lost connection or failed to start. At times

when running simulations different agents would not start when the exploration was

commenced or would get caught on different objects during the exploration task. A

more robust system could determine whether the agents are online and assign the

tasks appropriately while some of the agents are offline.

Another suggestion for future work is to incorporate the use of Unmanned Aerial Ve-

hicles (UAVs) which provide important obstacle information for ground vehicles while

online. UAVs could also be used to help fix dead-reckoning errors for the individual

agents which would improve the accuracy of the merged map topic.

To improve the global map, a graphical map merging technique could be utilized after

finishing the exploration process for a more accurate final merged map.

93

References

[1] J. Forlizzi and C. DiSalvo, “Service robots in the domestic environment: a

study of the roomba vacuum in the home,” in Proceedings of the 1st ACM

SIGCHI/SIGART Conference on Human-robot interaction, 2006, pp. 258–265.

[2] V. Digani, L. Sabattini, C. Secchi, and C. Fantuzzi, “Ensemble coordination

approach in multi-agv systems applied to industrial warehouses,” IEEE Trans-

actions on Automation Science and Engineering, vol. 12, no. 3, pp. 922–934,

2015.

[3] M. Cardona, F. Cortez, A. Palacios, and K. Cerros, “Mobile robots application

against covid-19 pandemic,” in 2020 IEEE ANDESCON, pp. 1–5.

[4] C. Hu, C. Hu, D. He, and Q. Gu, “A new ros-based hybrid architecture for

heterogeneous multi-robot systems,” in The 27th Chinese Control and Decision

Conference. IEEE, 2015, pp. 4721–4726.

[5] A. El Shenawy, K. Mohamed, and H. M. Harb, “Exploration strategies of coordi-

nated multi-robot system: A comparative study,” in IAES International Journal

of Robotics and Automation (IJRA), vol. 7, no. 1, 2018, pp. 48–58.

[6] B. Yamauchi, “Frontier-based exploration using multiple robots,” in Proceedings

of the Second International Conference on Autonomous Agents, 1998, pp. 47–53.

[7] Y. Wang, A. Liang, and H. Guan, “Frontier-based multi-robot map exploration

using particle swarm optimization,” in 2011 IEEE Symposium on Swarm Intel-

ligence, pp. 1–6.

94

[8] J. De Hoog, S. Cameron, and A. Visser, “Role-based autonomous multi-robot

exploration,” in 2009 Computation World: Future Computing, Service Compu-

tation, Cognitive, Adaptive, Content, Patterns, pp. 482–487.

[9] B. Yamauchi, “A frontier-based approach for autonomous exploration,” in 1997

IEEE International Symposium on Computational Intelligence in Robotics and

Automation CIRA’97.‘Towards New Computational Principles for Robotics and

Automation’, pp. 146–151.

[10] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun, and

H. Younes, “Coordination for multi-robot exploration and mapping,” in Pro-

ceedings of the AAAI National Conference on Artificial Intelligence, 2000, pp.

852–858.

[11] A. Bautin, O. Simonin, and F. Charpillet, “Minpos: A novel frontier allocation

algorithm for multi-robot exploration,” in International Conference on Intelli-

gent Robotics and Applications. Springer, 2012, pp. 496–508.

[12] R. Zlot, A. Stentz, M. B. Dias, and S. Thayer, “Multi-robot exploration con-

trolled by a market economy,” in 2002 IEEE International Conference on

Robotics and Automation (Cat. No. 02CH37292), vol. 3, pp. 3016–3023.

[13] R. S. D. Muddu, D. Wu, and L. Wu, “A frontier based multi-robot approach for

coverage of unknown environments,” in 2015 IEEE International Conference on

Robotics and Biomimetics (ROBIO). IEEE, 2015, pp. 72–77.

[14] M. N. Rooker and A. Birk, “Multi-robot exploration under the constraints of

wireless networking,” Control Engineering Practice, vol. 15, no. 4, pp. 435–445,

2007.

[15] M. Corah and N. Michael, “Efficient online multi-robot exploration via dis-

tributed sequential greedy assignment.” in Robotics: Science and Systems,

vol. 13, 2017.

95

[16] N. Mahdoui, V. Frémont, and E. Natalizio, “Cooperative frontier-based explo-

ration strategy for multi-robot system,” in 2018 13th Annual Conference on

System of Systems Engineering (SoSE). IEEE, 2018, pp. 203–210.

[17] J. P. Desai, J. P. Ostrowski, and V. Kumar, “Modeling and control of formations

of nonholonomic mobile robots,” IEEE transactions on Robotics and Automation,

vol. 17, no. 6, pp. 905–908, 2001.

[18] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in

Proceedings of the 14th annual conference on Computer graphics and interactive

techniques, 1987, pp. 25–34.

[19] N. Bouraqadi, A. Doniec, and E. de Douai, “Flocking-based multi-robot explo-

ration,” in National Conference on Control Architectures of Robots. Citeseer,

2009, pp. 1–8.

[20] A. Kumar, S. Sharma, R. Tiwari, and S. Majumdar, “Area exploration by flock-

ing of multi robot,” Procedia Engineering, vol. 41, pp. 377–382, 2012.

[21] G. Li, D. Zhang, and Y. Shi, “An unknown environment exploration strategy

for swarm robotics based on brain storm optimization algorithm,” in 2019 IEEE

Congress on Evolutionary Computation (CEC). IEEE, 2019, pp. 1044–1051.

[22] M. S. Couceiro, R. P. Rocha, and N. M. Ferreira, “A novel multi-robot explo-

ration approach based on particle swarm optimization algorithms,” in 2011 IEEE

International Symposium on Safety, Security, and Rescue Robotics. IEEE, 2011,

pp. 327–332.

[23] A. S. Kumar, G. Manikutty, R. R. Bhavani, and M. S. Couceiro, “Search and

rescue operations using robotic darwinian particle swarm optimization,” in 2017

International Conference on Advances in Computing, Communications and In-

formatics (ICACCI). IEEE, 2017, pp. 1839–1843.

96

[24] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Coordinated multi-

robot exploration,” IEEE Transactions on Robotics, vol. 21, no. 3, pp. 376–386,

2005.

[25] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, and B. Stewart, “Distributed

multirobot exploration and mapping,” Proceedings of the IEEE, vol. 94, no. 7,

pp. 1325–1339, 2006.

[26] A. Pal, R. Tiwari, and A. Shukla, “Multi-robot exploration in wireless environ-

ments,” Cognitive Computation, vol. 4, no. 4, pp. 526–542, 2012.

[27] M. N. Rooker and A. Birk, “Multi-robot exploration under the constraints of

wireless networking,” Control Engineering Practice, vol. 15, no. 4, pp. 435–445,

2007.

[28] M. N. Rooker and A. Birk, “Communicative exploration with robot packs,” in

Robot Soccer World Cup. Springer, 2005, pp. 267–278.

[29] B. P. Gerkey and M. J. Mataric, “Sold!: Auction methods for multirobot coor-

dination,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp.

758–768, 2002.

[30] W. Sheng, Q. Yang, J. Tan, and N. Xi, “Distributed multi-robot coordination

in area exploration,” Robotics and Autonomous Systems, vol. 54, no. 12, pp.

945–955, 2006.

[31] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval Re-

search Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[32] K. M. Wurm, C. Stachniss, and W. Burgard, “Coordinated multi-robot explo-

ration using a segmentation of the environment,” in Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems. IEEE, 2008, pp.

1160–1165.

97

[33] M. Elango, S. Nachiappan, and M. K. Tiwari, “Balancing task allocation in

multi-robot systems using k-means clustering and auction based mechanisms,”

Expert Systems with Applications, vol. 38, no. 6, pp. 6486–6491, 2011.

[34] A. Solanas and M. A. Garcia, “Coordinated multi-robot exploration through un-

supervised clustering of unknown space,” in 2004 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566),

vol. 1. IEEE, 2004, pp. 717–721.

[35] D. Puig, M. A. Garćıa, and L. Wu, “A new global optimization strategy for

coordinated multi-robot exploration: Development and comparative evaluation,”

Robotics and Autonomous Systems, vol. 59, no. 9, pp. 635–653, 2011.

[36] J. Faigl, M. Kulich, and L. Přeučil, “Goal assignment using distance cost in multi-

robot exploration,” in 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems. IEEE, 2012, pp. 3741–3746.

[37] L. Goodwin and S. Nokleby, “A k-means clustering approach to segmentation

of maps for task allocation in multi-robot systems exploration of unknown envi-

ronments,” in Proceedings of the 2022 USCToMM Mechanisms, Machines, and

Mechatronics Symposium, 2022.

[38] H. J. Chang, C. G. Lee, Y. C. Hu, and Y.-H. Lu, “Multi-robot slam with topolog-

ical/metric maps,” in 2007 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 1467–1472.

[39] D. Meier, C. Stachniss, and W. Burgard, “Coordinating multiple robots during

exploration under communication with limited bandwidth,” in Proceedings of the

European Conference on Mobile Robots (ECMR), 2005, pp. 26–31.

[40] J. De Hoog, S. Cameron, and A. Visser, “Selection of rendezvous points for multi-

robot exploration in dynamic environments,” in Proceedings of the International

Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), 2010.

98

[41] K. Konolige, D. Fox, B. Limketkai, J. Ko, and B. Stewart, “Map merging for dis-

tributed robot navigation,” in Proceedings of the IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453),

vol. 1, pp. 212–217.

[42] X. S. Zhou and S. I. Roumeliotis, “Multi-robot slam with unknown initial corre-

spondence: The robot rendezvous case,” in 2006 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pp. 1785–1792.

[43] L. Goodwin and S. Nokleby, “Multi-robot exploration of unknown environ-

ments,” in Proceedings of the 2021 CCToMM Mechanisms, Machines, and

Mechatronics Symposium, 2021.

[44] ROBOTIS, “ROBOTIS E-Manual: TurtleBot3 Burger.” [Online]. Avail-

able: https://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/

#specifications

[45] ROBOTIS, “Turtlebot3.” [Online]. Available: https://github.com/

ROBOTIS-GIT/turtlebot3.git

[46] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, “The office

marathon: Robust navigation in an indoor office environment,” in International

Conference on Robotics and Automation, 2010.

[47] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,”

Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[48] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision

avoidance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33,

1997.

[49] B. Gerkey, “Gmapping.” [Online]. Available: https://github.com/

ros-perception/slam gmapping.git

99

https://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/#specifications
https://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/#specifications
https://github.com/ROBOTIS-GIT/turtlebot3.git
https://github.com/ROBOTIS-GIT/turtlebot3.git
https://github.com/ros-perception/slam_gmapping.git
https://github.com/ros-perception/slam_gmapping.git

[50] J. Hörner, “Map-merging for multi-robot system,” Bachelor’s thesis, Charles

University in Prague, Faculty of Mathematics and Physics, Prague, 2016.

[Online]. Available: https://is.cuni.cz/webapps/zzp/detail/174125/

[51] J. MacQueen et al., “Some methods for classification and analysis of multivariate

observations,” in Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability, vol. 1, no. 14. Oakland, CA, USA, 1967, pp. 281–297.

[52] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source

multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3. IEEE,

pp. 2149–2154.

100

https://is.cuni.cz/webapps/zzp/detail/174125/

Appendix A

Experimental Results

The following section contains all the results for the simulated experiments. Some of

these results were published in earlier work by Goodwin and Nokleby [37].

A.1 Simulation: Benchmarking Tests

In the next sections the experimental results can be see in full detail for all of the

benchmarking experiments. In these tables distance is abbreviated as dist., the section

experiment number corresponds to the table found in Chapter 4, Table 4.1. Some

runs do not finish and have been marked as DNF.

101

A.1.1 Benchmarking Experiment 1

Table A.1: Benchmarking Experiment 1 No Coordination Results

Run Time 1 (s) Time 2 (s) Dist. 1 (m) Dist. 2 (m)

1 126.403 167.765 5.743 6.671
2 148.616 98.265 6.147 4.069
3 156.504 93.814 6.669 3.671
4 181.345 181.351 6.557 5.973
5 107.306 144.136 3.761 6.156

Table A.2: Benchmarking Experiment 1 Shared Map Results

Run Time (s) Dist. 1 (m) Dist. 2 (m)

1 103.979 3.669 3.645
2 125.980 4.684 3.400
3 155.668 5.788 6.004
4 130.691 3.325 5.785
5 184.611 3.592 6.436

Table A.3: Benchmarking Experiment 1 K-Means Method Results

Run Time (s) Dist. 1 (m) Dist. 2 (m)

1 84.411 3.195 2.742
2 78.682 3.257 2.423
3 63.687 3.863 4.037
4 83.215 2.582 2.542
5 74.803 2.501 2.457

102

A.1.2 Benchmarking Experiment 2

Table A.4: Benchmarking Experiment 2 No Coordination Results

Run Time 1 (s) Time 2 (s) Dist. 1 (m) Dist. 2 (m)

1 193.076 389.824 10.924 7.692
2 397.650 347.483 11.656 7.812
3 184.937 305.670 9.686 12.635
4 333.480 186.909 14.358 10.876
5 212.152 117.469 16.620 9.288

Table A.5: Benchmarking Experiment 2 Shared Map Results

Run Time (s) Dist. 1 (m) Dist. 2 (m)

1 268.546 13.074 6.607
2 236.303 15.251 7.659
3 268.303 7.590 9.164
4 339.603 9.850 11.221
5 200.142 10.765 5.953

Table A.6: Benchmarking Experiment 2 K-Means Method Results

Run Time (s) Dist. 1 (m) Dist. 2 (m)

1 197.523 5.321 6.142
2 150.809 5.151 5.563
3 151.410 3.809 4.301
4 127.398 3.254 3.442
5 112.043 4.175 4.518

103

A.1.3 Benchmarking Experiment 3

Table A.7: Benchmarking Experiment 3 No Coordination Results

Run Time 1 (s) Time 2 (s) Time 3 (s)

1 481.186 458.043 323.098
2 436.921 438.895 198.725
3 632.085 326.610 297.228
4 518.516 436.906 196.767
5 616.417 361.164 656.875

Dist. 1 (m) Dist. 2 (m) Dist. 3 (m)

12.425 9.164 9.414
10.631 10.349 8.155
17.727 11.716 8.383
16.625 15.229 8.656
13.101 12.385 12.660

Table A.8: Benchmarking Experiment 3 Shared Map Results

Run Time (s) Dist. 1 (m) Dist. 2 (m) Dist. 3 (m)

1 574.128 9.125 13.326 12.885
2 736.834 11.147 7.955 10.499
3 275.338 8.103 7.597 7.400
4 506.251 13.630 0.266 10.923
5 585.945 20.084 10.700 12.015

Table A.9: Benchmarking Experiment 3 K-Means Method Results

Run Time (s) Dist. 1 (m) Dist. 2 (m) Dist. 3 (m)

1 144.000 4.342 3.740 4.400
2 198.749 5.484 5.293 5.180
3 152.319 4.470 1.028 1.834
4 196.887 2.456 2.859 4.136
5 180.432 5.086 3.011 3.348

104

A.1.4 Benchmarking Experiment 4

Table A.10: Benchmarking Experiment 4 No Coordination Results

Run Time 1 (s) Time 2 (s) Time 3 (s)

1 191.306 356.085 404.429
2 326.141 339.334 350.284
3 663.799 700.625 217.866
4 325.779 460.704 376.063
5 373.672 501.238 501.211

Dist. 1 (m) Dist. 2 (m) Dist. 3 (m)

6.325 9.954 11.963
7.192 9.166 9.692
13.295 12.570 6.831
7.153 12.664 12.998
7.977 16.161 12.734

Table A.11: Benchmarking Experiment 4 Shared Map Results

Run Time (s) Dist. 1 (m) Dist. 2 (m) Dist. 3 (m)

1 255.291 7.587 8.212 7.773
2 544.438 15.831 11.310 9.234
3 296.368 7.625 9.128 7.686
4 430.286 6.515 11.739 14.922
5 173.158 5.371 5.855 5.681

Table A.12: Benchmarking Experiment 4 K-Means Method Results

Run Time (s) Dist. 1 (m) Dist. 2 (m) Dist. 3 (m)

1 97.109 3.467 3.542 2.829
2 150.085 3.667 3.487 3.287
3 177.377 4.041 4.371 4.245
4 201.223 3.883 4.077 2.949
5 176.525 4.354 4.317 3.817

105

A.1.5 Benchmarking Experiment 5

Table A.13: Benchmarking Experiment 5 No Coordination Results

Run Time 1 (s) Time 2 (s) Time 3 (s) Time 4 (s)

1 575.692 692.413 462.168 970.369
2 988.963 368.623 600.941 820.745
3 714.320 840.132 554.255 598.941
4 DNF 426.033 516.71 DNF
5 DNF 469.798 617.07 DNF

Dist. 1 (m) Dist. 2 (m) Dist. 3 (m) Dist. 4 (m)

12.161 10.253 10.736 12.664
18.117 8.454 10.736 12.513
17.413 11.972 8.846 13.006
DNF 10.732 7.168 DNF
DNF 9.427 10.684 DNF

Table A.14: Benchmarking Experiment 5 Shared Map Results

Run Time (s) Dist. 1 (m) Dist. 2 (m) Dist. 3 (m) Dist. 4 (m)

1 856.818 12.421 9.700 7.195 8.156
2 1160.073 19.161 8.009 6.158 7.750
3 1352.023 9.463 10.920 4.631 15.626
4 1492.512 6.383 12.572 9.600 16.498
5 1581.236 16.859 11.000 7.514 20.634

Table A.15: Benchmarking Experiment 5 K-Means Method Results

Run Time (s) Dist. 1 (m) Dist. 2 (m) Dist. 3 (m) Dist. 4 (m)

1 217.826 3.611 3.031 3.143 3.397
2 323.279 6.335 1.832 1.331 2.311
3 322.528 6.456 5.721 5.292 3.916
4 339.075 6.260 5.781 5.231 4.578
5 276.768 4.761 3.733 3.757 4.039

106

A.1.6 Benchmarking Experiment 6

Table A.16: Benchmarking Experiment 6 No Coordination Results

Run Time 1 (s) Time 2 (s) Time 3 (s)

1 1026.363 2214.398 1210.414
2 1111.643 1534.935 1589.646
3 1080.655 810.825 1341.455
4 1050.525 1956.607 2515.277
5 1210.405 2550.222 1528.958

Dist. 1 (m) Dist. 2 (m) Dist. 3 (m)

43.947 79.565 52.610
43.941 62.375 68.828
53.601 38.244 67.877
45.541 73.120 93.870
56.403 86.298 58.519

Table A.17: Benchmarking Experiment 6 Shared Map Results

Run Time (s) Dist. 1 (m) Dist. 2 (m) Dist. 3 (m)

1 DNF 21.612 DNF 16.036
2 1168.062 24.003 48.090 18.546
3 604.339 25.262 13.582 20.986
4 1599.038 25.929 65.692 17.883
5 1304.657 22.475 58.781 16.106

Table A.18: Benchmarking Experiment 6 K-Means Method Results

Run Time (s) Dist. 1 (m) Dist. 2 (m) Dist. 3 (m)

1 631.512 21.020 19.260 18.296
2 590.789 16.514 18.589 19.937
3 661.409 25.296 17.625 20.946
4 678.239 23.091 23.842 26.961
5 726.270 22.902 11.181 17.806

107

A.2 Simulation: Scalability Tests

In the next sections the experimental results can be seen in full detail for all of

the scalability experiments. In these tables distance is abbreviated as dist., the test

number and experiment number correspond to the tables found in Chapter 4, tables

4.2 and 4.3.

A.2.1 Scalability Experiment 1.1

Table A.19: Scalability Experiment 1.1a K-means Results Far Start

Run Time (s) Dist. 1 (m) Dist. 2 (m)

1 197.523 5.321 6.142
2 150.809 5.151 5.563
3 151.410 3.809 4.301
4 127.398 3.254 3.442
5 112.043 4.175 4.518

Table A.20: Scalability Experiment 1.1b K-means Results Close Start

Run Time (s) Dist. 1 (m) Dist. 2 (m)

1 180.500 5.526 6.568
2 235.172 7.361 10.047
3 223.119 7.983 7.403
4 229.276 7.185 8.096
5 216.920 5.668 9.390

108

A.2.2 Scalability Experiment 1.2

Table A.21: Scalability Experiment 1.2a K-means Results Far Start

Run Time (s) Dist. 1 (m) Dist. 2 (m) Dist. 3 (m)

1 97.109 3.467 3.542 2.829
2 150.085 3.667 3.487 3.287
3 177.377 4.041 4.371 2.949
4 201.223 3.883 4.077 2.949
5 176.525 4.354 4.317 3.817

Table A.22: Scalability Experiment 1.2b K-means Results Close Start

Run Time (s) Dist. 1 (m) Dist. 2 (m) Dist. 3 (m)

1 144.000 4.342 3.740 4.400
2 198.749 5.484 5.293 5.180
3 152.319 4.470 1.028 1.834
4 196.887 2.456 2.859 4.136
5 180.432 5.086 3.011 3.348

A.2.3 Scalability Experiment 1.3

Table A.23: Scalability Experiment 1.3a K-means Results Far Start

Run Time (s) Dist. 1 (m) Dist. 2 (m) Dist. 3 (m) Dist. 4 (m)

1 178.576 3.209 2.940 0.072 0.651
2 162.647 3.200 2.866 1.144 0.641
3 261.701 2.502 5.040 3.203 2.979
4 137.542 1.150 1.577 1.067 0.000
5 236.738 4.164 1.939 3.874 3.018

Table A.24: Scalability Experiment 1.3b K-means Results Close Start

Run Time (s) Dist. 1 (m) Dist. 2 (m) Dist. 3 (m) Dist. 4 (m)

1 217.826 3.611 3.031 3.143 3.397
2 323.279 6.335 1.832 1.331 2.311
3 322.528 6.456 5.721 5.292 3.916
4 339.075 6.260 5.781 5.231 4.578
5 276.768 4.761 3.733 3.757 4.039

109

A.2.4 Scalability Experiment 1.4

Table A.25: Scalability Experiment 1.4a K-means Results Far Start

Run Time (s) Dist. 1 (m) Dist. 2 (m)

1 260.000 4.193 3.637
2 283.483 1.845 3.250
3 376.861 1.517 4.537
4 321.769 1.647 4.622
5 276.773 2.565 2.054

Dist. 3 (m) Dist. 4 (m) Dist. 5 (m)

1.355 2.240 2.761
1.383 1.936 2.412
1.832 2.250 2.943
1.508 2.782 2.985
0.000 0.706 1.692

Table A.26: Scalability Experiment 1.4b K-means Results Close Start

Run Time (s) Dist. 1 (m) Dist. 2 (m)

1 329.303 4.626 3.073
2 349.650 4.405 4.521
3 549.251 3.982 5.840
4 278.461 5.034 3.763
5 446.723 4.127 6.698

Dist. 3 (m) Dist. 4 (m) Dist. 5 (m)

3.941 1.603 3.086
4.688 0.504 2.953
5.566 1.644 5.144
4.425 4.217 2.521
3.363 5.904 6.186

110

A.2.5 Scalability Experiment 2.1

Table A.27: Scalability Experiment 2.1 K-means Results

Run Time (s) Dist. 1 (m) Dist. 2 (m) Dist. 3 (m)

1 631.512 21.020 19.260 18.296
2 590.789 16.514 18.589 19.937
3 661.409 25.296 17.625 20.946
4 678.239 23.091 23.842 26.961
5 726.270 22.902 11.181 17.806

A.2.6 Scalability Experiment 2.2

Table A.28: Scalability Experiment 2.2 K-means Results

Run Time (s) Dist. 1 (m) Dist. 2 (m)

1 498.990 9.541 7.223
2 955.145 17.910 15.414
3 769.694 15.782 8.896
4 778.879 15.032 13.905
5 686.317 13.078 13.030

Dist. 3 (m) Dist. 4 (m) Dist. 5 (m)

9.472 8.463 7.038
16.236 14.358 15.122
11.905 14.625 14.525
13.383 14.805 15.523
13.636 15.706 13.358

111

A.2.7 Scalability Experiment 2.3

Table A.29: Scalability Experiment 2.3 K-means Results

Run Time (s) Dist. 1 (m) Dist. 2 (m) Dist. 3 (m)

1 986.417 10.088 7.863 14.642
2 669.178 9.362 8.676 7.233
3 533.133 7.349 6.949 8.623
4 585.089 8.121 6.771 7.757
5 950.463 8.527 10.903 12.461

Dist. 4 (m) Dist. 5 (m) Dist. 6 (m) Dist. 7 (m)

12.268 6.609 13.939 12.692
8.604 8.125 7.200 9.127
8.188 8.007 7.230 9.347
7.580 4.822 3.854 7.903
11.481 12.287 8.313 13.328

A.2.8 Scalability Experiment 2.4

Table A.30: Scalability Experiment 2.4 K-means Results

Run Time (s) Dist. 1 (m) Dist. 2 (m) Dist. 3 (m) Dist. 4 (m)

1 841.843 3.864 4.260 6.780 1.682
2 839.619 8.658 7.397 8.893 7.586
3 540.166 3.411 4.238 4.763 3.984
4 952.505 7.746 8.113 9.146 6.941
5 543.364 4.406 3.767 4.201 3.555

Dist. 5 (m) Dist. 6 (m) Dist. 7 (m) Dist. 8 (m) Dist. 9 (m)

5.867 4.852 6.143 3.230 5.880
5.547 4.631 5.714 5.844 5.262
3.301 1.962 3.147 2.877 3.244
6.316 7.530 7.423 7.532 9.209
1.980 3.531 3.874 3.406 3.862

112

	Thesis Examination Information
	Abstract
	Author's Declaration
	Statement of Contributions
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	IDEaS Project Outline and Goals
	Thesis Problem Statement and Goals
	Scope
	Summary of Contributions
	Thesis Outline

	Literature Review
	Communication Architectures
	Centralized Architecture
	Distributed Architecture
	Hybrid Architecture

	Exploration Methods
	Frontier Exploration
	Utility-Based Methods
	Role-Based Methods
	Swarm-Based Methods

	Utility Model
	Cost
	Utility
	Task Assignments

	Map-Merging
	Online Map-Merging Using a Central Server
	Online Map-Merging Using Distributed Methods
	Online Map-Merging Using Hybrid Methods
	Unknown Initial Positions

	Summary

	Methodology
	Framework Overview
	Open Source Hardware
	Open Source Packages
	Navigation Stack
	SLAM
	Map Merging

	Exploration Method
	Exploration Assignment
	Overview of the Assigner Node
	Filtering Method
	K-means Method
	Assignment

	Experimental Design
	Simulation
	Simulation Environments
	Simulation Tests
	Bench-Marking Tests
	Scalability Tests

	Real-World
	Real-World Environments
	Real-World Tests
	Hallway Tests
	Lab Tests

	Summary

	Results and Discussion
	Simulation Results
	Benchmarking Tests Results
	Benchmarking Experiment 1 Results
	Benchmarking Experiment 2 Results
	Benchmarking Experiment 3 Results
	Benchmarking Experiment 4 Results
	Benchmarking Experiment 5 Results
	Benchmarking Experiment 6 Results

	Benchmarking Tests Discussion
	Scalability Tests Results
	Scalability Experiment 1 Results
	Scalability Experiment 2 Results

	Scalability Tests Discussion
	Scalability Experiment 1 Discussion
	Scalability Experiment 2 Discussion

	Real-World Results
	Hallway Tests Results
	Lab Tests Results
	Lab Experiment 1 Results
	Lab Experiment 2 Results
	Lab Experiment 3 Results

	Real-World Tests Discussion
	Hallway Tests Discussion
	Lab Tests Discussion

	Discussion

	Conclusions and Recommendations for Future Work
	Conclusions
	Future Work and Recommendations

	Experimental Results
	Simulation: Benchmarking Tests
	Benchmarking Experiment 1
	Benchmarking Experiment 2
	Benchmarking Experiment 3
	Benchmarking Experiment 4
	Benchmarking Experiment 5
	Benchmarking Experiment 6

	Simulation: Scalability Tests
	Scalability Experiment 1.1
	Scalability Experiment 1.2
	Scalability Experiment 1.3
	Scalability Experiment 1.4
	Scalability Experiment 2.1
	Scalability Experiment 2.2
	Scalability Experiment 2.3
	Scalability Experiment 2.4

