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ABSTRACT 

Design and Development of a Machine Learning-Based Framework for Phishing 

Website Detection

Lizhen Tang 

Ontario Tech University, 2022 

 Advisor: 

 Dr. Qusay H. Mahmoud

Phishing is a social engineering cyber attack to steal personal information from users. 

Attackers solicit individuals to click phishing links by sending them emails or social media 

text messages with deceptive content. With the development and applications of machine 

learning technology, solutions for detecting phishing links have emerged. Subsequently, 

performance optimization achieved by machine learning-based approaches were 

predominantly limited to the datasets used to train the model, such as few open source 

datasets, poorly characterized data points, and outdated datasets. This thesis introduces a 

framework based on multiple phishing detection strategies, which are whitelist, blacklist, 

heuristic rules, and machine learning models, to improve accuracy and flexibility. In the 

machine learning-based method, three traditional models and three deep learning models 

are trained and compared the performance of their test results, and concluded that the 

Gated Recurrent Units (GRU) model achieved the highest accuracy of 99.18%. 

Furthermore, in the expert-driven heuristic rule-based strategy, seven new HTML-based 

features are proposed. Finally, a prototype has been developed, with a browser extension 

to display detection results in real-time.  

Keywords: Phishing Detection; Machine Learning; Heuristic Strategy; Chrome Extension 
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Chapter 1 

Introduction 

Internet services have brought tremendous changes to people's lives. Most online services 

manage users through a membership system, and individual users need to register and log 

in to obtain these personalized services. Due to the pandemic that started at the end of 2019, 

many traditional industries have shifted from offline services to online services, such as 

catering and retail. Users of the Internet or Netizens have much sensitive information 

hosted on their devices or in the cloud, such as usernames, account names, passwords, 

privacy questions, personal information, and credit card information. Cybercriminals 

obtain this information illegally and forge users to carry out illegal activities on the Internet. 

The wide adoption of the Internet and network attack techniques have also changed rapidly, 

which has brought many challenges to network security. According to the methods and 

forms of network attacks, cybersecurity issues are mainly divided into Denial of Service 

(DoS), Man-in-the-middle (MitM), Structured Query Language (SQL) injection, zero-day 

exploit, Domain Name System (DNS) tunnelling, phishing, and malware categories. 

Phishing is a cyberattack that uses social engineering to induce people to click on 

phishing links to intercept sensitive information to steal funds. Social engineering is a soft 

skill to trick people into visiting phishing links [1]. They abuse users' kindness and trust in 

brands and institutions to fabricate false information and guide them to phishing websites. 

These phishing websites are often created by imitating regular URLs with essence 

elements, such as text descriptions, logos and companies' names. Attackers are best at 
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forging web pages that require users to submit personal data, such as login pages, payment 

pages, and password modification pages.  

According to various professional phishing analysis reports, phishing has shown an 

upward trend in recent years, and the number of attacks is enormous. Phishing attacks 

reached an all-time high in July 2021, with APWG stating a cumulative total of 260,642 

attacks that month [3]. Furthermore, the 2020 annual report from the Internet crime 

complaint center showed that the economic loss caused by phishing attacks was over $54 

million [4]. Phish Lab's 2021 quarterly report [2] shows that phishing attackers still mainly 

use emails as bait, and most emails contain phishing links. The methods of staging phishing 

sites are still diversified, and most of them use free services and tools. However, in the 

third quarter, paid domain registrations increased significantly. In addition, more than 65 

percent of phishing sites use Legacy gTLDs. For example, more than half of the phishing 

URLs are .com domains, ranking at the top. Phishing attackers usually buy people basic 

information from dark net markets, such as name, age, mobile phone number, and 

occupation. As can be seen from the report data, telecommunication and ISP data still have 

the highest transaction volume on Dark websites. Then they integrate basic personal 

information in spoof emails to gain trust. 

Anti-phishing strategies involve educating netizens and technical defence. 

Identifying the phishing website is an efficient method in the phishing life cycle.  The list-

based solution is about filtering a URL with a collection of legitimate URLs or a set of 

phishing links. These approaches effectively prevent the reuse of the same phishing website 

URL, reducing the number of affected users and losses. Rule-based methods are inspired 

by security expert experience to determine whether a webpage is phishing with rules and 
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phishing characteristics extracted from URL and web page content. Machine learning-

based approaches require a batch of data points to train. There are various traditional 

models trained with structured features, such as naïve Bayes, linear regression, logistic 

regression, decision tree, support vector machine (SVM), K-nearest neighbour (k-NN), and 

random forest (RF).  In addition, deep learning-based solutions are skillful in handling 

unstructured data, such as text, images, etc. 

The performance optimization of the machine learning-based solution is mainly to 

improve the quality of training data, such as mining new phishing risk characteristics, 

increasing the amount of data, and cross-training tests with different source data sets.  

Therefore, the framework presented in this thesis supports access to multiple data sources, 

creating datasets with mixed sources, flexibly setting the size of data sets, and updating 

data daily.  In addition, the gated recurrent units (GRU) model obtained the highest 

accuracy after comparing the results of different models. Finally, a web browser extension 

is implemented as a client-side tool to detect phishing risks in real-time. 

1.1 Contributions 

The main contribution of this thesis is a framework for detecting phishing websites based 

on multiple strategies. The vision of this thesis is that the framework designed, 

implemented, and evaluated will serve as a prototype for building a real-time phishing 

detection tool. To this end, the contributions of this thesis are: 

• Design of a framework for phishing detection based on multiple strategies. 

• Implementation of a Chrome extension for capturing web pages’ content and 

displaying phishing risk information. 
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• Development of a web application for receiving users’ feedback and providing 

HTTPS service. 

• Design and development of three traditional machine learning models and three 

deep learning models to obtain the best performance model. 

• Introduction of seven new features by empirical analysis of phishing characteristics 

based on HTML tags applying to the heuristic method. 

1.2 Thesis Outline 

The remainder of this thesis is structured as follows. Chapter 2 surveys the related work 

discussing important background information on the concepts relevant to this work. 

Chapter 3 describes the design of the phishing detection framework explaining the role of 

each module. Chapter 4 describes the implementation of the framework. Chapter 5 

discusses the evaluation of the framework. Chapter 6 concludes the thesis and offers ideas 

for future work. 
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Chapter 2 

Background and Related Work  

This chapter provides information on the phishing background by explaining a phishing 

attack life cycle and several anti-phishing methods. In addition, this chapter presents the 

topic of detecting phishing websites, followed by various proposed solutions and 

frameworks for achieving high performance.  Following this, several main opportunities 

and challenges of phishing detection are introduced.  

2.1 Phishing 

Phishing is a typical cyberattack performed by sending an email or a message to deceive 

recipients by visiting a bogus page and then collecting users’ sensitive data, such as 

usernames, passwords, and credit card numbers, for financial gain [71].  

Figure 2.1 demonstrates the phishing life cycle. First, an attacker creates a phishing 

website similar to a legitimate website. On the one hand, attackers used spelling mistakes, 

similar alphabetic characters, and other methods to forge the URL of the legitimate website, 

especially the domain name and network resource directory. For example, the link 

“https://aimazon.amz-z7acyuup9z0y16.xyz/v” (accessed on 9 May 2021) imitates 

https://www.amazon.com. Although users on the computer can see the URL address by 

moving the mouse to the clickable link, it is difficult for the average user to identify these 

URLs with the naked eye and memory as imitating legitimate URLs. 

On the other hand, imitation of web content is also a critical point. Typically, 

attackers use scripts to obtain logos, layouts, and text from genuine web pages. Form 
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submission pages that require user input of sensitive information are most often faked by 

cybercriminals, such as login pages, payment pages, and find password pages. 

 

Figure 2.1: Phishing life cycle 

The second step is sending an email that firmly guides readers to click on the link. 

The phishing links are not only sent by email but also by SMS, voice message, QR codes, 

and spoof mobile applications [5]. With the widespread use of smartphones and social 

media, the number of channels for criminals to spread false information has increased. 

Through these channels, text and pictures are usually used to trick readers into clicking on 

a link. For example, an attacker imitates a customer service representative of a 

telecommunications company to send an email urging users to pay to prevent downtime. 

Although scam emails are sent randomly, there is always a small number of users with 

weak defensive awareness who will be deceived. In step two, the attacker applied social 

engineering methods, including psychological manipulation, to trick users into making 

security mistakes. Perpetrators are good at building a sense of fear and urgency and gaining 

the user’s trust via text messages. Afterward, the user clicks the link that will direct them 
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to open a fake website. Particularly, real URL strings are hidden before redirecting to web 

browsers on mobile phones. 

The next step is collecting personal information on the phishing website, which 

looks like a real company or organization’s web page, by using a similar logo, name, user 

interface design, and content. When users submit sensitive information to web servers that 

attackers build, criminals will receive all the data. The last step is stealing the user’s 

account funds by using the victims’ real information to imitate their requests on real 

websites. Some individuals use the same usernames and passwords for multiple websites 

allowing the attacker steals multiple accounts from the victim. Some phishers use stolen 

data for other criminal activities. Since the first phishing technique was recorded in a paper 

in 1987 [67], phishing methods have changed with the development of the Internet. For 

example, when online payment became popular, attackers began to target online payment 

systems. According to the 2020 Internet Crime Report, the Internet Crime Complaint 

Center (IC3) received 791,790 cyberattack complaints, of which phishing scams accounted 

for approximately 30%, becoming the most complained about the type of cybercrime and 

causing more than USD 54 million in losses [2].  

2.2 Anti-Phishing 

There are five steps before an attacker steals money from the victim’s account or uses the 

information for other attacks (Figure 2.1). Blocking any step could stop a phishing attack. 

Four technologies are listed below. 
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2.2.1. Web Scraping 

For step one, although it is hard to prevent perpetrators from creating web pages, techniques 

could increase their costs. Attackers will use scripts to write crawlers to obtain legal web 

pages’ content automatically and then intercept useful information and copy it to phishing 

web pages. Therefore, legitimate websites could prevent web scraping by implementing 

several techniques concerning obfuscation, using CSS sprites to display essential data, and 

replacing text with images. 

2.2.2. Spam Filter 

Spam filtering techniques are used to identify unsolicited emails before the user reads or 

clicks the link. Some mainstream email services have integrated spam filtering 

components, such as Gmail, Yahoo, Outlook, and AOL. The initial filters relied on 

blacklists or whitelists and empirical rules. With the development of artificial intelligence 

technology, some filters also integrate intelligent prediction models based on machine 

learning to filter out spam that is not on the list. For example, Gmail could block 

approximately 100 million extra spam emails daily with the machine learning-based spam 

filter [6]. 

2.2.3. Second Authorization Verification 

After the attacker obtains the user’s sensitive data, the next step is to use the data to log 

into the legitimate website, operate the account, and steal funds. Therefore, when the 

website detects that the IP address and device information of the user who is logging in 

does not match the commonly used information, it becomes crucial to add steps to verify 
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the authenticity of the user. Usually, the extra verifications are dynamic and biological, 

such as facial movement, expression recognition, or voiceprint recognition. 

2.2.4. Detecting Phishing Websites 

When users visit a phishing web page that looks like a legitimate website, many people do 

not remember the legitimate website’s domain name, particularly for some start-ups, so 

users do not recognize the phishing website based on the URL. Some web browsers 

integrate a security component to detect phishing or malware sites, such as Chrome, which 

will display warning messages when one visits an unsafe web page. Google launched 

Google Safe Browsing in 2007, and it has been integrated into many Google products, such 

as Gmail and Google Search. Google Safe Browsing is a security component based on a 

blacklist that contains malware or phishing URLs [7]. In addition, there are several web 

browser extensions for detecting phishing websites available. However, the blacklist or 

whitelist-based solutions are invalid for unknown phishing websites. Fortunately, the rapid 

development of artificial intelligence technology has brought new tools and solutions to 

detecting phishing attacks. A predictive model based on machine learning can identify 

phishing links that are not on the whitelist and circumvent existing rules. 

2.3 Related work 

This section provides details on the related work done on detecting phishing websites. The 

methodologies of detecting phishing websites are developed and are divided into four 

categories: list-based, heuristic, machine learning-based and deep learning-based methods.  
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2.3.1 List-Based Approaches 

The list-based method includes a white-list filter and a black-list block. A white list is a 

collection of legitimate URLs. A blacklist is a set of phishing websites, which can be 

implemented in two ways: establishing a local database and crawling data from other 

phishing data sources; invoking a third-party list service. The list-based approach is 

efficient and accurate. Keeping the list up to date can effectively control multiple victims 

of the same phishing link attack. The drawback is it is impossible to detect zero-day 

phishing links. 

Jain and Gupta proposed an auto-updated, whitelist-based approach to protect 

against phishing attacks on the client side in 2016. The experimental results demonstrate 

that it achieved 86.02% accuracy and less than a 1.48% false-positive rate, which indicates 

a false warning for phishing attacks. The other benefit of this approach is the fast access 

time, which guarantees a real-time environment and products [8].  

2.3.2 Heuristic Methods 

A rule-based heuristic strategy is about extracting features from a URL and HTML source 

code and creating several rules to infer phishing risks. This approach is driven by expert 

experiences. Tan et al. introduced a phishing detection approach named Phish WHO, which 

consists of three phases. First, it obtains identity keywords by a weighted URL token 

system and ensembles the N-gram model from the page’s HTML. Secondly, it puts the 

keywords into mainstream search engines to find the legitimate website and the legal 

domain. Next, it compares the legal domain and the target website’s domain to determine 

if the target website is a phishing website or not [9]. Chiew et al. used a logo image from 

the website to distinguish if the website was legal [10]. In this paper, the authors extracted 
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a logo from web page images by support vector machine (SVM) classifier and then queried 

the domain via the Google search engine with a logo as a keyword. Therefore, some 

researchers also called this category search engine-based approach. 

2.3.3 Machine Learning-Based Solutions 

Machine learning-based countermeasures are proposed to address dynamic phishing 

attacks with higher accuracy performance and lower false-positive rates than other 

methods. Consequently, the machine learning approach consists of six components: data 

collection, feature extraction, model training, model testing, and predicting. Feature 

extraction and selection are the foundation for many solutions. Table 2.1 lists the widely 

used feature categories as well the source of features and applicable models and techniques.  

Xiao et al. [58] proposed a hybrid model to detect phishing URLs. They used a 

regular Convolutional Neural Network (CNN) to extract features from a URL string. 

Furthermore, they applied multi-head self-attention (MHSA) technology to figure out the 

relationship among characters, then obtain the weights of features. The experimental results 

demonstrated that the CNN-MHSA model obtained the highest accuracy of 99.84%. 

Sahingoz et al. [59] applied Natural Language Processing based features and word-level 

features into several machine learning models in terms of a decision tree, Support Vector 

Machine (SVM), k-nearest neighbour algorithm, AdaBoost algorithm, Naïve Bayes, and 

Random Forest. After a vectorization process, they extracted 1701 words features among 

73,375 URLs. In addition, they create 40 Natural Language Process (NLP) features based 

on a URL string. In the NLP phase of Sahingoz et al. work, a URL was separated into 

several words by special characters, such as ".","/", then based on the analysis of these 

words, these 40 attributes were derived, such as the longest number of vocabulary 
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characters, the shortest number of word characters, and the number of second-level domain 

names. After executing a feature selection, 104 features were left. The comparable results 

of their research showed that the random forest model obtained the highest performance. 

Table 2.1. Widely used feature categories 

Category Source Applicable model 

or Technology 

A sequence of characters URL string Deep Neural 

Networks 

Words vectors URL string All1 

Vocabulary statistical features URL string All1 

Symbols and components of the 

URL 

URL string All1 

Website credibility features: 

webpage rank, domain registration 

information, Google index 

HTML & third-party 

services 

All1 

HTML tag statistical features HTML All1 

Images in the webpage source 

code 

HTML Computer vision 

All1: SVM, Random forest, Logistic regression, Decision tree, CNN, DNN, RNN. 

 

In 2021, Ozcan et al. [60] used these 40 NLP features to train their hybrid model. 

They combined a Deep Neural Network (DNN) model and a Bidirectional Long Short-
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Term Memory (BLSTM) model to expose phishing websites. Furthermore, they extracted 

character-level features from a URL and fed them to a character embedding layer in the 

LSTM architecture. Finally, they achieved a high accuracy of 98.79% with the complex 

hybrid deep learning model. Odeh et al. [61] extracted and selected 30 features based on 

URL strings and web content. The features are classified into four categories in terms of 

the address bar, abnormal, HTML & JavaScript, and domain-based. Some features depend 

on third-party services. On the testing process with a 30% data set, the AdaBoost model 

obtained an accuracy of 98.9%. 

Liu and Fu [62] introduced a novel unsupervised machine learning algorithm to 

classify websites into benign and phishing. They created a web link network with nodes 

standing for websites and edges between nodes representing reference relationships. A 

reference relationship is determined via hyperlinks and similar textual content from one 

web page to another. Besides, they integrated the URL information of each node and used 

the embedding technique to transform the graphic network into a low-dimensional vector 

space. It finally predicted whether a web page is phishing or not by calculating the 

similarity in the neighbourhood. 

Feng et al. [63] proposed a DOM tree structure-based method to cluster a web page 

as a phishing or legitimate category named DoD. The authors used a Doc2Vec model to 

vectorize the DOM tree and calculate the semantic similarity, then imported a hierarchical 

algorithm to cluster web pages. They collected a data set from PhishTank [18] and Alexa 

[17]. The experimental results show that DoD obtained a higher true-positive rate of 89.9% 

than other DOM-based clustering algorithms. However, the clustering time is much longer 

than other methods, even over five times. 



14 

 

 

Barraclough et al. [64] presented a novel feature list for detecting e-banking 

phishing websites. They combined blacklist-based, web content-based and heuristic-based 

methodologies to extract 3000 features. In addition, they trained five models to compare 

the performance with a custom data set of 30500 instances. Finally, the proposed solution 

achieved a high accuracy of 99.33% and a short prediction time of 0.006 seconds. However, 

the performance of a high error rate of 0.66% indicates that overfitting probably occurs 

during the training process. 

In 2021, Gupta et al. developed a lightweight phishing detection approach and 

achieved 99.57% accuracy with the random forest algorithm [11]. The authors extracted 

19,964 instances with nine lexical features from the ISCX-URL-2016 dataset published by 

the University of New Brunswick [12]. The ISCX-URL-2016 dataset contains more than 

35,300 legitimate URLs and approximately 10,000 phishing URLs taken from an active 

repository of phishing sites https://openphish.com (accessed on 18 July 2021). To balance 

the distribution of the two classes, the authors randomly filtered 10,000 benign URLs and 

9964 phishing URLs. Furthermore, the Spearman correlation algorithm and K best 

algorithm are applied to determine the feature importance. Based on other previous 

research, nine lexical features from URLs were proposed in the paper. Afterward, they 

cleaned the data by replacing the null and unlimited values with mean values and 

normalized them by scaling the values between 0 and 1. Normalization is one of the 

important data preprocessing procedures to guarantee that one feature is not dominated by 

others. In addition, they used a one-hot encoding algorithm to transfer the labels to 

numerical values. Once the dataset is regularized, it is divided into a training dataset and a 

testing dataset with eight-to-two ratios. In the process of modelling, they compared four 
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single classifiers with the performance and computational time. Finally, it was concluded 

that random forest had the highest accuracy rate and the lowest false positive rate. 

However, in terms of response time, SVM performed better.  

2.3.4 Deep Learning-Based Solutions 

Deep learning is a subset of machine learning which is built with deep structured 

architectures. There are some commonly used deep learning algorithms, such as 

convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-

term memory (LSTM) networks. With the rapid development of natural language 

processing (NLP) and deep learning algorithms, various deep learning-based solutions are 

introduced for phishing detection. 

Ali et al. developed an intelligence phishing detection model which combined deep 

neural networks (DNNs) and genetic algorithms (GAs) [13]. A DNN is a well-known deep 

learning technique with more than two hidden layers, an input layer and an output layer, 

commonly used to classify multiple labels from big data. The GAs is inspired by the 

biological evolution of the genes in nature and is widely used for optimization problems 

that aim to minimize or maximize the value of objective functions under some constraints. 

In this approach, the authors regarded the problem of feature selection as an optimization 

problem. Mathematically speaking, the objective function minimizes the number of 

features, and the constraint function is the accuracy of the classification model. Meeting 

performance requirements with minimal features reduces the model training time and could 

remove the noisy data. Therefore, the GA was applied to find the optimal subset of features 

by computing the accuracy of the DNN model in each generation. A chromosome 

represents a group of features, and each gene with a binary value stands for each feature, 
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where one is for selecting this feature and zero is not. The classification phase used the 

selected features as input features and the UCI dataset [66] as a training dataset to fit the 

DNN model. However, the GA-DNN model got a relatively low accuracy result, which 

was 89%. It is known that hyperparameters and the size of a training dataset significantly 

affect the performance of deep learning models [14]. 

In 2020, Aljofey et al. proposed an efficient convolutional neural network (CNN) 

model for phishing detection only based on URLs [15]. They extracted character-level 

features from the original URLs, which were collected from different phishing websites 

and benign websites. The experimental results showed that this model obtained an accuracy 

of 95.02% on their own dataset with 318,642 instances. Wang et al. introduced a fast model 

called PDRCNN that used the URL string as an input, extracted features by an RNN and 

CNN, and then classified them with the Sigmoid function [16]. The authors collected 

approximately 500,000 instances from Alexa.com [17] and phishTank.com [18] and 

extracted semantic features based on the word embedding technique, encoding the URL 

string to a tensor, an input of the RNN model. A bidirectional LSTM network algorithm 

implemented the RNN architecture to extract global features, which were the inputs of the 

convolutional neural network. The final one-dimensional tensor represented a group of 

features generated through multiple convolutional and max-pooling layers. Finally, the 

one-dimensional tensor was fed into a fully connected layer with a sigmoid function to 

classify the original input URL into the fake and phishing website. The experimental results 

illustrated that they achieved 95.97% accuracy. 
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2.3.5 Products for Detecting Phishing Websites 

The goal of anti-phishing research is to prevent individual Internet users from suffering 

phishing attacks. With the development of anti-phishing research, phishing attackers are 

constantly updating their technology. Phishing links cannot be well recognized by naked 

eyes, and individual netizens need tools to help identify them. Many researchers naturally 

think of expanding on the browser.  

In 2020, HR et al. built a web browser with a phishing detection component [19]. 

The regular web browser had two core engines: a browser engine and a render engine, 

which are responsible for connecting to the Internet to fetch the web page via the URL, 

parsing the web page by XML, HTML, CSS, JAVASCRIPT interpreters, storing cookies, 

etc. The proposed browser added an intelligent engine to detect phishing websites between 

the browser engine and render engine. When a user inputs a URL, the intelligent engine 

starts to predict whether the target website is a phishing website and afterward sends the 

result to the render engine. If the predicted result showed a phishing website, the render 

engine would display a warning message to the user through a browser interface. This paper 

used the random forest algorithm to train the model, and it obtained 99.36% accuracy and 

a 0.64% false-positive rate on the UCI dataset [66] with 30 rule-based features. 

Furthermore, a phishing detection web browser extension is implemented easier 

than a comprehensive anti-phishing browser. Armano et al. introduced a real-time client-

side phishing prevention solution [20]. The approach contains a built-in JavaScript 

frontend and a built-in Python backend. The front-end collects the web page source code 

and handles the user interface and interaction with the backend, analyzing the website and 

predicting if the page is a phishing website. The backend consists of a disputer for checking 
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against the whitelist, a phishing detector for predicting the website’s legitimacy, and a 

target identifier to find the legitimate website relevant to the input URL based on the logo, 

keywords, and other content. The phishing detector is implemented by an existing solution 

that uses the gradient boosting algorithm as the classifier [21]. The authors experimented 

with 200 phishing websites to monitor the response time. The results showed that the 

response time for a phishing URL was longer than a legitimate one, which was 

approximately 2 s, and the appearance of the alert cost occurred in less than 500 

milliseconds. In addition to the framework mentioned in academic papers, there are also 

several published Internet products. Several widely used products are listed in Table 2.2. 

2.3.6 Solutions Comparison 

Each of the four types of solutions has advantages and disadvantages. Table 2.3 shows four 

widely used phishing detection methods, as well as their strengths and weaknesses. The 

rule-based policy logic is simple, but zero-day phishing links cannot be detected, and there 

is no prediction function. Heuristic rule-based solutions are like experts who are familiar 

with phishing attacks and defences, but features and rules are prone to failure over time 

when an attacker cracks them. Machine learning-based approaches improve the accuracy 

of decision-making, but they require high quantity and quality training data. Deep learning 

models can effectively prevent features and rules from being cracked and exploited by 

attackers, but the complexity and time cost of training such models are high. Every 

detection tool and product applied to a real scene needs to balance accuracy, false-positive 

rate, and time performance. As a result, many anti-phishing solutions often combine 

multiple strategies. 
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Table 2.2. Released phishing detection products 

Name Type Devices Techniques Advantages Shortcomings Users 

Phish 

Detector 

[22] 

Web 

browser 

extension 

Chrome Rule-based 
Zero false-negative 

alarms 

Only for online-

banking web sites 
2000+ 

Netcraft 

Extension 

[23] 

Web 

browser 

extension 

Chrome 
Blacklist-

based 

Multiple features, 

including 

coronavirus-related 

cybercrime. 

New phishing 

attacks cannot be 

prevented 

50,00

0+ 

WOT [24] All 

Browser 

Mobile 

PC 

Blacklist + 

machine 

learning 

algorithms 

Multi-platform 

security service 
Charged 

1,000,

000+ 

Pixm 

Phishing 

Protection 

[25] 

Web 

browser 

extension 

Chrome 

Deep 

learning 

algorithm 

Advanced anti-

phishing solution 

(AI) 

Charged 1000+ 

Sharkcop 

[26] 

Web 

browser 

extension 

Chrome 
SVM 

algorithm 

New attacks can be 

detected 

Few features are 

used 

The project is 

currently on hold 

Feature extraction 

relies on third-

party services, 

such as domain 

age 

- 

PhishFort 

[27] 

Web 

browser 

extension 

Chrome 

Firefox 

Blacklist-

based 
Free 

New phishing 

attacks cannot be 

prevented 

2000+ 
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In addition, there are many challenges and difficulties in moving from laboratory 

research to real-time production. Effective phishing detection solutions should combine 

new data constantly for recognizing fresh rules and training machine learning models. 

Phishing and anti-phishing are always in the process of confronting each other. Attackers 

will adjust the generation of phishing links according to the published anti-phishing rules 

and methods. Likewise, anti-phishing needs to optimize models and algorithms based on 

new phishing data. Furthermore, the performance of machine learning-based solutions 

highly depends on the quality of the training dataset in terms of size and validation. The 

published datasets are small datasets that do not satisfy the demands of deep learning 

approaches. According to the power law, deep learning performance keeps rising with the 

increase of the training data size [65]. Therefore, pulling phishing URLs and legitimate 

URLs from websites is recommended. However, this depends on the stability of the third-

party services or websites. 

Furthermore, some features and rules are extracted from URL strings depending on 

third-party services, for instance, the published rules [66]. Using third-party services might 

cost extra time and bring unstable issues.  In addition, since tiny URLs do not present the 

real domain, resource direction, or search parameters, rule-based feature selection 

techniques might be useless for tiny URLs. Due to tiny URLs generated by different 

services, it is hard to convert them to original URLs. Furthermore, tiny URLs are short 

strings that are challenging for natural language processing to extract character-level 

features. If tiny URLs are not specially processed during data cleansing and preprocessing, 

they are likely to cause false or missed alarms. Internet products are also essential in terms 

of user experience, and users are also sensitive to false alarms of Internet security products. 
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Table 2.3. Phishing websites detection strategies  

Phishing detection 

strategies 

Advantages Disadvantages 

List-based It accurately and efficiently 

identifies known phishing 

links. 

It couldn't recognize zero-day 

phishing URLs. 

Heuristic rule-based Low time complexity; 

Interpretable. 

Easy to be cracked by 

attackers. 

Machine learning- 

based 

High performance. Performance is highly 

dependent 

on structured training data 

Deep learning-based It is not easy to be cracked by 

attackers; A large number of 

features can be extracted. 

High training time and high 

space complexity; Less 

interpretable. 

 

Rule-based models depend on rule parsing and third-party services from a URL 

string. Therefore, they demand a relatively long response time in a real-time prediction 

system that accepts a single URL string as an input in each request from a client. Phishing 

attacks spread to various communication media and target devices, such as personal 

computers and other smart devices. It is a big challenge for developers to cover all devices 

with one solution. Language independence and running environment independence should 

be taken into consideration to reduce system development complexity and late maintenance 

costs. 
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 This thesis presents a phishing detection framework based on multiple strategies to 

improve performance of accuracy and reduce response time. In addition, optimization 

machine learning models can be done automatically by training with an updated dataset. A 

prototype has been implemented with a Chrome extension and a web application to 

evaluate the efficiency of multiple strategies in real-time. 

2.4 Summary 

In this chapter, the life cycle of phishing attacks and the characteristics of each node is 

introduced.  Afterward, the state-of-the-art solutions for detecting phishing websites are 

presented in terms of list-based methods, heuristic strategies, machine learning-based 

solutions, and deep learning-based approaches.  In addition, the pros and cons of each 

solution type are analyzed, and the challenges of anti-phishing products are listed. The 

design of the proposed framework is presented in the next chapter.  
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Chapter 3 

Framework Design  

This chapter describes the design aspects of the proposed machine learning-based 

framework and its architecture. To this end, the chapter first presents the overview of the 

architecture and describes the inspiration of the work.  Furthermore, the details of data 

collection as the fundamental module is explained. Along with this, the details of machine 

learning-based method and heuristic rule-based strategy are presented. Finally, a prediction 

service with multiple strategies is introduced to detect phishing risk in a real-time 

environment. 

3.1 Architecture 

 The major motivation behind the proposed machine learning-based framework is to 

develop a tool for detecting phishing websites in real-time with high efficiency, high 

accuracy, and low false alarms. In a real-world environment, phishing links account for a 

very small percentage of all network requests. This framework provides a multi-strategy 

converged prediction service based on a machine learning model, where the list-based 

strategy can be quickly filtered, reducing the average response time of requests and 

reducing the overall false alarm rate. In addition, the heuristic-based strategy narrows the 

phishing web page to a page with a confidential form, improving the overall accuracy rate. 

Finally, a machine learning-based model predicts phishing risks.   

Figure 3.1 depicts the architecture of the proposed framework, which contains a 

data collection module, machine learning progress, heuristic strategy, and a prediction 

service. For data persistence, a database is built to store URLs collected from various data 
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sources. On the one hand, those data are filtered to generate blacklists and whitelists, which 

are used as the list-based strategy of the prediction service.  On the other hand, datasets 

used for machine learning model training and testing are also generated from this database. 

The effectiveness of this framework is based on several assumptions. First, phishing is 

done by asking users to submit sensitive information on an active web page, and the way 

virus-ridden files are automatically downloaded when a connection is opened is beyond 

the scope of this article. Second, the ability to reduce bias in cross-training models from 

multiple data sources is limited to low data overlap between multiple data sources.   

 

Figure 3.1: Architecture of the multi-strategy framework 

3.2 Data Collection 

Data is the core of the field of machine learning. The quality and quantity of data 

significantly impact the performance of machine learning-based modules [28]. The data 

collection module is the foundation of this system. Figure 3.2 presents the details of the 

data collection module. 
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Figure 3.2: Data collection module 

Data was collected from different open sources, shown in Table 3.1. The 

PhishStorm [29] dataset contains 96,018 URLs: 48,009 legitimate URLs and 48,009 

phishing URLs. The ISCX-URL2016 [12] dataset contains 35378 legitimate URLs and 

9965 phishing URLs. Data was loaded around 350,000 benign URLs from an open Kaggle 

project [30]. In addition, 400,000 data points were collected, and new data was grabbed 

from the PhishTank platform [18] every day. 

Table 3.1. Data sources 

Data source Legitimate URLs Phishing URLs 

PhishStorm [29] 48,009 47,902 

PhishTank [18] 0 178,495 

ISCX-URL2016 [12] 35,378 9,965 

Kaggle [30] 345,738 0 

Total 429,125 236,362 
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The URL’s basic structure was analyzed and extracted into several parts in terms of 

protocol, domain, and path. Table 3.2 presents the major fields of a table named URL. Data 

points are stored in a relational database, as it is flexible and efficient for providing data 

services by reading based on SQL. These data services can combine multiple data sets. For 

example, select 20,000 phishing links from PhishTank and 20,000 good links from Kaggle, 

and combine them into a balanced data set with 40,000 instances. 

Table 3.2. Table structure for the data table named “URL” 

Name Description Example 

url URL https://amazom.mhmgmm.rest/mobile/ 

label 1: phishing; 0: legitimate 1 

source Data source PhishTank 

External id Unique ID of the same data 

source 

7270002 

netloc netloc amazom.mhmgmm.rest 

Gmt_created Created date 2021-08-21 01:39:40 

 

3.3 Machine Learning 

The machine learning module is mainly responsible for model training and model 

testing. In this framework, the data of the training model is updated regularly, and the 

training and testing processes of all models are automatically and regularly triggered. The 

system will record each run's parameters and data collection types and save the model to a 

file system. It is flexible to add new models to the ML module. Figure 3.3 shows the 
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flowchart of the machine learning module [71]. The flowchart is divided into two branches 

after the feature collection process. The first branch is to extract word-level features and 

train traditional machine learning models, and the second branch is to extract character-

level features and train deep learning models.  

Phishing website detection is a binary classification problem. There are many widely 

used classifiers, such as Decision Trees, Random forest, k-nearest neighbours’ algorithm, 

Bagging, Naïve Bayes, Logistic Regression, and Support vector machine (SVM). The 

Random forest, Logistic regression and SVM are selected in this thesis.  

Many studies have shown that the random forest classifier performs better than other 

traditional classification models in detecting phishing networks [11], [50], [51]. A random 

forest is an ensemble of decision trees for classification and regression. Random forests 

reduce the overfitting problem by classifying or averaging the output of individual trees in 

training processing. Therefore, random forests generally have higher accuracy than 

decision tree algorithms.  

Logistic regression is a statistical algorithm used to predict the outcome of a 

dependent variable based on previous observations. It’s a commonly used machine learning 

model for solving binary classification problems. For example, a logistic regression 

algorithm can predict whether a web page is a phishing website. A logistic regression 

algorithm was used to solve the spam text classification problem [73] and detect phishing 

websites [74]. 

A support vector machine (SVM) is a supervised learning algorithm that classifies 

data points into two sections and predicts new data points belonging to each section. It is 

suitable for linear binary classification, which has two classes labelled, and the classifier is 
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a hyperplane with N dimensions relevant to the number of features. The core idea of this 

algorithm is to maximize the distance between the data point and the segmentation 

hyperplane. For example, there are two classes: phishing and legitimate, and a 29-

dimension hyperplane in the UCI dataset [66] for training the SVM model. Therefore, these 

three traditional machine learning models are used to predict phishing URLs. The 

optimization of the model is accomplished by adjusting the parameters and comparing the 

test results.  

 

Figure 3.3: Flowchart of the machine learning module 

 In the deep learning model training process, URLs are converted into a set of 

character sequences. In deep machine learning models, the architecture of a recurrent 

neural network (RNN) is well suited for training data sequences. RNN is a deep neural 

network with an internal memory function to handle diverse length sequences of inputs, 

such as text.  In addition, the GRU and LSTM models add a gate unit based on the RNN 
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architecture to control and calculate the current state. These two models can be said to be 

upgraded versions of the RNN structure. 

Table 3.3 shows a summary of these algorithms based on the same dataset. The Big 

O notation is used to measure the computational complexities of machine learning 

algorithms. The complexity of a deep neural network depends on the architecture of the 

networks. Generally, it needs to compute the activation function of all neurons. 

Interpretability presents the difficulty of understanding how the model works. Traditional 

machine learning algorithms are user-friendly. In deep neural networks, it is hard to know 

which neuron is playing what role and which input feature contributes to the model output. 

A well-known drawback of deep learning models is the “black box” nature [75]. In 

addition, deep neural networks require more training data than other algorithms to obtain 

acceptable performance [76]. The significant advantage of deep neural networks is dealing 

with text data, such as URL strings. 

Table 3.3. Machine learning algorithms for detecting phishing websites 

Algorithm 
Training Time 

Complexity 
Interpretability 

Training Data 

Size 
Inputs 

Logistic 

Regression 
O(nd) High Small Structured data 

SVM O(𝑛2) Medium Small Structured data 

Random Forest 
O(knd log 𝑛) 

k = number of trees 

Medium Small Structured data 

Deep Neural 

Networks 

Compute the activation 

of all neurons 
Low Large 

Structured data 

or text data 
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3.3.1 Data Loading 

Data are the source of each approach and prove to be a vital influence on the performance. 

There are two methods to collect data: loading published datasets and pulling URLs 

directly from the Internet. The original URL strings could be collected from websites by 

running open API or data mining scripts. 

The dataset used for model training is obtained from the database through the data 

service. The data service supports the flexible selection of different data source 

combinations and datasets of varying data volumes. Each data instance contains a URL 

string and a label that signs the URL is a phishing link or a legitimate link. The label values 

are normalized as 1 and 0. 

3.3.2 Feature Extraction 

With the successful development of the natural language processing (NLP) technique, 

many researchers capture character-level features from URL strings based on the NLP and 

then feed them into deep learning models to increase the accuracy. The significant 

advantage of this method is not relying on third-party network services [24].  

A URL string is handled as a document containing semantics and applies the 

Natural language processing (NLP) technology to extract features. In classical machine 

learning models, two methods of extracting features are used, named TF-IDF-Vectorizer 

and Count-Vectorizer. The TF-IDF-Vectorizer converts a collection of URLs to a matrix 

of TF-IDF features. TF-IDF means Term Frequency–Inverse Document Frequency. The 

algorithm calculates each word’s TF-IDF score and then generates a matrix with those 

scores, which stands for the relevance of a word in the URL string. The Count-Vectorizer 

converts a collection of URLs to a matrix of token counts, and each token stands for one 
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word. Therefore, the number of features equals the vocabulary size found by analyzing the 

data.  

In deep learning models, the tokenization process parses a URL string to a list of 

characters (Character-level tokens). The characters in the URL come from the ASCII 

character set. The most common 100 characters are selected as the character set dictionary 

for this study. Figure 3.4 shows all the arranged characters and the corresponding index. 

 

Figure 3.4: Dictionary with 100 ASCII characters 

 

Figure 3.5: A feature matrix from a URL string and the character dictionary 

The maximum length of a URL is 2083 characters [31]. Because of the calculation 

time of the deep learning model and the analysis of the statistical data of the existing data 
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set, the maximum number of URL characters is 200. Therefore, each URL can be 

transformed into a 200*100 matrix. The position of the dictionary corresponding to each 

character is marked as 1, and the remaining values are 0. Figure 3.5 shows the process of 

forming a matrix using Google's official website as an example. 

3.3.3 Modelling 

It is a solution to treat a URL as a document and use character separators to parse words as 

features. However, many words in URLs also lack semantics. Moreover, the analysis of 

word-level results in an extensive dictionary will slow the calculation time. The recurrent 

neural network (RNN) is a feedback neural network that stores temporary states. It's 

suitable for training sequence data [32]. Figure 3.6 shows a regular RNN architecture that 

consists of an input layer, several hidden layers and an output layer. Compared to the 

feedforward artificial neural networks (ANN), RNNs have a unique architecture with a 

connection function between neurons in hidden layers. The figure shows that the current 

hidden state is related to the previous hidden state and the current input. The current hidden 

state's functional form can be represented as Eq. (1) and (2). The tanh is a nonlinear 

function, W represents the weights between the neurons, and b is the bias vector of the 

setting. The Soft-max calculates the output value as an activation function, as shown in Eq. 

(3), and the model prediction value is related to the current hidden state. 

ℎ𝑡 = 𝑓𝑤(ℎ𝑡−1, 𝑥𝑡)                                 (1) 

ℎ𝑡 = tanh(𝑤ℎ𝑥 + 𝑤ℎℎℎ𝑡−1 + 𝑏ℎ)       (2) 

𝑌𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑦ℎℎ𝑡 + 𝑏𝑦)              (3) 
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The scenario that detects the phishing link is a many-to-one task type, the input is 

character-level sequence data, and the output is a category. Figure 3.7 shows the structure 

of one hidden layer. 

 

Figure 3.6: Architecture of a basic RNN 

The Whx, Whh, and Wyh respectively mean the weight matrix between input and hidden 

layer, the weight matrix between two hidden layers, the weight matrix between hidden and 

output layer. 

 

Figure 3.7: Character-level features in an RNN model 
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Before model training, the structure of the model is fixed, and activation function 

is established, so the process of model training is actually the process of optimizing the 

weights parameters by calculating each error. First, randomly initialize the weights matrix, 

then calculate the difference between the actual value and the predicted value, then use the 

optimized algorithm to find the optimal solution to minimize the difference, and finally 

adjust each weight by calculating the step each time. 

Depending on the architecture of RNN and activation functions used, the basic 

RNN architecture does not perform well for handling inputs for long sequences because of 

the vulnerability to gradient vanishing or exploding problems [33]. To address these, 

Hochreiter and Schmidhuber introduced a gradient-based model named long short-term 

memory (LSTM) in 1997 [34]. They invented a long short-term memory unit instead of 

tanh function to compute hidden states. The LSTM unit consists of three gates and two 

memory cells. Cho et al. proposed a novel model with a hidden unit, which was motivated 

by LSTM in 2014 [35]. Figure 3.8 demonstrates the long short-term memory (LSTM) 

learning model architecture. 

Since the hidden unit contains two gates to control and calculate the hidden state, 

this model is also named gated recurrent unit (GRU). Figure 3.9 shows a typical structure 

of GRU. It can be said that long short-term memory network (LSTM) and gated recurrent 

unit (GRU) are two enhanced versions of RNN. Many studies and experimental data show 

that for sequence data training, the LSTM and GRU architecture can achieve better 

performance than the basic RNN architecture [36] [37]. 
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Figure 3.8: The architecture of basic long short-term memory (LSTM) cell 

 

  

Figure 3.9: The architecture of basic gated recurrent unit (GRU) 

 

3.3.4 Optimizer and Loss Function 

In the model training process, it is also essential to choose a suitable optimizer and loss 

function. Among many optimization algorithms, the Adam algorithm is selected, which is 

a popular and effective optimization algorithm for deep learning [38]. Since the problem is 

a binary classification problem, the cross-entropy loss function [39] is used, which is also 
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called the log loss function. According to the scenario of the current problem, the output 

predicted value is a floating-point number between 0 and 1. Cross-entropy loss increases 

as the predicted probability diverge from the actual label. It is believed that it will converge 

quickly in the initial stage of training with the same learning rate. The loss value of each 

epoch is calculated the average loss value of all data points. 

3.4 Heuristic Rule-Based Strategy 

The core of heuristic rule-based strategy is to analyze the characteristics of phishing pages 

based on web page URL and web page HTML content, then extract relevant feature values 

and formulate a series of rules to determine whether there is a phishing risk. Phishing pages 

often use a non-semantic domain name, but clearly display a well-known company or brand 

name on the page content, and have a form to enter user sentiment information. Table 3.4 

shows the attributes and corresponding rules extracted from the HTML document. The 

features F1, F2 and F3 judge phishing risk from a correlation between a web page content 

and domain name semantics. The value of the title tag is the title that describes the entire 

web page. Generally, the title of a normal website contains a company name or brand and 

the description of the current page, such as the login page of Facebook. The URL is 

"https://www.facebook.com/", and the text in the title tag is "Facebook – Log In or Sign 

Up". At the same time, the domain name part of the URL usually also contains company 

or brand information. Consistency can be judged by comparing the similarity of the domain 

name semantics and document description semantics. However, some websites did not set 

the title tag value. The content of the heading tag is extracted as a description of a website. 
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Table 3.4. Features applied to the heuristic method 

Feature Attribute Rule 

F1 The text in the <title> If it is null, value=1, else value=0 

F2 The similarity score of domain and 

title 

If the score >threshold, value=0, 

else value=0 

F3 The similarity score of domain and 

text of header tags 

If the score >threshold, value=0, 

else value=0 

F4 The number of input numbers If the number <threshold, value=0, 

else value=1 

F5 The number of buttons If the number <threshold, value=0, 

else value=1 

F6 The description of inputs has 

sensitive words 

If it has sensitive words, value=1, 

else value=0 

F7 Iframe tag If it has iframe tag, value=1, else 

value=0 

 

The F4, F5 and F6 determine whether there is a form that requires users to submit 

sensitive information. The number of inputs and buttons on the page are also very important 

characteristics. The input box displayed on the page can be implemented by the input tag 

and the textarea tag, and the input tag has 21 types, which are specified by the attribute 

type. Among them, there are seven types for the user to input text or numeric information, 

and the default is text input if there is no specified type. Buttons are implemented in a 

variety of ways. For example, the button tag, the input tag whose attribute value is "button", 

and other tags are controlled by JavaScript to submit information to the web server. 

Furthermore, from the analysis of normal web page functions, some form input and 
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submission functions are not user-sensitive information, such as commonly used search 

functions. Therefore, the description of input tags is captured from tags' context and 

attributes as features. 

The tag "iframe" is used to embed another page on the current page. The embedded 

HTML structure cannot be obtained from the source code of the current web page. 

Therefore, some phishing web pages use the "iframe" tag to embed a form submission 

function. The F7 is used to detect abuse of iframe tags. 

Each input tag is defined as a dictionary, which contains two elements: type and 

description. The value of the type can be obtained from the type attribute of the input tag. 

There are many sources of description information, including the text of other adjacent 

elements, the default value of the input element, and the placeholder attribute. 

Confidential forms refer to forms that require users to submit sensitive personal 

information, such as name, ID number, password, bank card number, etc. These 

descriptions are usually displayed on the left, above, or in the corresponding input box. 

First, the similarity is calculated between the input tag description and the local sensitive 

vocabulary dictionary. This dictionary is created based on experience and statistical 

analysis of information input pages from well-known websites. Some phishing attackers 

try to evade detection rules by using variations of characters. For example, Figure 3.10 is 

a screenshot of an active phishing link " 

https://con_rmsubscription.com/h/y/2E7CE2C46A8733CF". In this case, one of the 

sensitive words, "password," is a variant. This deformation visually deceives the user, but 

the recognized meaning is entirely different from the visual when the computer treats it as 

an ordinary word. 

https://con_rmsubscription.com/h/y/2E7CE2C46A8733CF
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Figure 3.10: A screenshot of a phishing website's form 

A fuzzy matching algorithm is used to judge the consistency of web page content 

and domain name. It uses Levenshtein Distance [41] to calculate the differences between 

two sequences. A common method of phishing is to imitate user-submitted information 

pages of well-known websites, which are then deployed under the attacker's own domain 

name. Figure 3.11 shows the three factors used to judge consistency, namely domain name, 

web page content description and list of well-known website company names. 

 

Figure 3.11: Features for consistency check 
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3.5 Prediction Service 

The prediction service combines multiple strategies in terms of whitelists, blacklists, 

heuristic rules and machine learning models. Figure 3.12 presents a flowchart of the 

prediction service. A white list is a collection of legitimate URLs from the Kaggle dataset. 

A blacklist is a set of phishing websites from the PhishTank dataset. The machine learning 

model is trained offline described in the 3.2 section. A rule-based heuristic strategy is about 

extracting features from a URL and HTML source code and creating several rules to infer 

phishing risks. This method is driven by expert experiences. 

 

Figure 3.12: Flowchart of the prediction service 

3.6 Summary 

This chapter presented the design of the phishing detection framework. The architecture of 

the framework mainly has four components: data collection, machine learning model 

training, web browser extension, and a cloud application proving HTTP services. The 

implementation details are presented in the next chapter.   
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Chapter 4 

Implementation 

This chapter describes the implementation of the proposed multi-strategy framework. A 

Chrome extension is developed on the client-side to collect client data and notify of 

phishing risks. In addition, a web application is built for providing a prediction service with 

HTTPS protocol and collecting users’ feedback. Finally, various libraries related to 

machine learning are introduced. 

4.1 Prototype Overview 

The prototype implementation of the entire framework is divided into three independent 

applications. Figure 4.1 shows a client-server architecture of the prototype. The browser 

extension is independently packaged and uploaded to the Chrome browser according to the 

extension development specifications of the Chrome browser and will be reviewed and 

released by the Chrome platform. Chrome browser plug-in development uses three web 

front-end development languages: HTML, JavaScript, and CSS. The data collection 

application uses Python as the main development language, using scheduled tasks to 

manage the collection tasks of each data source. The task fetching data from PhishTank 

uses the Beautiful Soup library to mining phishing URLs. Model training, prediction 

services and official product website are integrated into one application. This application 

also uses Python as the primary language and imports Flask as the web framework. Model 

training is managed by a timed task, which is executed once a day when client traffic is 

low, currently set at 10 pm. After the training is completed, the core performance indicators 

are written into the MySQL database in real-time, and the model is dumped into the file 
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system. The prediction service is a RESTful API that provides clients with real-time POST 

requests to obtain detection results. The core function of the official website is to accept 

the suspected phishing link submitted by the user and determine the link risk by manual 

and automatic verification. 

 

Figure 4.1 Client-Server architecture of the prototype 

4.2 Chrome Extension 

According to statistical analysis, the market share of Chrome browser is far ahead of other 

browsers in the past ten years [68]. In addition, the development documentation of the 

Chrome browser plug-in is complete and updated in a timely manner. Also, the Chrome 

plug-in is easy to install and user-friendly. Therefore, a Chrome browser extension [69] is 

developed as a client-side and the source code is publicly available on GitHub [72]. Since 

users installed the extension in the Chrome browser, the extension will automatically detect 

whether the newly opened URL is at risk of phishing. When the system detects that the 

current page is at risk of phishing, the browser plug-in will display a warning box and 

provide an entry to report a false alarm. Conversely, if the current page is not at risk of 
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phishing, the plugin provides an entry to report that the page is a phishing URL. Users will 

then be directed to the website to submit a report. Regarding the review process of the 

report, it has manual review and automatic review. The automatic review currently relies 

on rules. For example, if different client IP addresses submit links with the same domain 

name three times, the system automatically reviews them. Table 3.5 presents the structure 

of the report table in the database.  

 

Figure 4.2: Flowchart of the Chrome extension 

Figure 4.2 presents the workflow of the extension. The extension calls the 

prediction service for obtaining phishing risk level, with parameters in terms of the URL 

string and HTML elements. Since the primary purpose of phishing attacks is to steal users' 

information by deceiving them to fill forms on fake websites, the scope of a phishing page 

is narrowed to a page with form submissions and then analyzing the content that requires 

user input. Web pages displayed in front of users through browsers must comply with web 

standards, such as HTML Living Standard [40]. This standard describes the HTML 

language specification, tags that can be used on web pages, and related APIs. Each HTML 
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tag has different semantics. For example, the <a> tag represents a hyperlink. After setting 

the value of the “href” attribute, the click will cause the browser to visit another URL. 

However, there is also the ECMA standard among web standards, which supports 

JavaScript scripts. JavaScript is a very flexible dynamic language with the ability to change 

the default display and behaviour of HTML tags. For example, JavaScript can control the 

<span> tag, simulating the same behavior as the <a> tag. This brings difficulty and 

uncertainty to HTML parsing semantics through tags and text. For example, HTML tags 

<h1> to <h6> represent different levels of headings, but CSS files can display content 

displayed with <p> tags as heading styles. 

The development of the Chrome browser extension must strictly follow the 

development guidelines in [45]. The chrome plug-in has a configuration to contract version 

numbers, introduce built-in APIs, and permission control. Data interactions between 

modules are messaged and temporarily stored in Chrome storage. A background script 

listens for browser tab change events, gets the URL currently accessed, calls the back-end 

prediction service to get the result, and finally sends the result to a content script. The 

content script is primarily responsible for presenting the results on the page. In addition, a 

popup Html shows the details.  

4.3 Web Application 

The web application mainly provides HTTPS services for detecting phishing risks and 

processes risk reports submitted by users. Figure 4.3 shows the architecture of the web 

application, which includes four layers in terms of web, service, task and database.  Python 

was used as a core language, which is a modern high-level programming language in the 

field of data mining and machine learning. There are various frameworks and libraries for 
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the Python language. In the system, data collection, data storage, model training, websites, 

and HTTP services are all supported by mature libraries and frameworks. In addition, the 

access and use of these packages are very simple and convenient. 

Considering the usage scenarios and read and write performance, the data layer uses 

the MySQL relational database. First, the website has user management, report 

management, model version management and other functions which require a relational 

database. In addition, the data set used for model training is acquired dynamically. It is 

very flexible to combine different data sources and data volumes to form a new data set for 

model training. For example, 200,000 phishing URLs are collected from PhishTank, and 

340,000 legitimate URLs are downloaded from Kaggle. A balanced data set with 40,000 

URLs can be flexibly combined, including 20,000 phishing URLs and 20,000 legal URLs. 

 
Figure 4.3: Architecture of the web application 

When a false alarm or missed alarm occurs in the prediction service, the user can 

take the initiative to report the current falsely detected URL from the browser plug-in 

portal. A website is developed to receive these reports. Once the report is submitted to the 
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system, the system has a manual review process to confirm the risks of these URLs. In 

addition, there are automatic audit strategies to improve audit efficiency. Once the review 

is completed, these URLs will be regularly synchronized to the data collection module, and 

the source is reported. Table 4.1 shows the structure of a report in the database. 

The system has two scheduled tasks to process these reports. First, the Validate 

Report task automatically reviews the report based on the rules. The current rule is that the 

same URL submitted by different IP addresses exceeds the threshold. In addition, the sync 

task will sync the verified URL to the data table of the dataset used to train the model and 

generate black and white lists. 

Table 4.1. Table structure for the data table named “report” 

Column Data type Description 

id int Automatic index 

Gmt_created datatime Create time 

Gmt_modified datatime Verify time 

url varchar URL string 

type int Error type (1: phishing, 2: legitimate) 

status int 0: initial, 1: verified (legitimate), -1(phishing) 

comment varchar Comment from user 

Client_ip varchar user’s IP address 

 

4.3.1 Flask 

The Flask is used as a web framework to provide HTTP service and maintain the official 

website. It is a lightweight web framework and easy to extend [42]. For example, the flask-
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user package provides user authorization services. Flask is part of the categories of the 

micro-framework, which is a little dependent on updating and watching for security bugs. 

The template engine named “jinja2” is automatically installed when the Flask library is 

installed successfully. It is convenient to set a basic layout for pages and mention which 

element will change by using templates. In addition, a blueprint library is imported to 

organize the application into distinct components. A blueprint defines a collection of views, 

templates, static files and other elements that can be applied to an application.  

from flask import Flask 

import routes 

app = Flask(__name__) 

 

# # routes 

app.register_blueprint(routes.routes_app) 

 

 

if __name__ == '__main__': 

    app.run(host='0.0.0.0') 

Listing 4.1: Source code for create a flask application and using blueprint to manager 

routes 
 

from flask import Blueprint 

from flask import render_template 

 

routes_app = Blueprint('routes', __name__) 

 

 

@routes_app.route('/home', methods=['GET']) 

def welcome(): 

    return render_template('/home.html') 

Listing 4.2: Source code for defining routes in a new file by using blueprint 
 

4.3.2 CORS 

Cross-Origin Resource Sharing (CORS) is an HTTP-header-based mechanism that allows 

a server to indicate any origins (domain, scheme, or port) other than its own from which a 

browser should permit loading resources. When the domain name of the client's request is 

inconsistent with the domain name of the server interface, a CORS error will occur. An 

https://developer.mozilla.org/en-US/docs/Glossary/CORS
https://developer.mozilla.org/en-US/docs/Glossary/HTTP
https://developer.mozilla.org/en-US/docs/Glossary/Origin
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example of a cross-origin request is that the front-end JavaScript code served 

from https://domain-a.com uses XMLHttpRequest to make a request for https://domain-

b.com/data.json. The FLASK_CORS library is imported to handle CORS, making cross-

origin AJAX possible.  In addition, the interface that allows cross-origin access makes a 

judgment on the hostname requested by the client. Only requests made from this Chrome 

extension are legitimate requests. 

4.3.3 APScheduler 

A Python third-party library named APScheduler was used to implement the automatic 

verification task and data synchronization task. This library has four kinds of components: 

triggers, job stores, executors and schedulers.  The application developer doesn’t normally 

deal with the job stores, executors or triggers directly. Instead, the scheduler provides the 

proper interface to handle all the above tasks. Configuring the job stores and executors is 

done through the scheduler, as is adding, modifying and removing jobs. The 

BackgroundScheduler library is used as a scheduler to run in the background inside the 

application and is configured the trigger type valued “cron” to run the job periodically at a 

certain time of day. 

from apscheduler.schedulers.background import BackgroundScheduler 

from task.automatic_verify import automatic_verify 

from task.report import sync_report_url 

 

scheduler = BackgroundScheduler(daemon=True) 

scheduler.add_job(automatic_verify, 'cron', day_of_week='mon-sun', 

hour=23, minute=20, end_date='2023-12-31') 

scheduler.add_job(sync_report_url, 'cron', day_of_week='mon-sun', 

hour=23, minute=30, end_date='2023-12-31') 

 

scheduler.start() 

Listing 4.3: Source code for using background scheduler 
 

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://domain-b.com/data.json
https://domain-b.com/data.json
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4.3.4 Deployment 

The web application was deployed on the DigitalOcean cloud platform, which provides 

cloud services. on the operate system is Ubuntu 20.04, the server is Gunicorn, and Nginx 

works as a front-end reverse proxy. Green Unicorn, commonly shortened to "Gunicorn" is 

a Web Server Gateway Interface (WSGI) server implementation that is commonly used to 

run Python web applications. Gunicorn knows how to run a web application based on the 

hook between the WSGI server and the WSGI-compliant web app. Therefore, a wsgi.py 

should be created and works as a hook (listing 4.4). In addition, the Certbot was used to 

obtain SSL certificates for ensuring that traffic to the server remains secure. 

from myproject import app 

 

if __name__ == "__main__": 

    app.run() 

Listing 4.4: Source code for creating a wsgi hook 
 

4.4 Machine Learning  

Model training is an offline task. When the data instances in the dataset are updated every 

day, model training can also be set to be triggered automatically by scheduled tasks. 

Traditional machine learning models and deep learning models are trained with the same 

datasets to compare performances. 

4.4.1 Scikit-Learn 

The scikit-learn is open-source and widely used for predictive data analysis in the machine 

learning field [43]. Ascikit-learn library was used to train three traditional machine learning 

models: Logistic Regression, Random Forest, and support vector machine. First, URLs are 

loaded from a MySQL database and then features are extracted by CountVectorizer and 

fit_transform function. There are many built-in classifiers in terms of LogisticRegression, 

http://gunicorn.org/
https://www.fullstackpython.com/wsgi-servers.html
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RandomForestClassifier, and SVM. After initializing a model, the fit function starts to train 

the model. Finally, the test dataset is applied to the predict function for obtaining results. 

import seaborn as sns 

from sklearn import svm 

from sklearn.feature_extraction.text import CountVectorizer 

from sklearn.metrics import confusion_matrix 

from sklearn.model_selection import train_test_split 

 

from AI.utils.metrics_util import basic_metrics_ml 

from AI.utils.model_util import data_preparation, 

read_data_multi_source_limit 

 

 

def ML_training(source_list, limitation=None): 

    # loading data 

    df = read_data_multi_source_limit(source_list, limitation) 

    # # tokenizer data preprocessing 

    df = data_preparation(df, r'[A-Za-z]+') 

    # # feature extraction 

    vec = CountVectorizer() 

    # transform all text which we tokenize and stemed 

    vec.fit_transform(df.text) 

    feature = vec.fit_transform(df.text) 

    # # split dataset for training and testing 

    trainX, testX, trainY, testY = train_test_split(feature, 

df.result, test_size=0.2) 

    # # modelling 

    clf = svm.SVC() 

    clf.fit(trainX, trainY) 

    # # performance metrics 

    predictions = clf.predict(testX) 

    cm = confusion_matrix(testY, predictions) 

    sns.heatmap(cm, annot=True) 

    fn_rate, fp_rate, accuracy, precision, recall, f1 = 

basic_metrics_ml(predictions, testY) 

    return fn_rate, fp_rate, accuracy, precision, recall, f1 

Listing 4.5: Source code for traditional machine learning model training 
 

4.4.2 PyTorch 

The PyTorch is an open-source deep learning framework and development platform. In the 

deep learning models' construction process, it imported the linear layer, RNN layer, GRU 
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layer, an LSTM layer. The torch.cuda package is used to utilize GPUs for parallel 

computation [44]. 

import torch 

import torch.nn as nn 

 

 

class GRUClassifier(nn.Module): 

    def __init__(self, input_size, hidden_size, num_layers, 

num_classes): 

        super(GRUClassifier, self).__init__() 

        self.num_layers = num_layers 

        self.hidden_size = hidden_size 

        # self.rnn = nn.RNN(input_size, hidden_size, num_layers, 

batch_first=True) 

        self.gru = nn.GRU(input_size, hidden_size, num_layers, 

batch_first=True) 

        # self.lstm = nn.LSTM(input_size, hidden_size, num_layers, 

batch_first=True) 

        # x -> (batch_size, sequence_length, input_size) 

        self.fc = nn.Linear(hidden_size, num_classes) 

 

    def forward(self, x): 

        h0 = torch.zeros(self.num_layers, x.size(0), 

self.hidden_size) 

        # c0 = torch.zeros(self.num_layers, x.size(0), 

self.hidden_size) 

        # out, _ = self.rnn(x, h0) 

        out, _ = self.gru(x, h0) 

        # out, _ = self.lstm(x,(c0,h0)) 

        # out: batch_size, sqe_length, hidden_size 

        # out (N , 200, 100) 

        out = out[:, -1, :] 

        # out (N, 100) 

        out = self.fc(out) 

        return out 

Listing 4.6: Source code for defining a GRU model 
 

4.5 Summary 

This chapter has presented the implementation of the presented phishing detection 

framework. Each software package that plays a major role in the framework has been 

discussed in terms of its role as well as the reasons for why it was chosen. In the next 

chapter, the evaluation of the implemented framework is presented.  
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Chapter 5 

Evaluation Results 

This chapter presents the details on the experiments conducted with the proposed machine 

learning models and the heuristic rule strategy. All the experiments were executed on a 

MacBook Pro 2020 running Quad-Core Intel Core i5 CPU @ 2 GHz with macOS Big Sur 

11.5.2 operating system. The server has a 500 GB storage capacity.  

5.1 Evaluation Metrics  

The performance evaluation was carried out during the testing process. The original dataset 

would be divided into training data and test data, 80% and 20%, respectively.  Commonly, 

three standard statistical metrics with accuracy, recall, and precision [46] are used to 

evaluate whether a machine learning model has high performance. When evaluating the 

classifier’s behaviour on the testing dataset, there were four statistical numbers: the number 

of correctly identified positive data points (TP), the number of correctly identified negative 

data points (TN), the number of negative data points labelled by the classifier as positive 

(FP), and the number of positive data points labelled by the model as negative (FN) (table 

5.1). 

Table 5.1. Four statistical numbers of predicting results 

True Labels 

Labels Returned by the Classifier in the Testing 

Process 

Positive Negative 

Positive TP FN 

Negative FP TN 
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There are several broadly used metrics to evaluate performance. The classification 

accuracy is the ratio of correct predictions to total predictions:  

accuracy =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                               (4) 

In binary classification cases, it is known that random selection has 50% accuracy. 

In unbalanced datasets, sometimes high accuracy does not mean that the model is excellent. 

For instance, among the 10,000 data, 9000 were legitimate websites, and 1000 were 

phishing websites, so when the prediction model did nothing, it could reach 90%. Accuracy 

is misleading when the class sizes are substantially different. Precision is the percentage of 

correctly identified positive data points among those predicted as positive by the model. 

The number of false-positive cases (FP) reflects the false warning rate. In real-time 

phishing detection systems, this directly affects the user experience and trustworthiness: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                        (5) 

The recall is the portion of positive data points labelled as such by the model among 

all truly positive data points. The number of false-negative cases (FN) represents the 

number of phishing URLs that have not been detected. Leak alarms mean that users are 

likely to receive an attack that could result in the theft of sensitive information. Misleading 

users can do more harm to users than not detecting them: 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                              (6) 

The F-measure or F-score is the combination of precision and recall. Generally, it 

is formulated as shown below: 

Fβ =
(β2 + 1) × Precision × Recall

β2 × Precision + Recall
      β ∈ (0, ∞)   (7) 
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Here, β quantifies the relative importance of the precision and recall such that β =

1 stands for the precision and recall being equally important, which is also called F1. The 

F-score does the best job of any single statistic, but all four work together to describe the 

performance of a classifier: 

F1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑃

𝑇𝑃 +
1
2

(𝐹𝑃 + 𝐹𝑁)
  (8) 

F1 score is used to represent the meaning of the recall and precision. In addition, in 

cybersecurity detection applications, false alarms can affect the user experience and trust, 

and leak alarms are likely to directly cause user losses. Therefore, accuracy, F1, false-

positive rate, and false-negative rate are used to measure the performance of models.  

false positive rate =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
                                         (9) 

false negative rate =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
                                       (10) 

 

 

Furthermore, Average precision (AP) is a widely used metric in evaluating the 

accuracy of deep learning models by computing the average precision value for recall value 

over 0 to 1; higher is better. Mean average precision (mAP) is the average of AP. Equation 

(11) shows the calculation logic. In this scene, the number of classes is two. 

mAP =
1

𝑐𝑙𝑎𝑠𝑠𝑒𝑠
∑

𝑇𝑃(𝑐)

𝑇𝑃(𝑐) + 𝐹𝑃(𝑐)
                         (11)

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

 

5.2 Experimental Setup and Datasets 

The test data ratio is 0.2. Seven datasets are used in the machine learning training and 

testing process. Six machine learning models are built to compare performance to obtain a 
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best model with optimal parameter values. Table 5.2 lists all the datasets and the number 

of data instances.  

Table 5.2. Datasets 

Name Number of Phishing 

URLs 

Number of Legitimate 

URLs 

PhishStorm 47,902 48,009 

ISCX-URL2016 9965 35378 

KPT-4 20,000 20,000 

KPT-6 30,000 30,000 

KPT-8 40,000 40,000 

KPT-10 50,000 50,000 

KPT-12 60,000 60,000 

 

5.3 Machine Learning Models 

 Experiments are carried out in the following steps to find the optimal model quickly. First, 

the GRU model is chosen because its performance may be better by theoretical analysis. 

By comparing the results obtained from training on different datasets with GRU model, the 

best performance dataset is obtained. Second, by comparing the results obtained from 

training different models with the dataset obtained in the previous experiment, the best 

performance model is obtained. The last process is optimizing the model hyperparameters 

for the model with the dataset. The primary method is to enumerate the optional discrete 

values of the parameters and perform cross-combination to compare the performance of all 

experimental results. 
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5.3.1 GRU Model with Different Datasets 

In this experiment, different datasets are fed to the GRU classifier. The number of epochs 

is 20, the batch size is 32, KPT stands for the data collected from Kaggle and PhishTank, 

and each KPT dataset is a balanced dataset, which consists of the same number of phishing 

URLs and legitimate URLs. Table 5.3 shows the core performance indicators of the GRU 

model with eight datasets. The ISCX dataset obtained the highest accuracy. However, the 

F1 score is lower than the other three KPT datasets, and the false-negative rate is high. In 

other words, more legitimate instances are predicted as phishing URLs during the test data 

process.  

Table 5.3. GRU model test results with different datasets 

Dataset accuracy F1 False-positive 

rate 

False-

negative rate 

mAP 

PhishStorm 0.9758 0.9748 0.0269 0.0212 0.960 

ISCX-URL2016 0.9947 0.9874 0.0011 0.0191 0.986 

KPT-4 0.981 0.980 0.0091 0.0285 0.948 

KPT-6 0.9882 0.988 0.0089 0.0145 0.967 

KPT-8 0.9898 0.9894 0.0134 0.0073 0.973 

KPT-10 0.9906 0.9904 0.006 0.0132 0.984 

KPT-12 0.9918 0.9915 0.0104 0.0059 0.986 

 

Furthermore, False-positive rate and false-negative rate are used to measure 

efficiency. From figure 5.1, the RNN-GRU model with the KPT-12 dataset performs best. 

In KPT datasets, the false rate decreases linearly as the number of data increases. 
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Figure 5.1: GRU model false rates with different datasets 

Figure 5.2 shows the accuracy and F1 of each dataset. The KPT-12 dataset obtained 

99.18% accuracy and 99.15% F1 score. To quantify how well the RNN-GRU model 

performs every class, the mean of average precision (mAP) is used. The mean average 

precision (mAP) in RNN-GRU models with KPT-12 dataset is 0.986. 

 

Figure 5.2: Accuracy and F1 score of the GRU model 

Assessing the efficiency of a machine learning model is incomplete, depending on 

accuracy. In experiments, it is customary to get high accuracy in one dataset and not 
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perform well in another. It is also likely that models with high accuracy will not predict 

new data accurately in a real-time environment. These situations may be due to the fact 

that overfitting has already occurred [47]. Overfitting is a concept in data mining that 

analyzes whether a trained model can efficiently predict unknown new data [48]. In 

machine learning-based classification models, it is common to compare errors in the 

training process with errors in the validation process to see if there is overfitting, along 

with epoch. Figure 5.3 presents the training loss and validation loss along with epochs in 

the RNN-GRU model. One of the strategies to avoid overfitting is early-stopping [49]. The 

epoch equals 6 is the demarcation point between underfitting and overfitting. 

 

Figure 5.3: GRU model training loss and testing loss 

5.3.2 Different Classifiers 

The experiment is to apply the same data set to different machine learning models, from 

which the best performance model can be analyzed. The structure and implementation 
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principle of each model are different. Under the condition that the structure remains 

unchanged, the performance of the model will change with the change of parameters. Table 

5.4 lists the parameter values applied to train traditional models. After many parameter 

adjustments, the performance and time-consuming are compared to find the optimal 

parameters. 

Table 5.4. Parameters of three traditional models 

Classifier Parameters 

Logistic Regression Tolerance for stopping criteria = 1e-4 

Maximum iterations = 5000 

Random Forest The number of trees in the forest = 1000 

Maximum depth of the tree = 5000 

SVM Tolerance for stopping criteria = 1e-4 

Maximum iterations = -1 (No limit) 

 

Table 5.5 presents that the RNN-GRU achieved the highest accuracy of 99.18%, 

and the Random Forest obtained the lowest false-positive rate of 0.0047%. In this 

experiment, the accuracy and F1 scores of all models were very close. This performance 

can be seen in Figure 5.4. Because the accuracy of the underlying RNN model is less than 

0.9, it is not shown in the figure. From the results data of the three deep learning models, 

the effects of gate unit and LSTM unit on sequence data training are explained once again.  
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Table 5.5. Comparison of different classifiers' performance 

Classifier accuracy F1 False-positive rate False-negative 

rate 

Logistic 

Regression 

0.9889 0.9888 0.0081 0.0141 

Support vector 

machine (SVM) 

0.9885 0.9885 0.01 0.0129 

Random Forest 0.985 0.9849 0.0047 0.0253 

RNN 0.7412 0.7089 0.1813 0.3372 

RNN-GRU 0.9918 0.9915 0.0104 0.0059 

RNN-LSTM 0.9895 0.9891 0.0118 0.0089 

 

 

Figure 5.4: Accuracy and F1 score of different models 
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Figure 5.5: False-positive rate and False-negative rate of different models 

 

Although the random forest model gets the lowest false-positive rate, the false-

negative rate is the highest, and the sum of the two error rates is the highest. 

5.3.3 Hyperparameter Optimization 

From the above two experimental results, the KPT-12 dataset applied to the RNN-GRU 

model obtains the best performance. The third experiment is to optimize the model 

hyperparameters for better performance. The optional values of parameters are listed in 

table 5.6. A total of 162 combinations of optional values for all parameters will be 

performed in turn. Because the computer GPU running the experiment does not support 

parallel computing and it takes a long time to train a model with the KPT-12 dataset, the 

experiment will be performed after the system is deployed to the cloud. Access the Tensor 

Board tool to visualize comparison of execution results and performance metrics to get the 

best combination of parameters [52]. 
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Table 5.6. Optional values of deep learning parameters 

Parameter Optional value Default value 

Batch size [32, 64, 128] 32 

epoch [6, 10, 20] 10 

shuffle [true, false] true 

Learning-rate [0.01, 0.005, 0.001] 0.001 

Layer number [1,2,3] 2 

 

5.3.4 Comparison 

This section compares the RNN-GRU model to existing solutions that train deep learning 

models to detect phishing websites. Table 5.7 shows a comparison from different 

dimensions, such as data collection, models, performance indicators, limitations. As for the 

limitations of the proposed solution implementation, since there are no short links in the 

data set of the training model, all current prediction services cannot accurately detect 

whether short links are at risk of phishing. Furthermore, only the first 200 characters of the 

URL are selected. A part of information will be lost when a URL consists of more than 200 

characters. In addition, the process of the automatic review report is currently judged based 

on rules such as remote IP address, client information, and the number of times the URL 

has been submitted. This strategy can easily be used maliciously by phishing attackers. In 

the future, more data will be needed to support automatic review results, for example, by 

obtaining the HTML of the current URL, identifying the similarity between the logo image 

and the whitelisted website, and whether there is an input box in the HTML. 
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Table 5.7. Comparison of GRU model with other deep learning-based solutions 

Model or 

Algorithm 

Dataset Limitations Accur

acy 

RNN-GRU Websites (PhishTank, Kaggle); 

120,000 instances:60,000 phishing 

URLs, 60,000 Legitimate URLs; 

Character-level features based on 

URL string. 

Short URLs are not 

supported; 

URLs of more than 

200 characters will 

lose some of their 

features. 

99.18

% 

Transfer 

Learning [53] 

Website (Huawei Symantec); 

177,417 instances: 36,560 phishing 

URLs, 14,0857 legitimate URLs; 

15 features based on URL string, 

domain, and sensitive words. 

Some feature 

extractions rely on 

third-party services. 

97% 

Reinforcement 

Learning [54] 

Website (PhishTank, Yandex Search 

engine); 

73,575 instances:37,175 phishing 

URLs, 36,400 legitimate URLs. 

14 features based on URL string, 

domain, and HTML. 

Low accuracy; 

some feature 

extractions rely on 

third-party services. 

90.1% 

Convolutional 

Autoencoder 

[55] 

Websites (PhishTank, PhishStorm, 

ISCX-URL-2016); 

222,541 instances: 127,628 legitimate 

URLs, 94,913 phishing URLs; 

Character-level features based on 

URL string. 

Some long URLs 

will lose part of 

their features. 

97.82

% 
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LSTM [56] Websites (PhishTank, Alexa); 

3526 instances: 2119 phishing URLs, 

1407 legitimate URLs; 

18 features are extracted from URL 

string, third-party-based features. 

some feature 

extractions rely on 

third-party services; 

Fail to detect 

phishing sites with 

embedded objects. 

99.57

% 

CNN+LSTM 

[57] 

Websites (PhishTank, Common 

Crawl, WHOIS); 

1 million URLs, Over 10,000 images; 

Character-level features based on 

URL string and features extracted 

from images. 

Low accuracy; 

Long response time: 

25s. 

93.28

% 

 

5.4 Heuristic Method 

Since the features of web page content need to be extracted in scheme, the web page must 

be accessible to the browser. But the active time of phishing URLs is short-lived. After one 

or two days, the phishing URL will be identified by security products or manually reported 

and taken offline. Therefore, it is really hard to collect a large number of active phishing 

URLs in a short period of time. On the other hand, there are no available published data 

sets with features listed in table 3.4.  

The results obtained from accessing these phishing links (Appendix B) in a browser 

with the detection extension installed were consistent with the labels. In addition, from the 

characteristics of URL links, it can be seen that some traditional characteristics are failing, 

such as whether the schema is HTTPS. In addition, attackers start using web hosting 

services, such as Weebly. Domain-related characteristics that rely on third-party services 
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are benign. Figure 5.6 is an example of a phishing web page with a confidential form, 

displaying extracted features. 

This heuristic rule-based solution has three advantages in terms of efficiency, 

lightweight, and high user credibility. The response time from the completion of the page 

DOM structure rendering to the output of the predicted result does not exceed 100 

milliseconds on average. It does not rely on third-party services and tools. Although some 

third-party APIs can obtain more information and features, there are some drawbacks to 

calling external APIs in real-time in a production environment. First, the response time will 

increase, affecting the user experience. Second, the stability and security of the service will 

be affected. The protocol does not require the process of model training, saving a lot of 

time and computing resources. The forecasting service is rule-based, improving usability 

through flexible control of rule thresholds, dictionary vocabulary, list of company names. 

In addition, the prototype implementation is simple, and features can be captured through 

JavaScript scripts. Although the object recognition technology of computer vision can 

parse the company or brand name from the picture, the technology has some drawbacks in 

the actual phishing detection products. Some screenshots of web pages may contain user 

privacy information, such as the user name of the browser log in, the default user name of 

the familiar URL, and so on. Therefore, highly trusted user products should avoid using 

web screenshot technology. 
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Figure 5.6: A screenshot of a phishing web page with labelled features 

However, this solution also has some limitations. First, since the sensitive words 

dictionary and domain names are in English, the current prototype implementation only 

supports English websites. Suppose it has to support other languages the sensitive word 

dictionary should contain multi-language vocabulary, and it need an algorithm to establish 

a relationship between the web page content and domain name language. Second, if the 

form that requires the user to enter information is embedded through an iframe, this 

solution cannot get specific tags and attributes from the HTML source code. Therefore, 

using an iframe tag to embed another document is a common method by phishing attackers. 

Many phishing detection models include an iframe tag as an important feature. 

Furthermore, this method cannot obtain the real HTML source code if the rendering of the 

sensitive form is triggered by clicking on the page and is controlled by JavaScript. In 

addition, short URLs might course false alarms. Short link services can make URLs look 
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more concise, and the smaller number of characters can be easily spread on various social 

media, but short links will also lose their original semantics, especially when using 

shortening technology for domain names. 

5.5 Chrome extension 

The Chrome browser was tested for usability in two scenarios: normal URLs and 

phishing links. Figure 5.7 shows an example of entering a legitimate URL. In this case, the 

user opens the page in a web browser with no additional information. When the user clicks 

the plug-in button on the right side of the toolbar, the popup page is displayed with the 

current URL string, risk level, and other information. 

 

Figure 5.7: A screenshot of the Chrome extension popup page (legitimate) 

 

Figure 5.8: A screenshot of the Chrome extension displaying warning message 
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Figure 5.8 presents an example. When the entered URL is detected as a phishing 

link, a popup box with a red background appears on the page, prompting the user that the 

website is at phishing risk. If the user confirms that the URL is not a phishing network, 

they can click the false alarm button to respond to this false alarm. Figure 5.9 shows the 

style and content of popup pages on high-risk sites. 

Compared with the extensions listed in Table 2.2, this Chrome extension has 

advantages in technological innovation and user experience. The prediction service is 

based on deep machine learning models capable of predicting dynamic phishing links, and 

the framework supports dynamically updating datasets and optimizing models. Secondly, 

the response time of the service is within 200ms, which can quickly respond to the client's 

situation. In addition, the extension does not store any personal privacy data of users, and 

does not use screen capture technology to ensure the security and credibility. 

 

Figure 5.9: A screenshot of the Chrome extension popup page (phishing) 
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5.6 Summary 

This chapter has presented the evaluation of the phishing detection framework, and the 

evaluation results have shown the presence of phishing attacks. In addition, source code 

and detailed descriptions of each test case have been provided, thus demonstrating the 

interworking of framework layers. The following chapter concludes the thesis and presents 

future work.  
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Chapter 6 

Conclusion and Future Work  

This thesis presented the design and evaluation of a framework based on multiple strategies 

for detecting phishing web pages. The prediction service combines whitelist filter, blacklist 

blocker, heuristic rules, and a classifier based on a deep learning model with high accuracy 

of 99.18%.  To this end, a web application is built for providing prediction service with 

HTTPS protocol and processing users’ reports. Furthermore, a Chrome extension is 

developed to capture web page content for analyzing phishing characteristics and 

extracting novel features used in heuristic strategies. In addition, the scheduled tasks verify 

reports automatically and async data to the database. Along with this, machine learning 

models are optimized by training with updated datasets.  

In spite of promising results, there remains many goals which if met would further 

enhance the performance of the framework. In the heuristic strategy, the sensitive words 

dictionary and domain names are in English, and the current prototype implementation 

only supports English websites. In addition, short URLs might cause false alarms. Short 

link services can make URLs look more concise, and the smaller number of characters can 

be easily spread on various social media, but short links will also lose their original 

semantics, especially when using shortening technology for domain names. Furthermore, 

compared with state-of-the-art solutions, the performance of the RNN-GRU model needs 

to be improved. 
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For future work, in addition to supporting multiple languages and recognizing short 

links, Model optimization, mining new features, and building high-quality and high-data 

data sets will be the main work directions. First, the model training module will be 

independently deployed on the cloud server with NVIDIA GPUs for increasing efficiency 

with GPU's parallel computing power. Furthermore, creating a large mount dataset with 

heuristic features is an important task. Training the model with features extracted by the 

heuristic strategy is a solution that may achieve high performance. In addition, looking for 

a more comprehensive and high-quality list of company names is an important task for 

improving performance of heuristic strategy. In terms of data acquisition and feature 

extraction, some new techniques will be tried and applied. NLP technology could be used 

to analyze the text content of the web page to extract practical features, and text information 

in the picture can be identified with OCR technology. 
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Appendix 

Appendix A. Source Code 

Source code files related to Chrome extension, data collection tasks, and machine learning 

model training. 

A1.  Chrome extension 

The objective of this source file is to listen tab update event and extract HTML features as 

parameters of heuristic rules. 

• background.js 

• async function storeCurrentTabUrl() { 

  let queryOptions = { active: true, currentWindow: true }; 

  let [tab] = await chrome.tabs.query(queryOptions); 

  currentUrl = tab.url; 

  chrome.storage.sync.set({'current_url': currentUrl}); 

  chrome.storage.sync.set({'data': {}}); 

  chrome.tabs.sendMessage(tab.id, { 

        message: 'check', 

        currentUrl: currentUrl, 

        tabId: tab.id 

  }); 

  return tab.url; 

} 

 

chrome.tabs.onUpdated.addListener(function (tabId, changeInfo) 

{ 

    if (changeInfo.status == 'complete') { 

        storeCurrentTabUrl(); 

    } 

}); 

chrome.tabs.onActivated.addListener(function (activeInfo) { 

    storeCurrentTabUrl(); 

}); 

 

chrome.runtime.onMessage.addListener( 

  function(request, sender, sendResponse) { 

    if (request.message === "DOM"){ 

        api_url = 

"https://www.api.thehawkeyes.com/predict/ai"; 

        fetch(api_url, { 

            method: 'POST', 

            headers: { 

                'Content-Type': 'application/json', 
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            }, 

            body: JSON.stringify({'url': 

request.currentUrl,'num_input':request.num_input,'num_button':

request.num_button,'title':request.title, 

'inputs':request.inputs,'buttons':request.buttons}), 

        }) 

        .then(response => response.json()) 

        .then(data => { 

            chrome.storage.sync.set({'data': data}); 

            sendResponse(data); 

        }); 

    } 

    return true; 

  } 

); 

 

• contentscript.js 

 

chrome.runtime.onMessage.addListener( 

  function(request, sender, sendResponse) { 

    if (request.message === "check"){ 

        $( document ).ready(function() { 

            title = $('title').text(); 

            placeholders=[] 

            inputs = [] 

            buttons=[] 

            $('input').each(function(index){ 

                type = $(this).attr('type'); 

                if(type==''|| typeof type ==="undefined"){ 

                    type="text" 

                } 

                valid_input_types = 

['text','number','password','search','email','tel']; 

                valid_button_types = ['submit','button'] 

                if($.inArray(type, valid_input_types)>-1){ 

                    val = $(this).attr('value'); 

                    placeholder = $(this).attr('placeholder'); 

                    desc = val || placeholder; 

                    if(desc==''|| typeof desc === "undefined"){ 

                        prev = $(this).prev()[0]; 

                        next = $(this).next()[0]; 

                        if($.isEmptyObject(prev)){ 

                            if($.isEmptyObject(next)){ 

                                // other structures 

                            }else{ 

                                desc = $(next).text(); 

                            } 

                        }else{ 

                            desc = $(prev).text(); 
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                        } 

                    } 

                    input = {'type':type,'desc': desc}; 

                    inputs.push(input); 

                    num_input=num_input+1; 

                } 

                if($.inArray(type, valid_button_types)>-1){ 

                    button = {'type':type,'desc': 

$(this).attr('value')}; 

                    buttons.push(button) 

                } 

            }); 

 

            $('button').each(function(index){ 

                btn={'type':'button','desc': $(this).text()} 

                buttons.push(btn) 

                num_button=num_button+1; 

            }); 

            $('textarea').each(function(index){ 

                num_input=num_input+1; 

            }); 

            chrome.runtime.sendMessage({ 

                message: 'DOM', 

                currentUrl: request.currentUrl, 

                num_input: num_input, 

                num_button:num_button, 

                title:title, 

                inputs:inputs, 

                buttons: buttons 

            }, function(response) { 

              if (response.phishing) { 

                    chrome.storage.sync.get("exclude_url_list", ({ 

exclude_url_list }) => { 

                        if(exclude_url_list && 

exclude_url_list.includes(request.currentUrl)){ 

                            return; 

                        }else{ 

                            const URL = 

"https://www.api.thehawkeyes.com/verify/add?error_type=2&url=" 

+request.currentUrl 

                            var elemDiv = 

document.createElement('div'); 

                            elemDiv.innerHTML = 

hawk_eyes_alarmModal; 

                            document.body.appendChild(elemDiv); 

                            // Get the <span> element that closes 

the modal 

                            const closeBtns = 

document.getElementsByClassName("phishing-alarm-close-btn"); 

                            // When the user clicks on <span> (x), 

close the modal 

                            if(exclude_url_list){ 

                                exclude_url_list.push(link); 
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                            }else{ 

                                exclude_url_list = [link]; 

                            } 

                            for (var i = 0; i < closeBtns.length; 

i++) { 

                                

closeBtns[i].addEventListener('click', function(event){ 

                                    closeAction(); 

                                    

chrome.storage.sync.set({"exclude_url_list":exclude_url_list}); 

                                }); 

                            } 

                            const reportBtn = 

document.getElementById("report-phishing-false-alarm"); 

                            

reportBtn.addEventListener('click',function (event){ 

                                closeAction(); 

                                

chrome.storage.sync.set({"exclude_url_list":exclude_url_list}); 

                                window.open(URL, '_blank').focus(); 

                            }); 

                        } 

                    }); 

              }else{ 

                  if(response.source=='report'){ 

                     count = response.num_users 

                  } 

 

              } 

            }); 

        }); 

    } 

  } 

); 

 

A2.  Data collection 

This source file is used to collection data from the PhishTank website. References were 

made from a Python third-party library name BeautifulSoup. 

def fetch_page(start_page, end_page): 

    list_link = 'https://phishtank.org/phish_search.php' 

    detail_link = 'https://phishtank.org/phish_detail.php?phish_id=' 

    parameters = {"page": start_page, "valid": 'y', 'Search': 

'Search', 'active': 'n'} 

    headers = { 

        'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 

10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 

Safari/537.36', 

    } 

    with open('phishTank_inactive.csv', 'a+', newline='') as 
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csvfile: 

        fieldnames = ['phish_id', 'url'] 

        writer = csv.DictWriter(csvfile, fieldnames=fieldnames) 

        # writer.writeheader() 

        for i in range(start_page, end_page): 

            list_page = requests.get(list_link, params=parameters, 

headers=headers) 

            soup = BeautifulSoup(list_page.content, 

features="html.parser") 

            table = soup.find("table") 

            trs = table.findAll("tr") 

            for tr in trs: 

                tds = tr.findAll('td') 

                if len(tds) >= 1: 

                    td_id = tds[0] 

                    phish_id = td_id.find('a').text 

                    is_exist = is_exist_record(phish_id, 

'phishTank') 

                    if is_exist: 

                        continue 

                    try: 

                        detail_page = requests.get(detail_link + 

phish_id, headers=headers) 

                        detail_soup = 

BeautifulSoup(detail_page.content, features="html.parser") 

                        url = detail_soup.find('div', {'class': 

'url'}) 

                        div = url.find_next_sibling('div') 

                        bb = div.find('b') 

                        full_url = bb.text 

                        URL_OBJECT = url_parse(full_url) 

                        URL_OBJECT.external_id = phish_id 

                        URL_OBJECT.source = 'phishTank' 

                        URL_OBJECT.status = -1 

                        URL_OBJECT.result = 1 

                        URL_OBJECT.insert() 

                        sleep(1) 

                        # write to csv 

                        writer.writerow({'phish_id': phish_id, 

'url': full_url}) 

                        print('success:',phish_id) 

                    except: 

                        print(detail_link + phish_id) 

            parameters["page"] = i + 1 
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A3.  Traditional machine learning 

This source file handles traditional models training and testing. References were made 

from source such as https://scikit-learn.org/stable/supervised_learning.html#supervised-

learning. 

import seaborn as sns 

from sklearn.metrics import confusion_matrix 

from sklearn.feature_extraction.text import CountVectorizer, 

TfidfVectorizer 

from sklearn.feature_selection import SelectPercentile, f_classif 

from sklearn.model_selection import train_test_split 

import pickle 

from AI.utils.helpers import save_ml_version, get_next_version, 

get_model_file_name, get_transformer_file_name 

from AI.utils.metrics_util import basic_metrics_ml, 

save_confusion_matrix 

from AI.ml.traditional_classifier import TraditionalClassifier 

from AI.utils.model_util import data_preparation, 

read_data_multi_source_limit 

 

 

def feature_selection(df, feature): 

    feature_new = SelectPercentile(f_classif, 

percentile=30).fit_transform(feature, df.result) 

    return feature_new 

 

 

def ML_training(source_list, classifier_code, files_path, plot_path, 

limitation=None): 

    print('start---------') 

    MLParameters = { 

        'max_iter': 50000, 

        'max_depth': 5000, 

        'random_state': 0, 

        'test_ratio': 0.2, 

        'tokenizer_pattern': r'[A-Za-z]+', 

        'feature_vector': 'cv', 

        'data_size': limitation * len(source_list) 

    } 

    # loading data 

    df = read_data_multi_source_limit(source_list, limitation) 

    # # tokenizer data preprocessing 

    df = data_preparation(df, MLParameters['tokenizer_pattern']) 

    # # feature extraction 

    if MLParameters['feature_vector'] == 'cv': 

        vec = CountVectorizer() 

    else: 

        # collect token TF-IDF 

        vec = TfidfVectorizer() 

    # transform all text which tokenize and stemed 

    vec.fit_transform(df.text) 

https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
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    feature = vec.fit_transform(df.text) 

    # # split dataset for training and testing 

    trainX, testX, trainY, testY = train_test_split(feature, 

df.result, test_size=MLParameters['test_ratio']) 

    # # modelling 

    clf = TraditionalClassifier(classifier_code, 

MLParameters).classifier 

    clf.fit(trainX, trainY) 

    # # performance metrics 

    predictions = clf.predict(testX) 

    cm = confusion_matrix(testY, predictions) 

    sns.heatmap(cm, annot=True) 

    fn_rate, fp_rate, acc, precision, recall, f1 = 

basic_metrics_ml(predictions, testY) 

    # print(accuracy) 

    # # save the model and transform 

    # get the latest version from DB 

    str_sources = ' '.join(source_list) 

    cate = classifier_code + '_' + str_sources 

    version = get_next_version(cate) 

    model_file_name = get_model_file_name(cate, version) 

    transformer_file_name = get_transformer_file_name(cate, version) 

    pickle.dump(clf, open(files_path + model_file_name, 'wb')) 

    pickle.dump(vec, open(files_path + transformer_file_name, 'wb')) 

    # # save performance metrics : accuracy, mcc, f1 

    save_ml_version(version, acc, f1, fn_rate, fp_rate, cate, 

MLParameters) 

    # # plot results 

    save_confusion_matrix(cate, plot_path, clf, testX, testY, 

version) 

    # save_precision_recall_curve(cate, plot_path, clf, testX, 

testY) 

    print('end------') 

 

A4. Deep learning 

This source file handles deep learning models training and testing. References were made 

from source such as https://pytorch.org/text/stable/index.html. 

 

import csv 

from itertools import product 

 

import numpy as np 

import torch 

from torch import nn 

from torch.utils.data import SubsetRandomSampler 

from torch.utils.tensorboard import SummaryWriter 

 

from AI.dl.dataset_mysql import SqlDataset 
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from AI.dl.gru_classifier import GRUClassifier 

from AI.dl.training import train, evaluate 

from AI.utils.helpers import get_next_version, get_model_file_name, 

save_ml_version, get_plot_info_file_name 

 

def run_character(source_list, classifier_code, files_path, 

plot_path, limitation=None): 

    print('rnn start--------') 

    rnn_parameters = { 

        'N_EPOCHS': 10, 

        'datasource': source_list, 

        'data size': limitation * len(source_list) 

    } 

    dataset = SqlDataset(source_list, limitation) 

    batch_size = 32 

    test_split = .2 

    shuffle_dataset = True 

    random_seed = 42 

    # Creating data indices for training and validation splits: 

    dataset_size = len(dataset) 

    indices = list(range(dataset_size)) 

    split = int(np.floor(test_split * dataset_size)) 

    if shuffle_dataset: 

        np.random.seed(random_seed) 

        np.random.shuffle(indices) 

    train_indices, test_indices = indices[split:], indices[:split] 

    # Creating PT data samplers and loaders: 

    train_sampler = SubsetRandomSampler(train_indices) 

    test_sampler = SubsetRandomSampler(test_indices) 

 

    # Hyperparameters 

    # parameters = dict( 

    #     lr=[0.01, 0.005, 0.001], 

    #     batch_size=[32, 64, 128], 

    #     shuffle=[True, False], 

    #     num_layers=[1, 2, 3], 

    #     num_epochs=[10, 20] 

    # ) 

    parameters = dict( 

        lr=[0.005], 

        batch_size=[64], 

        shuffle=[True], 

        num_layers=[2], 

        num_epochs=[10] 

    ) 

    param_values = [v for v in parameters.values()] 

    for run_id, (lr, batch_size, shuffle, num_layers, num_epochs) in 

enumerate(product(*param_values)): 

        print("run id:", run_id + 1) 

 

        train_loader = torch.utils.data.DataLoader(dataset, 

batch_size=batch_size, 
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sampler=train_sampler) 

        test_loader = torch.utils.data.DataLoader(dataset, 

batch_size=batch_size, 

                                                  

sampler=test_sampler) 

        # # initial custom model 

        input_size = 100  # the number of all character 

        sequence_length = 200  # the number of url characters 

        # num_layers = 2  # the number of RNNs 

        hidden_size = 128 

        num_classes = 2 

        model = GRUClassifier(input_size, hidden_size, num_layers, 

num_classes) 

        # # Loss and Optimizer 

        learning_rate = 0.005 

        criterion = nn.CrossEntropyLoss() 

        # optimizer = torch.optim.Adam(model.parameters(), 

lr=learning_rate) 

        optimizer = torch.optim.Adam(model.parameters()) 

        device = 'cuda' if torch.cuda.is_available() else 'cpu' 

        # # Train the model 

        model = model.to(device) 

        criterion = criterion.to(device) 

        device = torch.device('cuda' if torch.cuda.is_available() 

else 'cpu') 

        tb = SummaryWriter('runs/') 

        # # # model graph and feature grid 

        # fea, labels = next(iter(train_loader)) 

        # tb.add_graph(model, fea) 

        # tb.close() 

        best_valid_loss = float('inf') 

        train_loss_values = [] 

        valid_loss_values = [] 

        train_acc_values = [] 

        valid_acc_values = [] 

        mAP_values =[] 

        for epoch in range(num_epochs): 

            # # training 

            train_loss, train_acc = train(model, train_loader, 

device, criterion, optimizer) 

            # # testing 

            valid_loss, valid_acc, f1, fn, fp, mAP = evaluate(model, 

test_loader, device, criterion) 

            # # plot result 

            if valid_loss < best_valid_loss: 

                best_valid_loss = valid_loss 

            print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: 

{train_acc * 100:.2f}%') 

            print(f'\t Val. Loss: {valid_loss:.3f} |  Val. Acc: 

{valid_acc * 100:.2f}%') 

            print(f'\t mAP: {mAP:.3f} ') 

            train_loss_values.append(train_loss) 

            valid_loss_values.append(valid_loss) 
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            train_acc_values.append(train_acc) 

            valid_acc_values.append(valid_acc) 

            mAP_values.append(mAP) 

            tb.add_scalar("Train Loss", train_loss, epoch) 

            tb.add_scalar("valid Loss", valid_loss, epoch) 

            tb.add_scalar("fp", fp, epoch) 

            tb.add_scalar("fn", fn, epoch) 

            tb.add_scalar("f1", f1, epoch) 

            tb.add_scalar("Test Accuracy", valid_acc, epoch) 

        # # save model 

        # get the latest version from DB 

        str_sources = '_'.join(source_list) 

        cate = classifier_code + '_' + str_sources 

        version = get_next_version(cate) 

        model_file_name = get_model_file_name(cate, version) 

        torch.save(model, files_path + model_file_name) 

        # # save performance metrics : model_version, accuracy, f1, 

fn, fp, category, parameters 

        rnn_parameters['N_EPOCHS'] = num_epochs 

        rnn_parameters['lr'] = lr 

        rnn_parameters['batch_size'] = batch_size 

        rnn_parameters['shuffle'] = shuffle 

        rnn_parameters['num_layers'] = num_layers 

        save_ml_version(version, valid_acc, f1, fn, fp, cate, 

rnn_parameters) 

        # # plot 

        plot_file_name = get_plot_info_file_name(cate, version) 

        with open(plot_path + plot_file_name, 'a+') as f: 

            writer = csv.writer(f) 

            writer.writerow(train_loss_values) 

            writer.writerow(valid_loss_values) 

            writer.writerow(train_acc_values) 

            writer.writerow(valid_acc_values) 

            writer.writerow(mAP_values) 

 

        tb.add_hparams( 

            {"lr": lr, "bsize": batch_size, "shuffle": shuffle, 

'epoch': epoch, 'num_layers': num_layers}, 

            { 

                "accuracy": valid_acc, 

                "loss": valid_loss 

            }, 

        ) 

    tb.close() 

    print('rnn end------') 
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Appendix B. Dataset 

B1.  Phishing Links for Testing 

This table presents ten phishing links collected from the PhishTank website on January 12, 

2022. 

Table A phishing URL dataset 

 URL Title Inputs Buttons Label Result 

1 https://my-

web-

informatica-

online.com/ 

BancaM

PS 

[{'type': 'text', 'desc': 'Inserisci 

il tuo codice utente'}, 

{'type': 'password', 'desc': 

'Inserisci latua password'}, 

{'type': 'number', 

'desc':'Inserisci iltuo numero 

ditelefono'}] 

[{'type': 

'submit', 'desc': 

'confirm'}] 

1 1 

2 https://btbroad

bandplc01. 

weebly.com/ 

. [{'type': 'text'}, 

{'type': 'text'}] 

[{'type': 

'submit', 

'desc': 

'Sign in'}] 

1 1 

3 https://hwdiug

euiubweg. 

weebly.com/ 

email 

login 

page 

[{'type': 'text'}, 

{'type': 'text'}] 

[{'type': 

'submit', 

'desc': 

'Sign in'}] 

1 1 

4 https://iyuy769

.weebly. 

com/ 

… [{'type': 'text'}, 

{'type': 'text'}, 

{'type': 'text'}] 

[{'type': 

'submit', 

'desc': 

'Sign in'}] 

1 1 

5 https://cupaie.

weebly. 

com/ 

mail.yah

oo. 

com-

Home 

[{'type': 'text'}, 

{'type': 'text'}] 

[{'type': 

'submit', 

'desc': 

'SIGN 

IN'}] 

1 1 

6 https://www.br

ooks-

ooke.top/h-

Login/Re

gister 

[{'type': 'text', 'desc': 

'Search...'}, 

{'type': 'text'}, 

[{'type': 

'submit', 

'desc': 

1 1 
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user-

LoginOrRegist

er.html 

- 

www.bro

oks- 

ooke.top 

{'type': 'password', 'desc':},  

{'type': 'text'}, 

{'type': 'password', 'desc':}, 

{'type': 'text', 'desc':}, 

{'type': 'text', 'desc':}] 

'Login'}, 

{'type': 

'submit', 

'desc': 

'Create 

My Ac- 

count'}, 

{'type': 

'button', 

'desc': _}, 

{'type': 

'button', 

'desc': _}] 

7 https://www.br

ooksair.top/ 

h-user-

LoginOrRegist

er.html 

Login/Re

gister 

- 

www.bro

oksair.to

p 

[{'type': 'text', 'desc': 

'Search...'}, 

{'type': 'text'}, 

{'type': 'password', 'desc':}, 

{'type': 'text'}, 

{'type': 'password', 

'desc':}, 

{'type': 'password', 'desc':},  

{'type': 'text', 'desc':}, {'type': 

'text', 'desc':}] 

[{'type': 

'submit', 

'desc': 

'Login'}, 

{'type': 

'submit', 

'desc': 

'Create 

My Ac- 

count'}, 

{'type': 

'button', 

'desc': 

'_'}] 

1 1 

8 https://www.br

ooks-

forrunning.top

/h-user-

LoginOrRegist

er.html 

Login/Re

gister 

- 

www.bro

oks- 

forrunnin

g.topBac

k 

To Top 

[{'type': 'text', 'desc': 

'Search...'}, 

{'type': 'text'}, 

{'type': 'password', 'desc':},  

{'type': 'text'}, 

{'type': 'password', 

'desc':}, 

{'type': 'password', 'desc':},  

{'type': 'text', 'desc':}] 

[{'type': 

'submit', 

'desc': 

'Login'}, 

{'type': 

'submit', 

'desc': 

'Create 

My Ac- 

1 1 
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count'}, 

{'type': 

'button', 

'desc': _}, 

{'type': 

'button', 

'desc': _}] 

9 https://att-

yahoo-

100130.square

.site/ 

Home [{'type': 

'email', 'desc': 

'Email *'}, 

{'type': 'text', 

'desc': 'Pass- 

word *'}] 

[{'type': 

'button', 

'desc': 

'Check- 

out'}, 

{'type': 

'button', 

'desc': 

'SIGN IN 

'}] 

1 1 

10 https://fifththir

dbankonline. 

weebly.com/ 

Home [{'type': 'text'}, 

{'type': 'text'}] 

[{'type': 

'submit', 

'desc': 

'NEXT'}, 

{'type': 

'button', 

'desc': _}] 

1 1 

 

 

 


