

Design and Development of a Machine Learning-Based Framework for Phishing

Website Detection

by

Lizhen Tang

A thesis submitted to the

School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Master of Applied Science in Electrical and Computer Engineering

University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada

April, 2022

© Lizhen Tang, 2022

ii

THESIS EXAMINATION INFORMATION

Submitted by: Lizhen Tang

Master of Applied Science in Electrical and Computer Engineering

Thesis Title: Design and Development of a Machine Learning-Based Framework for Phishing

Website Detection

An oral defense of this thesis took place on April 6, 2022 in front of the following

examining committee:

Examining Committee:

Chair of Examining Committee

Dr. Ramiro Liscano

Research Supervisor

Dr. Qusay H. Mahmoud

Examining Committee Member

Dr. Mohamed EI-Darieby

Thesis Examiner

Dr. Meaghan Charest-Finn

The above committee determined that the thesis is acceptable in form and content and that

a satisfactory knowledge of the field covered by the thesis was demonstrated by the

candidate during an oral examination. A signed copy of the Certificate of Approval is

available from the School of Graduate and Postdoctoral Studies.

iii

ABSTRACT

Design and Development of a Machine Learning-Based Framework for Phishing

Website Detection

Lizhen Tang

Ontario Tech University, 2022

 Advisor:

 Dr. Qusay H. Mahmoud

Phishing is a social engineering cyber attack to steal personal information from users.

Attackers solicit individuals to click phishing links by sending them emails or social media

text messages with deceptive content. With the development and applications of machine

learning technology, solutions for detecting phishing links have emerged. Subsequently,

performance optimization achieved by machine learning-based approaches were

predominantly limited to the datasets used to train the model, such as few open source

datasets, poorly characterized data points, and outdated datasets. This thesis introduces a

framework based on multiple phishing detection strategies, which are whitelist, blacklist,

heuristic rules, and machine learning models, to improve accuracy and flexibility. In the

machine learning-based method, three traditional models and three deep learning models

are trained and compared the performance of their test results, and concluded that the

Gated Recurrent Units (GRU) model achieved the highest accuracy of 99.18%.

Furthermore, in the expert-driven heuristic rule-based strategy, seven new HTML-based

features are proposed. Finally, a prototype has been developed, with a browser extension

to display detection results in real-time.

Keywords: Phishing Detection; Machine Learning; Heuristic Strategy; Chrome Extension

iv

AUTHOR’S DECLARATION

I hereby declare that this thesis consists of original work of which I have authored.

This is a true copy of the thesis, including any required final revisions, as accepted by my

examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech

University) to lend this thesis to other institutions or individuals for the purpose of scholarly

research. I further authorize the University of Ontario Institute of Technology (Ontario

Tech University) to reproduce this thesis by photocopying or by other means, in total or in

part, at the request of other institutions or individuals for the purpose of scholarly research.

I understand that my thesis will be made electronically available to the public.

Lizhen Tang

v

STATEMENT OF CONTRIBUTIONS

I hereby certify that I am the sole author of this thesis, and I have used standard referencing

practices to acknowledge ideas, research techniques, or other materials that belong to

others. Furthermore, I hereby certify that I am the sole source of the creative works and/or

inventive knowledge described in this thesis.

Results from this thesis research have been disseminated in the following publications:

• L. Tang and Q. H. Mahmoud, "A Deep Learning-Based Framework for Phishing

Website Detection," in IEEE Access, vol. 10, pp. 1509-1521, 2022. doi:

10.1109/ACCESS.2021.3137636.

• L. Tang and Q. H. Mahmoud, “A Survey of Machine Learning-Based Solutions

for Phishing Website Detection,” Machine Learning and Knowledge Extraction,

vol. 3, no. 3, pp. 672–694, Aug. 2021. Doi: https://doi.org/10.3390/make3030034.

https://doi.org/10.3390/make3030034

vi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my thesis supervisor Dr. Qusay H.

Mahmoud, for his support and guidance throughout my graduate studies. He provided me

with continuous guidelines and suggestions all the time that helped me to grow as an

independent researcher. I would also like to extend my gratitude to all of the course

instructors for their valuable guidance in every step of my learning stage during the

graduation period. Finally, I would like to thank family members, and Ontario Tech

University for their encouragement and valuable support that has helped me to complete

the research successfully.

vii

TABLE OF CONTENTS

Thesis Examination Information ... ii

Abstract .. iii

Author’s Declaration..iv

Statement of Contributions..v

Acknowledgements ..vi

Table of Contents ... vii

List of Tables x

List of Figures...xi

List of Abbreviations and Symbols ...xiii

Chapter 1 Introduction .. 1

1.2 Contributions …….. 3

1.3 Thesis Outline .. 4

Chapter 2 Background and Related Work... 5

2.1 Phishing.. 5

2.2 Anti-phishing .. 7

2.2.1 Web Scraping …………..8

2.2.2 Spam Filter …………... 8

2.2.3 Second Authorization Verification... 8

2.2.4 Detecting Phishing Websites.. 9

2.3 Related Work... 9

2.3.1 List-Based Approaches ………….. 10

2.3.2 Heuristic Methods…………... 10

2.3.3 Machine Learning-Based Solutions.. 11

2.3.4 Deep Learning-Based Solutions...15

2.3.5 Products for Detecting Phishing Websites.. 17

2.3.6 Comparison of State-of-the-art Solution... 19

2.4 Summary ... 22

Chapter 3 Framework Design…………….. 23

3.1 Architecture ... 23

3.2 Data collection….. 24

viii

3.3 Machine Learning.. 26

3.3.1 Data Loading ………….. 29

3.3.2 Feature Extraction….. 29

3.3.3 Modelling.. 31

3.3.4 Optimizer and Loss Function.. 34

3.4 Heuristic Rule-Based Strategy... 34

3.5 Prediction Service... 38

3.6 Summary ... 39

 Chapter 4 Implementation... 40

4.1 Prototype Overview .. 40

4.2 Chrome Extension ... 41

4.3 Web Application .. 43

4.3.1 Flask …………...45

4.3.2 CORS …………... 46

4.3.3 APScheduler... 47

4.3.4 Depolyment... 48

4.4 Machine Learning.. 48

4.4.1 Scikit-Learn ………….. 48

4.4.2 PyTorch………….. 49

4.5 Summary ... 50

Chapter 5 Evaluation and Results.. 51

5.1 Evaluation Metric.. 51

5.2 Experimental Setup and Datasets... 53

5.3 Machine Learning Models.. 54

5.3.1 GRU Model with Different Datasets.. 55

5.3.2 Different Classifiers.. 58

5.3.3 Hyperparameter Optimization.. 61

5.3.4 Comparison... 61

5.4 Heuristic Method... 64

5.5 Chrome extension ... 66

ix

5.6 Summary ... 68

Chapter 6 Conclusion and Future Work... 69

Bibliography... 71

Appendix….. . 80

Appendix A: Source Code...80

A.1 Chrome extension...80

A.2 Data collection..83

A.3 Traditional machine learning..85

A.4 Deep learning..86

Appendix B: Dataset…..90

B.1 Phishing Links for Testing……………..90

x

LIST OF TABLES

CHAPTER 2

Table 2.1: Widely used feature categories …………………...................................... 12

Table 2.2: Released phishing detection products...…………...................................... 19

Table 2.3: Phishing websites detection strategies...……..21

CHAPTER 3

Table 3.1: Data source…………………..25

Table 3.2: Table structure for the data table named “URL” ..26

Table 3.3: Machine learning algorithms for detecting phishing websites....................29

Table 3.4: Features applied to the heuristic method…...37

CHAPTER 4

Table 4.1: Table structure for the data table named “report”46

CHAPTER 5

Table 5.1: Four statistical numbers of predicting results..52

Table 5.2: Dataset ..55

Table 5.3: GRU model test results with different datasets...56

Table 5.4: Parameters of three traditional models..59

Table 5.5: Comparison of different classifiers' performance.......................................60

Table 5.6: Optional values of deep learning parameters..62

Table 5.7: Comparison of GRU model with other deep learning-based solutions…...63

xi

LIST OF FIGURES

CHAPTER 2

Figure 2.1: Phishing life cycle…….……….……….. 6

CHAPTER 3

Figure 3.1: Architecture of the multi-strategy framework …………………………...24

Figure 3.2: Data collection module……………..…………………………..……….. 25

Figure 3.3: Flowchart of the machine learning module ……………………..…......... 28

Figure 3.4: Dictionary with 100 ASCII characters ……………………………………31

Figure 3.5: A feature matrix from a URL string and the character dictionary…...........31

Figure 3.6: Architecture of a basic RNN…………………..……………………..........33

Figure 3.7: Character-level features in an RNN model ……………………………….33

Figure 3.8: The architecture of basic long short-term memory (LSTM) cell ……...….35

Figure 3.9: The architecture of basic gated recurrent unit (GRU)……..………….35

Figure 3.10: A screenshot of a phishing website's form …... ……….……...………... 39

Figure 3.11: Features for consistency check……..………………………………….…39

Figure 3.12: Flowchart of the prediction service……………………………………....40

CHAPTER 4

Figure 4.1: Client-Server architecture of the prototype………………………………..42

Figure 4.2: Flowchart of the Chrome extension...43

Figure 4.3: Architecture of the web application ………………………………………45

CHAPTER 5

Figure 5.1: GRU model false rates with different datasets….…………………...…... 57

Figure 5.2: Accuracy and F1 score of the GRU model.……………………………… 57

Figure 5.3: GRU model training loss and testing loss ………..................................... 58

Figure 5.4: Accuracy and F1 score of different models ………................................... 60

xii

Figure 5.5: False-positive rate and False-negative rate of different models….……….61

Figure 5.6: A screenshot of a phishing web page with labelled features….................. 66

Figure 5.7: A screenshot of the Chrome extension popup page (legitimate)………….67

Figure 5.8: A screenshot of the Chrome extension displaying warning message ….....67

Figure 5.9: A screenshot of the Chrome extension popup page (phishing)…...............68

xiii

LIST OF ABBREVIATIONS AND SYMBOLS

ASCII American Standard Code for Information Interchange

API Application Programmer Interface

AJAX Asynchronous JavaScript And XML

APWG Anti-Phishing Working Group

CSS Cascading Style Sheets

CPU Central Processing Unit

CNN Convolutional Neural Networks

CORS Cross-Origin Resource Sharing

DOM Document Object Model

DNS Domain Name System

DoS Denial-of-service attack

DoD Doc2Vec model over DOM

DNN Deep Neural Network

ECMA European Computer Manufacturers Association

GA Genetic Algorithm

GRU Gated Recurrent Units

gTLDs Generic top-level domains

HTML Hypertext Markup Language

HTTPS Hypertext Transfer Protocol Secure

IP Internet Protocol

ID Identity document

ISP Internet Service Provider

IC3 Internet Crime Complaint Center

KPT Kaggle and PhishTank

LSTM Long short-term memory

MitM Man-in-the-middle attack

xiv

MHSA Multi-head self-attention

NLP Natural language processing

QR Quick response code

RNN Recurrent Neural Networks

SQL Structured Query Language

SVM Support vector machines

SMS Short Message Service

SSL Secure Sockets Layer

TF-IDF Term Frequency — Inverse Document Frequency

URL Uniform Resource Locator

UCI UC Irvine Machine Learning Repository

W3C World Wide Web Consortium

WSGI Web Server Gateway Interface

XML Extensible Markup Language

1

Chapter 1

Introduction

Internet services have brought tremendous changes to people's lives. Most online services

manage users through a membership system, and individual users need to register and log

in to obtain these personalized services. Due to the pandemic that started at the end of 2019,

many traditional industries have shifted from offline services to online services, such as

catering and retail. Users of the Internet or Netizens have much sensitive information

hosted on their devices or in the cloud, such as usernames, account names, passwords,

privacy questions, personal information, and credit card information. Cybercriminals

obtain this information illegally and forge users to carry out illegal activities on the Internet.

The wide adoption of the Internet and network attack techniques have also changed rapidly,

which has brought many challenges to network security. According to the methods and

forms of network attacks, cybersecurity issues are mainly divided into Denial of Service

(DoS), Man-in-the-middle (MitM), Structured Query Language (SQL) injection, zero-day

exploit, Domain Name System (DNS) tunnelling, phishing, and malware categories.

Phishing is a cyberattack that uses social engineering to induce people to click on

phishing links to intercept sensitive information to steal funds. Social engineering is a soft

skill to trick people into visiting phishing links [1]. They abuse users' kindness and trust in

brands and institutions to fabricate false information and guide them to phishing websites.

These phishing websites are often created by imitating regular URLs with essence

elements, such as text descriptions, logos and companies' names. Attackers are best at

2

forging web pages that require users to submit personal data, such as login pages, payment

pages, and password modification pages.

According to various professional phishing analysis reports, phishing has shown an

upward trend in recent years, and the number of attacks is enormous. Phishing attacks

reached an all-time high in July 2021, with APWG stating a cumulative total of 260,642

attacks that month [3]. Furthermore, the 2020 annual report from the Internet crime

complaint center showed that the economic loss caused by phishing attacks was over $54

million [4]. Phish Lab's 2021 quarterly report [2] shows that phishing attackers still mainly

use emails as bait, and most emails contain phishing links. The methods of staging phishing

sites are still diversified, and most of them use free services and tools. However, in the

third quarter, paid domain registrations increased significantly. In addition, more than 65

percent of phishing sites use Legacy gTLDs. For example, more than half of the phishing

URLs are .com domains, ranking at the top. Phishing attackers usually buy people basic

information from dark net markets, such as name, age, mobile phone number, and

occupation. As can be seen from the report data, telecommunication and ISP data still have

the highest transaction volume on Dark websites. Then they integrate basic personal

information in spoof emails to gain trust.

Anti-phishing strategies involve educating netizens and technical defence.

Identifying the phishing website is an efficient method in the phishing life cycle. The list-

based solution is about filtering a URL with a collection of legitimate URLs or a set of

phishing links. These approaches effectively prevent the reuse of the same phishing website

URL, reducing the number of affected users and losses. Rule-based methods are inspired

by security expert experience to determine whether a webpage is phishing with rules and

3

phishing characteristics extracted from URL and web page content. Machine learning-

based approaches require a batch of data points to train. There are various traditional

models trained with structured features, such as naïve Bayes, linear regression, logistic

regression, decision tree, support vector machine (SVM), K-nearest neighbour (k-NN), and

random forest (RF). In addition, deep learning-based solutions are skillful in handling

unstructured data, such as text, images, etc.

The performance optimization of the machine learning-based solution is mainly to

improve the quality of training data, such as mining new phishing risk characteristics,

increasing the amount of data, and cross-training tests with different source data sets.

Therefore, the framework presented in this thesis supports access to multiple data sources,

creating datasets with mixed sources, flexibly setting the size of data sets, and updating

data daily. In addition, the gated recurrent units (GRU) model obtained the highest

accuracy after comparing the results of different models. Finally, a web browser extension

is implemented as a client-side tool to detect phishing risks in real-time.

1.1 Contributions

The main contribution of this thesis is a framework for detecting phishing websites based

on multiple strategies. The vision of this thesis is that the framework designed,

implemented, and evaluated will serve as a prototype for building a real-time phishing

detection tool. To this end, the contributions of this thesis are:

• Design of a framework for phishing detection based on multiple strategies.

• Implementation of a Chrome extension for capturing web pages’ content and

displaying phishing risk information.

4

• Development of a web application for receiving users’ feedback and providing

HTTPS service.

• Design and development of three traditional machine learning models and three

deep learning models to obtain the best performance model.

• Introduction of seven new features by empirical analysis of phishing characteristics

based on HTML tags applying to the heuristic method.

1.2 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 surveys the related work

discussing important background information on the concepts relevant to this work.

Chapter 3 describes the design of the phishing detection framework explaining the role of

each module. Chapter 4 describes the implementation of the framework. Chapter 5

discusses the evaluation of the framework. Chapter 6 concludes the thesis and offers ideas

for future work.

5

Chapter 2

Background and Related Work

This chapter provides information on the phishing background by explaining a phishing

attack life cycle and several anti-phishing methods. In addition, this chapter presents the

topic of detecting phishing websites, followed by various proposed solutions and

frameworks for achieving high performance. Following this, several main opportunities

and challenges of phishing detection are introduced.

2.1 Phishing

Phishing is a typical cyberattack performed by sending an email or a message to deceive

recipients by visiting a bogus page and then collecting users’ sensitive data, such as

usernames, passwords, and credit card numbers, for financial gain [71].

Figure 2.1 demonstrates the phishing life cycle. First, an attacker creates a phishing

website similar to a legitimate website. On the one hand, attackers used spelling mistakes,

similar alphabetic characters, and other methods to forge the URL of the legitimate website,

especially the domain name and network resource directory. For example, the link

“https://aimazon.amz-z7acyuup9z0y16.xyz/v” (accessed on 9 May 2021) imitates

https://www.amazon.com. Although users on the computer can see the URL address by

moving the mouse to the clickable link, it is difficult for the average user to identify these

URLs with the naked eye and memory as imitating legitimate URLs.

On the other hand, imitation of web content is also a critical point. Typically,

attackers use scripts to obtain logos, layouts, and text from genuine web pages. Form

6

submission pages that require user input of sensitive information are most often faked by

cybercriminals, such as login pages, payment pages, and find password pages.

Figure 2.1: Phishing life cycle

The second step is sending an email that firmly guides readers to click on the link.

The phishing links are not only sent by email but also by SMS, voice message, QR codes,

and spoof mobile applications [5]. With the widespread use of smartphones and social

media, the number of channels for criminals to spread false information has increased.

Through these channels, text and pictures are usually used to trick readers into clicking on

a link. For example, an attacker imitates a customer service representative of a

telecommunications company to send an email urging users to pay to prevent downtime.

Although scam emails are sent randomly, there is always a small number of users with

weak defensive awareness who will be deceived. In step two, the attacker applied social

engineering methods, including psychological manipulation, to trick users into making

security mistakes. Perpetrators are good at building a sense of fear and urgency and gaining

the user’s trust via text messages. Afterward, the user clicks the link that will direct them

7

to open a fake website. Particularly, real URL strings are hidden before redirecting to web

browsers on mobile phones.

The next step is collecting personal information on the phishing website, which

looks like a real company or organization’s web page, by using a similar logo, name, user

interface design, and content. When users submit sensitive information to web servers that

attackers build, criminals will receive all the data. The last step is stealing the user’s

account funds by using the victims’ real information to imitate their requests on real

websites. Some individuals use the same usernames and passwords for multiple websites

allowing the attacker steals multiple accounts from the victim. Some phishers use stolen

data for other criminal activities. Since the first phishing technique was recorded in a paper

in 1987 [67], phishing methods have changed with the development of the Internet. For

example, when online payment became popular, attackers began to target online payment

systems. According to the 2020 Internet Crime Report, the Internet Crime Complaint

Center (IC3) received 791,790 cyberattack complaints, of which phishing scams accounted

for approximately 30%, becoming the most complained about the type of cybercrime and

causing more than USD 54 million in losses [2].

2.2 Anti-Phishing

There are five steps before an attacker steals money from the victim’s account or uses the

information for other attacks (Figure 2.1). Blocking any step could stop a phishing attack.

Four technologies are listed below.

8

2.2.1. Web Scraping

For step one, although it is hard to prevent perpetrators from creating web pages, techniques

could increase their costs. Attackers will use scripts to write crawlers to obtain legal web

pages’ content automatically and then intercept useful information and copy it to phishing

web pages. Therefore, legitimate websites could prevent web scraping by implementing

several techniques concerning obfuscation, using CSS sprites to display essential data, and

replacing text with images.

2.2.2. Spam Filter

Spam filtering techniques are used to identify unsolicited emails before the user reads or

clicks the link. Some mainstream email services have integrated spam filtering

components, such as Gmail, Yahoo, Outlook, and AOL. The initial filters relied on

blacklists or whitelists and empirical rules. With the development of artificial intelligence

technology, some filters also integrate intelligent prediction models based on machine

learning to filter out spam that is not on the list. For example, Gmail could block

approximately 100 million extra spam emails daily with the machine learning-based spam

filter [6].

2.2.3. Second Authorization Verification

After the attacker obtains the user’s sensitive data, the next step is to use the data to log

into the legitimate website, operate the account, and steal funds. Therefore, when the

website detects that the IP address and device information of the user who is logging in

does not match the commonly used information, it becomes crucial to add steps to verify

9

the authenticity of the user. Usually, the extra verifications are dynamic and biological,

such as facial movement, expression recognition, or voiceprint recognition.

2.2.4. Detecting Phishing Websites

When users visit a phishing web page that looks like a legitimate website, many people do

not remember the legitimate website’s domain name, particularly for some start-ups, so

users do not recognize the phishing website based on the URL. Some web browsers

integrate a security component to detect phishing or malware sites, such as Chrome, which

will display warning messages when one visits an unsafe web page. Google launched

Google Safe Browsing in 2007, and it has been integrated into many Google products, such

as Gmail and Google Search. Google Safe Browsing is a security component based on a

blacklist that contains malware or phishing URLs [7]. In addition, there are several web

browser extensions for detecting phishing websites available. However, the blacklist or

whitelist-based solutions are invalid for unknown phishing websites. Fortunately, the rapid

development of artificial intelligence technology has brought new tools and solutions to

detecting phishing attacks. A predictive model based on machine learning can identify

phishing links that are not on the whitelist and circumvent existing rules.

2.3 Related work

This section provides details on the related work done on detecting phishing websites. The

methodologies of detecting phishing websites are developed and are divided into four

categories: list-based, heuristic, machine learning-based and deep learning-based methods.

10

2.3.1 List-Based Approaches

The list-based method includes a white-list filter and a black-list block. A white list is a

collection of legitimate URLs. A blacklist is a set of phishing websites, which can be

implemented in two ways: establishing a local database and crawling data from other

phishing data sources; invoking a third-party list service. The list-based approach is

efficient and accurate. Keeping the list up to date can effectively control multiple victims

of the same phishing link attack. The drawback is it is impossible to detect zero-day

phishing links.

Jain and Gupta proposed an auto-updated, whitelist-based approach to protect

against phishing attacks on the client side in 2016. The experimental results demonstrate

that it achieved 86.02% accuracy and less than a 1.48% false-positive rate, which indicates

a false warning for phishing attacks. The other benefit of this approach is the fast access

time, which guarantees a real-time environment and products [8].

2.3.2 Heuristic Methods

A rule-based heuristic strategy is about extracting features from a URL and HTML source

code and creating several rules to infer phishing risks. This approach is driven by expert

experiences. Tan et al. introduced a phishing detection approach named Phish WHO, which

consists of three phases. First, it obtains identity keywords by a weighted URL token

system and ensembles the N-gram model from the page’s HTML. Secondly, it puts the

keywords into mainstream search engines to find the legitimate website and the legal

domain. Next, it compares the legal domain and the target website’s domain to determine

if the target website is a phishing website or not [9]. Chiew et al. used a logo image from

the website to distinguish if the website was legal [10]. In this paper, the authors extracted

11

a logo from web page images by support vector machine (SVM) classifier and then queried

the domain via the Google search engine with a logo as a keyword. Therefore, some

researchers also called this category search engine-based approach.

2.3.3 Machine Learning-Based Solutions

Machine learning-based countermeasures are proposed to address dynamic phishing

attacks with higher accuracy performance and lower false-positive rates than other

methods. Consequently, the machine learning approach consists of six components: data

collection, feature extraction, model training, model testing, and predicting. Feature

extraction and selection are the foundation for many solutions. Table 2.1 lists the widely

used feature categories as well the source of features and applicable models and techniques.

Xiao et al. [58] proposed a hybrid model to detect phishing URLs. They used a

regular Convolutional Neural Network (CNN) to extract features from a URL string.

Furthermore, they applied multi-head self-attention (MHSA) technology to figure out the

relationship among characters, then obtain the weights of features. The experimental results

demonstrated that the CNN-MHSA model obtained the highest accuracy of 99.84%.

Sahingoz et al. [59] applied Natural Language Processing based features and word-level

features into several machine learning models in terms of a decision tree, Support Vector

Machine (SVM), k-nearest neighbour algorithm, AdaBoost algorithm, Naïve Bayes, and

Random Forest. After a vectorization process, they extracted 1701 words features among

73,375 URLs. In addition, they create 40 Natural Language Process (NLP) features based

on a URL string. In the NLP phase of Sahingoz et al. work, a URL was separated into

several words by special characters, such as ".","/", then based on the analysis of these

words, these 40 attributes were derived, such as the longest number of vocabulary

12

characters, the shortest number of word characters, and the number of second-level domain

names. After executing a feature selection, 104 features were left. The comparable results

of their research showed that the random forest model obtained the highest performance.

Table 2.1. Widely used feature categories

Category Source Applicable model

or Technology

A sequence of characters URL string Deep Neural

Networks

Words vectors URL string All1

Vocabulary statistical features URL string All1

Symbols and components of the

URL

URL string All1

Website credibility features:

webpage rank, domain registration

information, Google index

HTML & third-party

services

All1

HTML tag statistical features HTML All1

Images in the webpage source

code

HTML Computer vision

All1: SVM, Random forest, Logistic regression, Decision tree, CNN, DNN, RNN.

In 2021, Ozcan et al. [60] used these 40 NLP features to train their hybrid model.

They combined a Deep Neural Network (DNN) model and a Bidirectional Long Short-

13

Term Memory (BLSTM) model to expose phishing websites. Furthermore, they extracted

character-level features from a URL and fed them to a character embedding layer in the

LSTM architecture. Finally, they achieved a high accuracy of 98.79% with the complex

hybrid deep learning model. Odeh et al. [61] extracted and selected 30 features based on

URL strings and web content. The features are classified into four categories in terms of

the address bar, abnormal, HTML & JavaScript, and domain-based. Some features depend

on third-party services. On the testing process with a 30% data set, the AdaBoost model

obtained an accuracy of 98.9%.

Liu and Fu [62] introduced a novel unsupervised machine learning algorithm to

classify websites into benign and phishing. They created a web link network with nodes

standing for websites and edges between nodes representing reference relationships. A

reference relationship is determined via hyperlinks and similar textual content from one

web page to another. Besides, they integrated the URL information of each node and used

the embedding technique to transform the graphic network into a low-dimensional vector

space. It finally predicted whether a web page is phishing or not by calculating the

similarity in the neighbourhood.

Feng et al. [63] proposed a DOM tree structure-based method to cluster a web page

as a phishing or legitimate category named DoD. The authors used a Doc2Vec model to

vectorize the DOM tree and calculate the semantic similarity, then imported a hierarchical

algorithm to cluster web pages. They collected a data set from PhishTank [18] and Alexa

[17]. The experimental results show that DoD obtained a higher true-positive rate of 89.9%

than other DOM-based clustering algorithms. However, the clustering time is much longer

than other methods, even over five times.

14

Barraclough et al. [64] presented a novel feature list for detecting e-banking

phishing websites. They combined blacklist-based, web content-based and heuristic-based

methodologies to extract 3000 features. In addition, they trained five models to compare

the performance with a custom data set of 30500 instances. Finally, the proposed solution

achieved a high accuracy of 99.33% and a short prediction time of 0.006 seconds. However,

the performance of a high error rate of 0.66% indicates that overfitting probably occurs

during the training process.

In 2021, Gupta et al. developed a lightweight phishing detection approach and

achieved 99.57% accuracy with the random forest algorithm [11]. The authors extracted

19,964 instances with nine lexical features from the ISCX-URL-2016 dataset published by

the University of New Brunswick [12]. The ISCX-URL-2016 dataset contains more than

35,300 legitimate URLs and approximately 10,000 phishing URLs taken from an active

repository of phishing sites https://openphish.com (accessed on 18 July 2021). To balance

the distribution of the two classes, the authors randomly filtered 10,000 benign URLs and

9964 phishing URLs. Furthermore, the Spearman correlation algorithm and K best

algorithm are applied to determine the feature importance. Based on other previous

research, nine lexical features from URLs were proposed in the paper. Afterward, they

cleaned the data by replacing the null and unlimited values with mean values and

normalized them by scaling the values between 0 and 1. Normalization is one of the

important data preprocessing procedures to guarantee that one feature is not dominated by

others. In addition, they used a one-hot encoding algorithm to transfer the labels to

numerical values. Once the dataset is regularized, it is divided into a training dataset and a

testing dataset with eight-to-two ratios. In the process of modelling, they compared four

15

single classifiers with the performance and computational time. Finally, it was concluded

that random forest had the highest accuracy rate and the lowest false positive rate.

However, in terms of response time, SVM performed better.

2.3.4 Deep Learning-Based Solutions

Deep learning is a subset of machine learning which is built with deep structured

architectures. There are some commonly used deep learning algorithms, such as

convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-

term memory (LSTM) networks. With the rapid development of natural language

processing (NLP) and deep learning algorithms, various deep learning-based solutions are

introduced for phishing detection.

Ali et al. developed an intelligence phishing detection model which combined deep

neural networks (DNNs) and genetic algorithms (GAs) [13]. A DNN is a well-known deep

learning technique with more than two hidden layers, an input layer and an output layer,

commonly used to classify multiple labels from big data. The GAs is inspired by the

biological evolution of the genes in nature and is widely used for optimization problems

that aim to minimize or maximize the value of objective functions under some constraints.

In this approach, the authors regarded the problem of feature selection as an optimization

problem. Mathematically speaking, the objective function minimizes the number of

features, and the constraint function is the accuracy of the classification model. Meeting

performance requirements with minimal features reduces the model training time and could

remove the noisy data. Therefore, the GA was applied to find the optimal subset of features

by computing the accuracy of the DNN model in each generation. A chromosome

represents a group of features, and each gene with a binary value stands for each feature,

16

where one is for selecting this feature and zero is not. The classification phase used the

selected features as input features and the UCI dataset [66] as a training dataset to fit the

DNN model. However, the GA-DNN model got a relatively low accuracy result, which

was 89%. It is known that hyperparameters and the size of a training dataset significantly

affect the performance of deep learning models [14].

In 2020, Aljofey et al. proposed an efficient convolutional neural network (CNN)

model for phishing detection only based on URLs [15]. They extracted character-level

features from the original URLs, which were collected from different phishing websites

and benign websites. The experimental results showed that this model obtained an accuracy

of 95.02% on their own dataset with 318,642 instances. Wang et al. introduced a fast model

called PDRCNN that used the URL string as an input, extracted features by an RNN and

CNN, and then classified them with the Sigmoid function [16]. The authors collected

approximately 500,000 instances from Alexa.com [17] and phishTank.com [18] and

extracted semantic features based on the word embedding technique, encoding the URL

string to a tensor, an input of the RNN model. A bidirectional LSTM network algorithm

implemented the RNN architecture to extract global features, which were the inputs of the

convolutional neural network. The final one-dimensional tensor represented a group of

features generated through multiple convolutional and max-pooling layers. Finally, the

one-dimensional tensor was fed into a fully connected layer with a sigmoid function to

classify the original input URL into the fake and phishing website. The experimental results

illustrated that they achieved 95.97% accuracy.

17

2.3.5 Products for Detecting Phishing Websites

The goal of anti-phishing research is to prevent individual Internet users from suffering

phishing attacks. With the development of anti-phishing research, phishing attackers are

constantly updating their technology. Phishing links cannot be well recognized by naked

eyes, and individual netizens need tools to help identify them. Many researchers naturally

think of expanding on the browser.

In 2020, HR et al. built a web browser with a phishing detection component [19].

The regular web browser had two core engines: a browser engine and a render engine,

which are responsible for connecting to the Internet to fetch the web page via the URL,

parsing the web page by XML, HTML, CSS, JAVASCRIPT interpreters, storing cookies,

etc. The proposed browser added an intelligent engine to detect phishing websites between

the browser engine and render engine. When a user inputs a URL, the intelligent engine

starts to predict whether the target website is a phishing website and afterward sends the

result to the render engine. If the predicted result showed a phishing website, the render

engine would display a warning message to the user through a browser interface. This paper

used the random forest algorithm to train the model, and it obtained 99.36% accuracy and

a 0.64% false-positive rate on the UCI dataset [66] with 30 rule-based features.

Furthermore, a phishing detection web browser extension is implemented easier

than a comprehensive anti-phishing browser. Armano et al. introduced a real-time client-

side phishing prevention solution [20]. The approach contains a built-in JavaScript

frontend and a built-in Python backend. The front-end collects the web page source code

and handles the user interface and interaction with the backend, analyzing the website and

predicting if the page is a phishing website. The backend consists of a disputer for checking

18

against the whitelist, a phishing detector for predicting the website’s legitimacy, and a

target identifier to find the legitimate website relevant to the input URL based on the logo,

keywords, and other content. The phishing detector is implemented by an existing solution

that uses the gradient boosting algorithm as the classifier [21]. The authors experimented

with 200 phishing websites to monitor the response time. The results showed that the

response time for a phishing URL was longer than a legitimate one, which was

approximately 2 s, and the appearance of the alert cost occurred in less than 500

milliseconds. In addition to the framework mentioned in academic papers, there are also

several published Internet products. Several widely used products are listed in Table 2.2.

2.3.6 Solutions Comparison

Each of the four types of solutions has advantages and disadvantages. Table 2.3 shows four

widely used phishing detection methods, as well as their strengths and weaknesses. The

rule-based policy logic is simple, but zero-day phishing links cannot be detected, and there

is no prediction function. Heuristic rule-based solutions are like experts who are familiar

with phishing attacks and defences, but features and rules are prone to failure over time

when an attacker cracks them. Machine learning-based approaches improve the accuracy

of decision-making, but they require high quantity and quality training data. Deep learning

models can effectively prevent features and rules from being cracked and exploited by

attackers, but the complexity and time cost of training such models are high. Every

detection tool and product applied to a real scene needs to balance accuracy, false-positive

rate, and time performance. As a result, many anti-phishing solutions often combine

multiple strategies.

19

Table 2.2. Released phishing detection products

Name Type Devices Techniques Advantages Shortcomings Users

Phish

Detector

[22]

Web

browser

extension

Chrome Rule-based
Zero false-negative

alarms

Only for online-

banking web sites
2000+

Netcraft

Extension

[23]

Web

browser

extension

Chrome
Blacklist-

based

Multiple features,

including

coronavirus-related

cybercrime.

New phishing

attacks cannot be

prevented

50,00

0+

WOT [24] All

Browser

Mobile

PC

Blacklist +

machine

learning

algorithms

Multi-platform

security service
Charged

1,000,

000+

Pixm

Phishing

Protection

[25]

Web

browser

extension

Chrome

Deep

learning

algorithm

Advanced anti-

phishing solution

(AI)

Charged 1000+

Sharkcop

[26]

Web

browser

extension

Chrome
SVM

algorithm

New attacks can be

detected

Few features are

used

The project is

currently on hold

Feature extraction

relies on third-

party services,

such as domain

age

-

PhishFort

[27]

Web

browser

extension

Chrome

Firefox

Blacklist-

based
Free

New phishing

attacks cannot be

prevented

2000+

20

In addition, there are many challenges and difficulties in moving from laboratory

research to real-time production. Effective phishing detection solutions should combine

new data constantly for recognizing fresh rules and training machine learning models.

Phishing and anti-phishing are always in the process of confronting each other. Attackers

will adjust the generation of phishing links according to the published anti-phishing rules

and methods. Likewise, anti-phishing needs to optimize models and algorithms based on

new phishing data. Furthermore, the performance of machine learning-based solutions

highly depends on the quality of the training dataset in terms of size and validation. The

published datasets are small datasets that do not satisfy the demands of deep learning

approaches. According to the power law, deep learning performance keeps rising with the

increase of the training data size [65]. Therefore, pulling phishing URLs and legitimate

URLs from websites is recommended. However, this depends on the stability of the third-

party services or websites.

Furthermore, some features and rules are extracted from URL strings depending on

third-party services, for instance, the published rules [66]. Using third-party services might

cost extra time and bring unstable issues. In addition, since tiny URLs do not present the

real domain, resource direction, or search parameters, rule-based feature selection

techniques might be useless for tiny URLs. Due to tiny URLs generated by different

services, it is hard to convert them to original URLs. Furthermore, tiny URLs are short

strings that are challenging for natural language processing to extract character-level

features. If tiny URLs are not specially processed during data cleansing and preprocessing,

they are likely to cause false or missed alarms. Internet products are also essential in terms

of user experience, and users are also sensitive to false alarms of Internet security products.

21

Table 2.3. Phishing websites detection strategies

Phishing detection

strategies

Advantages Disadvantages

List-based It accurately and efficiently

identifies known phishing

links.

It couldn't recognize zero-day

phishing URLs.

Heuristic rule-based Low time complexity;

Interpretable.

Easy to be cracked by

attackers.

Machine learning-

based

High performance. Performance is highly

dependent

on structured training data

Deep learning-based It is not easy to be cracked by

attackers; A large number of

features can be extracted.

High training time and high

space complexity; Less

interpretable.

Rule-based models depend on rule parsing and third-party services from a URL

string. Therefore, they demand a relatively long response time in a real-time prediction

system that accepts a single URL string as an input in each request from a client. Phishing

attacks spread to various communication media and target devices, such as personal

computers and other smart devices. It is a big challenge for developers to cover all devices

with one solution. Language independence and running environment independence should

be taken into consideration to reduce system development complexity and late maintenance

costs.

22

 This thesis presents a phishing detection framework based on multiple strategies to

improve performance of accuracy and reduce response time. In addition, optimization

machine learning models can be done automatically by training with an updated dataset. A

prototype has been implemented with a Chrome extension and a web application to

evaluate the efficiency of multiple strategies in real-time.

2.4 Summary

In this chapter, the life cycle of phishing attacks and the characteristics of each node is

introduced. Afterward, the state-of-the-art solutions for detecting phishing websites are

presented in terms of list-based methods, heuristic strategies, machine learning-based

solutions, and deep learning-based approaches. In addition, the pros and cons of each

solution type are analyzed, and the challenges of anti-phishing products are listed. The

design of the proposed framework is presented in the next chapter.

23

Chapter 3

Framework Design

This chapter describes the design aspects of the proposed machine learning-based

framework and its architecture. To this end, the chapter first presents the overview of the

architecture and describes the inspiration of the work. Furthermore, the details of data

collection as the fundamental module is explained. Along with this, the details of machine

learning-based method and heuristic rule-based strategy are presented. Finally, a prediction

service with multiple strategies is introduced to detect phishing risk in a real-time

environment.

3.1 Architecture

 The major motivation behind the proposed machine learning-based framework is to

develop a tool for detecting phishing websites in real-time with high efficiency, high

accuracy, and low false alarms. In a real-world environment, phishing links account for a

very small percentage of all network requests. This framework provides a multi-strategy

converged prediction service based on a machine learning model, where the list-based

strategy can be quickly filtered, reducing the average response time of requests and

reducing the overall false alarm rate. In addition, the heuristic-based strategy narrows the

phishing web page to a page with a confidential form, improving the overall accuracy rate.

Finally, a machine learning-based model predicts phishing risks.

Figure 3.1 depicts the architecture of the proposed framework, which contains a

data collection module, machine learning progress, heuristic strategy, and a prediction

service. For data persistence, a database is built to store URLs collected from various data

24

sources. On the one hand, those data are filtered to generate blacklists and whitelists, which

are used as the list-based strategy of the prediction service. On the other hand, datasets

used for machine learning model training and testing are also generated from this database.

The effectiveness of this framework is based on several assumptions. First, phishing is

done by asking users to submit sensitive information on an active web page, and the way

virus-ridden files are automatically downloaded when a connection is opened is beyond

the scope of this article. Second, the ability to reduce bias in cross-training models from

multiple data sources is limited to low data overlap between multiple data sources.

Figure 3.1: Architecture of the multi-strategy framework

3.2 Data Collection

Data is the core of the field of machine learning. The quality and quantity of data

significantly impact the performance of machine learning-based modules [28]. The data

collection module is the foundation of this system. Figure 3.2 presents the details of the

data collection module.

25

Figure 3.2: Data collection module

Data was collected from different open sources, shown in Table 3.1. The

PhishStorm [29] dataset contains 96,018 URLs: 48,009 legitimate URLs and 48,009

phishing URLs. The ISCX-URL2016 [12] dataset contains 35378 legitimate URLs and

9965 phishing URLs. Data was loaded around 350,000 benign URLs from an open Kaggle

project [30]. In addition, 400,000 data points were collected, and new data was grabbed

from the PhishTank platform [18] every day.

Table 3.1. Data sources

Data source Legitimate URLs Phishing URLs

PhishStorm [29] 48,009 47,902

PhishTank [18] 0 178,495

ISCX-URL2016 [12] 35,378 9,965

Kaggle [30] 345,738 0

Total 429,125 236,362

26

The URL’s basic structure was analyzed and extracted into several parts in terms of

protocol, domain, and path. Table 3.2 presents the major fields of a table named URL. Data

points are stored in a relational database, as it is flexible and efficient for providing data

services by reading based on SQL. These data services can combine multiple data sets. For

example, select 20,000 phishing links from PhishTank and 20,000 good links from Kaggle,

and combine them into a balanced data set with 40,000 instances.

Table 3.2. Table structure for the data table named “URL”

Name Description Example

url URL https://amazom.mhmgmm.rest/mobile/

label 1: phishing; 0: legitimate 1

source Data source PhishTank

External id Unique ID of the same data

source

7270002

netloc netloc amazom.mhmgmm.rest

Gmt_created Created date 2021-08-21 01:39:40

3.3 Machine Learning

The machine learning module is mainly responsible for model training and model

testing. In this framework, the data of the training model is updated regularly, and the

training and testing processes of all models are automatically and regularly triggered. The

system will record each run's parameters and data collection types and save the model to a

file system. It is flexible to add new models to the ML module. Figure 3.3 shows the

27

flowchart of the machine learning module [71]. The flowchart is divided into two branches

after the feature collection process. The first branch is to extract word-level features and

train traditional machine learning models, and the second branch is to extract character-

level features and train deep learning models.

Phishing website detection is a binary classification problem. There are many widely

used classifiers, such as Decision Trees, Random forest, k-nearest neighbours’ algorithm,

Bagging, Naïve Bayes, Logistic Regression, and Support vector machine (SVM). The

Random forest, Logistic regression and SVM are selected in this thesis.

Many studies have shown that the random forest classifier performs better than other

traditional classification models in detecting phishing networks [11], [50], [51]. A random

forest is an ensemble of decision trees for classification and regression. Random forests

reduce the overfitting problem by classifying or averaging the output of individual trees in

training processing. Therefore, random forests generally have higher accuracy than

decision tree algorithms.

Logistic regression is a statistical algorithm used to predict the outcome of a

dependent variable based on previous observations. It’s a commonly used machine learning

model for solving binary classification problems. For example, a logistic regression

algorithm can predict whether a web page is a phishing website. A logistic regression

algorithm was used to solve the spam text classification problem [73] and detect phishing

websites [74].

A support vector machine (SVM) is a supervised learning algorithm that classifies

data points into two sections and predicts new data points belonging to each section. It is

suitable for linear binary classification, which has two classes labelled, and the classifier is

28

a hyperplane with N dimensions relevant to the number of features. The core idea of this

algorithm is to maximize the distance between the data point and the segmentation

hyperplane. For example, there are two classes: phishing and legitimate, and a 29-

dimension hyperplane in the UCI dataset [66] for training the SVM model. Therefore, these

three traditional machine learning models are used to predict phishing URLs. The

optimization of the model is accomplished by adjusting the parameters and comparing the

test results.

Figure 3.3: Flowchart of the machine learning module

 In the deep learning model training process, URLs are converted into a set of

character sequences. In deep machine learning models, the architecture of a recurrent

neural network (RNN) is well suited for training data sequences. RNN is a deep neural

network with an internal memory function to handle diverse length sequences of inputs,

such as text. In addition, the GRU and LSTM models add a gate unit based on the RNN

29

architecture to control and calculate the current state. These two models can be said to be

upgraded versions of the RNN structure.

Table 3.3 shows a summary of these algorithms based on the same dataset. The Big

O notation is used to measure the computational complexities of machine learning

algorithms. The complexity of a deep neural network depends on the architecture of the

networks. Generally, it needs to compute the activation function of all neurons.

Interpretability presents the difficulty of understanding how the model works. Traditional

machine learning algorithms are user-friendly. In deep neural networks, it is hard to know

which neuron is playing what role and which input feature contributes to the model output.

A well-known drawback of deep learning models is the “black box” nature [75]. In

addition, deep neural networks require more training data than other algorithms to obtain

acceptable performance [76]. The significant advantage of deep neural networks is dealing

with text data, such as URL strings.

Table 3.3. Machine learning algorithms for detecting phishing websites

Algorithm
Training Time

Complexity
Interpretability

Training Data

Size
Inputs

Logistic

Regression
O(nd) High Small Structured data

SVM O(𝑛2) Medium Small Structured data

Random Forest
O(knd log 𝑛)

k = number of trees

Medium Small Structured data

Deep Neural

Networks

Compute the activation

of all neurons
Low Large

Structured data

or text data

30

3.3.1 Data Loading

Data are the source of each approach and prove to be a vital influence on the performance.

There are two methods to collect data: loading published datasets and pulling URLs

directly from the Internet. The original URL strings could be collected from websites by

running open API or data mining scripts.

The dataset used for model training is obtained from the database through the data

service. The data service supports the flexible selection of different data source

combinations and datasets of varying data volumes. Each data instance contains a URL

string and a label that signs the URL is a phishing link or a legitimate link. The label values

are normalized as 1 and 0.

3.3.2 Feature Extraction

With the successful development of the natural language processing (NLP) technique,

many researchers capture character-level features from URL strings based on the NLP and

then feed them into deep learning models to increase the accuracy. The significant

advantage of this method is not relying on third-party network services [24].

A URL string is handled as a document containing semantics and applies the

Natural language processing (NLP) technology to extract features. In classical machine

learning models, two methods of extracting features are used, named TF-IDF-Vectorizer

and Count-Vectorizer. The TF-IDF-Vectorizer converts a collection of URLs to a matrix

of TF-IDF features. TF-IDF means Term Frequency–Inverse Document Frequency. The

algorithm calculates each word’s TF-IDF score and then generates a matrix with those

scores, which stands for the relevance of a word in the URL string. The Count-Vectorizer

converts a collection of URLs to a matrix of token counts, and each token stands for one

31

word. Therefore, the number of features equals the vocabulary size found by analyzing the

data.

In deep learning models, the tokenization process parses a URL string to a list of

characters (Character-level tokens). The characters in the URL come from the ASCII

character set. The most common 100 characters are selected as the character set dictionary

for this study. Figure 3.4 shows all the arranged characters and the corresponding index.

Figure 3.4: Dictionary with 100 ASCII characters

Figure 3.5: A feature matrix from a URL string and the character dictionary

The maximum length of a URL is 2083 characters [31]. Because of the calculation

time of the deep learning model and the analysis of the statistical data of the existing data

32

set, the maximum number of URL characters is 200. Therefore, each URL can be

transformed into a 200*100 matrix. The position of the dictionary corresponding to each

character is marked as 1, and the remaining values are 0. Figure 3.5 shows the process of

forming a matrix using Google's official website as an example.

3.3.3 Modelling

It is a solution to treat a URL as a document and use character separators to parse words as

features. However, many words in URLs also lack semantics. Moreover, the analysis of

word-level results in an extensive dictionary will slow the calculation time. The recurrent

neural network (RNN) is a feedback neural network that stores temporary states. It's

suitable for training sequence data [32]. Figure 3.6 shows a regular RNN architecture that

consists of an input layer, several hidden layers and an output layer. Compared to the

feedforward artificial neural networks (ANN), RNNs have a unique architecture with a

connection function between neurons in hidden layers. The figure shows that the current

hidden state is related to the previous hidden state and the current input. The current hidden

state's functional form can be represented as Eq. (1) and (2). The tanh is a nonlinear

function, W represents the weights between the neurons, and b is the bias vector of the

setting. The Soft-max calculates the output value as an activation function, as shown in Eq.

(3), and the model prediction value is related to the current hidden state.

ℎ𝑡 = 𝑓𝑤(ℎ𝑡−1, 𝑥𝑡) (1)

ℎ𝑡 = tanh(𝑤ℎ𝑥 + 𝑤ℎℎℎ𝑡−1 + 𝑏ℎ) (2)

𝑌𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑦ℎℎ𝑡 + 𝑏𝑦) (3)

33

The scenario that detects the phishing link is a many-to-one task type, the input is

character-level sequence data, and the output is a category. Figure 3.7 shows the structure

of one hidden layer.

Figure 3.6: Architecture of a basic RNN

The Whx, Whh, and Wyh respectively mean the weight matrix between input and hidden

layer, the weight matrix between two hidden layers, the weight matrix between hidden and

output layer.

Figure 3.7: Character-level features in an RNN model

34

Before model training, the structure of the model is fixed, and activation function

is established, so the process of model training is actually the process of optimizing the

weights parameters by calculating each error. First, randomly initialize the weights matrix,

then calculate the difference between the actual value and the predicted value, then use the

optimized algorithm to find the optimal solution to minimize the difference, and finally

adjust each weight by calculating the step each time.

Depending on the architecture of RNN and activation functions used, the basic

RNN architecture does not perform well for handling inputs for long sequences because of

the vulnerability to gradient vanishing or exploding problems [33]. To address these,

Hochreiter and Schmidhuber introduced a gradient-based model named long short-term

memory (LSTM) in 1997 [34]. They invented a long short-term memory unit instead of

tanh function to compute hidden states. The LSTM unit consists of three gates and two

memory cells. Cho et al. proposed a novel model with a hidden unit, which was motivated

by LSTM in 2014 [35]. Figure 3.8 demonstrates the long short-term memory (LSTM)

learning model architecture.

Since the hidden unit contains two gates to control and calculate the hidden state,

this model is also named gated recurrent unit (GRU). Figure 3.9 shows a typical structure

of GRU. It can be said that long short-term memory network (LSTM) and gated recurrent

unit (GRU) are two enhanced versions of RNN. Many studies and experimental data show

that for sequence data training, the LSTM and GRU architecture can achieve better

performance than the basic RNN architecture [36] [37].

35

Figure 3.8: The architecture of basic long short-term memory (LSTM) cell

Figure 3.9: The architecture of basic gated recurrent unit (GRU)

3.3.4 Optimizer and Loss Function

In the model training process, it is also essential to choose a suitable optimizer and loss

function. Among many optimization algorithms, the Adam algorithm is selected, which is

a popular and effective optimization algorithm for deep learning [38]. Since the problem is

a binary classification problem, the cross-entropy loss function [39] is used, which is also

36

called the log loss function. According to the scenario of the current problem, the output

predicted value is a floating-point number between 0 and 1. Cross-entropy loss increases

as the predicted probability diverge from the actual label. It is believed that it will converge

quickly in the initial stage of training with the same learning rate. The loss value of each

epoch is calculated the average loss value of all data points.

3.4 Heuristic Rule-Based Strategy

The core of heuristic rule-based strategy is to analyze the characteristics of phishing pages

based on web page URL and web page HTML content, then extract relevant feature values

and formulate a series of rules to determine whether there is a phishing risk. Phishing pages

often use a non-semantic domain name, but clearly display a well-known company or brand

name on the page content, and have a form to enter user sentiment information. Table 3.4

shows the attributes and corresponding rules extracted from the HTML document. The

features F1, F2 and F3 judge phishing risk from a correlation between a web page content

and domain name semantics. The value of the title tag is the title that describes the entire

web page. Generally, the title of a normal website contains a company name or brand and

the description of the current page, such as the login page of Facebook. The URL is

"https://www.facebook.com/", and the text in the title tag is "Facebook – Log In or Sign

Up". At the same time, the domain name part of the URL usually also contains company

or brand information. Consistency can be judged by comparing the similarity of the domain

name semantics and document description semantics. However, some websites did not set

the title tag value. The content of the heading tag is extracted as a description of a website.

37

Table 3.4. Features applied to the heuristic method

Feature Attribute Rule

F1 The text in the <title> If it is null, value=1, else value=0

F2 The similarity score of domain and

title

If the score >threshold, value=0,

else value=0

F3 The similarity score of domain and

text of header tags

If the score >threshold, value=0,

else value=0

F4 The number of input numbers If the number <threshold, value=0,

else value=1

F5 The number of buttons If the number <threshold, value=0,

else value=1

F6 The description of inputs has

sensitive words

If it has sensitive words, value=1,

else value=0

F7 Iframe tag If it has iframe tag, value=1, else

value=0

The F4, F5 and F6 determine whether there is a form that requires users to submit

sensitive information. The number of inputs and buttons on the page are also very important

characteristics. The input box displayed on the page can be implemented by the input tag

and the textarea tag, and the input tag has 21 types, which are specified by the attribute

type. Among them, there are seven types for the user to input text or numeric information,

and the default is text input if there is no specified type. Buttons are implemented in a

variety of ways. For example, the button tag, the input tag whose attribute value is "button",

and other tags are controlled by JavaScript to submit information to the web server.

Furthermore, from the analysis of normal web page functions, some form input and

38

submission functions are not user-sensitive information, such as commonly used search

functions. Therefore, the description of input tags is captured from tags' context and

attributes as features.

The tag "iframe" is used to embed another page on the current page. The embedded

HTML structure cannot be obtained from the source code of the current web page.

Therefore, some phishing web pages use the "iframe" tag to embed a form submission

function. The F7 is used to detect abuse of iframe tags.

Each input tag is defined as a dictionary, which contains two elements: type and

description. The value of the type can be obtained from the type attribute of the input tag.

There are many sources of description information, including the text of other adjacent

elements, the default value of the input element, and the placeholder attribute.

Confidential forms refer to forms that require users to submit sensitive personal

information, such as name, ID number, password, bank card number, etc. These

descriptions are usually displayed on the left, above, or in the corresponding input box.

First, the similarity is calculated between the input tag description and the local sensitive

vocabulary dictionary. This dictionary is created based on experience and statistical

analysis of information input pages from well-known websites. Some phishing attackers

try to evade detection rules by using variations of characters. For example, Figure 3.10 is

a screenshot of an active phishing link "

https://con_rmsubscription.com/h/y/2E7CE2C46A8733CF". In this case, one of the

sensitive words, "password," is a variant. This deformation visually deceives the user, but

the recognized meaning is entirely different from the visual when the computer treats it as

an ordinary word.

https://con_rmsubscription.com/h/y/2E7CE2C46A8733CF

39

Figure 3.10: A screenshot of a phishing website's form

A fuzzy matching algorithm is used to judge the consistency of web page content

and domain name. It uses Levenshtein Distance [41] to calculate the differences between

two sequences. A common method of phishing is to imitate user-submitted information

pages of well-known websites, which are then deployed under the attacker's own domain

name. Figure 3.11 shows the three factors used to judge consistency, namely domain name,

web page content description and list of well-known website company names.

Figure 3.11: Features for consistency check

40

3.5 Prediction Service

The prediction service combines multiple strategies in terms of whitelists, blacklists,

heuristic rules and machine learning models. Figure 3.12 presents a flowchart of the

prediction service. A white list is a collection of legitimate URLs from the Kaggle dataset.

A blacklist is a set of phishing websites from the PhishTank dataset. The machine learning

model is trained offline described in the 3.2 section. A rule-based heuristic strategy is about

extracting features from a URL and HTML source code and creating several rules to infer

phishing risks. This method is driven by expert experiences.

Figure 3.12: Flowchart of the prediction service

3.6 Summary

This chapter presented the design of the phishing detection framework. The architecture of

the framework mainly has four components: data collection, machine learning model

training, web browser extension, and a cloud application proving HTTP services. The

implementation details are presented in the next chapter.

41

Chapter 4

Implementation

This chapter describes the implementation of the proposed multi-strategy framework. A

Chrome extension is developed on the client-side to collect client data and notify of

phishing risks. In addition, a web application is built for providing a prediction service with

HTTPS protocol and collecting users’ feedback. Finally, various libraries related to

machine learning are introduced.

4.1 Prototype Overview

The prototype implementation of the entire framework is divided into three independent

applications. Figure 4.1 shows a client-server architecture of the prototype. The browser

extension is independently packaged and uploaded to the Chrome browser according to the

extension development specifications of the Chrome browser and will be reviewed and

released by the Chrome platform. Chrome browser plug-in development uses three web

front-end development languages: HTML, JavaScript, and CSS. The data collection

application uses Python as the main development language, using scheduled tasks to

manage the collection tasks of each data source. The task fetching data from PhishTank

uses the Beautiful Soup library to mining phishing URLs. Model training, prediction

services and official product website are integrated into one application. This application

also uses Python as the primary language and imports Flask as the web framework. Model

training is managed by a timed task, which is executed once a day when client traffic is

low, currently set at 10 pm. After the training is completed, the core performance indicators

are written into the MySQL database in real-time, and the model is dumped into the file

42

system. The prediction service is a RESTful API that provides clients with real-time POST

requests to obtain detection results. The core function of the official website is to accept

the suspected phishing link submitted by the user and determine the link risk by manual

and automatic verification.

Figure 4.1 Client-Server architecture of the prototype

4.2 Chrome Extension

According to statistical analysis, the market share of Chrome browser is far ahead of other

browsers in the past ten years [68]. In addition, the development documentation of the

Chrome browser plug-in is complete and updated in a timely manner. Also, the Chrome

plug-in is easy to install and user-friendly. Therefore, a Chrome browser extension [69] is

developed as a client-side and the source code is publicly available on GitHub [72]. Since

users installed the extension in the Chrome browser, the extension will automatically detect

whether the newly opened URL is at risk of phishing. When the system detects that the

current page is at risk of phishing, the browser plug-in will display a warning box and

provide an entry to report a false alarm. Conversely, if the current page is not at risk of

43

phishing, the plugin provides an entry to report that the page is a phishing URL. Users will

then be directed to the website to submit a report. Regarding the review process of the

report, it has manual review and automatic review. The automatic review currently relies

on rules. For example, if different client IP addresses submit links with the same domain

name three times, the system automatically reviews them. Table 3.5 presents the structure

of the report table in the database.

Figure 4.2: Flowchart of the Chrome extension

Figure 4.2 presents the workflow of the extension. The extension calls the

prediction service for obtaining phishing risk level, with parameters in terms of the URL

string and HTML elements. Since the primary purpose of phishing attacks is to steal users'

information by deceiving them to fill forms on fake websites, the scope of a phishing page

is narrowed to a page with form submissions and then analyzing the content that requires

user input. Web pages displayed in front of users through browsers must comply with web

standards, such as HTML Living Standard [40]. This standard describes the HTML

language specification, tags that can be used on web pages, and related APIs. Each HTML

44

tag has different semantics. For example, the <a> tag represents a hyperlink. After setting

the value of the “href” attribute, the click will cause the browser to visit another URL.

However, there is also the ECMA standard among web standards, which supports

JavaScript scripts. JavaScript is a very flexible dynamic language with the ability to change

the default display and behaviour of HTML tags. For example, JavaScript can control the

 tag, simulating the same behavior as the <a> tag. This brings difficulty and

uncertainty to HTML parsing semantics through tags and text. For example, HTML tags

<h1> to <h6> represent different levels of headings, but CSS files can display content

displayed with <p> tags as heading styles.

The development of the Chrome browser extension must strictly follow the

development guidelines in [45]. The chrome plug-in has a configuration to contract version

numbers, introduce built-in APIs, and permission control. Data interactions between

modules are messaged and temporarily stored in Chrome storage. A background script

listens for browser tab change events, gets the URL currently accessed, calls the back-end

prediction service to get the result, and finally sends the result to a content script. The

content script is primarily responsible for presenting the results on the page. In addition, a

popup Html shows the details.

4.3 Web Application

The web application mainly provides HTTPS services for detecting phishing risks and

processes risk reports submitted by users. Figure 4.3 shows the architecture of the web

application, which includes four layers in terms of web, service, task and database. Python

was used as a core language, which is a modern high-level programming language in the

field of data mining and machine learning. There are various frameworks and libraries for

45

the Python language. In the system, data collection, data storage, model training, websites,

and HTTP services are all supported by mature libraries and frameworks. In addition, the

access and use of these packages are very simple and convenient.

Considering the usage scenarios and read and write performance, the data layer uses

the MySQL relational database. First, the website has user management, report

management, model version management and other functions which require a relational

database. In addition, the data set used for model training is acquired dynamically. It is

very flexible to combine different data sources and data volumes to form a new data set for

model training. For example, 200,000 phishing URLs are collected from PhishTank, and

340,000 legitimate URLs are downloaded from Kaggle. A balanced data set with 40,000

URLs can be flexibly combined, including 20,000 phishing URLs and 20,000 legal URLs.

Figure 4.3: Architecture of the web application

When a false alarm or missed alarm occurs in the prediction service, the user can

take the initiative to report the current falsely detected URL from the browser plug-in

portal. A website is developed to receive these reports. Once the report is submitted to the

46

system, the system has a manual review process to confirm the risks of these URLs. In

addition, there are automatic audit strategies to improve audit efficiency. Once the review

is completed, these URLs will be regularly synchronized to the data collection module, and

the source is reported. Table 4.1 shows the structure of a report in the database.

The system has two scheduled tasks to process these reports. First, the Validate

Report task automatically reviews the report based on the rules. The current rule is that the

same URL submitted by different IP addresses exceeds the threshold. In addition, the sync

task will sync the verified URL to the data table of the dataset used to train the model and

generate black and white lists.

Table 4.1. Table structure for the data table named “report”

Column Data type Description

id int Automatic index

Gmt_created datatime Create time

Gmt_modified datatime Verify time

url varchar URL string

type int Error type (1: phishing, 2: legitimate)

status int 0: initial, 1: verified (legitimate), -1(phishing)

comment varchar Comment from user

Client_ip varchar user’s IP address

4.3.1 Flask

The Flask is used as a web framework to provide HTTP service and maintain the official

website. It is a lightweight web framework and easy to extend [42]. For example, the flask-

47

user package provides user authorization services. Flask is part of the categories of the

micro-framework, which is a little dependent on updating and watching for security bugs.

The template engine named “jinja2” is automatically installed when the Flask library is

installed successfully. It is convenient to set a basic layout for pages and mention which

element will change by using templates. In addition, a blueprint library is imported to

organize the application into distinct components. A blueprint defines a collection of views,

templates, static files and other elements that can be applied to an application.

from flask import Flask

import routes

app = Flask(__name__)

routes

app.register_blueprint(routes.routes_app)

if __name__ == '__main__':

 app.run(host='0.0.0.0')

Listing 4.1: Source code for create a flask application and using blueprint to manager

routes

from flask import Blueprint

from flask import render_template

routes_app = Blueprint('routes', __name__)

@routes_app.route('/home', methods=['GET'])

def welcome():

 return render_template('/home.html')

Listing 4.2: Source code for defining routes in a new file by using blueprint

4.3.2 CORS

Cross-Origin Resource Sharing (CORS) is an HTTP-header-based mechanism that allows

a server to indicate any origins (domain, scheme, or port) other than its own from which a

browser should permit loading resources. When the domain name of the client's request is

inconsistent with the domain name of the server interface, a CORS error will occur. An

https://developer.mozilla.org/en-US/docs/Glossary/CORS
https://developer.mozilla.org/en-US/docs/Glossary/HTTP
https://developer.mozilla.org/en-US/docs/Glossary/Origin

48

example of a cross-origin request is that the front-end JavaScript code served

from https://domain-a.com uses XMLHttpRequest to make a request for https://domain-

b.com/data.json. The FLASK_CORS library is imported to handle CORS, making cross-

origin AJAX possible. In addition, the interface that allows cross-origin access makes a

judgment on the hostname requested by the client. Only requests made from this Chrome

extension are legitimate requests.

4.3.3 APScheduler

A Python third-party library named APScheduler was used to implement the automatic

verification task and data synchronization task. This library has four kinds of components:

triggers, job stores, executors and schedulers. The application developer doesn’t normally

deal with the job stores, executors or triggers directly. Instead, the scheduler provides the

proper interface to handle all the above tasks. Configuring the job stores and executors is

done through the scheduler, as is adding, modifying and removing jobs. The

BackgroundScheduler library is used as a scheduler to run in the background inside the

application and is configured the trigger type valued “cron” to run the job periodically at a

certain time of day.

from apscheduler.schedulers.background import BackgroundScheduler

from task.automatic_verify import automatic_verify

from task.report import sync_report_url

scheduler = BackgroundScheduler(daemon=True)

scheduler.add_job(automatic_verify, 'cron', day_of_week='mon-sun',

hour=23, minute=20, end_date='2023-12-31')

scheduler.add_job(sync_report_url, 'cron', day_of_week='mon-sun',

hour=23, minute=30, end_date='2023-12-31')

scheduler.start()

Listing 4.3: Source code for using background scheduler

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://domain-b.com/data.json
https://domain-b.com/data.json

49

4.3.4 Deployment

The web application was deployed on the DigitalOcean cloud platform, which provides

cloud services. on the operate system is Ubuntu 20.04, the server is Gunicorn, and Nginx

works as a front-end reverse proxy. Green Unicorn, commonly shortened to "Gunicorn" is

a Web Server Gateway Interface (WSGI) server implementation that is commonly used to

run Python web applications. Gunicorn knows how to run a web application based on the

hook between the WSGI server and the WSGI-compliant web app. Therefore, a wsgi.py

should be created and works as a hook (listing 4.4). In addition, the Certbot was used to

obtain SSL certificates for ensuring that traffic to the server remains secure.

from myproject import app

if __name__ == "__main__":

 app.run()

Listing 4.4: Source code for creating a wsgi hook

4.4 Machine Learning

Model training is an offline task. When the data instances in the dataset are updated every

day, model training can also be set to be triggered automatically by scheduled tasks.

Traditional machine learning models and deep learning models are trained with the same

datasets to compare performances.

4.4.1 Scikit-Learn

The scikit-learn is open-source and widely used for predictive data analysis in the machine

learning field [43]. Ascikit-learn library was used to train three traditional machine learning

models: Logistic Regression, Random Forest, and support vector machine. First, URLs are

loaded from a MySQL database and then features are extracted by CountVectorizer and

fit_transform function. There are many built-in classifiers in terms of LogisticRegression,

http://gunicorn.org/
https://www.fullstackpython.com/wsgi-servers.html

50

RandomForestClassifier, and SVM. After initializing a model, the fit function starts to train

the model. Finally, the test dataset is applied to the predict function for obtaining results.

import seaborn as sns

from sklearn import svm

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.metrics import confusion_matrix

from sklearn.model_selection import train_test_split

from AI.utils.metrics_util import basic_metrics_ml

from AI.utils.model_util import data_preparation,

read_data_multi_source_limit

def ML_training(source_list, limitation=None):

 # loading data

 df = read_data_multi_source_limit(source_list, limitation)

 # # tokenizer data preprocessing

 df = data_preparation(df, r'[A-Za-z]+')

 # # feature extraction

 vec = CountVectorizer()

 # transform all text which we tokenize and stemed

 vec.fit_transform(df.text)

 feature = vec.fit_transform(df.text)

 # # split dataset for training and testing

 trainX, testX, trainY, testY = train_test_split(feature,

df.result, test_size=0.2)

 # # modelling

 clf = svm.SVC()

 clf.fit(trainX, trainY)

 # # performance metrics

 predictions = clf.predict(testX)

 cm = confusion_matrix(testY, predictions)

 sns.heatmap(cm, annot=True)

 fn_rate, fp_rate, accuracy, precision, recall, f1 =

basic_metrics_ml(predictions, testY)

 return fn_rate, fp_rate, accuracy, precision, recall, f1

Listing 4.5: Source code for traditional machine learning model training

4.4.2 PyTorch

The PyTorch is an open-source deep learning framework and development platform. In the

deep learning models' construction process, it imported the linear layer, RNN layer, GRU

51

layer, an LSTM layer. The torch.cuda package is used to utilize GPUs for parallel

computation [44].

import torch

import torch.nn as nn

class GRUClassifier(nn.Module):

 def __init__(self, input_size, hidden_size, num_layers,

num_classes):

 super(GRUClassifier, self).__init__()

 self.num_layers = num_layers

 self.hidden_size = hidden_size

 # self.rnn = nn.RNN(input_size, hidden_size, num_layers,

batch_first=True)

 self.gru = nn.GRU(input_size, hidden_size, num_layers,

batch_first=True)

 # self.lstm = nn.LSTM(input_size, hidden_size, num_layers,

batch_first=True)

 # x -> (batch_size, sequence_length, input_size)

 self.fc = nn.Linear(hidden_size, num_classes)

 def forward(self, x):

 h0 = torch.zeros(self.num_layers, x.size(0),

self.hidden_size)

 # c0 = torch.zeros(self.num_layers, x.size(0),

self.hidden_size)

 # out, _ = self.rnn(x, h0)

 out, _ = self.gru(x, h0)

 # out, _ = self.lstm(x,(c0,h0))

 # out: batch_size, sqe_length, hidden_size

 # out (N , 200, 100)

 out = out[:, -1, :]

 # out (N, 100)

 out = self.fc(out)

 return out

Listing 4.6: Source code for defining a GRU model

4.5 Summary

This chapter has presented the implementation of the presented phishing detection

framework. Each software package that plays a major role in the framework has been

discussed in terms of its role as well as the reasons for why it was chosen. In the next

chapter, the evaluation of the implemented framework is presented.

52

Chapter 5

Evaluation Results

This chapter presents the details on the experiments conducted with the proposed machine

learning models and the heuristic rule strategy. All the experiments were executed on a

MacBook Pro 2020 running Quad-Core Intel Core i5 CPU @ 2 GHz with macOS Big Sur

11.5.2 operating system. The server has a 500 GB storage capacity.

5.1 Evaluation Metrics

The performance evaluation was carried out during the testing process. The original dataset

would be divided into training data and test data, 80% and 20%, respectively. Commonly,

three standard statistical metrics with accuracy, recall, and precision [46] are used to

evaluate whether a machine learning model has high performance. When evaluating the

classifier’s behaviour on the testing dataset, there were four statistical numbers: the number

of correctly identified positive data points (TP), the number of correctly identified negative

data points (TN), the number of negative data points labelled by the classifier as positive

(FP), and the number of positive data points labelled by the model as negative (FN) (table

5.1).

Table 5.1. Four statistical numbers of predicting results

True Labels

Labels Returned by the Classifier in the Testing

Process

Positive Negative

Positive TP FN

Negative FP TN

53

There are several broadly used metrics to evaluate performance. The classification

accuracy is the ratio of correct predictions to total predictions:

accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4)

In binary classification cases, it is known that random selection has 50% accuracy.

In unbalanced datasets, sometimes high accuracy does not mean that the model is excellent.

For instance, among the 10,000 data, 9000 were legitimate websites, and 1000 were

phishing websites, so when the prediction model did nothing, it could reach 90%. Accuracy

is misleading when the class sizes are substantially different. Precision is the percentage of

correctly identified positive data points among those predicted as positive by the model.

The number of false-positive cases (FP) reflects the false warning rate. In real-time

phishing detection systems, this directly affects the user experience and trustworthiness:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5)

The recall is the portion of positive data points labelled as such by the model among

all truly positive data points. The number of false-negative cases (FN) represents the

number of phishing URLs that have not been detected. Leak alarms mean that users are

likely to receive an attack that could result in the theft of sensitive information. Misleading

users can do more harm to users than not detecting them:

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6)

The F-measure or F-score is the combination of precision and recall. Generally, it

is formulated as shown below:

Fβ =
(β2 + 1) × Precision × Recall

β2 × Precision + Recall
 β ∈ (0, ∞) (7)

54

Here, β quantifies the relative importance of the precision and recall such that β =

1 stands for the precision and recall being equally important, which is also called F1. The

F-score does the best job of any single statistic, but all four work together to describe the

performance of a classifier:

F1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑃

𝑇𝑃 +
1
2

(𝐹𝑃 + 𝐹𝑁)
 (8)

F1 score is used to represent the meaning of the recall and precision. In addition, in

cybersecurity detection applications, false alarms can affect the user experience and trust,

and leak alarms are likely to directly cause user losses. Therefore, accuracy, F1, false-

positive rate, and false-negative rate are used to measure the performance of models.

false positive rate =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (9)

false negative rate =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 (10)

Furthermore, Average precision (AP) is a widely used metric in evaluating the

accuracy of deep learning models by computing the average precision value for recall value

over 0 to 1; higher is better. Mean average precision (mAP) is the average of AP. Equation

(11) shows the calculation logic. In this scene, the number of classes is two.

mAP =
1

𝑐𝑙𝑎𝑠𝑠𝑒𝑠
∑

𝑇𝑃(𝑐)

𝑇𝑃(𝑐) + 𝐹𝑃(𝑐)
 (11)

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

5.2 Experimental Setup and Datasets

The test data ratio is 0.2. Seven datasets are used in the machine learning training and

testing process. Six machine learning models are built to compare performance to obtain a

55

best model with optimal parameter values. Table 5.2 lists all the datasets and the number

of data instances.

Table 5.2. Datasets

Name Number of Phishing

URLs

Number of Legitimate

URLs

PhishStorm 47,902 48,009

ISCX-URL2016 9965 35378

KPT-4 20,000 20,000

KPT-6 30,000 30,000

KPT-8 40,000 40,000

KPT-10 50,000 50,000

KPT-12 60,000 60,000

5.3 Machine Learning Models

 Experiments are carried out in the following steps to find the optimal model quickly. First,

the GRU model is chosen because its performance may be better by theoretical analysis.

By comparing the results obtained from training on different datasets with GRU model, the

best performance dataset is obtained. Second, by comparing the results obtained from

training different models with the dataset obtained in the previous experiment, the best

performance model is obtained. The last process is optimizing the model hyperparameters

for the model with the dataset. The primary method is to enumerate the optional discrete

values of the parameters and perform cross-combination to compare the performance of all

experimental results.

56

5.3.1 GRU Model with Different Datasets

In this experiment, different datasets are fed to the GRU classifier. The number of epochs

is 20, the batch size is 32, KPT stands for the data collected from Kaggle and PhishTank,

and each KPT dataset is a balanced dataset, which consists of the same number of phishing

URLs and legitimate URLs. Table 5.3 shows the core performance indicators of the GRU

model with eight datasets. The ISCX dataset obtained the highest accuracy. However, the

F1 score is lower than the other three KPT datasets, and the false-negative rate is high. In

other words, more legitimate instances are predicted as phishing URLs during the test data

process.

Table 5.3. GRU model test results with different datasets

Dataset accuracy F1 False-positive

rate

False-

negative rate

mAP

PhishStorm 0.9758 0.9748 0.0269 0.0212 0.960

ISCX-URL2016 0.9947 0.9874 0.0011 0.0191 0.986

KPT-4 0.981 0.980 0.0091 0.0285 0.948

KPT-6 0.9882 0.988 0.0089 0.0145 0.967

KPT-8 0.9898 0.9894 0.0134 0.0073 0.973

KPT-10 0.9906 0.9904 0.006 0.0132 0.984

KPT-12 0.9918 0.9915 0.0104 0.0059 0.986

Furthermore, False-positive rate and false-negative rate are used to measure

efficiency. From figure 5.1, the RNN-GRU model with the KPT-12 dataset performs best.

In KPT datasets, the false rate decreases linearly as the number of data increases.

57

Figure 5.1: GRU model false rates with different datasets

Figure 5.2 shows the accuracy and F1 of each dataset. The KPT-12 dataset obtained

99.18% accuracy and 99.15% F1 score. To quantify how well the RNN-GRU model

performs every class, the mean of average precision (mAP) is used. The mean average

precision (mAP) in RNN-GRU models with KPT-12 dataset is 0.986.

Figure 5.2: Accuracy and F1 score of the GRU model

Assessing the efficiency of a machine learning model is incomplete, depending on

accuracy. In experiments, it is customary to get high accuracy in one dataset and not

58

perform well in another. It is also likely that models with high accuracy will not predict

new data accurately in a real-time environment. These situations may be due to the fact

that overfitting has already occurred [47]. Overfitting is a concept in data mining that

analyzes whether a trained model can efficiently predict unknown new data [48]. In

machine learning-based classification models, it is common to compare errors in the

training process with errors in the validation process to see if there is overfitting, along

with epoch. Figure 5.3 presents the training loss and validation loss along with epochs in

the RNN-GRU model. One of the strategies to avoid overfitting is early-stopping [49]. The

epoch equals 6 is the demarcation point between underfitting and overfitting.

Figure 5.3: GRU model training loss and testing loss

5.3.2 Different Classifiers

The experiment is to apply the same data set to different machine learning models, from

which the best performance model can be analyzed. The structure and implementation

59

principle of each model are different. Under the condition that the structure remains

unchanged, the performance of the model will change with the change of parameters. Table

5.4 lists the parameter values applied to train traditional models. After many parameter

adjustments, the performance and time-consuming are compared to find the optimal

parameters.

Table 5.4. Parameters of three traditional models

Classifier Parameters

Logistic Regression Tolerance for stopping criteria = 1e-4

Maximum iterations = 5000

Random Forest The number of trees in the forest = 1000

Maximum depth of the tree = 5000

SVM Tolerance for stopping criteria = 1e-4

Maximum iterations = -1 (No limit)

Table 5.5 presents that the RNN-GRU achieved the highest accuracy of 99.18%,

and the Random Forest obtained the lowest false-positive rate of 0.0047%. In this

experiment, the accuracy and F1 scores of all models were very close. This performance

can be seen in Figure 5.4. Because the accuracy of the underlying RNN model is less than

0.9, it is not shown in the figure. From the results data of the three deep learning models,

the effects of gate unit and LSTM unit on sequence data training are explained once again.

60

Table 5.5. Comparison of different classifiers' performance

Classifier accuracy F1 False-positive rate False-negative

rate

Logistic

Regression

0.9889 0.9888 0.0081 0.0141

Support vector

machine (SVM)

0.9885 0.9885 0.01 0.0129

Random Forest 0.985 0.9849 0.0047 0.0253

RNN 0.7412 0.7089 0.1813 0.3372

RNN-GRU 0.9918 0.9915 0.0104 0.0059

RNN-LSTM 0.9895 0.9891 0.0118 0.0089

Figure 5.4: Accuracy and F1 score of different models

61

Figure 5.5: False-positive rate and False-negative rate of different models

Although the random forest model gets the lowest false-positive rate, the false-

negative rate is the highest, and the sum of the two error rates is the highest.

5.3.3 Hyperparameter Optimization

From the above two experimental results, the KPT-12 dataset applied to the RNN-GRU

model obtains the best performance. The third experiment is to optimize the model

hyperparameters for better performance. The optional values of parameters are listed in

table 5.6. A total of 162 combinations of optional values for all parameters will be

performed in turn. Because the computer GPU running the experiment does not support

parallel computing and it takes a long time to train a model with the KPT-12 dataset, the

experiment will be performed after the system is deployed to the cloud. Access the Tensor

Board tool to visualize comparison of execution results and performance metrics to get the

best combination of parameters [52].

62

Table 5.6. Optional values of deep learning parameters

Parameter Optional value Default value

Batch size [32, 64, 128] 32

epoch [6, 10, 20] 10

shuffle [true, false] true

Learning-rate [0.01, 0.005, 0.001] 0.001

Layer number [1,2,3] 2

5.3.4 Comparison

This section compares the RNN-GRU model to existing solutions that train deep learning

models to detect phishing websites. Table 5.7 shows a comparison from different

dimensions, such as data collection, models, performance indicators, limitations. As for the

limitations of the proposed solution implementation, since there are no short links in the

data set of the training model, all current prediction services cannot accurately detect

whether short links are at risk of phishing. Furthermore, only the first 200 characters of the

URL are selected. A part of information will be lost when a URL consists of more than 200

characters. In addition, the process of the automatic review report is currently judged based

on rules such as remote IP address, client information, and the number of times the URL

has been submitted. This strategy can easily be used maliciously by phishing attackers. In

the future, more data will be needed to support automatic review results, for example, by

obtaining the HTML of the current URL, identifying the similarity between the logo image

and the whitelisted website, and whether there is an input box in the HTML.

63

Table 5.7. Comparison of GRU model with other deep learning-based solutions

Model or

Algorithm

Dataset Limitations Accur

acy

RNN-GRU Websites (PhishTank, Kaggle);

120,000 instances:60,000 phishing

URLs, 60,000 Legitimate URLs;

Character-level features based on

URL string.

Short URLs are not

supported;

URLs of more than

200 characters will

lose some of their

features.

99.18

%

Transfer

Learning [53]

Website (Huawei Symantec);

177,417 instances: 36,560 phishing

URLs, 14,0857 legitimate URLs;

15 features based on URL string,

domain, and sensitive words.

Some feature

extractions rely on

third-party services.

97%

Reinforcement

Learning [54]

Website (PhishTank, Yandex Search

engine);

73,575 instances:37,175 phishing

URLs, 36,400 legitimate URLs.

14 features based on URL string,

domain, and HTML.

Low accuracy;

some feature

extractions rely on

third-party services.

90.1%

Convolutional

Autoencoder

[55]

Websites (PhishTank, PhishStorm,

ISCX-URL-2016);

222,541 instances: 127,628 legitimate

URLs, 94,913 phishing URLs;

Character-level features based on

URL string.

Some long URLs

will lose part of

their features.

97.82

%

64

LSTM [56] Websites (PhishTank, Alexa);

3526 instances: 2119 phishing URLs,

1407 legitimate URLs;

18 features are extracted from URL

string, third-party-based features.

some feature

extractions rely on

third-party services;

Fail to detect

phishing sites with

embedded objects.

99.57

%

CNN+LSTM

[57]

Websites (PhishTank, Common

Crawl, WHOIS);

1 million URLs, Over 10,000 images;

Character-level features based on

URL string and features extracted

from images.

Low accuracy;

Long response time:

25s.

93.28

%

5.4 Heuristic Method

Since the features of web page content need to be extracted in scheme, the web page must

be accessible to the browser. But the active time of phishing URLs is short-lived. After one

or two days, the phishing URL will be identified by security products or manually reported

and taken offline. Therefore, it is really hard to collect a large number of active phishing

URLs in a short period of time. On the other hand, there are no available published data

sets with features listed in table 3.4.

The results obtained from accessing these phishing links (Appendix B) in a browser

with the detection extension installed were consistent with the labels. In addition, from the

characteristics of URL links, it can be seen that some traditional characteristics are failing,

such as whether the schema is HTTPS. In addition, attackers start using web hosting

services, such as Weebly. Domain-related characteristics that rely on third-party services

65

are benign. Figure 5.6 is an example of a phishing web page with a confidential form,

displaying extracted features.

This heuristic rule-based solution has three advantages in terms of efficiency,

lightweight, and high user credibility. The response time from the completion of the page

DOM structure rendering to the output of the predicted result does not exceed 100

milliseconds on average. It does not rely on third-party services and tools. Although some

third-party APIs can obtain more information and features, there are some drawbacks to

calling external APIs in real-time in a production environment. First, the response time will

increase, affecting the user experience. Second, the stability and security of the service will

be affected. The protocol does not require the process of model training, saving a lot of

time and computing resources. The forecasting service is rule-based, improving usability

through flexible control of rule thresholds, dictionary vocabulary, list of company names.

In addition, the prototype implementation is simple, and features can be captured through

JavaScript scripts. Although the object recognition technology of computer vision can

parse the company or brand name from the picture, the technology has some drawbacks in

the actual phishing detection products. Some screenshots of web pages may contain user

privacy information, such as the user name of the browser log in, the default user name of

the familiar URL, and so on. Therefore, highly trusted user products should avoid using

web screenshot technology.

66

Figure 5.6: A screenshot of a phishing web page with labelled features

However, this solution also has some limitations. First, since the sensitive words

dictionary and domain names are in English, the current prototype implementation only

supports English websites. Suppose it has to support other languages the sensitive word

dictionary should contain multi-language vocabulary, and it need an algorithm to establish

a relationship between the web page content and domain name language. Second, if the

form that requires the user to enter information is embedded through an iframe, this

solution cannot get specific tags and attributes from the HTML source code. Therefore,

using an iframe tag to embed another document is a common method by phishing attackers.

Many phishing detection models include an iframe tag as an important feature.

Furthermore, this method cannot obtain the real HTML source code if the rendering of the

sensitive form is triggered by clicking on the page and is controlled by JavaScript. In

addition, short URLs might course false alarms. Short link services can make URLs look

67

more concise, and the smaller number of characters can be easily spread on various social

media, but short links will also lose their original semantics, especially when using

shortening technology for domain names.

5.5 Chrome extension

The Chrome browser was tested for usability in two scenarios: normal URLs and

phishing links. Figure 5.7 shows an example of entering a legitimate URL. In this case, the

user opens the page in a web browser with no additional information. When the user clicks

the plug-in button on the right side of the toolbar, the popup page is displayed with the

current URL string, risk level, and other information.

Figure 5.7: A screenshot of the Chrome extension popup page (legitimate)

Figure 5.8: A screenshot of the Chrome extension displaying warning message

68

Figure 5.8 presents an example. When the entered URL is detected as a phishing

link, a popup box with a red background appears on the page, prompting the user that the

website is at phishing risk. If the user confirms that the URL is not a phishing network,

they can click the false alarm button to respond to this false alarm. Figure 5.9 shows the

style and content of popup pages on high-risk sites.

Compared with the extensions listed in Table 2.2, this Chrome extension has

advantages in technological innovation and user experience. The prediction service is

based on deep machine learning models capable of predicting dynamic phishing links, and

the framework supports dynamically updating datasets and optimizing models. Secondly,

the response time of the service is within 200ms, which can quickly respond to the client's

situation. In addition, the extension does not store any personal privacy data of users, and

does not use screen capture technology to ensure the security and credibility.

Figure 5.9: A screenshot of the Chrome extension popup page (phishing)

69

5.6 Summary

This chapter has presented the evaluation of the phishing detection framework, and the

evaluation results have shown the presence of phishing attacks. In addition, source code

and detailed descriptions of each test case have been provided, thus demonstrating the

interworking of framework layers. The following chapter concludes the thesis and presents

future work.

70

Chapter 6

Conclusion and Future Work

This thesis presented the design and evaluation of a framework based on multiple strategies

for detecting phishing web pages. The prediction service combines whitelist filter, blacklist

blocker, heuristic rules, and a classifier based on a deep learning model with high accuracy

of 99.18%. To this end, a web application is built for providing prediction service with

HTTPS protocol and processing users’ reports. Furthermore, a Chrome extension is

developed to capture web page content for analyzing phishing characteristics and

extracting novel features used in heuristic strategies. In addition, the scheduled tasks verify

reports automatically and async data to the database. Along with this, machine learning

models are optimized by training with updated datasets.

In spite of promising results, there remains many goals which if met would further

enhance the performance of the framework. In the heuristic strategy, the sensitive words

dictionary and domain names are in English, and the current prototype implementation

only supports English websites. In addition, short URLs might cause false alarms. Short

link services can make URLs look more concise, and the smaller number of characters can

be easily spread on various social media, but short links will also lose their original

semantics, especially when using shortening technology for domain names. Furthermore,

compared with state-of-the-art solutions, the performance of the RNN-GRU model needs

to be improved.

71

For future work, in addition to supporting multiple languages and recognizing short

links, Model optimization, mining new features, and building high-quality and high-data

data sets will be the main work directions. First, the model training module will be

independently deployed on the cloud server with NVIDIA GPUs for increasing efficiency

with GPU's parallel computing power. Furthermore, creating a large mount dataset with

heuristic features is an important task. Training the model with features extracted by the

heuristic strategy is a solution that may achieve high performance. In addition, looking for

a more comprehensive and high-quality list of company names is an important task for

improving performance of heuristic strategy. In terms of data acquisition and feature

extraction, some new techniques will be tried and applied. NLP technology could be used

to analyze the text content of the web page to extract practical features, and text information

in the picture can be identified with OCR technology.

72

Bibliography

 [1] K. Kaushik, S. Singh, S. Garg, S. Singhal, and S. Pandey, “Exploring the

mechanisms of phishing,” Computer Fraud & Security, vol. 2021, no. 11, pp. 14–

19, Nov. 2021, doi: 10.1016/s1361-3723(21)00118-4.

[2] P. by HelpSystems, “Quarterly Threat Trends and Intelligence - November 2021,”

info.phishlabs.com, Nov. 2021. https://info.phishlabs.com/quarterly-threat-trends-

and-intelligence-november-2021 (accessed Jan. 27, 2022).

[3] “Phishing Attack Trends Report - 3Q 2021,” APWG, Nov. 2021. [Online].

Available: https://docs.apwg.org/reports/apwg_trends_report_q3_2021.pdf.

[4] “2020 Internet Crime Report,” 2020. [Online]. Available:

https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf.

[5] Y. A. Alsariera, V. E. Adeyemo, A. O. Balogun, and A. K. Alazzawi, “AI Meta-

Learners and Extra-Trees Algorithm for the Detection of Phishing Websites,” IEEE

Access, vol. 8, pp. 142532–142542, 2020, doi: 10.1109/access.2020.3013699.

[6] N. Kumaran, “Spam does not bring us joy—ridding Gmail of 100 million more

spam messages with TensorFlow | Google Cloud Blog,” Google Cloud Blog, Feb.

06, 2019. https://cloud.google.com/blog/products/g-suite/ridding-gmail-of-100-

million-more-spam-messages-with-tensorflow.

[7] “Google Safe Browsing,” Google.com, 2014. https://safebrowsing.google.com/.

[8] A. K. Jain and B. B. Gupta, “A novel approach to protect against phishing attacks at

client side using auto-updated white-list,” EURASIP Journal on Information

Security, vol. 2016, no. 1, May 2016, doi: 10.1186/s13635-016-0034-3.

[9] C. L. Tan, K. L. Chiew, K. Wong, and S. N. Sze, “PhishWHO: Phishing webpage

73

detection via identity keywords extraction and target domain name finder,” Decision

Support Systems, vol. 88, pp. 18–27, Aug. 2016, doi: 10.1016/j.dss.2016.05.005.

[10] K. L. Chiew, E. H. Chang, S. N. Sze, and W. K. Tiong, “Utilisation of website logo

for phishing detection,” Computers & Security, vol. 54, pp. 16–26, Oct. 2015, doi:

10.1016/j.cose.2015.07.006.

[11] B. B. Gupta, K. Yadav, I. Razzak, K. Psannis, A. Castiglione, and X. Chang, “A

novel approach for phishing URLs detection using lexical based machine learning in

a real-time environment,” Computer Communications, vol. 175, pp. 47–57, Jul.

2021, doi: 10.1016/j.comcom.2021.04.023.

[12] “URL 2016 | Datasets | Research | Canadian Institute for Cybersecurity | UNB,”

www.unb.ca. https://www.unb.ca/cic/datasets/url-2016.html.

[13] W. Ali and A. Ahmed, “Hybrid Intelligent Phishing Website Prediction Using Deep

Neural Networks with Genetic Algorithm-based Feature Selection and Weighting,”

IET Information Security, Jul. 2019, doi: 10.1049/iet-ifs.2019.0006.

[14] A. Basit, M. Zafar, X. Liu, A. R. Javed, Z. Jalil, and K. Kifayat, “A comprehensive

survey of AI-enabled phishing attacks detection techniques,” Telecommunication

Systems, Oct. 2020, doi: 10.1007/s11235-020-00733-2.

[15] A. Aljofey, Q. Jiang, Q. Qu, M. Huang, and J.-P. Niyigena, “An Effective Phishing

Detection Model Based on Character Level Convolutional Neural Network from

URL,” Electronics, vol. 9, no. 9, p. 1514, Sep. 2020, doi:

10.3390/electronics9091514.

[16] W. Wang, F. Zhang, X. Luo, and S. Zhang, “PDRCNN: Precise Phishing Detection

with Recurrent Convolutional Neural Networks,” Security and Communication

74

Networks, vol. 2019, pp. 1–15, Oct. 2019, doi: 10.1155/2019/2595794.

[17] “Alexa.com,” Alexa.com, 2016. https://www.alexa.com/ (accessed Jul. 18, 2021).

[18] “PhishTank | Join the fight against phishing,” www.phishtank.com.

https://www.phishtank.com/index.php.

[19] M. G. HR, A. MV, G. P. S, and V. S, “Development of anti-phishing browser based

on random forest and rule of extraction framework,” Cybersecurity, vol. 3, no. 1,

Oct. 2020, doi: 10.1186/s42400-020-00059-1.

[20] G. Armano, S. Marchal, and N. Asokan, “Real-Time Client-Side Phishing

Prevention Add-On,” 2016 IEEE 36th International Conference on Distributed

Computing Systems (ICDCS), Jun. 2016, doi: 10.1109/icdcs.2016.44.

[21] S. Marchal, K. Saari, N. Singh, and N. Asokan, “Know Your Phish: Novel

Techniques for Detecting Phishing Sites and Their Targets,” 2016 IEEE 36th

International Conference on Distributed Computing Systems (ICDCS), Jun. 2016,

doi: 10.1109/icdcs.2016.10.

[22] M. M. Varjani Ali Yazdian, “PhishDetector | A true phishing detection system,”

PhishDetector Landing Page, 2013. https://www.moghimi.net/phishdetector.

[23] “Netcraft,” Netcraft. https://www.netcraft.com/ (accessed Feb. 05, 2022).

[24] W. S. Ltd, “Website Safety Check & Phishing Protection | Web of Trust,”

www.mywot.com. https://www.mywot.com/ (accessed Feb. 05, 2022).

[25] H. Shaper, “Home,” Pixm Anti-Phishing. https://pixm.net/ (accessed Feb. 05, 2022).

[26] A. Bannister, “Sharkcop: Google Chrome extension uses machine learning to detect

phishing URLs,” The Daily Swig | Cybersecurity news and views, Oct. 05, 2020.

https://portswigger.net/daily-swig/sharkcop-google-chrome-extension-uses-

75

machine-learning-to-detect-phishing-urls.

[27] “PhishFort Protect Anti-Phishing Cryptocurrency Browser Extension,”

www.phishfort.com. https://www.phishfort.com/protect (accessed Feb. 05, 2022).

[28] N. Gupta et al., “Data Quality for Machine Learning Tasks,” Proceedings of the

27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Aug.

2021, doi: 10.1145/3447548.3470817.

[29] S. Marchal, J. François, R. State, and T. Engel, “PhishStorm: Detecting Phishing

With Streaming Analytics,” IEEE Transactions on Network and Service

Management, vol. 11, no. 4, pp. 458–471, Dec. 2014, doi:

10.1109/TNSM.2014.2377295.

[30] Kaggle, “Kaggle: Your Home for Data Science,” Kaggle.com, 2019.

https://www.kaggle.com/ (accessed Feb. 05, 2022).

[31] “URL Structure [2020 SEO Best Practices],” Moz. https://moz.com/learn/seo/url

(accessed Feb. 05, 2022).

[32] S. S., J. I. Zong Chen, and S. Shakya, “Survey on Neural Network Architectures

with Deep Learning,” Journal of Soft Computing Paradigm, vol. 2, no. 3, pp. 186–

194, Jul. 2020, doi: 10.36548/jscp.2020.3.007.

[33] S. Seo, C. Kim, H. Kim, K. Mo, and P. Kang, “Comparative Study of Deep

Learning-Based Sentiment Classification,” IEEE Access, vol. 8, pp. 6861–6875,

2020, doi: 10.1109/access.2019.2963426.

[34] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi:

10.1162/neco.1997.9.8.1735.

76

[35] K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for

Statistical Machine Translation,” arXiv.org, 2014. https://arxiv.org/abs/1406.1078.

[36] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling,” arXiv.org, 2014.

https://arxiv.org/abs/1412.3555.

[37] A. Shewalkar, D. Nyavanandi, and S. A. Ludwig, “Performance Evaluation of Deep

Neural Networks Applied to Speech Recognition: RNN, LSTM and GRU,” Journal

of Artificial Intelligence and Soft Computing Research, vol. 9, no. 4, pp. 235–245,

Oct. 2019, doi: 10.2478/jaiscr-2019-0006.

[38] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv.org,

2014. https://arxiv.org/abs/1412.6980.

[39] Y. Ho and S. Wookey, “The Real-World-Weight Cross-Entropy Loss Function:

Modeling the Costs of Mislabeling,” IEEE Access, vol. 8, pp. 4806–4813, 2020, doi:

10.1109/access.2019.2962617.

[40] “HTML Standard,” html.spec.whatwg.org.

https://html.spec.whatwg.org/multipage/#toc-semantics (accessed Feb. 05, 2022).

[41] S. Zhang, Y. Hu, and G. Bian, “Research on string similarity algorithm based on

Levenshtein Distance,” 2017 IEEE 2nd Advanced Information Technology,

Electronic and Automation Control Conference (IAEAC), Mar. 2017, doi:

10.1109/iaeac.2017.8054419.

[42] “Welcome to Flask — Flask Documentation (2.0.x),” flask.palletsprojects.com.

https://flask.palletsprojects.com/en/2.0.x/ (accessed Feb. 05, 2022).

[43] “scikit-learn: machine learning in Python — scikit-learn 0.20.3 documentation,”

77

Scikit-learn.org, 2019. https://scikit-learn.org/stable/index.html (accessed Feb. 05,

2022).

[44] PyTorch, “PyTorch,” Pytorch.org, 2019. https://pytorch.org/ (accessed Feb. 05,

2022).

[45] “Developing extensions for Chrome,” Chrome Developers.

https://developer.chrome.com/docs/extensions/mv3/ (accessed Feb. 05, 2022).

[46] V. Babel, K. Singh, S. Kumar Jangir, B. Singh, and S. Kumar, “Journal of Analysis

and Computation (JAC) EVALUATION METHODS FOR MACHINE

LEARNING,” 2019. [Online]. Available: http://www.ijaconline.com/wp-

content/uploads/2019/06/ICITDA_2019_paper_88-.pdf.

[47] H. N. A. Pham and E. Triantaphyllou, “The Impact of Overfitting and

Overgeneralization on the Classification Accuracy in Data Mining,” Soft Computing

for Knowledge Discovery and Data Mining, pp. 391–431, 2008, doi: 10.1007/978-0-

387-69935-6_16.

[48] IBM Cloud Education, “What is Overfitting?,” www.ibm.com, Mar. 03, 2021.

https://www.ibm.com/cloud/learn/overfitting.

[49] X. Ying, “An Overview of Overfitting and its Solutions,” Journal of Physics:

Conference Series, vol. 1168, no. 2, p. 022022, Feb. 2019, doi: 10.1088/1742-

6596/1168/2/022022.

[50] E. Gandotra and D. Gupta, “Improving Spoofed Website Detection Using Machine

Learning,” Cybernetics and Systems, vol. 52, no. 2, pp. 169–190, Oct. 2020, doi:

10.1080/01969722.2020.1826659.

[51] G. Harinahalli Lokesh and G. BoreGowda, “Phishing website detection based on

78

effective machine learning approach,” Journal of Cyber Security Technology, pp. 1–

14, Aug. 2020, doi: 10.1080/23742917.2020.1813396.

[52] “Visualizing Models, Data, and Training with TensorBoard — PyTorch Tutorials

1.9.1+cu102 documentation,” pytorch.org.

https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html (accessed Feb.

05, 2022).

[53] J. Zhang, Y. Ou, D. Li, and Y. Xin, “A Prior-based Transfer Learning Method for

the Phishing Detection,” Journal of Networks, vol. 7, no. 8, Aug. 2012, doi:

10.4304/jnw.7.8.1201-1207.

[54] M. Chatterjee and A.-S. . Namin, “Detecting Phishing Websites through Deep

Reinforcement Learning,” IEEE Xplore, 2019.

https://ieeexplore.ieee.org/document/8754075 (accessed Apr. 16, 2021).

[55] S.-J. Bu and S.-B. Cho, “Deep Character-Level Anomaly Detection Based on a

Convolutional Autoencoder for Zero-Day Phishing URL Detection,” Electronics,

vol. 10, no. 12, p. 1492, Jun. 2021, doi: 10.3390/electronics10121492.

[56] M. Somesha, A. R. Pais, R. S. Rao, and V. S. Rathour, “Efficient deep learning

techniques for the detection of phishing websites,” Sādhanā, vol. 45, no. 1, Jun.

2020, doi: 10.1007/s12046-020-01392-4.

[57] M. A. Adebowale, K. T. Lwin, and M. A. Hossain, “Intelligent phishing detection

scheme using deep learning algorithms,” Journal of Enterprise Information

Management, vol. ahead-of-print, no. ahead-of-print, Jun. 2020, doi: 10.1108/jeim-

01-2020-0036.

[58] X. Xiao, D. Zhang, G. Hu, Y. Jiang, and S. Xia, “CNN–MHSA: A Convolutional

79

Neural Network and multi-head self-attention combined approach for detecting

phishing websites,” Neural Networks, vol. 125, pp. 303–312, May 2020, doi:

10.1016/j.neunet.2020.02.013.

[59] O. K. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine learning based phishing

detection from URLs,” Expert Systems with Applications, vol. 117, pp. 345–357,

Mar. 2019, doi: 10.1016/j.eswa.2018.09.029.

[60] A. Ozcan, C. Catal, E. Donmez, and B. Senturk, “A hybrid DNN–LSTM model for

detecting phishing URLs,” Neural Computing and Applications, Aug. 2021, doi:

10.1007/s00521-021-06401-z.

[61] A. Odeh and I. Keshta, “PhiBoost- A novel phishing detection model Using

Adaptive Boosting approach,” Jordanian Journal of Computers and Information

Technology, vol. 7, no. 1, p. 64, 2021, doi: 10.5455/jjcit.71-1600061738.

[62] X. Liu and J. Fu, “SPWalk: Similar Property Oriented Feature Learning for Phishing

Detection,” IEEE Access, vol. 8, pp. 87031–87045, 2020, doi:

10.1109/access.2020.2992381.

[63] J. Feng, Y. Zhang, and Y. Qiao, “A Detection Method for Phishing Web Page Using

DOM-Based Doc2Vec Model,” CIT. Journal of Computing and Information

Technology, vol. 28, no. 1, pp. 19–31, Jul. 2020, Accessed: Feb. 07, 2022. [Online].

Available: http://cit.fer.hr/index.php/CIT/article/view/4899.

[64] P. A. Barraclough, G. Fehringer, and J. Woodward, “Intelligent cyber-phishing

detection for online,” Computers & Security, vol. 104, p. 102123, May 2021, doi:

10.1016/j.cose.2020.102123.

[65] T. Mitsa, “How Do You Know You Have Enough Training Data?,” Medium, Apr.

80

23, 2019. https://towardsdatascience.com/how-do-you-know-you-have-enough-

training-data-

ad9b1fd679ee#:~%7B%7D:text=Computer%20Vision%3A%20For%20image%20c

lassification (accessed Feb. 07, 2022).

[66] R. M. Mohammad, L. McCluskey, and F. Thabtah, “UCI Machine Learning

Repository: Phishing Websites Data Set,” archive.ics.uci.edu, Mar. 26, 2015.

https://archive.ics.uci.edu/ml/datasets/Phishing+Websites.

[67] Jerry, F.; Chris, H. System Security: A Hacker’s Perspective. In Proceedings of the

1987 North American conference of Hewlett-Packard business computer users, Las

Vegas, NV, USA, 20–25 September 1987. [68] “Browser Market Share Worldwide,”

StatCounter Global Stats. https://gs.statcounter.com/browser-market-

share#monthly-202011-202011-bar (accessed Feb. 25, 2022).

[69] “HAWK EYES Chrome Extension,” www.thehawkeyes.com.

https://www.thehawkeyes.com/products/ (accessed Feb. 05, 2022).

[70] L. Tang and Q. H. Mahmoud, "A Deep Learning-Based Framework for Phishing

Website Detection," in IEEE Access, vol. 10, pp. 1509-1521, 2022. doi:

10.1109/ACCESS.2021.3137636.

[71] L. Tang and Q. H. Mahmoud, “A Survey of Machine Learning-Based Solutions for

Phishing Website Detection,” Machine Learning and Knowledge Extraction, vol. 3,

no. 3, pp. 672–694, Aug. 2021. Doi: https://doi.org/10.3390/make3030034.

[72] “HAWK EYES Chrome Extension Source Code,” GitHub, Apr. 2022.

https://github.com/tanglz/extension (accessed Apr. 16, 2022).

[73] G. S. Rao et al, "Spam or Ham Text Classification using Logistic

81

Regression," Turkish Journal of Computer and Mathematics Education, vol.

12, (9), pp. 426-433, 2021. Available: http://search.proquest.com.uproxy.library.dc-

uoit.ca/scholarly-journals/spam-ham-text-classification-using-

logistic/docview/2623462315/se-2.

[74] K. R. Jansi and M. Arulprakash, "An Effective Model of Terminating Phishing

Websites and Detection Based On Logistic Regression," Turkish Journal of

Computer and Mathematics Education, vol. 12, (9), pp. 358-362, 2021. Available:

http://search.proquest.com.uproxy.library.dc-uoit.ca/scholarly-journals/effective-

model-terminating-phishing-websites/docview/2623460989/se-2.

[75] R. Shwartz-Ziv and N. Tishby, “Opening the Black Box of Deep Neural Networks

via Information,” arXiv.org, 2017. https://arxiv.org/abs/1703.00810.

[76] Kowsari, Jafari Meimandi, Heidarysafa, Mendu, Barnes, and Brown, “Text

Classification Algorithms: A Survey,” Information, vol. 10, no. 4, p. 150, Apr.

2019, doi: 10.3390/info10040150.

82

Appendix

Appendix A. Source Code

Source code files related to Chrome extension, data collection tasks, and machine learning

model training.

A1. Chrome extension

The objective of this source file is to listen tab update event and extract HTML features as

parameters of heuristic rules.

• background.js

• async function storeCurrentTabUrl() {

 let queryOptions = { active: true, currentWindow: true };

 let [tab] = await chrome.tabs.query(queryOptions);

 currentUrl = tab.url;

 chrome.storage.sync.set({'current_url': currentUrl});

 chrome.storage.sync.set({'data': {}});

 chrome.tabs.sendMessage(tab.id, {

 message: 'check',

 currentUrl: currentUrl,

 tabId: tab.id

 });

 return tab.url;

}

chrome.tabs.onUpdated.addListener(function (tabId, changeInfo)

{

 if (changeInfo.status == 'complete') {

 storeCurrentTabUrl();

 }

});

chrome.tabs.onActivated.addListener(function (activeInfo) {

 storeCurrentTabUrl();

});

chrome.runtime.onMessage.addListener(

 function(request, sender, sendResponse) {

 if (request.message === "DOM"){

 api_url =

"https://www.api.thehawkeyes.com/predict/ai";

 fetch(api_url, {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json',

83

 },

 body: JSON.stringify({'url':

request.currentUrl,'num_input':request.num_input,'num_button':

request.num_button,'title':request.title,

'inputs':request.inputs,'buttons':request.buttons}),

 })

 .then(response => response.json())

 .then(data => {

 chrome.storage.sync.set({'data': data});

 sendResponse(data);

 });

 }

 return true;

 }

);

• contentscript.js

chrome.runtime.onMessage.addListener(

 function(request, sender, sendResponse) {

 if (request.message === "check"){

 $(document).ready(function() {

 title = $('title').text();

 placeholders=[]

 inputs = []

 buttons=[]

 $('input').each(function(index){

 type = $(this).attr('type');

 if(type==''|| typeof type ==="undefined"){

 type="text"

 }

 valid_input_types =

['text','number','password','search','email','tel'];

 valid_button_types = ['submit','button']

 if($.inArray(type, valid_input_types)>-1){

 val = $(this).attr('value');

 placeholder = $(this).attr('placeholder');

 desc = val || placeholder;

 if(desc==''|| typeof desc === "undefined"){

 prev = $(this).prev()[0];

 next = $(this).next()[0];

 if($.isEmptyObject(prev)){

 if($.isEmptyObject(next)){

 // other structures

 }else{

 desc = $(next).text();

 }

 }else{

 desc = $(prev).text();

84

 }

 }

 input = {'type':type,'desc': desc};

 inputs.push(input);

 num_input=num_input+1;

 }

 if($.inArray(type, valid_button_types)>-1){

 button = {'type':type,'desc':

$(this).attr('value')};

 buttons.push(button)

 }

 });

 $('button').each(function(index){

 btn={'type':'button','desc': $(this).text()}

 buttons.push(btn)

 num_button=num_button+1;

 });

 $('textarea').each(function(index){

 num_input=num_input+1;

 });

 chrome.runtime.sendMessage({

 message: 'DOM',

 currentUrl: request.currentUrl,

 num_input: num_input,

 num_button:num_button,

 title:title,

 inputs:inputs,

 buttons: buttons

 }, function(response) {

 if (response.phishing) {

 chrome.storage.sync.get("exclude_url_list", ({

exclude_url_list }) => {

 if(exclude_url_list &&

exclude_url_list.includes(request.currentUrl)){

 return;

 }else{

 const URL =

"https://www.api.thehawkeyes.com/verify/add?error_type=2&url="

+request.currentUrl

 var elemDiv =

document.createElement('div');

 elemDiv.innerHTML =

hawk_eyes_alarmModal;

 document.body.appendChild(elemDiv);

 // Get the element that closes

the modal

 const closeBtns =

document.getElementsByClassName("phishing-alarm-close-btn");

 // When the user clicks on (x),

close the modal

 if(exclude_url_list){

 exclude_url_list.push(link);

85

 }else{

 exclude_url_list = [link];

 }

 for (var i = 0; i < closeBtns.length;

i++) {

closeBtns[i].addEventListener('click', function(event){

 closeAction();

chrome.storage.sync.set({"exclude_url_list":exclude_url_list});

 });

 }

 const reportBtn =

document.getElementById("report-phishing-false-alarm");

reportBtn.addEventListener('click',function (event){

 closeAction();

chrome.storage.sync.set({"exclude_url_list":exclude_url_list});

 window.open(URL, '_blank').focus();

 });

 }

 });

 }else{

 if(response.source=='report'){

 count = response.num_users

 }

 }

 });

 });

 }

 }

);

A2. Data collection

This source file is used to collection data from the PhishTank website. References were

made from a Python third-party library name BeautifulSoup.

def fetch_page(start_page, end_page):

 list_link = 'https://phishtank.org/phish_search.php'

 detail_link = 'https://phishtank.org/phish_detail.php?phish_id='

 parameters = {"page": start_page, "valid": 'y', 'Search':

'Search', 'active': 'n'}

 headers = {

 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X

10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87

Safari/537.36',

 }

 with open('phishTank_inactive.csv', 'a+', newline='') as

86

csvfile:

 fieldnames = ['phish_id', 'url']

 writer = csv.DictWriter(csvfile, fieldnames=fieldnames)

 # writer.writeheader()

 for i in range(start_page, end_page):

 list_page = requests.get(list_link, params=parameters,

headers=headers)

 soup = BeautifulSoup(list_page.content,

features="html.parser")

 table = soup.find("table")

 trs = table.findAll("tr")

 for tr in trs:

 tds = tr.findAll('td')

 if len(tds) >= 1:

 td_id = tds[0]

 phish_id = td_id.find('a').text

 is_exist = is_exist_record(phish_id,

'phishTank')

 if is_exist:

 continue

 try:

 detail_page = requests.get(detail_link +

phish_id, headers=headers)

 detail_soup =

BeautifulSoup(detail_page.content, features="html.parser")

 url = detail_soup.find('div', {'class':

'url'})

 div = url.find_next_sibling('div')

 bb = div.find('b')

 full_url = bb.text

 URL_OBJECT = url_parse(full_url)

 URL_OBJECT.external_id = phish_id

 URL_OBJECT.source = 'phishTank'

 URL_OBJECT.status = -1

 URL_OBJECT.result = 1

 URL_OBJECT.insert()

 sleep(1)

 # write to csv

 writer.writerow({'phish_id': phish_id,

'url': full_url})

 print('success:',phish_id)

 except:

 print(detail_link + phish_id)

 parameters["page"] = i + 1

87

A3. Traditional machine learning

This source file handles traditional models training and testing. References were made

from source such as https://scikit-learn.org/stable/supervised_learning.html#supervised-

learning.

import seaborn as sns

from sklearn.metrics import confusion_matrix

from sklearn.feature_extraction.text import CountVectorizer,

TfidfVectorizer

from sklearn.feature_selection import SelectPercentile, f_classif

from sklearn.model_selection import train_test_split

import pickle

from AI.utils.helpers import save_ml_version, get_next_version,

get_model_file_name, get_transformer_file_name

from AI.utils.metrics_util import basic_metrics_ml,

save_confusion_matrix

from AI.ml.traditional_classifier import TraditionalClassifier

from AI.utils.model_util import data_preparation,

read_data_multi_source_limit

def feature_selection(df, feature):

 feature_new = SelectPercentile(f_classif,

percentile=30).fit_transform(feature, df.result)

 return feature_new

def ML_training(source_list, classifier_code, files_path, plot_path,

limitation=None):

 print('start---------')

 MLParameters = {

 'max_iter': 50000,

 'max_depth': 5000,

 'random_state': 0,

 'test_ratio': 0.2,

 'tokenizer_pattern': r'[A-Za-z]+',

 'feature_vector': 'cv',

 'data_size': limitation * len(source_list)

 }

 # loading data

 df = read_data_multi_source_limit(source_list, limitation)

 # # tokenizer data preprocessing

 df = data_preparation(df, MLParameters['tokenizer_pattern'])

 # # feature extraction

 if MLParameters['feature_vector'] == 'cv':

 vec = CountVectorizer()

 else:

 # collect token TF-IDF

 vec = TfidfVectorizer()

 # transform all text which tokenize and stemed

 vec.fit_transform(df.text)

https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
https://scikit-learn.org/stable/supervised_learning.html#supervised-learning

88

 feature = vec.fit_transform(df.text)

 # # split dataset for training and testing

 trainX, testX, trainY, testY = train_test_split(feature,

df.result, test_size=MLParameters['test_ratio'])

 # # modelling

 clf = TraditionalClassifier(classifier_code,

MLParameters).classifier

 clf.fit(trainX, trainY)

 # # performance metrics

 predictions = clf.predict(testX)

 cm = confusion_matrix(testY, predictions)

 sns.heatmap(cm, annot=True)

 fn_rate, fp_rate, acc, precision, recall, f1 =

basic_metrics_ml(predictions, testY)

 # print(accuracy)

 # # save the model and transform

 # get the latest version from DB

 str_sources = ' '.join(source_list)

 cate = classifier_code + '_' + str_sources

 version = get_next_version(cate)

 model_file_name = get_model_file_name(cate, version)

 transformer_file_name = get_transformer_file_name(cate, version)

 pickle.dump(clf, open(files_path + model_file_name, 'wb'))

 pickle.dump(vec, open(files_path + transformer_file_name, 'wb'))

 # # save performance metrics : accuracy, mcc, f1

 save_ml_version(version, acc, f1, fn_rate, fp_rate, cate,

MLParameters)

 # # plot results

 save_confusion_matrix(cate, plot_path, clf, testX, testY,

version)

 # save_precision_recall_curve(cate, plot_path, clf, testX,

testY)

 print('end------')

A4. Deep learning

This source file handles deep learning models training and testing. References were made

from source such as https://pytorch.org/text/stable/index.html.

import csv

from itertools import product

import numpy as np

import torch

from torch import nn

from torch.utils.data import SubsetRandomSampler

from torch.utils.tensorboard import SummaryWriter

from AI.dl.dataset_mysql import SqlDataset

89

from AI.dl.gru_classifier import GRUClassifier

from AI.dl.training import train, evaluate

from AI.utils.helpers import get_next_version, get_model_file_name,

save_ml_version, get_plot_info_file_name

def run_character(source_list, classifier_code, files_path,

plot_path, limitation=None):

 print('rnn start--------')

 rnn_parameters = {

 'N_EPOCHS': 10,

 'datasource': source_list,

 'data size': limitation * len(source_list)

 }

 dataset = SqlDataset(source_list, limitation)

 batch_size = 32

 test_split = .2

 shuffle_dataset = True

 random_seed = 42

 # Creating data indices for training and validation splits:

 dataset_size = len(dataset)

 indices = list(range(dataset_size))

 split = int(np.floor(test_split * dataset_size))

 if shuffle_dataset:

 np.random.seed(random_seed)

 np.random.shuffle(indices)

 train_indices, test_indices = indices[split:], indices[:split]

 # Creating PT data samplers and loaders:

 train_sampler = SubsetRandomSampler(train_indices)

 test_sampler = SubsetRandomSampler(test_indices)

 # Hyperparameters

 # parameters = dict(

 # lr=[0.01, 0.005, 0.001],

 # batch_size=[32, 64, 128],

 # shuffle=[True, False],

 # num_layers=[1, 2, 3],

 # num_epochs=[10, 20]

 #)

 parameters = dict(

 lr=[0.005],

 batch_size=[64],

 shuffle=[True],

 num_layers=[2],

 num_epochs=[10]

)

 param_values = [v for v in parameters.values()]

 for run_id, (lr, batch_size, shuffle, num_layers, num_epochs) in

enumerate(product(*param_values)):

 print("run id:", run_id + 1)

 train_loader = torch.utils.data.DataLoader(dataset,

batch_size=batch_size,

90

sampler=train_sampler)

 test_loader = torch.utils.data.DataLoader(dataset,

batch_size=batch_size,

sampler=test_sampler)

 # # initial custom model

 input_size = 100 # the number of all character

 sequence_length = 200 # the number of url characters

 # num_layers = 2 # the number of RNNs

 hidden_size = 128

 num_classes = 2

 model = GRUClassifier(input_size, hidden_size, num_layers,

num_classes)

 # # Loss and Optimizer

 learning_rate = 0.005

 criterion = nn.CrossEntropyLoss()

 # optimizer = torch.optim.Adam(model.parameters(),

lr=learning_rate)

 optimizer = torch.optim.Adam(model.parameters())

 device = 'cuda' if torch.cuda.is_available() else 'cpu'

 # # Train the model

 model = model.to(device)

 criterion = criterion.to(device)

 device = torch.device('cuda' if torch.cuda.is_available()

else 'cpu')

 tb = SummaryWriter('runs/')

 # # # model graph and feature grid

 # fea, labels = next(iter(train_loader))

 # tb.add_graph(model, fea)

 # tb.close()

 best_valid_loss = float('inf')

 train_loss_values = []

 valid_loss_values = []

 train_acc_values = []

 valid_acc_values = []

 mAP_values =[]

 for epoch in range(num_epochs):

 # # training

 train_loss, train_acc = train(model, train_loader,

device, criterion, optimizer)

 # # testing

 valid_loss, valid_acc, f1, fn, fp, mAP = evaluate(model,

test_loader, device, criterion)

 # # plot result

 if valid_loss < best_valid_loss:

 best_valid_loss = valid_loss

 print(f'\tTrain Loss: {train_loss:.3f} | Train Acc:

{train_acc * 100:.2f}%')

 print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc:

{valid_acc * 100:.2f}%')

 print(f'\t mAP: {mAP:.3f} ')

 train_loss_values.append(train_loss)

 valid_loss_values.append(valid_loss)

91

 train_acc_values.append(train_acc)

 valid_acc_values.append(valid_acc)

 mAP_values.append(mAP)

 tb.add_scalar("Train Loss", train_loss, epoch)

 tb.add_scalar("valid Loss", valid_loss, epoch)

 tb.add_scalar("fp", fp, epoch)

 tb.add_scalar("fn", fn, epoch)

 tb.add_scalar("f1", f1, epoch)

 tb.add_scalar("Test Accuracy", valid_acc, epoch)

 # # save model

 # get the latest version from DB

 str_sources = '_'.join(source_list)

 cate = classifier_code + '_' + str_sources

 version = get_next_version(cate)

 model_file_name = get_model_file_name(cate, version)

 torch.save(model, files_path + model_file_name)

 # # save performance metrics : model_version, accuracy, f1,

fn, fp, category, parameters

 rnn_parameters['N_EPOCHS'] = num_epochs

 rnn_parameters['lr'] = lr

 rnn_parameters['batch_size'] = batch_size

 rnn_parameters['shuffle'] = shuffle

 rnn_parameters['num_layers'] = num_layers

 save_ml_version(version, valid_acc, f1, fn, fp, cate,

rnn_parameters)

 # # plot

 plot_file_name = get_plot_info_file_name(cate, version)

 with open(plot_path + plot_file_name, 'a+') as f:

 writer = csv.writer(f)

 writer.writerow(train_loss_values)

 writer.writerow(valid_loss_values)

 writer.writerow(train_acc_values)

 writer.writerow(valid_acc_values)

 writer.writerow(mAP_values)

 tb.add_hparams(

 {"lr": lr, "bsize": batch_size, "shuffle": shuffle,

'epoch': epoch, 'num_layers': num_layers},

 {

 "accuracy": valid_acc,

 "loss": valid_loss

 },

)

 tb.close()

 print('rnn end------')

92

Appendix B. Dataset

B1. Phishing Links for Testing

This table presents ten phishing links collected from the PhishTank website on January 12,

2022.

Table A phishing URL dataset

 URL Title Inputs Buttons Label Result

1 https://my-

web-

informatica-

online.com/

BancaM

PS

[{'type': 'text', 'desc': 'Inserisci

il tuo codice utente'},

{'type': 'password', 'desc':

'Inserisci latua password'},

{'type': 'number',

'desc':'Inserisci iltuo numero

ditelefono'}]

[{'type':

'submit', 'desc':

'confirm'}]

1 1

2 https://btbroad

bandplc01.

weebly.com/

. [{'type': 'text'},

{'type': 'text'}]

[{'type':

'submit',

'desc':

'Sign in'}]

1 1

3 https://hwdiug

euiubweg.

weebly.com/

email

login

page

[{'type': 'text'},

{'type': 'text'}]

[{'type':

'submit',

'desc':

'Sign in'}]

1 1

4 https://iyuy769

.weebly.

com/

… [{'type': 'text'},

{'type': 'text'},

{'type': 'text'}]

[{'type':

'submit',

'desc':

'Sign in'}]

1 1

5 https://cupaie.

weebly.

com/

mail.yah

oo.

com-

Home

[{'type': 'text'},

{'type': 'text'}]

[{'type':

'submit',

'desc':

'SIGN

IN'}]

1 1

6 https://www.br

ooks-

ooke.top/h-

Login/Re

gister

[{'type': 'text', 'desc':

'Search...'},

{'type': 'text'},

[{'type':

'submit',

'desc':

1 1

93

user-

LoginOrRegist

er.html

-

www.bro

oks-

ooke.top

{'type': 'password', 'desc':},

{'type': 'text'},

{'type': 'password', 'desc':},

{'type': 'text', 'desc':},

{'type': 'text', 'desc':}]

'Login'},

{'type':

'submit',

'desc':

'Create

My Ac-

count'},

{'type':

'button',

'desc': _},

{'type':

'button',

'desc': _}]

7 https://www.br

ooksair.top/

h-user-

LoginOrRegist

er.html

Login/Re

gister

-

www.bro

oksair.to

p

[{'type': 'text', 'desc':

'Search...'},

{'type': 'text'},

{'type': 'password', 'desc':},

{'type': 'text'},

{'type': 'password',

'desc':},

{'type': 'password', 'desc':},

{'type': 'text', 'desc':}, {'type':

'text', 'desc':}]

[{'type':

'submit',

'desc':

'Login'},

{'type':

'submit',

'desc':

'Create

My Ac-

count'},

{'type':

'button',

'desc':

'_'}]

1 1

8 https://www.br

ooks-

forrunning.top

/h-user-

LoginOrRegist

er.html

Login/Re

gister

-

www.bro

oks-

forrunnin

g.topBac

k

To Top

[{'type': 'text', 'desc':

'Search...'},

{'type': 'text'},

{'type': 'password', 'desc':},

{'type': 'text'},

{'type': 'password',

'desc':},

{'type': 'password', 'desc':},

{'type': 'text', 'desc':}]

[{'type':

'submit',

'desc':

'Login'},

{'type':

'submit',

'desc':

'Create

My Ac-

1 1

94

count'},

{'type':

'button',

'desc': _},

{'type':

'button',

'desc': _}]

9 https://att-

yahoo-

100130.square

.site/

Home [{'type':

'email', 'desc':

'Email *'},

{'type': 'text',

'desc': 'Pass-

word *'}]

[{'type':

'button',

'desc':

'Check-

out'},

{'type':

'button',

'desc':

'SIGN IN

'}]

1 1

10 https://fifththir

dbankonline.

weebly.com/

Home [{'type': 'text'},

{'type': 'text'}]

[{'type':

'submit',

'desc':

'NEXT'},

{'type':

'button',

'desc': _}]

1 1

