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Abstract

In real social networks, person-to-person interactions are known to be heterogeneous, which can

affect the way a disease spreads through a population, reaches a tipping point in the fraction of

infected individuals, and becomes an epidemic. This property, called disorder, is usually associated

with contact times between individuals and can be modeled by a weighted network, where the

weights are related to normalized contact times ω. In this paper, we study the SIR model for

disease spreading when both close and distant types of interactions are present. We develop a

mitigation strategy that reduces only the time duration of distant contacts, which are easier to

alter in practice. Using branching theory, supported by simulations, we found that the effectiveness

of the strategy increases when the density f1 of close contacts decreases. Moreover, we found a

threshold f̃1 = Tc/β below which the strategy can bring the system from an epidemic to a non-

epidemic phase, even when close contacts have the longest time durations.
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I. INTRODUCTION

In recent centuries, changes in social contact patterns have caused infectious diseases to

propagate more rapidly and become more widespread [1]. The population growth in urban

zones and the increasing speed and efficiency of air travel have allowed diseases to spread

over long distances within months or even weeks. Examples include the 1918 Spanish flu

[2], the 2009 A(H1N1) influenza epidemic [3], the 2014 Ebola epidemic [4], and the recent

measles outbreak in Israel that propagated to New York [5]. Prior research has indicated

that due to the increased resistance of bacteria to drugs [6], climate change [7, 8] and the

deforestation of sylvan areas [9], the number of diseases will continue to increase. In this

context, mathematical models allow epidemiologists and sanitary authorities to understand

propagation processes, predict their effect on healthy populations, and evaluate the effective-

ness of different mitigation strategies. Although many models consider full mixing, in which

all individuals in a population interact with each other [1], this assumption does not reflect

a realistic situation where an individual has a limited number of interactions and where it

can vary between individuals. For that reason, in recent decades, researchers have begun

to model epidemic processes using complex networks, in which a node (an individual) has a

probability P (k) of being connected with k different nodes (neighbors) with kmin ≤ k ≤ kmax,

where kmin and kmax are the minimum and maximum connectivity, respectively; they have

found that connection patterns strongly affect the spreading of a disease [10–15].

The Susceptible-Infected-Recovered (SIR) model [1, 10, 11, 16] is a simple representation

of non-recurrent diseases, where individuals acquire permanent immunity once they stop

being ill. Examples include influenza A(N1H1), measles and pertussis. In this model, an

individual is either susceptible (able to be infected), infected (can propagate the disease), or

recovered (has either acquired an immunity or has died, thereby no longer propagating the

disease). In the discrete-time Reed-Frost model [17], at each time step, infected individuals

spread the disease to susceptible neighbors, with probability β, and recover tr time steps after

being infected. The effective probability of infection is, thus, given by the transmissibility

T = 1 − (1 − β)tr . The process ends when there are no more infected individuals; the

system has reached the steady state. The SIR model, at the steady state, exhibits a second-

order phase transition where the fraction R of recovered individuals is the order parameter,

while T is the control parameter. Below a critical threshold T = Tc, the disease reaches
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only a small fraction of the population, but when T > Tc it becomes an epidemic [10, 18–

20]. Studies have shown that the steady state of the SIR model is related to link percolation

[10, 16, 19, 21]. In the SIR model, links are occupied with probability p since the propagation

of the disease from an infected to a susceptible individual, is equivalent to occupying that

link via link percolation (i.e., T ≡ p). Above a critical threshold p = pc, a giant component

(GC) of the same order of magnitude than the system size N emerges, whereas below pc

there are only finite clusters. The fraction P∞ of nodes belonging to the GC is the order

parameter of a second-order phase transition, with R from the SIR model mapping into

P∞ [10]. Because the SIR process only produces one cluster of nodes (those reached by the

disease), realizations with R < sc are neglected for the mapping to exist [20]. For complex

networks pc = 1/(κ − 1) = Tc, where κ = 〈k2〉/〈k〉; 〈k〉 and 〈k2〉 are the first and second

moments of the distribution P (k), respectively [10, 16].

There are different strategies proposed to contain the spreading of diseases. Vaccination

is one of the more studied and it is highly efficient in providing immunity [22–24], although

vaccines are often expensive and not always available. In this context, non-pharmacological

strategies are needed to protect populations. For instance, quarantine is one of the most

effective, however complete isolation has a deleterious effect on the economy of a region,

and it is difficult to implement in a large population. Thus, “social distancing” [25–29], i.e.,

reducing the contact times of interactions between individuals, is often implemented and

carried out, for instance, by partial closure of schools and offices, and restriction of travel

[30].

In this paper, we focus on social distancing interventions to develop a mitigation strategy

that can help in reducing the number of infected people. One way for studying these kinds

of strategies is to examine the heterogeneity in the contact times between individuals. Most

research that studies the SIR model assumes that the infection probability is unique, which

means that all individuals interact with their neighbors in the same way. This has been

disproven by several experiments on real social networks [31–33]. For example, “face-to-

face” experiments [31, 33] have shown that, in some cases, the time duration of the contacts

between individuals follow a power-law distribution. This heterogeneity is called “disorder”,

and it can be modeled using weighted networks, in which weights depend on the normalized

contact times ω of the interactions. Previous research [27, 34] obtains ω values from a

theoretical power law distribution with broadness a (the larger the parameter a, the shorter
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the contact times), mimicking the results of “face-to-face” experiments [31, 33]. Among

other outcomes, they found a delay in spreading of diseases as the broadness a increases

[27], thereby permitting sanitary authorities to implement earlier interventions [34].

Unlike proposals of previous models, differing classes of human interactions arise in real so-

cial networks. From the most prolonged relationships (e.g., friendships, family, and cowork-

ers), to the briefest interactions (e.g., neighbors in transport and commerce), contacts be-

tween individuals require a better distinction when modeling a social network. Motivated

by this real-world reality, we study the propagation of diseases among a population with

two coexisting types of interactions, which we distinguish by their mean contact time. More

precisely, interactions can be close or distant with a larger or shorter mean contact time,

respectively. Each type of interaction has a distribution of contact times governed by its

own broadness a, which defines the mean contact time. We use branching theory, supported

by extensive simulations, to explore a social distancing strategy that consists of reducing

only the mean contact time of distant interactions. We propose this strategy because, gen-

erally, people are less prone to trim their more intimate or necessary contacts, while distant

contacts are more easily controlled.

II. MODEL AND SIMULATIONS

We construct complex networks of N nodes as a substrate for the propagation of a disease,

by using the Molloy-Reed algorithm [35]. We build two types of networks with different

degree distributions. First, P (k) = e−〈k〉〈k〉k/k!—an Erdös-Rényi network (ER)—in which

〈k〉 is the average number of neighbors of each node, and second, P (k) = Ck−λe−k/kc—

a scale-free network (SF)—with exponential cutoff kc and normalization constant C. ER

networks are homogeneous because their nodes have a number of neighbors mostly around

the mean value of the distribution, whereas SF networks are heterogeneous and hence nodes

have a greater amplitude in their connectivities, with many nodes of low connectivity and

only a few nodes of high connectivity (hubs).

We use the SIR model described in Sec. I to simulate the spreading of the disease, but

we assume that the infection probability is related to the contact times between individuals,

i.e., the more time a susceptible individual spends with an infected person, the higher the

probability they will also become infected. Thus, the infection probability is βω, where
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FIG. 1: Schematic of the network constructed. The different thicknesses of the segments

represent the heterogeneity of the normalized contact times ω between individuals.

Contact times belonging to the density f1 ( ), with a1 < a2, are usually longer than

those belonging to the complementary density f2 = 1− f1 ( ).

a fixed β represents the intrinsic virulence of the disease and ω represents the normalized

contact time between individuals. We also assume that the contact times are heteroge-

neous, and hence we use a weighted network, in which we characterize links (contacts) by

weights βω. As in “face-to-face” experiments [31], in which contact times follow a power

law distribution, we take ω from a theoretical distribution of contact times P (ω) = 1/aω,

where ω ε [e−a, 1] [27, 34]. The parameter a is called disorder intensity, as it controls the

width of the distribution. For fixed a, we set ω = e−ar, where r is randomly selected from

a uniform distribution over the interval [0, 1] [36]. We also separate the contacts into two

complementary parts, (i) a fraction or density f1 of links with a distribution of contact times

with disorder intensity a1 and (ii) a density f2 = 1 − f1 with a distribution with disorder

intensity a2, for 0 < f1 < 1. In Fig. 1 we show the density f1 of interactions corresponding

to the distribution with disorder intensity a1, a1 < a2 (blue continuous lines). On average,

the interactions corresponding to the density f1 have longer contact times than the ones

corresponding to the density f2 = 1−f1 (red dashed lines), indicated by the thickness of the

segments. Our approach allows for modeling realistic populations in which different kinds

of interactions can emerge. For instance, when a1 < a2 we can distinguish between close

and distant contacts, where a1 and a2 are the disorder intensities of close contacts (longer

average contact times) and distant contacts (shorter average contact times), respectively.

As distant contacts are easier to control in practice, we propose a mitigation strategy that
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focuses on modifying them to reduce the scope of the disease. In Sec. III we apply ourselves

to this task.

When the propagation starts at t = 0, all individuals are susceptible except for one

randomly-infected patient zero. With probability βω, at each time step, infected individuals

propagate the disease to their susceptible neighbors, where ω is initially fixed and depends

on the interaction between individuals. Each infected individual recovers after a time tr since

it was infected. The spreading process ends when there are no more infected individuals,

and all are either susceptible or recovered. At this steady state the fraction R of recovered

individuals for a given value of the transmissibility T indicates the extent of the disease, since

all recovered individuals were previously infected. Recall that only realizations with R > sc

are taken into account, where sc is the threshold that distinguish an epidemic (R > sc) from

an outbreak (R < sc).

Introducing disorder in the contact times changes the transmissibility formula [34]. In

our model we must account for the densities f1 or 1 − f1 of links that have weights ω

corresponding to the distribution with a disorder intensity of a1 or a2, respectively. Then

the transmissibility Ta1 a2 for a given virulence β and recovery time tr is

T = Ta1 a2 = f1Ta1 + (1− f1)Ta2 , (1)

where

Tai =
tr∑
t=1

(1− βe−ai)t − (1− β)t

ait
(2)

is the transmissibility of a disease in a network with a unique distribution of contact times

(f1 = 0 or f1 = 1), with disorder intensity ai, i = 1, 2 [34]. Note that the transmissibility

Ta1 a2 is a decreasing function of the intensities a1 and a2, because for higher values of a1 or

a2 the range of values for ω allowed in each distribution of disorder expands, and shorter

contact times become more probable. Thus, the disease is less likely to propagate. On the

other hand, in the limit a1 → 0 and a2 → 0 there is no disorder, and we recover the original

(homogeneous) SIR model as Ta1 a2 → T = 1− (1− β)tr .

When carrying out the simulations we select, for the non-disorder case, an infection

probability β from the epidemic phase, i.e., β > βc or T > Tc. Then, we determine whether

there are any pair of disorder intensities (a1, a2) for which there is no epidemic. In Fig. 2

we show the fraction R of recovered individuals as a function of the disorder a2, for an ER

network with 〈k〉 = 4 and different values of β, where we fix tr = 1, f1 = 0.2 and a1 = 1.
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FIG. 2: Fraction R of recovered individuals at the stationary state, as a function of the

disorder intensity a2, for β = 0.5 ( ) and β = 0.7 ( ). Note that for each value of β there is

a critical value a2c, such that the system is in a non-epidemic phase for a2 > a2c. The

results of the simulations correspond to an ER network with kmin = 0, kmax = 40 and

〈k〉 = 4, where f1 = 0.2 and a1 = 1. The network size is N = 105 and 105 realizations of

the simulation are performed, with sc = 200. The black curves ( ) correspond to the

theoretical results.

We can see that for both values of β, there is a critical value a2c above which the system

is in a non-epidemic phase. Note that even though we have chosen a value of β for the

epidemic regime without disorder in the network, the increasing of disorder intensity a2

reduces the spreading of the disease in the population and we obtain a non-epidemic regime.

This means that epidemics could be reduced in size and even avoided if average contact

times are controlled. In Sec. III we describe how to obtain the critical value for the disorder

intensity a2 and the conditions for its existence.

III. THEORY

Using the branching process formalism [10, 15, 36–38] we define the generating function of

the distribution P (k), G0(x) =
∑

k P (k)xk, and the generating function of the excess degree

distribution G1(x) =
∑

k[kP (k)/〈k〉]xk−1. In Fig. 2 we show the theoretical results for the

fraction R of recovered individuals (black curves), obtained by solving the link percolation

equations f∞ = 1−G1(1− pf∞) and P∞(p) = 1−G0(1− pf∞), where f∞ is the probability
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that a branch of links expands infinitely, P∞ is the fraction of nodes in the GC, and p is

the fraction of links occupied on the network. As we stated before, the SIR model can be

mapped into link percolation [10, 15, 36–38], thus, R and P∞ are equivalent. In Fig. 2 we see

that the simulation results from the SIR model with disorder present an excellent agreement

with the percolation theory. The previous equations and the mapping between R and P∞

apply in the thermodynamic limit N →∞, and for locally tree-like networks.

As stated in Sec. II, our goal is to study a mitigation strategy for a population with both

close and distant interactions, in which we curtail the spreading of diseases by controlling

the distant contacts. If a1 is the disorder intensity corresponding to the distribution of close

contacts and a2 corresponds to distant contacts, then a1 < a2. Next, we use the theoretical

result from the mapping that sets an equivalence between Ta1 a2 and p to analyze the phase

space of the system, which allows us to examine our proposed mitigation strategy. In Eq.

(1) we can use the critical transmissibility Ta1 a2c ≡ pc = 1/(κ− 1) to find, for tr = 1,

1

κ− 1
= f1β

1− e−a1
a1

+ (1− f1)β
1− e−a2c
a2c

, (3)

from which we can compute the critical intensity a2c for different values of a1. In Fig. 3

we show the phase diagram on the plane (a1, a2) for different values of f1 and β. Because

we study close and distant contacts, our interest is focused in the region of the phase space

above the dashed-dotted line, which corresponds to networks such that a1 < a2. Each curve

in Fig. 3 indicates the critical value a2c as a function of a1 for a given density f1. The curves

separate the epidemic phase (below) from the epidemic-free phase (on and above). We also

can see that in (a) there is a point a∗2 = a∗1 = ac at which all the curves cross each other

for different f1 values, where ac is the critical intensity for a network with a unique disorder

distribution. Starting from the a∗2 = a∗1 = ac point and moving away, the critical intensity

a2c increases as a1 decreases. This indicates that the longer the close contact times, the

shorter the distant contact times needed to avoid the epidemic phase. In Fig. 3(b) we show

that a1 can even go to zero, which means that the close contact times can be as long as

possible. In this limit we see that a2c converges to a finite value ã2. Using Eq. (3) we obtain

an expression for ã2,

Tc = f1β + (1− f1)β
1− e−ã2

ã2
. (4)

Using Eq. (4) we find that ã2 exists if f1 < Tc/β ≡ f̃1, otherwise the close contacts cause the

system to be in an epidemic phase for any value of a2, which means that ã2 does not exist. In
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FIG. 3: Phase space of the system projected on the (a1, a2) plane for tr = 1. Each curve

represents the critical intensity a2c as a function of a1, for different densities of close

contacts: f1 = 0.2 ( ), f1 = 0.4 ( ), f1 = 0.6 ( ) and f1 = 0.8 ( ). Below each

curve, the system is in an epidemic phase, while on and above is in an epidemic-free phase.

Gray regions represents networks where a1 > a2, which we are not interested in. The upper

figures correspond to an ER network with kmin = 0, kmax = 40 and 〈k〉 = 4, where (a)

β = 0.5 and (b) β = 0.7. The lower figures represent a SF network with kmin = 2,

kmax = 250, λ = 2.5 and exponential cutoff kc = 50, where (c) β = 0.25 and (d) β = 0.5.

The critical values of β for a non-disordered network are βc = 0.25 and βc ≈ 0.13, for

degree distributions ER and SF with exponential cutoff respectively.
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this case, when f1 > f̃1, a2c →∞ as a1 → a1m [see Eq. (3)]. Thus, distant contact times are

equal to zero, and because the disease cannot pass through these contacts its corresponding

transmissibility is also zero. The resulting expression for a1 = a1m is then

Tc = f1β
1− e−a1m
a1m

. (5)

Since there is no critical value a2c for a1 < a1m, the disease is always in an epidemic phase.

Note that there is a region of the phase space (striped region) in which the disease is in

an epidemic phase for all f1 values [see Fig. 3(a)]. This region corresponds to the epidemic

phase for f1 = 0, i.e., when there is only one type of contacts in the network. Then, it is

characterized by Ta2 > Tc = 1/(κ− 1).

We use these results to construct a distancing strategy for reducing the impact of a disease

in a population with close and distant contacts, by controlling the duration of distant contact

times. Suppose that the distribution of contact times has original disorder intensities a1 and

a2 such that the system is in an epidemic phase. Then, if we assume that close contacts

are a minor portion of the total (f1 < f̃1 = Tc/β), we can increase the intensity a2 to a

critical point, hence reaching a non-epidemic phase independent of the original intensities

[see Fig. 4(a)]. When f1 > f̃1, the original value of the disorder intensity of close contacts

determines whether we can reach the non-epidemic phase [see Fig. 4(b)]. In this case, when

a1 < a1m the non-epidemic phase cannot be reached by simply increasing a2.

We also observe that, with fixed β, the critical values obtained for ER networks are lower

than the ones obtained for SF networks with an exponential cutoff. We can see this result by

comparing Figs. 3 (a) and (d). In homogeneous (ER) networks individuals have, on average,

the same number of neighbors. Thus, there is a limit on the speed at which the disease

can propagate. In contrast, the presence of hubs in heterogeneous (SF) networks causes

a rapid propagation of the disease once they become infected. Therefore, these networks

require higher disorder intensities (or shorter contact times) to reach a non-epidemic phase

than those required in ER networks. Note also that the intrinsic virulence of the disease β

modifies these critical values.

In Figs. 3(a) and 3(b), and in Figs. 3(c) and 3(d), we show that when β increases the

disease becomes more aggressive, spreads more rapidly, critical intensities increase, and the

epidemic phase of the disease widens.

Finally, we generalize the analysis for larger recovery times (tr > 1). In Fig. 5 we show
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FIG. 4: Schematic of the proposed strategy to halt the spreading of a disease with

virulence β = 0.25. In (a) we show the case f1 < f̃1 = Tc/β (f1 = 0.2), where ã2 exists for

a1 = 0. Then, starting from any point A in the epidemic phase, by increasing a2 we can

reach the critical point in B. The opposite case (f1 > f̃1) is represented in (b) (f1 = 0.6),

which shows the same behavior than in (a) from point C to the critical point in D, for the

case in which a1 is originally greater than or equal to the minimum value a1m,

corresponding to a2c →∞. Here a1m = 0.29. The results correspond to a SF network with

kmin = 2, kmax = 250, λ = 2.5 and exponential cutoff kc = 50.

the phase space obtained from Eqs. (1) and (2) for tr = 5. This could represent the situation

of a disease such as the flu, which has a mean recovery time of five days. Also, in Fig. 5 we

compare these results with the tr = 1 case. Note that results for different recovery times tr

do not qualitatively differ. However, for fixed f1, the epidemic phase becomes wider when tr

increases. This is because the infected individuals have more time to propagate the disease,

and thus the contact times must be shorter (or have larger disorder intensities) to move

the disease to a non-epidemic phase. The recovery time is an important factor that needs

to be accounted for in the implementation of our epidemic-avoiding strategy, and it varies

depending on the type of disease.
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FIG. 5: Phase space of the system projected on the (a1, a2) plane, for different densities of

close contacts: f1 = 0.2 ( ), f1 = 0.4 ( ), f1 = 0.6 ( ) and f1 = 0.8 ( ). The upper

figures correspond to β = 0.5 and an ER network with kmin = 0, kmax = 40 and 〈k〉 = 4 for

(a) tr = 1 and (b) tr = 5. The lower figures correspond to β = 0.25 and a SF network with

kmin = 2, kmax = 250, λ = 2.5 and exponential cutoff kc = 50 for (c) tr = 1 and (d) tr = 5.

Note that the critical intensities take greater values to counter the increase of the recovery

times.

IV. ANALYSIS FOR THE DISTRIBUTION P ′(ω) = 1/(a′1ω
1.6)

Some “face-to-face” experiments have studied the contact behavior of individuals at conference-

like reunions. The duration of these interactions is accurately reflected by a distribution

13



P ′(ω) ∝ ω−1.6 [31, 33]. For a more realistic analysis, we include this distribution in our

model with a density f1 of close contacts. We make this selection because individuals at

conferences usually spend most of their time with the same group of people, a contact

pattern that we define to be close. We compare our previous results with those produced

by this new distribution, strictly defined by P ′(ω) = 1/(a′1ω
1.6), where ω ε [(1 + 0.6a′1)

−5/3, 1]

and a′1 is the disorder intensity.

As we stated before, now we work with a population in which a density f1 of the inter-

actions has a contact time distribution P ′(ω) = 1/(a′1ω
1.6) and the density f2 = 1 − f1 is

distributed according to P (ω) = 1/(a2ω). We want to compare this scenario with the pre-

viously studied case, which only differs in that the distribution of the density f1 of contact

times is P (ω) = 1/(a1ω). In order to accurately compare these distributions, the normalized

contact time ranges must be the same for both and thus, the minimum ω values must be

equal. This yields (1 + 0.6a′1)
−5/3 = e−a1 and gives a relation between the disorder intensi-

ties a1 and a′1. For a fixed value of a1, we compute the corresponding value for a′1 and use

these two intensities to obtain the critical values a2c for each case. Then, we plot a2c as a

function of a1 for both cases [see Fig. 6(a)]. This allows a comparison of the results when

both distributions have the same range of normalized contact times. We can see that for

the distribution P ′(ω), the critical values a2c are smaller than those that were previously

obtained for P (ω), which means that the disease spreads more easily under the distribu-

tion P (ω). We can understand this if we observe Fig. 6 (b), where we show a comparison

between the average normalized contact times f1〈ω〉′ and f1〈ω〉, corresponding to the den-

sity f1 of contacts distributed according to P ′(ω) and P (ω), respectively. For any a1 value

f1〈ω〉′ < f1〈ω〉, which means that the disease is less likely to propagate through interactions

when the contact times are distributed according to P ′(ω), the more realistic distribution

of contact times that we defined from the experiments.

V. CONCLUSIONS

In this paper, we study the SIR model for disease spreading over a disordered complex

network, in which two types of interactions are defined: close and distant contacts, with

larger and shorter mean contact times, respectively. We propose a mitigation strategy

consisting in reducing the average contact time of distant interactions (by increasing a2 in
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FIG. 6: (a) Critical intensities a2c and (b) average normalized contact times f1〈ω〉, as

functions of a1, for different densities of close contacts distributed according to

P ′(ω) = 1/(a′1ω
1.6): f1 = 0.2 ( ) and f1 = 0.4 ( ). The dotted lines are the

corresponding results previously obtained for the distribution of close contacts

P (ω) = 1/(a1ω). Disorder intensity a1 is such that the minimum values of ω coincide for

both distributions. Results shown in (a) correspond to a SF network with kmin = 2,

kmax = 250, λ = 2.5 and exponential cutoff kc = 50, for β = 0.25 and tr = 1. Note that in

(b), for a fixed value of f1, the difference between average contact times increases with a1,

i.e., when the range of allowed contact times becomes wider.

the model). We find that the strategy is more effective for smaller densities f1 of close

contacts, as the disease is more likely to propagate through them. Also, there is a threshold

density f̃1 = Tc/β of close contacts below which the strategy can prevent the system to

enter in an epidemic phase, regardless of the average contact time of close interactions.

Using a distribution of close contact times P ′(ω) = 1/(a′1ω
1.6) that adjusts better with some

experimental results, we find that the propagation decreases and it is easier to reduce the

impact of a disease than when using the theoretical distribution P (ω) = 1/(a1ω).

The analysis carried out here can be extended to interconnected networks, where each

network represents a different environment in which interactions take place. As differing

networks can have their own degree distribution, this could be an approach for making our

close/distant interaction model more realistic and broadly applicable. Since it is well known

that such interconnected systems accelerate spreading processes, it is fundamental, in these

15



cases, to find ways to halt or slow them down.
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