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Abstract
Tracking control of specific variables is key to achieve a proper fermentation. This paper analyzes a fed-batch bioethanol 
production process. For this system, a controller design based on linear algebra is proposed. Moreover, to achieve a reliable 
control, on-line monitoring of certain variables is needed. In this sense, for unmeasurable variables, state estimators based 
on Gaussian processes are designed. Cell, ethanol and glycerol concentrations are predicted with only substrates measure-
ment. Simulation results when the controller and estimators are coupled, are shown. Furthermore, the algorithms were tested 
with parametric uncertainties and disturbances in the control action, and are compared, in all cases, with neural networks 
estimators (previous work). Bayesian estimators show a performance improvement, which is reflected in a decrease of the 
total error. Proposed techniques give reliable monitoring and control tools, with a low computational and economic cost, 
and less mathematical complexity than neural network estimators.

Keywords On-line monitoring · Profiles tracking control · Fed-batch bioprocess · Non-linear and multivariable system · 
State estimation · Gaussian process

Introduction

Nowadays, ethanol plays an extremely important role in the 
industry. Because of its excellent capacity as solvent, it is 
used in cosmetics, paints, cleaning products, extracts, and 
medicines. In aerosols, ensures the adhesion of the mate-
rial on the different surfaces. It is the raw material for bio-
diesel production. Its use in gasoline favors fuel oxygena-
tion, and as a fuel, it is less toxic, easily biodegradable and 
produces fewer pollutants. Its antiseptic properties make it 
an indispensable complement to achieve the conservation of 
lotions, syrups, and foods, besides, it promotes the uniform 

distribution of pigments and enhances flavors. Finally, it 
constitutes an essential input in hospitals, homes, etc. [1].

Ethanol can be obtained by ethylene hydration (derived 
from petroleum), or, from renewable materials fermentation. 
Excessive consumption of fossil fuels has led to a decrease 
in these natural resources and pollution of the environment 
[2, 3]. Some of the most visible consequences are global 
warming, acid rain and urban smog [4]. For this reason, 
non-polluting and renewable fuels have become a focus of 
research in recent years.

Bioethanol (from renewable resources) production 
involves different stages: pretreatment, hydrolysis, fermen-
tation, and distillation. Consequently, this process uses a 
significant amount of energy compared to fossil fuel pro-
cessing, so it is not possible to completely replace current 
oil consumption. As a result, it is necessary to guide research 
to optimize and control each stage of the bioethanol produc-
tion process. Many researchers have dedicated their efforts 
to achieve this, for example, Herrero et al. [5] presented the 
optimization results of the sulfuric acid pretreatment vari-
ables applied to improve sugars bioavailability. In Aimaretti 
et al. [6], authors studied two different enzymatic hydroly-
sis strategies to increase fermentable sugar concentration in 
the must. Kumar et al. [7], increase the efficiency of sugar 
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conversion and the ethanol yield of a fermentation applying 
gas stripping at high temperature. In Tgarguifa et al. [8], 
the model and a distillation column optimization to produce 
ethanol from wine are proposed.

The fermentation step, commonly done in batch or fed-
batch bioreactors, can be improved with many strategies, 
such as the specific microorganism selection or genetic 
modification of those microorganisms [1, 4]. Fed-batch bio-
processes are intensively studied nowadays because of their 
complex mathematical models [9] and their main advantages 
[10], such as the medium substrate concentration can be 
regulated by an appropriate feed rate profile [11], obtaining 
better production yields and minimizing the production costs 
[10, 12–14]. Run-to-run optimization is a current method 
used to define the process feed flow rate and system param-
eters. Moreover, this strategy is used for open-loop control 
purposes, however, thus lead to performance deterioration 
in each run [15, 16]. In this way, bioprocesses tracking con-
trol is a more robust option, required to follow certain opti-
mal feed flow rate, get stability and the best productivity 
[17]. Moreover, a real-time bioprocess detailed control is a 
complex target but is essential to ensure raw materials opti-
mal use, water and energy-saving, final product consistent 
quality, a reduction in wastes and process cycle time, which 
opens up the possibility of bioprocess innovation. Further-
more, the mathematical representation of the process and 
the on-line states variables measurement are keys to achieve 
good results [15].

Many scientists have developed several feedback control 
strategies. However, to the best of the author’s knowledge, 
for the specific case of fed-batch bioethanol production 
defined by Hunag et al. [18], only Fernández et al. [19] pre-
sented a controller design. It is focused on looking for con-
trol actions, to track predefined concentration profiles. This 
methodology is complemented with on-line state estima-
tors based on neural networks (NN) to provide information 
on those variables that cannot be measured on-line. As the 
controller structure comes from the process mathematical 
model, it can be implemented in many systems. This pro-
cedure is simple, versatile and precise. Besides, only basic 
knowledge of numerical methods and linear algebra are 
needed to implement it. The technique was tested against 
different disturbances, achieving the tracking error conver-
gence to zero.

In this paper, another alternative for non-measurable vari-
ables estimation in the same bioethanol production system is 
presented. In this sense, Bayesian theory based on Gaussian 
Processes are used to estimate cell, ethanol and glycerol con-
centrations. With this alternative, in comparison with NN, 
fewer parameters are involved, simplifying the mathemati-
cal resolution of the problem, reducing the programming 
time and minimizing the computational cost. Furthermore, 
the controller parameters are selected with a Monte Carlo 

Randomized algorithm and a comparison with the NN state 
estimators, previously presented [19], is shown, under para-
metric uncertainties and external perturbation addition.

The paper is organized as follows. Section “Bioprocess 
model and controller design” summarizes the ethanol bio-
process and the previously presented controller technique. 
In Section “Bayesian state estimators design”, the state esti-
mators are developed. Section Results and discussion shows 
the results and discussion, including a comparison of the 
controller performance using the NN and the Bayesian state 
estimators. Finally, conclusions are exposed.

Bioprocess model and controller design

Ethanol bioprocess description

Hunag et al. [18], proposed the following mathematical 
model to describe a fed-batch bioethanol process:

where:

The microorganism used is a high tolerance to high etha-
nol concentration yeast, Saccharomyces diastaticus (X). This 
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yeast uses two substrates, glucose (S1) and fructose (S2), 
which are fed into the reactor in a 50–50 ratio, to produce 
ethanol (P1) and glycerol (P2). The states are: (X), (S1), (S2), 
(P1) and (P2) concentration inside the reactor, whose profiles 
variation over time is wanted to be tracked. V is the culture 
volume, µ1 and µ2 are the specific yeast cells growth rate, 
qS1/P1 and qS2/P1 the specific ethanol production rate, qS1/P2 
and qS2/P2 the specific glycerol production rate, in all cases 
from glucose and fructose, respectively. U is the feed rate 
and the control variable.

To estimate kinetic model parameters, fed glucose con-
centration, feed strategy and fermentation time to maxi-
mize the ethanol production rate, Hunag et al. [18] applied 
a run-to-run optimization procedure. Those results are used 
as references in this paper. A reactor with a total working 
volume of 5 L was used. Temperature was maintained at 
35.8 °C by controlling the circulation of the cooling water. 
The airflow was fixed at 1.5 vvm, and the pH was kept at 
5.0 by adding 1 N NaOH. The biomass concentration was 
determined spectrophotometrically at 540 nm, and the cor-
responding dry weight of cells was obtained from a calibra-
tion curve. The concentrations of glucose, fructose, ethanol 
and glycerol were analyzed with a high-performance liquid 
chromatograph [18]. Table 1 shows system initial conditions, 
while parameters nomenclature, description and values are 
exposed in Table 2.

Controller design

The methodology described in Fernández et al. [19] aims to 
find U in order to make the system follow pre-established state 

Table 1  Initial conditions for 
ethanol fermentation

Variable Initial value

X (g/L) 1.5
P1 (g/L) 5.3
P2 (g/L) 0.0001
S1 (g/L) 8.6
S2 (g/L) 8.6
V (L) 1.35

Table 2  Nomenclature, 
description and values of 
parameters

Parameter Description Value

µm1 Maximum specific growth rate coefficient for yeast on glucose (/h) 1.8823
µm2 Maximum specific growth rate coefficient for yeast on fructose (/h) 1.7098
YP1/S1 Yield coefficient for ethanol from glucose 0.5085
YP2/S1 Yield coefficient for glycerol from glucose 0.5331
YP1/S2 Yield coefficient for ethanol from fructose 0.5098
YP2/S2 Yield coefficient for glycerol from fructose 0.4462
KS1 Saturation coefficient for cell growth on glucose (g/L) 159.75
KS1I Inhibition coefficient for cell growth on glucose (g/L) 94.233
KP1 Saturation coefficient for cell growth on ethanol (g/L) 238.39
KP1I Inhibition coefficient for cell growth on ethanol (g/l) 2.7378
KS2 Saturation coefficient for cell growth on fructose (g/L) 0.0726
KS2I Inhibition coefficient for cell growth on fructose (g/L) 9.0048
KP2 Saturation coefficient for cell growth on glycerol (g/L) 35.958
KP2I Inhibition coefficient for cell growth on glycerol (g/L) 9.9722
KS1P1 Saturation coefficient for ethanol production on glucose (g/L) 1.3409
kS1P1 Inhibition coefficient for ethanol production on glucose (g/L) 18.612
KS2P1 Saturation coefficient for ethanol production on fructose (g/L) 0.9129
kS2P1 Inhibition coefficient for ethanol production on fructose (g/L) 1000
KS1P2 Saturation coefficient for glycerol production on glucose (g/L) 6.7116
kS1P2 Inhibition coefficient for glycerol production on glucose (g/L) 0.5863
KS2P2 Saturation coefficient for glycerol production on fructose (g/L) 0.4310
kS2P2 Inhibition coefficient for glycerol production on fructose (g/L) 1.150
νS1P1 Coefficient of maximum specific ethanol production rate for yeast on glucose (/h) 1.5051
νS2P1 Coefficient of maximum specific ethanol production rate for yeast on fructose (/h) 0.3321
νS1P2 Coefficient of maximum specific glycerol production rate for yeast on glucose (/h) 0.0023
νS2P2 Coefficient of maximum specific glycerol production rate for yeast on fructose (/h) 0.1609
λ Proportion of glucose and fructose 0.5
Sf Sugar total feed concentration (g/L) 300
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variables profiles (references) with minimum error. For the 
controller, design is assumed that reference profiles and states 
at each sampling instant are known. Figure 1 shows the refer-
ence concentration profiles and the feed flow rate. Next, the 
mentioned methodology is summarized:

First, Eq. (1) is discretized using numerical methods. Euler 
is applied due to its simplicity and good results [19].

where σ symbolizes each state variable, σn is the current σ 
value measured from the reactor (on-line), and σn+1 is the 
σ value in the next measurement instant. TS is the sampling 
time (0.1 h) [20]. The process lasts 15.7 h (Tf).

The state variables in n + 1 are approximated as follows:

Here, σref are the reference state variables. kσ represents the 
controller parameter for the variable σ. For this system, the 
controller parameters are kX, kP1, kP2, kS1 and kS2. For the error 
reduction in each sampling time, 0 ≤ kσ < 1must be fulfilled. 
Then, replacing Eq. (4) in (3):

(3)
(
d�

dt

)
=

�n+1 − �n
TS

,

(4)

�ref,n+1 − �n+1
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

errorn+1

= k� (�ref,n − �n)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

errorn

�n+1 = �ref n+1 − k�(�ref,n − �n)

(5)(
d�

dt

)
=

�n+1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[
�ref n+1 − k�(�ref n − �n)

]
−�n

TS
=

Δ�

TS
.

Placing Eq. (5) in (1):
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Fig. 1  a Cell, ethanol, glycerol, glucose and fructose reference concentrations along the process. b Reference feed flow rate. Culture Volume
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Then, to find U, the equation system (7) must have an 
exact solution. So, b have to be a linear combination of A 
columns [21], in other words, A and b must be parallel. One 
way to satisfy this condition is:

where the operation between <  > and ||.|| represent the inner 
product and the vectors norm in Rn space, respectively.

At this point, a "sacrificed variable" selection is neces-
sary. This variable, defined as S1ez, ensures that (7) has an 
exact solution. For more details on its selection and calcula-
tion, see [19]. Finally, Un is obtained using least squares.

Controller tuning

In Fernández et al. [19], the Monte Carlo algorithm was used 
to find the kσ combination that minimizes the accumulated 
error. This methodology consists of simulating the process 
N times using random kσ [22]:

where δ is the confidence and ε the accuracy.
Then, two new terms are introduced, “tracking error” and 

“total error”, Eqs. (11) and (12), respectively.

Equation (12) is the function cost to be minimized with 
the Monte Carlo Algorithm. Then, kσ that minimize the total 
error are selected.

Sequence of the Monte Carlo algorithm [23]:
1. Define the controller’s parameters to be optimized.
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2. Determine the number of simulations to be performed (N). 
The values of δ and ε are chosen depending on the desired accu-
racy, for example: δ = 0.01 and ε = 0.005, resulting in N = 1000.

3. A value is randomly assigned for each parameter of 
the controller.

4. The process is simulated and the cost index (ET) is 
calculated.

5. Repeat steps 3 and 4 until completing the N iterations.
6. Finally, the controller parameters that minimize ET are 

selected.

Theorem: If the discrete system is given by Eq. (1), the con-
trol action is calculated with Eq. (9), and kσ take values 
between zero and one (0 < kσ < 1), then, the tracking error 
convergence to zero when n tends to infinity is achieved.
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and expressing the vector system generically:

Solving (13) with least squares:
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Substituting (16) in (7):

Then, the tracking error for X is defined as:

Introducing (17) in (18):

The µ1(S1n, P1n) Taylor approximation in the desired value 
µ1(S1ez n, P1n) is:
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L

+ TSXn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d�1(S1,P1,n)

dS1

���
S�

0

0

−
dqS1∕P1

(S1,P1,n)

dS1

����S�
−

dqS1∕P2
(S1,P2,n)

dS1

����S�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

NL

eS1,n.

In Eq. (22), L is a linear system and NL is a bounded 

nonlinearity [19]. Note that if kσ = 0, the reference is reached 
in one step. So, if 0 < kσ < 1, the tracking error tends to zero 
when n → ∞ [19, 24].

Controller implementation

The control system diagram is shown in Fig. 2 and the math-
ematical procedure is summarized in the following steps:

Bayesian state estimators design

Knowledge and control of certain compounds during fer-
mentation are essential because they provide information 
that allows the process to be modified when necessary [25]. 
Some variables, such as cell concentration, are determined 
by off-line laboratory analysis, limiting its use for control 

purposes. Although a specific on-line sensor could be avail-
able, this kind of hardware is usually expensive.

State estimation methods have been mostly focused on 
supply the lack of system measurements [26, 27]. Nowadays, 
there are a wide variety of state estimators, Ali et al. [28], 
classified them into six groups: Luenberger-based, Finite-
dimensional system, Bayesian, Disturbance and fault detec-
tion, AI-based and Hybrid observers. Most of them need 
fermentation mathematical model to be applied.

As most fermentation mathematical models are not 
entirely reliable, Bayesian estimators based on Gaussian 
processes are proposed. The following procedure shows a 
reliable tool design for the biomass, alcohol, and glycerol 
concentrations estimation.

Every learning algorithm requires a set of training ele-
ments. This set of noisy experimental data, D, is constituted 
by k pairs of n-dimensional input vectors xi (regression vec-
tor) collected in a nxk matrix X, and k scalar noisy observed 
outputs yi joined in a vector y; where k and n are the number 
of samples taken and known variables, respectively.
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In this sense, the objective is to find y values correspond-
ing to x* not included in X. For this, the following Gaussian 
regression model is constructed:

In Eq. (24), yi is the observed noisy outputs vector; f(xi) 
is the latent function (determines the relationship between 
the estimated variable and the data); εi is the additive noise 
(associated with measurement errors), usually represented by 
Gaussian white noise.

Then, f(xi) must be selected to make predictions for all pos-
sible inputs x ∗∉ � , using the Bayes’rule (Eq. (25)) [29]. To 
achieve this goal, it is considered an infinite space of functions, 
each of them with a priori probability assigned, the highest 
probability are for those functions with certain characteristics 
(softness, stationariness, periodicity, etc.). Moreover, uncer-
tainties are quantified by a posterior distribution. Equation 
(25) represents the application of Bayes’rule to the problem 
under study.

Equation (25) updates a posterior distribution (predictive 
function) with the empirical data and the a priori distribu-
tion assumed over the space of the possible functions that 
model the input data. P(fi), expresses the type of function 

(23)D =
{(

xi, yi
)
∕i = 1,… , k

}
= {�, y}.

(24)yi = f
(
xi
)
+ �i.

(25)

posterior

⏞⏞⏞
P(fi�y) =

likelihood

⏞⏞⏞
P(y�fi)

prior

⏞⏞⏞
P(fi)

P(y)
⏟⏟⏟
evidence

=
P(y�fi)P(fi)

∞∑
i=1

P(fi)P(y∕fi)

.

that is expected to be observed as output, e.g., continuous and 
smooth, those properties are induced by the covariance func-
tion (K) and is denoted as:

P(y/fi) describes the deviation of the noisy measurements, 
yi, respect of the free-noise function, f(xi). The likelihood is 
represented by:

The evidence, P(y), is the normalizing constant and 
is calculated with the Total Probability Theorem that 
involves both terms, a priori probability, and likelihood.

Then, P(fi/y) is obtained by replacing Eqs. (26) and (27) 
in (25):

Finally, considering a hypothetical case x*, to predict 
the value of f* an average, overall possible functions, is 
evaluated from Eq. (28). In this way, the predictive func-
tion, f*, is given by:

Consequently, the problem of Bayesian estimation is 
reduced to find the appropriate properties for the covari-
ance function, which depends on the Kernels functions 

(26)P(fi) = N(0,�)

(27)P(y∕fi) =

m∏
i=1

N
(
fi, �

2
n

)
= N

(
f , �2

n
I
)
.

(28)
P(fi∕y) ∝ N

(
f , �2

n
I
)
N(0,�)

P(fi∕y) = N
(
�
(
� + �2

n
I
)−1

y,
(
�

−1 + �2
n
I
)−1)

.

(29)P(f ∗ ∕x ∗) = ∫ P(x ∗ ∕f ∗)P(f )df .

Fig. 2  Control system diagram
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chosen to describe the curves and the determination of 
their hyperparameters.

Covariance function

The covariance function, K, is a degree and type measure 
of the relation of two variables. In this case, represents the 
correlation between the training input and output data, X and 
y. For a set of n variables:

Each component of K is formed by adding kernels. Sev-
eral kernel functions describe different kinds of curves, 
Table 3 shows some of them [30]. As a result, there are many 
possibilities of covariance function, the only restriction is 
that this matrix must be symmetric and positive defined [31, 
32].

Hyperparameters

Hyperparameters are parameters of a non-parametric model. 
They do not have a fixed value, previously established by 
adjusting a model; therefore, it is necessary to estimate them. 
To achieve this goal, they are defined as the logarithm of the 
covariance function variables, since they are positive scaling 
parameters.

There are many alternatives to solve the hyperparameters 
estimation: general optimization of error limits [33–35], 
cross-validation method [36], evidence maximization [37, 
38], Monte Carlo methods [39], maximum a posteriori 
method [31, 40], and maximum likelihood [41].

(30)� =

⎡
⎢⎢⎣

k(x1, x1) ⋯ k(x1, xn)

⋮ ⋱ ⋮

k(xn, x1) ⋯ k(xn, xn)

⎤
⎥⎥⎦
.

In this paper, the maximum a posteriori method is used. It 
consists of using Gaussian processes to carry out the hyper-
parameters search. This implies assuming an a priori distri-
bution about hyperparameters, applying Bayes’rule and the 
other previously explained steps [42].

Implementación

There are four steps to follow:

• Regression vector selection.
• Latent function determination.
• Covariance function choose.
• Hyperparameters estimation.

Initially, the training data set is defined using different 
feed rate profiles:

The regression vectors for biomass, ethanol and glycerol 
estimation are:

Consequently, the following models of Gaussian regres-
sion for cell, ethanol, and glycerol data generation are 
proposed:

where, X̂i , P̂1i and P̂2i are the latent functions.
Then, as the heart of Bayesian estimators lies in the deter-

mination of an appropriate covariance matrix, selected func-
tions must: have high flexibility, consider different types of 
data interactions, harmonize the estimation results when 
the data is close or spaced, contemplate linear and non-lin-
ear relationships, present robustness against measurement 
errors, among others. Therefore, the covariance function 
selection requires in-depth knowledge of both the system 
under study and the different kernels that may constitute it.

In this sense, the covariance functions proposed by Wil-
liams and Rasmussen [43] and di Sciascio and Amicarelli 
[31] were analysed. As a main contribution, in this paper the 
following covariance function is proposed:

(31)D =
{(

xi, yi
)
∕i = 1,… , k

}
=
{
P1,P2, S1, S2,X

}

(32)

RX =
[
S1i S2i Xi−1 Xi−2

]
RP1

=
[
S1i S2i P1i−1

P1i−2
S1iP1i−1

]

RP2
=
[
S1i S2i P2i−1

P2i−2
S1iP2i−1

]
.

(33)

Xi = X̂i + 𝜀i

P1i = P̂1i + 𝜀i

P2i = P̂2i + 𝜀i,

Table 3  Función Kernel [30]
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In Eq. (34), θ0, θ1, r, θ2, θ3 and α are the covariance 
function hyperparameters, δ is the Kronecker Delta function, 
and ℓ is the space dimension of xi. The terms in Eq. (34) are 
briefly described:

• First term: is called bias, and it reflects how far the aver-
age inference function is expected to fluctuate from the 
average of the Gaussian process.

• Second and third terms: are square exponential kernels, 
they express that close inputs give rise to close outputs. 
rℓ is the characteristic scalar length (establishes how 
far the input values, xi, can be for estimated values, yi, 
become uncorrelated) and θ1 and θ2 provide general ver-
tical scale regarding the average of the Gaussian process 
output space. It is one of the most used kernels in bio-
processes, because it provides softness characteristics, 
achieving an excellent curves description.

• Fourth term: represents white noise, corresponding, e.g., 
to measurements impressions. θ3 is the noise variance.

• Fifth term: is a linear kernel and is the non-stationary 
part of the covariance function. The amount of hyperpa-
rameters it has α coincides with the size of the regression 
vector.

Once the covariance function is defined, the hyperparam-
eters vector is determined:

(34)
kxij = �0 + �1 exp

⎡
⎢⎢⎢⎣
−
1

2

n�
�=1

�
x
(�)

i
− x

(�)

j

�2

r2
a�

⎤
⎥⎥⎥⎦
+ �2 exp

⎡
⎢⎢⎢⎣
−
1

2

n�
�=1

�
x
(�)

i
− x

(�)

j

�2

r2
b�

⎤
⎥⎥⎥⎦
+ ...

... + �3�(i, j) +

n�
�=1

��x
(�)

i
x
(�)

j

In this case, there are 16 hyperparameters to be deter-
mined for biomass, 9 for ethanol and 19 for glycerol 
estimators.

To implement the Bayesian estimation algorithms, an 
open-source toolbox of MatLab™ called GPML (Gaussian 
Process for Machine Learning) is used. In Rasmussen and 
Nickisch [44], this tool is described. Then, the Total Error, 
Eq. (12) is used to evaluate the estimators performance. Fig-
ure 3 shows a flowchart of the proposed procedure.

Results and discussion

In this section, the results of coupling the estimators and the 
linear algebra controller are shown. The estimated variables 
are cell, ethanol, and glycerol concentrations throughout the 
process. Initially, the control loop is tested under normal 
operating conditions, then parametric uncertainty and dis-
turbances in the control action are added to demonstrate the 
reliability of the control strategy and the proposed estima-
tors. Besides, in all cases, the results are compared and con-
trasted with those obtained with the previously published 
neuronal network estimators.

(35)

𝜃=̂
[
log 𝜃0, log 𝜃1, log ra1,… , log r

an
, log 𝜃2, log rb1,… ,

log r
bn
, log 𝜃3, log 𝛼1,… , log 𝛼

n

]
.

Fig. 3  Process flowchart
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Performance under normal conditions

This test tries to simulate how the system would behave 
when no external factors affect the process. Figure 4 shows 
the evolution of cell, ethanol, and glycerol reference con-
centration profiles, those obtained with the neuronal net-
work estimator (NN-RBF), the Bayesian estimator (BE) and 
those that would be ideal (without estimator). Note the good 
performance of both kinds of estimators; however, there is 

an improvement in the results when using the Bayesian 
estimator.

Figure 5 describes the accumulated error and the tracking 
error obtained with each estimator and in ideal conditions 
(without estimator). The neural network introduces a lim-
ited intrinsic error that is accumulated along the process, so 
the accumulated error is different from that of the Bayesian 
estimator. As can be seen, as the process progresses, the 
tracking error tends to decrease and remains limited to low 
values, that is, the controller progressively approaches the 
reference at every instant of time.

Performance with parametric uncertainties

A particular characteristic of bioprocesses is the difficulty 
of measuring their parameters, especially since they often 
vary over time [45]. Therefore, the following test attempts 
to show how the controller and estimators respond when 
the system parameters values are not accurate or fluctuate 
throughout the process.

To achieve this goal, the Monte Carlo algorithm is used. 
The number of simulations (N) is determined with Eq. (10), 
taking into account the same confidence and accuracy val-
ues as in Sect. Controller tuning. Among the N simulations, 
all system parameters are randomly changed by ± 15% of 
their original value at the same time. Figure 6 shows the 
biomass concentrations obtained in the 1000 simulations 
with parametric uncertainty when using the Neural Network 
and Bayesian estimator; while Figs. 7 and 8 the results for 
ethanol and glycerol concentrations, respectively. Note that 

Fig. 4  Cell, ethanol, and glycerol concentration obtained by coupling 
the estimators to the controller under normal operating conditions

Fig. 5  a Accumulated error and b tracking error obtained by coupling the estimators to the controller under normal operating conditions
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the obtained profiles are acceptably close to each reference, 
especially those achieved with the Bayesian estimator.

Performance with disturbances in the control action

This test aims to simulate unforeseen events that can cause 
unwanted variations in production. To carry it out, a ran-
dom disturbance is added to the bioreactor feed rate. This 
disturbance affects the control action in ± 20% of its original 

value. This can be explained as a random noise that results in 
Gaussian disturbances with non-zero average [46]. Figure 9 
shows the disturbed feed speed profile in comparison to the 
reference. Figure 10 illustrates the reference concentration 
monitoring when using both state estimators coupled to the 
controller, despite the perturbation applied; finally, it can 
be observed how these disturbances cause an increase in 
the tracking error (concerning the one analyzed in Fig. 5), 
however, it remains at acceptable levels.

Fig. 6  Cell concentration variation under parametric uncertainty

Fig. 7  Ethanol concentration variation under parametric uncertainty
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Conclusions

Reliable control strategies are fundamental for bioprocess 
good performance. For most of these strategies, knowledge 
of on-line states variables is necessary. Moreover, as spe-
cific on-line sensors are generally not available, relevant 
variables are usually measured by off-line methods, which 
require long-time analysis, preventing corrective action 
from being taken.

As a solution, in this paper, a controller design based on 
linear algebra for a multivariable and non-linear system is 
proposed. Furthermore, Bayesian state estimators based on 
Gaussian processes were proposed to estimate on-line cell, 
ethanol, and glycerol concentrations, using only substrates 
on-line measurement. As a main contribution, a new alter-
native of covariance function was presented, which allows 
reducing estimation errors.

The algorithms were applied in a fed-batch bioethanol 
fermentation process. The controller was tuned using the 
Monte Carlo algorithm. The controller with the estimator 

Fig. 8  Glycerol concentration variation under parametric uncertainty

Fig. 9  Control Action with random perturbances
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coupled was tested under parametric uncertainty and dis-
turbances in the control action. Each result was compared 
and contrasted with those obtained with neural network 
estimators, showing better results. Moreover, in the Bayes-
ian estimator fewer parameters are involved, simplifying 
the mathematical resolution of the problem, reducing the 
programming time and minimizing the computational cost. 
Bayesian estimators show a performance improvement, 
which is reflected in a decrease of the total error. This last 
assertion is because the neural network introduces a limited 
intrinsic error that is accumulated along the process.
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