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Abstract. We investigate a two-phase free-boundary problem in heat
propagation that in classical terms is formulated as follows: to find a
continuous function u(x, t) defined in a domain D ⊂ R

N × (0, T ) which
satisfies the equation

∆u +
∑

ai uxi − ut = 0

whenever u(x, t) �= 0, i.e., in the subdomains D+ = {(x, t) ∈ D :
u(x, t) > 0} and D− = {(x, t) ∈ D : u(x, t) < 0}. Besides, we as-
sume that both subdomains are separated by a smooth hypersurface,
the free boundary, whose normal is never time-oriented and on which
the following conditions are satisfied:

u = 0, |∇u+|2 − |∇u−|2 = 2M.

Here M > 0 is a fixed constant, and the gradients are spatial side-
derivatives in the usual two-phase sense. In addition, initial data are
specified, as well as either Dirichlet or Neumann data on the parabolic
boundary of D.

The problem admits classical solutions only for good data and for
small times. To overcome this problem several generalized concepts of
solution have been proposed, among them the concepts of limit solu-
tion and viscosity solution. Continuing the work done for the one-phase
problem we investigate conditions under which the three concepts agree
and produce a unique solution for the two-phase problem.
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1. Introduction

In this paper we investigate a two-phase free-boundary problem in heat
propagation that in classical terms is formulated as follows: given a domain
D ⊂ R

N × (0, T ) and a constant M > 0, to find a continuous function u(x, t)
defined in D which satisfies the equation

∆u +
∑

ai uxi − ut = 0 (1.1)

in the subdomains D+ = {(x, t) ∈ D : u(x, t) > 0} and D− = {(x, t) ∈
D : u(x, t) < 0}, which represent the two different phases. Besides, both
subdomains must be separated by a smooth hypersurface, Γ, a so-called
free boundary, whose normal is never time-oriented, and such that D =
D+ ∪ D− ∪ Γ. On Γ we have u = 0 and we impose the jump condition

|∇u+|2 − |∇u−|2 = 2M, M > 0, (1.2)

where ∇u+ denotes the gradient of u restricted to {u > 0} and ∇u− is the
gradient of −u restricted to {u < 0}. We are thus imposing a discontinuity
of |∇u| across Γ since M �= 0. Finally, initial data are specified, as well as
either Dirichlet or Neumann data on the parabolic boundary of D, as we will
see below. We will refer to this free-boundary problem as problem P.

This is a model of heat propagation with change of phase. There is a
corresponding one-phase problem, where u ≥ 0, so that the negative domain
disappears and D− is replaced in the domain division by the interior of the
null-set, D0 = {u = 0}◦. The jump condition on Γ reads then

|∇u+|2 = 2M. (1.3)

This problem arises in several contexts, in particular in combustion theory
and in flows in porous media, and is currently the object of active investi-
gation. We have devoted the article [17] to investigating the questions of
uniqueness of different types of solutions for the one-phase problem. We
remark that the jump conditions (1.2) and (1.3) make these problems com-
pletely different from the two-phase and one-phase Stefan problems.

Let us recall that classical solutions to problem P in one space dimension
are relatively easy to construct, but the problem is much more difficult in
several space dimensions; cf. [21]. Generally, classical solutions exist only
locally in time, since singularities can arise in finite time even in the one-
phase problem; cf. [22].

One way of addressing the problem of existence of solutions in a more gen-
eral context is the introduction of viscosity solutions, defined by comparison
with classical solutions (see the precise definition in Section 2). Another way
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is to consider the problem as the limit of the equations

∆uε +
N∑
1

aiu
ε
xi
− uε

t = βε(uε) (1.4)

with corresponding initial and boundary conditions. We call this equation
Pε. In the one-phase problem this regularization for small ε appears in
combustion theory as the high activation energy range of the equation for
equidiffusional flames, and the limit has been proposed by Zeldovich and
Frank-Kamenetski [23] and produces the free-boundary problem P when
the reaction function βε converges as ε → 0 to a Dirac delta in the following
scaling way:

βε(s) =
1
ε
β(

s

ε
); (1.5)

see [2, 3, 13, 14]. In the two-phase problem the limit of Pε has been studied
in [10, 11, 20]. We call the solution of P obtained by such a process the limit
solution.

Continuing the work done for the one-phase problem in [17] we investigate
in this paper conditions under which the concepts of classical, viscosity and
limit solution agree and produce a unique solution for the two-phase problem.

Main results. We take as spatial domain a cylinder of the form Ω = I ×Σ
with Σ ⊂ R

N−1 a smooth domain, and I = R (a full cylinder), I = (0,∞) or
I = (−∞, d) (a semicylinder) or I = (0, d), d > 0 (a bounded cylinder), and
we put homogeneous Neumann conditions on the lateral boundary I × ∂Σ.
We require monotonicity of the initial data in the direction of the cylinder
axis, but we make no requirement of monotonicity of the solution in time.
In the family of problems Pε we assume that the functions βε are defined by
scaling of a single function β : R → R satisfying the following:

• β is a Lipschitz-continuous function,
• β > 0 in (0, 1) and β ≡ 0 otherwise,
•

∫
β(s) ds = M .

We then define βε(s) = 1/εβ(s/ε). The coefficients ai of the first-order
terms in the differential operator are assumed to be independent of x1, the
direction of the cylinder axis, and belong to Cα, α

2 (Σ × [0, T ]).
Our results can be summarized as saying that, with this type of domain,

coefficients and reaction function βε, and under suitable assumptions on
the initial and boundary data, if a classical solution of problem P exists
in a certain time interval, then it is at the same time the unique classical
solution, the unique limit solution and also the unique viscosity solution in
that time interval. We show in particular that there is a unique limit solution
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independent of the choice of the function β. Moreover, we actually prove
that the limit exists for any suitable approximation of the initial datum.

The present jump condition on the free boundary can be generalized in
the form

G(|∇u+|, |∇u−|) = 0, (1.6)

for a suitable function G, increasing in the first argument and decreasing
in the second. Such a type of generalized jump condition appears in the
study of stationary problems, which arise in hydrodynamics; cf. [7, 8, 9] and
their references. The free-boundary evolution problem with jump function
G(a, b) = a − b − M has been studied by several authors; cf. [1], [4], [5].
Our results on uniqueness of classical and viscosity solutions apply without
changes to these general jump conditions. We have made the choice G(a, b) =
a2 − b2 − 2M in this paper because it is the one obtained in the limit of the
regularized problems Pε.

Outline of the paper. In Section 2, we give precise definitions of the clas-
sical and viscosity solutions and prove a first consistency result (Propositions
2.1 and 2.2). In Section 3, we prove that, under certain assumptions on the
domain and on the initial datum, a classical solution to problem P is the
unique classical solution and also the unique viscosity solution (Theorems
3.1 and 3.2 and Corollary 3.1). These two sections are basically adaptations
of the results on the one-phase problem in [17].

The novelty of the two-phase problem begins in Section 4 where we con-
struct the one-dimensional stationary profiles which are needed later in the
analysis of the approximations of classical sub- and supersolutions. In par-
ticular they will appear as blowup profiles of solutions of the problems Pε

as ε → 0.
In Section 5, we prove that a classical subsolution to problem P is the

uniform limit of a family of subsolutions to problem Pε and we prove the
analogous result for supersolutions. The technique of the construction differs
from that of the one-phase case in the choice of the approximate initial data,
the profiles used in rounding the free boundary gradient discontinuity and
the levels at which the pieces of solution are pasted in order to obtain the
super- and subsolutions to Pε.

In Section 6, we show that, under assumptions similar to those in Section
3, a classical solution to problem P is the uniform limit of any family of
solutions to problem Pε (Theorems 6.1, 6.2 and 6.3).

A final section (Section 7) is devoted to discussing the technical differences
between this problem and the one-phase problem, and to commenting on
possible extensions and related works.
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Notation. Throughout the paper N will denote the spatial dimension, Σ ⊂
R

N−1 will be a bounded C3 domain with unit exterior normal η′ and η =
(0, η′) will denote the unit exterior normal to R×Σ. In addition, the following
notation will be used:

For any x0 ∈ R
N , t0 ∈ R and τ > 0, Bτ (x0) := {x ∈ R

N : |x − x0| < τ}
and Bτ (x0, t0) := {(x, t) ∈ R

N+1 : |x − x0|2 + |t − t0|2 < τ2}.
When necessary, we will denote points in R

N by x = (x1, x
′), with x′ ∈

R
N−1. Given a function v, we will denote v+ = max(v, 0), v− = max(−v, 0).
The symbols ∆ and ∇ will denote the corresponding operators in the

space variables; the symbol ∂p applied to a domain will denote a parabolic
boundary.

Let us define the Hölder spaces we are going to use. Let m ≥ 0 be an
integer and 0 < α < 1. For a space-time cylinder Q = Ω × (0, T ) ⊂ R

N+1,
Cm+α, m+α

2 (Q) is the parabolic Hölder space denoted by Hm+α, m+α
2 (Q) in

[16]. If D ⊂ R
N+1 is a general domain, then Cm+α, m+α

2 (D) will denote
the space of functions in Cm+α, m+α

2 (Q) for every space-time cylinder Q ⊂
D. If D is bounded, we will say that u ∈ Cm+α, m+α

2 (D) if there exists a
domain D′ with D ⊂ D′ and a function u′ ∈ Cm+α, m+α

2 (D′) such that u =
u′ in D. If D is unbounded, we will say that u ∈ Cm+α, m+α

2 (D) if u ∈
Cm+α, m+α

2 (D′) for every bounded domain D′ ⊂ D. The space C1(D) is
defined in an analogous way.

In addition, M will denote a positive constant that will remain fixed
throughout the paper, corresponding to the free-boundary condition (1.2)
or its regularizations.

Given a domain D ⊂ R
N+1, we will write

Lu := ∆u +
∑

ai uxi − ut, ai ∈ L∞(D) ∩ Cα, α
2 (D).

In all the results where the space domain is a cylinder, Ω = I × Σ with I
an interval, we also assume that the coefficients ai are independent of x1;
that is, ai = ai(x′, t), ai ∈ Cα, α

2 (Σ × [0, T ]). Finally, we will say that u is
supercaloric if Lu ≤ 0 and u is subcaloric if Lu ≥ 0.

2. Preliminaries on classical and viscosity solutions

In this section we give precise definitions of the concepts of classical and
viscosity solution and derive some consequences. In particular, we prove that
in the situations considered in this paper a classical solution is a viscosity
solution.
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Definition 2.1. Let Q be a space-time domain of the form Ω × (T1, T2),
with Ω ⊂ R

N . Let v be a continuous function in Q. Then v is called a
classical subsolution (supersolution) to P in Q if
(i) Lv ≥ 0 (≤ 0) in Q+ := Q ∩ {v > 0},
(ii) Lv ≥ 0 (≤ 0) in Q− := Q ∩ {v ≤ 0}◦,
(iii) v ∈ C1(Q+) ∩ C1(Q−), ∇v ∈ Cα, α

2 (Q+) ∩ Cα, α
2 (Q−),

(iv) For any (x, t) ∈ {v = 0} ∩ ∂{v > 0}, we have ∇v+(x, t) �= 0 and(
∂v+

∂ν

)2

−
(

∂v−

∂ν

)2

≥ 2M (≤ 2M), (2.1)

where ν := − ∇v+

|∇v+| . We say that v is a classical solution to P in Q if it is
both a classical subsolution and a classical supersolution to P.

There is a subtle notation aspect in the preceding definition. According
to (iii) v+ can be continued as a C1 function in a neighbourhood of Q+.
What we are really imposing in (iv) is that the gradient of this extended
function does not vanish on {v = 0} ∩ ∂{v > 0}, and we call this gradient
∇v+, though it really is the (lateral) gradient of v restricted to Q+. We
also have |∇v+| = −∂v+/∂ν as an appropriate lateral limit. Using the same
conventions on the gradient of v− we may write the jump condition as

|∇v+|2 − |∇v−|2 ≥ 2M (≤ 2M). (2.2)

Definition 2.2. Let u ∈ C(Q); u is called a viscosity subsolution (super-
solution) to P in Q if, for every space-time subcylinder Q′ ⊂ Q and for
every v a bounded, classical supersolution (subsolution) to P in Q′, with
Q′ ∩ ∂{v > 0} bounded,

u ≤ v (u ≥ v) on ∂pQ
′ and

v > 0 on {u > 0} ∩ ∂pQ
′ (u > 0 on {v > 0} ∩ ∂pQ

′)

implies that u ≤ v (u ≥ v) in Q′.
The function u is called a viscosity solution to P if it is both a viscosity

supersolution and a viscosity subsolution to P.

We can now prove the consistency between both concepts of solution.

Proposition 2.1. If u is a bounded, classical supersolution (subsolution)
to P in Q with Q ∩ ∂{u > 0} bounded, then u is a viscosity supersolution
(subsolution) to P in Q.

Proof. The proof follows the lines of the proof of Proposition 2.1 in [17].
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Definition 2.3. Let Ω ⊂ R
N be a domain and let Q = Ω×(0, T ). Let ΓN be

an open C1 subset of ∂Ω and let ∂NQ = ΓN × (0, T ). We say that u ∈ C(Q)
is a viscosity solution to P in Q with ∂u

∂η = 0 on ∂NQ, if the following holds:
for every space-time subcylinder Q′ ⊂ Q and for every v a bounded, classical
supersolution (subsolution) to P in Q′, with Q′ ∩ ∂{v > 0} bounded, such
that ∂v

∂η = 0 on ∂pQ
′ ∩ ∂NQ,

u ≤ v (u ≥ v) on ∂pQ
′ \ ∂NQ and

v > 0 on {u > 0} ∩ ∂pQ′ \ ∂NQ
(
u > 0 on {v > 0} ∩ ∂pQ′ \ ∂NQ

)
implies that u ≤ v (u ≥ v) in Q′.

Proposition 2.2. Let Ω = R × Σ (respectively (0,+∞) × Σ, (−∞, d) × Σ,
(0, d)×Σ), Q = Ω× (0, T ) and ∂NQ = R× ∂Σ× (0, T ) (respectively ∂NQ =
(0,+∞)× ∂Σ× (0, T ), ∂NQ = (−∞, d)× ∂Σ× (0, T ), ∂NQ = (0, d)× ∂Σ×
(0, T )).

Let u be a bounded classical solution to P in Q with Q∩∂{u > 0} bounded
and ∂u

∂η = 0 on ∂NQ. Then u is a viscosity solution to P in Q with ∂u
∂η = 0

on ∂NQ.

Proof. The proof follows the lines of the proof of Proposition 2.2 in [17]. �
In the next propositions we will show that, in the situations considered in

this paper, a classical solution has a bounded free boundary, and in partic-
ular, it is a viscosity solution.

Proposition 2.3. Let Ω = R × Σ, Q = Ω × (0, T ), ∂NQ = R × ∂Σ × (0, T )
and ∂DQ = ∂pQ \ ∂NQ. Let u be a bounded classical solution to P in Q

with ∂u
∂η = 0 on ∂NQ and ||u||

Cα, α
2 (Q)

< ∞, such that u
∣∣
∂DQ

has a bounded,
nonempty free boundary and ux1 < 0 on ∂DQ. Then Q∩∂{u > 0} is bounded.

Proof. The proof follows the lines of the proof of Proposition 2.4 in [17]. In
fact, for A ≥ ||a1||, L = ||u||L∞(Q), c > 0 small and K > 0 large, let

v−(x, t) = c
(
1 − exp

{α

c
(x1 + At) +

α2

c2
t + K

α

c

})+

− γ

α
c
(
1 − exp

{α

c
(x1 + At) +

α2

c2
t + K

α

c

})−

where γ > 0 and α =
√

2M + γ2, and let

v+(x, t) = 2L
(
1 − exp

{√
2M

2L
(x1 −At) +

2M

4L2
t − K

√
2M

2L
− log 2

})+
.
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It holds that v− is a bounded classical subsolution to P in Q and v+ is a
bounded classical supersolution to P in Q with ∂v+

∂η = ∂v−
∂η = 0 on ∂NQ.

In addition, v± have bounded free boundaries, and v−(x, 0) ≤ u(x, 0) ≤
v+(x, 0). Moreover,

u > 0 on {v− > 0} ∩ {t = 0}, v+ > 0 on {u > 0} ∩ {t = 0}.
Therefore, proceeding as in the proof of Proposition 2.4 in [17] we get

v−(x, t) ≤ u(x, t) ≤ v+(x, t) in Q ∩ {t ≤ T},
which implies that Q ∩ ∂{u > 0} is bounded and completes the proof. �

The next propositions can be proved in a way similar to Proposition 2.3
(in the proof of Proposition 2.5 we use Proposition 2.1 instead of Proposition
2.2).

Proposition 2.4. Let Ω = (0,+∞)×Σ, Q = Ω× (0, T ), ∂NQ = (0,+∞)×
∂Σ × (0, T ) and ∂DQ = ∂pQ \ ∂NQ. Let u be a bounded classical solution
to P in Q with ∂u

∂η = 0 on ∂NQ and ||u||
Cα, α

2 (Q)
< ∞, such that u

∣∣
∂DQ

has a bounded, nonempty free boundary and ux1 < 0 on ∂DQ. Assume that
u(0, x′, t) > 0 for (x′, t) ∈ Σ × [0, T ]. Then Q ∩ ∂{u > 0} is bounded.

An analogous result holds if we let Ω = (−∞, d) × Σ or Ω = (0, d) × Σ
with the corresponding sign assumptions on u on x1 = 0, d.

Proposition 2.5. Let Ω = (0,+∞) × Σ, Q = Ω × (0, T ) and ∂DQ = ∂pQ.
Let u be a bounded classical solution to P in Q with ||u||

Cα, α
2 (Q)

< ∞, such

that u
∣∣
∂DQ

has a bounded, nonempty free boundary and ux1 < 0 on ∂DQ.
Assume that u(0, x′, t) > 0 for (x′, t) ∈ Σ × [0, T ]. Then Q ∩ ∂{u > 0} is
bounded.

The same result holds if we let instead Ω = R × Σ (with no assumptions
on u on {0} × Σ × [0, T ]), and also if Ω = (−∞, d) × Σ or Ω = (0, d) × Σ
with the corresponding sign assumptions on u on x1 = 0, d.

3. Uniqueness of classical and viscosity solutions

In this section we show that, under suitable assumptions, a classical solu-
tion is the unique viscosity solution to the initial and boundary value problem
associated to P and, in particular, it is the unique classical solution. This is
done in Theorems 3.1 and 3.2 and Corollary 3.1. We also show comparison.

Theorem 3.1. Let Ω = (0, d)×Σ, Q = Ω×(0, T ), ∂NQ = (0, d)×∂Σ×(0, T )
and ∂DQ = ∂pQ \ ∂NQ. Let u be a bounded classical solution to P in Q,
with ∂u

∂η = 0 on ∂NQ, such that ux1 < 0 on ∂DQ. Assume that u(0, x′, t) > 0
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for (x′, t) ∈ Σ × [0, T ] with u(0, x′, t) ∈ C2,1(Σ × [0, T ]) and u(d, x′, t) < 0
for (x′, t) ∈ Σ × [0, T ] with u(d, x′, t) ∈ C2,1(Σ × [0, T ]). Let v ∈ C(Q) be a
viscosity solution to P in Q with ∂v

∂η = 0 on ∂NQ. If v = u on ∂DQ, then
v = u in Q.

An analogous result holds if we let Ω = (0,+∞)×Σ or Ω = (−∞, d)×Σ,
with the corresponding sign condition on u on x1 = 0 or x1 = d, or if
Ω = R×Σ with no sign condition on u. In these cases we require that u

∣∣
∂DQ

has a bounded, nonempty free boundary and ||u||
Cα, α

2 (Q)
< ∞.

Proof. Let a > 0; we will extend u to Qa = (−a, d+a)×Σ×(0, T ) in such a
way that u ∈ C(Qa), u > 0 in −a < x1 < 0, u < 0 in d < x1 < d+a, Lu ≤ 0
in Qa∩{u > 0} and Lu ≥ 0 in Qa∩{u < 0}. Let c > 0 be such that ux1 ≤ −c
on ∂DQ. Let F0(x′, t) ∈ C2,1(Σ × [0, T ]) be such that u(0, x′, t) = F0(x′, t),
and let Fd(x′, t) ∈ C2,1(Σ×[0, T ]) be such that u(d, x′, t) = Fd(x′, t). Finally,
let us define u(x1, x

′, t) in Qa \ Q in the following way:

u(x1, x
′, t) = F0(x′, t) − cx1 − kx2

1 for x1 ∈ (−a, 0),

u(x1, x
′, t) = Fd(x′, t) − c(x1 − d) + k(x1 − d)2 for x1 ∈ (d, d + a).

Thus, clearly if k is large enough u satisfies all the requirements. Now the
result follows by proceeding in a way similar to the proof of Theorem 3.1 in
[17]. �

For two classical solutions we have the following uniqueness result, a con-
sequence of Proposition 2.2 and Theorem 3.1.

Corollary 3.1. Let Ω, Q, ∂NQ, ∂DQ and u be as in Theorem 3.1. Let v be
a bounded classical solution to P in Q with ∂v

∂η = 0 on ∂NQ, such that v = u

on ∂DQ. Then, v = u in Q.

A comparison principle for bounded classical solutions follows from Propo-
sition 2.2 if the free boundaries are bounded in Q and separated on ∂DQ.
With a monotonicity assumption on ∂DQ, we get a different comparison
result.

Corollary 3.2. Let Ω, Q, ∂NQ, ∂DQ and u as in Theorem 3.1. Let v be
a bounded classical solution to P in Q with ∂v

∂η = 0 on ∂NQ, and such that
Q ∩ ∂{v > 0} is bounded. If v ≥ u on ∂DQ, it holds that v ≥ u in Q.

In the next theorem we prove the uniqueness of the viscosity solution
under different assumptions from those in Theorem 3.1. As in Corollaries
3.1 and 3.2, uniqueness and comparison of classical solutions follow.
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Theorem 3.2. The results of Theorem 3.1 hold if we let instead ∂NQ = ∅
so that ∂DQ = ∂pQ.

Corollary 3.3. Let u be as in Theorem 3.1. Then u is a decreasing function
in Q in the direction e1 = (1, 0, . . . , 0) and ux1 < 0 in Q ∩ {u > 0} and in
Q ∩ {u < 0}. Moreover, for every ε �= 0, the level set {u = ε} is given by
x1 = gε(x′, t) with gε ∈ C1(Σ × [0, T ]) and ∇x′gε ∈ Cα, α

2 (Σ × [0, T ]).
The same conclusion holds under the assumptions of Theorem 3.2.

Proof. Proceeding as in Corollary 3.3 in [17], we deduce that for every δ > 0
small, u(x, t) ≥ uδ(x, t) = u(x1 + δ, x′, t) for (x, t) ∈ Q, which implies that
ux1 ≤ 0 in {u > 0} ∪ {u ≤ 0}◦.

Then, reasoning in a way similar to Corollary 3.3 in [17] we can see that
ux1 < 0 both in {u > 0}∩Q and in {u ≤ 0}◦∩Q, and thus the result follows.

4. Auxiliary two-phase profiles

This section contains the construction of the one-dimensional stationary
solution of the simplified problem

∆u − ut = β(u) (4.1)

where the function β is as in Section 1 and M =
∫

β(s) ds. The results will
be used in the next sections where (4.1) appears as a blowup limit. The
transport term will disappear in the blowup process.

We start from the piecewise-linear solution of the free-boundary problem
given in an interval (0, R) by the formula: u(s) = A − αs for 0 ≤ s ≤ A

α ,

u(s) = −A − γ(s − R) for A
α ≤ s ≤ R, where A, α, γ > 0 and R = A

α + A
γ .

The free-boundary condition implies the relation α2 = 2M + γ2. We are
interested in constructing sub- and supersolutions. In the first case we will
replace the term 2M in the previous free-boundary condition by 2M + δ0,
in the second case, by 2M − δ0.

Our aim is to construct solutions of (4.1) in the same interval joining the
level u = A at s = 0 to u = −A at s = R in such a way that the slope
at s = 0 is larger than −α and at s = R smaller than −γ for the case of
subsolutions. The inequalities are reversed for the case of supersolutions.

We start by analyzing the initial value problem.

Lemma 4.1. For every L > 0 and δ0 > 0 there exists A(L, M, δ0) > 1 such
that for every A ≥ A(L, M, δ0), α, γ > 0 and γ ≤ L with α2 = 2M + δ0 + γ2

there exists 0 < δ < δ0 such that the solution to{
ψ′′ = β(ψ) for s > 0
ψ(0) = A, ψ′(0) = −

√
α2 − δ

(4.2)
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−A

1

A

R

γ γ’

α
α’

ψ
s

Figure 1. Construction of ψ, α′ =
√

α2 − δ, γ′ =
√

γ2 + δ0 − δ

satisfies that ψ(R) = −A, where R = A
α + A

γ . Moreover,

ψ′(R) = −
√

γ2 + δ0 − δ < −γ.

Proof. Observe that β acts only on the range 0 < ψ < 1 and also that we
will take A > 1. Let 0 < δ < δ0 and A > 1 be fixed for the moment. Let
s0 = A−1√

α2−δ
. Then the solution ψ to (4.2) satisfies ψ(s) = A−

√
α2 − δ s for

0 < s < s0 and ψ(s0) = 1. Let B(ψ) =
∫ ψ
0 β(τ) dτ . Then,

(ψ′)2 = α2 − δ − 2
∫ 1

ψ(s)
β(τ) dτ = γ2 + δ0 − δ + 2B(ψ(s)),

so that ∫ 1

ψ(s)

dψ√
γ2 + δ0 − δ + 2B(ψ)

= s − s0.

Let s1 = s0 +
∫ 1
0

dψ√
γ2+δ0−δ+2B(ψ)

. Then ψ(s1) = 0, ψ′(s1) = −
√

γ2 + δ0 − δ

and ψ(s) = −
√

γ2 + δ0 − δ (s − s1) for s > s1. Thus,

ψ(R) = −
√

γ2 + δ0 − δ(R − s1).

Therefore, ψ(R) = −A if and only if

A
[ −1√

γ2 + δ0 − δ
+

1√
2M + δ0 + γ2

+
1
γ

]
= s1. (4.3)
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Equation (4.3) is equivalent to

A
[ 1√

2M + δ0 + γ2
− 1√

2M + δ0 − δ + γ2
+

1
γ
− 1√

γ2 + δ0 − δ

]

+
1√

2M + δ0 − δ + γ2
−

∫ 1

0

dψ√
γ2 + δ0 − δ + 2B(ψ)

= 0. (4.4)

In order to solve this equation we consider the function

f(δ) = A
[ 1√

2M + δ0 + γ2
− 1√

2M + δ0 − δ + γ2
+

1
γ
− 1√

γ2 + δ0 − δ

]

+
1√

2M + δ0 − δ + γ2
−

∫ 1

0

dψ√
γ2 + δ0 − δ + 2B(ψ)

.

We will see that there exists A(L, M, δ0) > 1 such that if A > A(L, M, δ0)
it holds that f(0) > 0 and f(δ0) < 0. This will prove the lemma. In fact,
since 0 < γ ≤ L,

f(0) = A
(1
γ
− 1√

γ2 + δ0

)
+

1√
2M + δ0 + γ2

−
∫ 1

0

dψ√
γ2 + δ0 + 2B(ψ)

≥ A
δ0

2(L2 + δ0)
3
2

+
1√

2M + δ0 + L2
−

∫ 1

0

dψ√
δ0 + 2B(ψ)

> A
δ0

2(L2 + δ0)
3
2

− 1√
δ0

> 0

if A ≥ A0(L, δ0). On the other hand, if A ≥ A1(L, δ0, M), then

f(δ0)=A
( 1√

2M + δ0 + γ2
− 1√

2M + γ2

)
+

1√
2M + γ2

−
∫ 1

0

dψ√
γ2 + 2B(ψ)

≤ −A
δ0

2(2M + δ0 + L2)
3
2

+
1√
2M

< 0.

Corollary 4.1. Let L > 0 and δ0 > 0. Let A(L, M, δ0) > 1 as in Lemma 4.1.
Then, for every A ≥ A(L, M, δ0), α, γ > 0 and γ ≤ L with α2 = 2M+δ0+γ2,
there exists a unique solution to{

ϕ′′ = β(ϕ) for 0 < s < R

ϕ(0) = A, ϕ(R) = −A
(4.5)

with R = A
α + A

γ . This solution satisfies that there exists 0 < δ < δ0 such
that

|ϕ′(0)| =
√

α2 − δ and |ϕ′(R)| =
√

γ2 + δ0 − δ. (4.6)
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Proof. Let A(L, M, δ0) be as in Lemma 4.1. Let 0 < δ < δ0 be such that
the solution ψδ to (4.2) satisfies that ψδ(R) = −A. Then, ψδ satisfies (4.6).
So that, it only remains to prove that this is the only solution to (4.5). In
fact, let ψb be the solution to{

ψ′′ = β(ψ) for s > 0
ψ(0) = A, ψ′(0) = −b.

(4.7)

If b ≤
√

2M , it holds that ψb ≥ 0 (see [17], Lemma 4.1) so that ψb(R) �= −A.
If b >

√
2M , it holds that

ψb(R) = −
√

b2 − 2M
(
R − A − 1

b
−

∫ 1

0

dψ√
2B(ψ) − 2M + b2

)
.

From this formula, it is easy to see that ψb1(R) < ψb2(R) if b1 > b2, so that
ψδ is the unique solution to (4.5), and the corollary is proved. �

We turn now to the case of supersolutions.

Lemma 4.2. For every L > 0 and δ0 > 0 there exists A(L, M, δ0) > 1
such that for every A ≥ A(L, M, δ0), α > 0 and

√
δ0 ≤ γ ≤ L with α2 =

2M − δ0 + γ2, there exists 0 < δ < δ0 such that the solution to{
ψ′′ = β(ψ) for s > 0
ψ(0) = A, ψ′(0) = −

√
α2 + δ

(4.8)

satisfies that ψ(R) = −A where R = A
α + A

γ . Moreover,

ψ′(R) = −
√

γ2 − δ0 + δ > −γ.

Proof. The proof follows as that of Lemma 4.1.

Corollary 4.2. Let L > 0 and δ0 > 0. Let A(L, M, δ0) > 1 as in Lemma
4.2. Then, for every A ≥ A(L, M, δ0), α > 0 and

√
δ0 ≤ γ ≤ L with α2 =

2M − δ0 + γ2, there exists a unique solution to (4.5) with R = A
α + A

γ . This
solution satisfies that there exists 0 < δ < δ0 such that

|ϕ′(0)| =
√

α2 + δ and |ϕ′(R)| =
√

γ2 − δ0 + δ. (4.9)

Proof. The proof follows as that of Corollary 4.1. �
Let us now make precise the relation between the solution to (4.7) and

that of (4.5). For b >
√

2M , let us call ψ(b, s) the solution to (4.7). Let

R(b) =
A − 1

b
+

∫ 1

0

dψ√
2B(ψ) − 2M + b2

+
A√

b2 − 2M
.
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Then, ψ(b, R(b)) = −A. On the other hand, let

s(b) =
A − 1

b
+

∫ 1

0

dψ√
2B(ψ) − 2M + b2

;

then ψ(b, s(b)) = 0. Observe that R(b) and s(b) are C∞ functions in
(
√

2M,∞), and ∂R
∂b < 0. Now, let b(R) be the inverse of R(b), so that

b ∈ C∞(0,+∞). Finally, let ϕ(R, s) = ψ(b(R), s). That is, ϕ(R, s) is the
solution to (4.5). The following holds:

Proposition 4.1. ϕ is locally Lipschitz continuous in {(R, s) : R > 0 , 0 ≤
s ≤ R}. Moreover, for every R1 > 0 there exists r1 > 0 such that ϕ ∈
C∞({(R, s) : R ≥ R1 , 0 ≤ s ≤ r1} ∪ {(R, s) : R ≥ R1 , R − r1 ≤ s ≤ R}).
Proof. The Lipschitz continuity of ϕ as a function of (R, s) follows imme-
diately from that of ψ as a function of its initial datum b and the variable
s. On the other hand,

ψ(b, s) = A − bs for 0 ≤ s ≤ (A − 1)/b

ψ(b, s) = −
√

b2 − 2M (s − s(b)) for s ≥ s(b).

Therefore, if b ≤ b1 it follows that there exists r1 > 0 such that

ψ(b, s) = A − bs for 0 ≤ s ≤ r1

ψ(b, s) = −
√

b2 − 2M (s − s(b)) for R(b) − r1 ≤ s ≤ R(b).

Thus, for every R1 > 0 if we let b1 = b(R1), we see that the result on the
C∞ regularity of ϕ follows. �

Now we prove a characterization of global solutions to (4.1).

Lemma 4.3. Let Rη = {(x, t) : 0 < x1 < R,−∞ < t ≤ η}, A = A(L, M, δ0)
> 1 as in Corollary 4.1 and U ∈ C2+α,1+α

2 (Rη) be such that


∆U − Ut = β(U) in Rη

U = A in {x1 = 0}
U = −A in {x1 = R}
−A ≤ U ≤ A in Rη

(4.10)

with R = A
α + A

γ , α2 − γ2 = 2M + δ0, α, γ > 0, γ ≤ L and δ0 > 0. There
exists 0 < δ < δ0 such that U(x, t) = ψδ(x1) where ψδ is the solution to
(4.2). Thus,

|∇U |x1=0 =
√

α2 − δ , |∇U |x1=R =
√

γ2 + δ0 − δ. (4.11)
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Proof. Let V be the solution to


∆V − Vt = β(V ) for 0 < x1 < R , t > 0
V = A for x1 = 0 , t > 0
V = −A for x1 = R , t > 0
V = −A for t = 0,

and let W be the solution to


∆W − Wt = β(W ) for 0 < x1 < R , t > 0
W = A for x1 = 0 , t > 0
W = −A for x1 = R , t > 0
W = A for t = 0.

Then, V = V (x1, t) and W = W (x1, t). Let Vk(x, t) = V (x, t+k), Wk(x, t) =
W (x, t + k) for t ≥ −k. Then,

Vk(x, t) ≤ U(x, t) ≤ Wk(x, t) for 0 < x1 < R , −k ≤ t ≤ η.

Since Vk(x, t) → ψ−(x) and Wk(x, t) → ψ+(x), k → ∞ where ψ− = ψ−(x1)
and ψ+ = ψ+(x1) are solutions to (4.5), and (4.5) has a unique solution ψ
(by Corollary 4.1), it holds that U(x, t) ≡ ψ(x1). In particular, by Corollary
4.1 there exists 0 < δ < δ0 such that |∇U |x1=0 = |ψ′(0)| =

√
α2 − δ and

|∇U |x1=R = |ψ′(R)| =
√

γ2 + δ0 − δ, so that the lemma is proved. �
Analogously,

Lemma 4.4. Let Rη and U be as in Lemma 4.3 with R = A
α + A

γ , α2−γ2 =
2M − δ0, α > 0,

√
δ0 ≤ γ ≤ L and A = A(L, M, δ0) as in Corollary 4.2.

There exists 0 < δ < δ0 such that

|∇U |x1=0 =
√

α2 + δ, |∇U |x1=R =
√

γ2 − δ0 + δ. (4.12)

Proof. The proof follows as that of Lemma 4.3. Here we use Corollary 4.2
instead of Corollary 4.1.

5. Approximation results

In this section we prove that, under certain assumptions, a classical sub-
solution to problem P is the uniform limit of a family of subsolutions to
problem Pε (Theorem 5.1). We prove the analogous result for supersolu-
tions (Theorem 5.2).

Throughout this section we will assume that Ω = R × Σ is a full cylinder
(respectively Ω = (0,+∞) × Σ and Ω = (−∞, d) × Σ is a semicylinder or
Ω = (0, d) × Σ is a bounded cylinder). We define Q = Ω × (0, T ), and we
let ∂NQ = R × ∂Σ × (0, T ) (respectively ∂NQ = (0,+∞) × ∂Σ × (0, T ) and
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∂NQ = (−∞, d) × ∂Σ × (0, T ) or ∂NQ = (0, d) × ∂Σ × (0, T )). In addition,
w will be a function satisfying the following list of conditions:

(i) For every A > 0, there exists ε0 > 0 such that if ε < ε0, {w > Aε}
is given by x1 < pε(x′, t) and {w < −Aε} is given by x1 > qε(x′, t), with
pε, qε ∈ C1(Σ × [0, T ]) and ∇x′pε,∇x′qε ∈ Cα, α

2 (Σ × [0, T ]). Moreover,
||pε(x′, 0)||C1+α(Σ) ≤ C and ||qε(x′, 0)||C1+α(Σ) ≤ C for ε small.

(ii) |∇w−(x0, t0)| > 0 for every (x0, t0) ∈ Q ∩ ∂{w > 0}.
(iii) In case Ω = (0,+∞)×Σ, we assume that w(0, x′, t) > 0 for (x′, t) ∈

Σ × [0, T ].
(iv) In case Ω = (−∞, d)×Σ, we assume that w(d, x′, t) < 0 for (x′, t) ∈

Σ × [0, T ].
(v) In case Ω = (0, d) × Σ, we assume that w(0, x′, t) > 0 for (x′, t) ∈

Σ × [0, T ] and that w(d, x′, t) < 0 for (x′, t) ∈ Σ × [0, T ].
We call this list of conditions (H1).

Theorem 5.1. Let w be a classical subsolution to P in Q, with ∂w
∂η = 0 on

∂NQ, satisfying (H1). Assume, in addition, that there exists δ0 > 0 such
that

|∇w+|2 − |∇w−|2 = 2M + δ0 on Q ∩ ∂{w > 0}.
Let A = A(L, M, δ0) > 1 be the constant in Lemma 4.1, where L > 0 is such
that |∇w| ≤ L in a neighborhood of the free boundary Q ∩ ∂{w > 0}.

Then, there exists a family vε ∈ C(Q), with ∇vε ∈ L2
loc(Q), of weak

subsolutions to Pε in Q, with ∂vε

∂η = 0 on ∂NQ, such that, as ε → 0, vε → w

uniformly in Q.
Moreover, vε = w in {|w| ≥ Aε} and ∇vε ∈ C({|w| ≤ Aε} ∩ {t > 0}).

Proof. Step I. Construction of the family vε. For every ε > 0 small, we
define the domain D ε in the following way: D ε = {(x, t) ∈ Q : pε(x′, t) <
x1 < qε(x′, t)}. Let wε be the solution to Pε in D ε with boundary data

wε(x, t) =

{
Aε on x1 = pε(x′, t),
−Aε on x1 = qε(x′, t),

∂wε

∂η
= 0 on ∂ND ε := ∂D ε ∩ ∂NQ,

and initial data
wε

0(x) on ∂D ε ∩ {t = 0}.
In a first stage we make an additional assumption. We need some no-

tation: For every x ∈ Ω, we let r(x) ∈ ∂{w(x, 0) > 0} be defined as
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r(x) = (p0(x′), x′) where {x1 = p0(x′) , x′ ∈ Σ} = Ω ∩ ∂{w(x, 0) > 0},
and p0 ∈ C1+α(Σ), so that r ∈ C1+α(Ω; Ω) and

r(x) → x0 if x0 ∈ Ω ∩ ∂{w(x, 0) > 0} and x → x0.

Then, we assume that

|∇w±
0 (r(x))| = F±(x′) ∈ C1+α(Σ) with

∂

∂η′
F± = 0 on ∂Σ. (5.1)

In order to construct the approximate initial function wε
0 we smooth out w0

near its free boundary by means of the profile ϕ = ϕ(R; s), with 0 ≤ s ≤ R,
the solution to (4.5). This is, we let

wε
0(x) = εϕ

( A

|∇w+
0 (r(x))|

+
A

|∇w−
0 (r(x))|

;
A

|∇w+
0 (r(x))|

− w+
0 (x)

ε|∇w+
0 (r(x))|

+
w−

0 (x)
ε|∇w−

0 (r(x))|
)
, (5.2)

where w0(x) = w(x, 0). Clearly, wε
0 ∈ Cα(D ε ∩ {t = 0}).

For the existence and regularity of the solution wε of the problem thus
stated we refer to Theorem 4.1 in [19], where it is shown that there exists a
unique solution wε ∈ C(D ε) with ∇wε ∈ C(D ε ∩ {t > 0}) ∩ L2(D ε).

Finally, we define the family vε as follows:

vε =

{
w in {|w| ≥ Aε},
wε in D ε.

On the other hand we can see that, if tε/ε is small enough, wε
0 is C1+α in a

neighborhood of each point xε such that w(xε, tε) = ±Aε.
In fact, let us write wε

0(x)= εϕ(R(x), sε(x)). Let L be such that |∇w|, |wt|
≤ L in a neighborhood of Q ∩ ∂{w > 0}, and let R1 = 2A

L . Now let r1 > 0 be
the constant in Proposition 4.1 and let (xε, tε) be such that w(xε, tε) = Aε.
Then,

w0(x) = w0(x) − w(xε, tε) + Aε ≥ Aε − L(|x − xε| + tε) ≥
A

2
ε > 0

if |x − xε| ≤ µ1ε and tε
ε ≤ µ1, where µ1 is small enough.

Therefore, for |x − xε| ≤ µ1ε and tε
ε ≤ µ1,

sε(x) =
Aε − w0(x)

ε|∇w+
0 (r(x))|

≤ L(|x − xε| + tε)
ε
√

2M
≤ r1

if |x − xε| ≤ µ0ε and tε
ε ≤ µ0, where µ0 ≤ µ1.
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Analogously, let R(x) = A
|∇w+

0 (r(x))| +
A

|∇w−
0 (r(x))| . If w(xε, tε) = −Aε, there

exists µ2 > 0 such that w0(x) < 0 when |x − xε| ≤ µ2ε and tε
ε ≤ µ2.

Therefore, if |x − xε| ≤ µ0ε, tε
ε ≤ µ0 and µ0 is small enough,

sε(x) = R(x) − −Aε − w0(x)
ε|∇w−

0 (r(x))|
≥ R(x) − L(|x − xε| + tε)

εγ0
≥ R(x) − r1

where γ0 > 0 is such that |∇w−
0 | ≥ γ0.

So, since R(x) ≥ R1, it holds that wε
0 ∈ C1+α(Ω ∩ Bµ0ε(xε)) if w(xε, tε) =

±Aε and tε
ε ≤ µ0.

Step II. Passage to the limit. Since |ϕ(R; s)| ≤ A for 0 ≤ s ≤ R, it follows
that |wε(x, 0)| ≤ Aε in Dε ∩ {t = 0}. Applying the comparison principle for
solutions of Pε we deduce that |wε| ≤ Aε in D ε. Hence,

sup
Q

|vε − w| ≤ 2Aε,

and therefore the convergence of the family vε follows.
Step III. Let us show that there exists ε0 > 0 such that the functions vε

are subsolutions to Pε for ε < ε0.
If |vε| > Aε, then vε = w, which by hypothesis is subcaloric. Since

βε(s) = 0 when s > ε or s ≤ 0, it follows that the vε are subsolutions to Pε

here.
If |vε| < Aε, then we are in D ε, and therefore, by construction, the vε

are solutions to Pε. That is, the vε’s are continuous functions, and they
are piecewise subsolutions to Pε. In order to see that the vε are globally
subsolutions to Pε, it suffices to see that the jumps of the gradients (which
occur at smooth surfaces) have the right sign.

To this effect, we will show that there exists ε0 > 0 such that

|∇wε| ≤ |∇w| on {w = Aε}, for ε < ε0, and (5.3)

|∇wε| ≥ |∇w| on {w = −Aε}, for ε < ε0. (5.4)

Case I. If (5.3) does not hold, then, for every j ∈ N, there exist εj > 0
and (xεj , tεj ) ∈ Q, with εj → 0 and (xεj , tεj ) → (x0, t0) ∈ ∂{w > 0}, such
that

wεj (xεj , tεj ) = Aεj and |∇wεj (xεj , tεj )| > |∇w(xεj , tεj )|. (5.5)

From now on we will drop the subscript j when referring to the sequences
defined above and ε → 0 will mean j → ∞.

Since on the lateral boundary we have the Neumann data ∂wε

∂η = 0, we will
use a reflection argument and assume that the points (xε, tε) are far from
the lateral boundary (with a different equation).
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In fact, if (x0, t0) ∈ R × ∂Σ × [0, T ] we apply Proposition A.1 in [17] and
deduce that there exists a change of variables y = h(x) such that h(x0) = 0
and such that the function

uε(y, t) =

{
wε(x, t) for yN ≥ 0
uε(y1, . . . , yN−1,−yN , t) for yN < 0

is a weak solution to

∑
i, j

∂

∂yi

(
aij(y)

∂uε

∂yj

)
+

∑
i

bi(y, t)
∂uε

∂yi
− uε

t = βε(uε) in {|uε| < Aε}

for y in a neighborhood N of the origin and t ∈ [0, T ]. Here aij ∈ W 1,∞(N ),
bi ∈ L∞(N × [0, T ]).

We choose the variables in such a way that ∇h1(x0) = − ∇w+(x0,t0)
|∇w+(x0,t0)| =

− ∇w−(x0,t0)
|∇w−(x0,t0)| , ∇hi(x0) · ∇hj(x0) = δij and aij(0) = δij . We will sometimes

denote y = (y1, y
′). And we denote yε = h(xε). We point out that the

change of variables, the neighborhood N and the coefficients in the equation
depend only on the domain Σ.

If, on the other hand, (x0, t0) ∈ Ω×[0, T ] we change the origin and perform
a rotation in the space variables, and we are in a situation similar to the one
above.

In any case, since ∇h1(x0) = − ∇w+(x0,t0)
|∇w+(x0,t0)| , ∇hi(x0)·∇hj(x0) = δij , {wε =

Aε} = {w = Aε} and {wε = −Aε} = {w = −Aε}, there exist a family fε

and a family gε of smooth functions such that, in a neighborhood of (yε, tε),

{uε = Aε} = {(y, t) : y1 − yε1 = fε(y′ − yε
′, t − tε)},

{uε = −Aε} = {(y, t) : y1 − yε1 = gε(y′ − yε
′, t − tε)}, (5.6)

{|uε| < Aε} = {(y, t) : fε(y′ − yε
′, t − tε) < y1 − yε1 < gε(y′ − yε

′, t − tε)},

where it holds that fε(0, 0) = 0, |∇y′fε(0, 0)| → 0, |∇y′gε(0, 0)| → 0 and
ε → 0. We can assume that (5.6) holds in

(
Bρ(yε)× (tε − ρ2, tε + ρ2)

)
∩{0 ≤

t ≤ T} for some ρ > 0. Let us now define

ūε(y, t) =
1
ε
uε(yε + εy, tε + ε2t),

f̄ε(y′, t) =
1
ε
fε(εy′, ε2t), ḡε(y′, t) =

1
ε
gε(εy′, ε2t),
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and let τε = tε
ε2 , ξε = T−tε

ε2 . We have, for a subsequence, τε → τ and ξε → ξ,
where 0 ≤ τ, ξ ≤ +∞ and τ and ξ cannot be both finite. We now let

Aε =
{

(y, t) : |y| <
ρ

ε
, −min(τε,

ρ2

ε2
) < t < min(ξε,

ρ2

ε2
)
}

.

Then, the functions ūε are weak solutions to∑
i,j

∂

∂yi

(
aε

ij

∂ūε

∂yj

)
+

∑
i

bε
i

∂ūε

∂yi
− ūε

t = β(ūε) in {f̄ε(y′, t)< y1 < ḡε(y′, t)} ∩ Aε,

ūε = A on {y1 = f̄ε(y′, t)} ∩ Aε,

ūε = −A on {y1 = ḡε(y′, t)} ∩ Aε,

|ūε| ≤ A in {f̄ε(y′, t) ≤ y1 ≤ ḡε(y′, t)} ∩ Aε, (5.7)

where aε
ij(y) = aij(yε + εy), bε

i (y, t) = εbi(yε + εy, tε + ε2t).
Note that f̄ε(y′, t) → 0 uniformly for (y′, t) in compact subsets of R

N−1 ×
R. Let us see that ḡε(y′, t) → R uniformly for (y′, t) in compact subsets of
R

N−1 × R, where R = A
|∇w+(x0,t0)| + A

|∇w−(x0,t0)| .

In fact, it suffices to prove that ḡε(0, 0) → R. Let u(y, t) = w(x, t).
Let d1 > 0 be such that u(yε1 + d1, y

′
ε, tε) = 0 and d2 > 0 be such that

u(yε1 + d1 + d2, y
′
ε, tε) = −Aε . Then,

−Aε =
∫ d1

0
uy1(s + yε1, y

′
ε, tε) ds = uy1(s̃ + yε1, y

′
ε, tε) d1,

and

−Aε =
∫ d1+d2

d1

uy1(s + yε1, y
′
ε, tε) ds = uy1(˜̃s + yε1, y

′
ε, tε) d2.

So,

gε(0, 0)
ε

=
d1 + d2

ε
=

A

|uy1(s̃ + yε1, y
′
ε, tε)|

+
A

|uy1(˜̃s + yε1, y
′
ε, tε)|

.

Therefore,

ḡε(0, 0) =
gε(0, 0)

ε
→ A

|u+
y1(0, 0)|

+
A

|u−
y1(0, 0)|

=
A

|∇w+(x0, t0)|
+

A

|∇w−(x0, t0)|
= R.

So we are under the hypotheses of a compactness result which is precisely
stated at the end of this proof as Lemma 5.1. According to this result there
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exists a function ū such that, for a subsequence,

ū ∈ C2+α,1+α
2
(
{0 ≤ y1 ≤ R, −τ < t < ξ}

)
,

ūε → ū uniformly on compact subsets of {0 < y1 < R, −τ < t < ξ},
∆ū − ūt = β(ū) in {0 < y1 < R, −τ < t < ξ},
ū = A on {y1 = 0, −τ < t < ξ},
ū = −A on {y1 = R, −τ < t < ξ},
|ū| ≤ A in {0 ≤ y1 ≤ R, −τ < t < ξ}.

We will divide the remainder of the proof into two cases, depending on
whether τ = +∞ or τ < +∞.

So, assume first that τ = +∞. In this case, Lemma 5.1 also gives

|∇ūε(0, 0)| → |∇ū(0, 0)|.
On the other hand, ū is under the hypotheses of Lemma 4.3, and therefore
there exists δ > 0 such that

|∇ū| =
√
|∇w+(x0, t0)|2 − δ on {y1 = 0},

which yields
|∇ūε(0, 0)| ≤

√
|∇w+(x0, t0)|2 − δ/2,

for ε small. But this gives

|∇wε(xε, tε)| < |∇w(xε, tε)|,
for ε small. This contradicts (5.5) and completes the proof in case τ = +∞.

Assume now that τ < +∞. (In this case ξ = +∞.) It holds that
ūε(y,−τε) = 1

εuε(yε + εy, 0); then,

ūε(y,−τε) = ϕ
( A

|∇w+
0 (r(h−1(yε + εy)))|

+
A

|∇w−
0 (r(h−1(yε + εy)))|

;

A

|∇w+
0 (r(h−1(yε + εy)))|

− w+
0 (h−1(yε + εy))

ε|∇w+
0 (r(h−1(yε + εy)))|

+
w−

0 (h−1(yε + εy))
ε|∇w−

0 (r(h−1(yε + εy)))|
)

(5.8)

when x0 ∈ R × Σ. When x0 ∈ R × ∂Σ, (5.8) holds for (yε + εy)N ≥ 0 and
we obtain ūε(y,−τε) for (yε + εy)N < 0, recalling that

uε(y, 0) = uε(y1, . . . , yN−1,−yN , 0) for yN < 0.

We want to apply here the result of Lemma 5.1 corresponding to τ < +∞. In
fact, we can see that there exist C, µ0 > 0 such that ||ūε(y,−τε)||C1+α(Bµ0 (0))
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≤ C. In case x0 ∈ R × Σ we use the fact that tε
ε → 0 (and therefore t0 = 0)

when τ < +∞, so that wε
0 ∈ C1+α(Ω ∩ Bµ0ε(xε)). In case that x0 ∈ R × ∂Σ

we argue in a similar way and we also use that ∂uε

∂yN
(y, 0) = 0 on {yN = 0}.

For a proof of this last statement let us recall that, on {yN = 0},

∂

∂yN
w0(h−1(y)) =

∂w0

∂η
(x) = 0

∂

∂yN
|∇w±

0 (r(h−1(y)))| =
∂F±

∂η′
(x′) = 0

for x = h−1(y). Now Lemma 5.1 gives, for a subsequence,

ū ∈ Cα, α
2
(
{0 ≤ y1 ≤ R, t ≥ −τ}

)
,

ūε(y,−τε) → ū(y,−τ) uniformly on compact subsets of {0 < y1 < R}.

Let us observe that for every µ > 0 and χ > 0 there exists ε0 > 0 such that
for 0 < ε < ε0, if |y| < µ,

y1 <
A

|∇w+
0 (x0)|

− χ implies that w0(h−1(yε + εy)) > 0,

y1 >
A

|∇w+
0 (x0)|

+ χ implies that w0(h−1(yε + εy)) < 0.

Therefore, using the fact that ∇h1(x0) = − ∇w+(x0,t0)
|∇w+(x0,t0)| = − ∇w−(x0,t0)

|∇w−(x0,t0)| and
∇hi(x0) · ∇hj(x0) = δij , and the fact that h−1(yε + εy) → x0 and tε

ε → 0 we
get, if y1 < A

|∇w+
0 (x0)| ,

A−w0(h−1(yε + εy))
ε

=
w+

0 (h−1(yε)) − w+
0 (h−1(yε + εy))

ε

+
w+(h−1(yε), tε) − w+

0 (h−1(yε))
ε

= −∇w+
0 (xε)Dh−1(yε) y + o(1)

→ |∇w+
0 (x0)| y1.

So that, since r(x) → x0 if x0 ∈ ∂{w0 > 0} is such that x → x0,

ūε(y,−τε) → ϕ(R; y1), (ε → 0) in
{
0 < y1 <

A

|∇w+
0 (x0)|

}
.
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On the other hand, if R > y1 > A
|∇w+

0 (x0)| ,

A

|∇w+
0 (r(h−1(yε + εy)))|

+
w−

0 (h−1(yε + εy))
ε|∇w−

0 (r(h−1(yε + εy)))|

=
A

|∇w+
0 (r(h−1(yε + εy)))|

+
A

|∇w−
0 (r(h−1(yε + εy)))|

−
(w0(h−1(yε + εy))

ε
+ A

) 1
|∇w−

0 (r(h−1(yε + εy)))|

→ R − |∇w−
0 (x0)|

|∇w−
0 (x0)|

(R − y1) = y1.

In fact,

w0(h−1(yε + εy))
ε

+ A =
w0(h−1(yε + εy)) − w0(h−1(yε + (1 + θε)εy))

ε

+
w0(h−1(yε + (1 + θε)εy)) − w(h−1(yε + (1 + θε)εy), tε)

ε

where θε is such that w(h−1(yε + (1 + θε)εy), tε) = −Aε. So that, since
(1 + θε)y1 → R as ε → 0,

w0(h−1(yε + εy))
ε

+ A

= −∇w0(h−1(yε))Dh−1(yε)θεy + o(1) → |∇w−
0 (x0)| (R − y1).

Thus, we get that ū(y,−τ) = ϕ(R; y1).
Since the function ϕ(R; y1) is a stationary solution to equation (4.1), and

ū = ϕ on the parabolic boundary of the domain
{
0 < y1 < R, t > −τ

}
, we

conclude that ū(y, t) = ϕ(R; y1) in
{
0 ≤ y1 ≤ R, t ≥ −τ

}
. It follows that

there exists δ > 0 such that

|∇ū| =
√
|∇w+

0 (x0)|2 − δ on {y1 = 0, t ≥ −τ}.
But Lemma 5.1 gives |∇ūε(0, 0)| → |∇ū(0, 0)|, so that

|∇wε(xε, tε)| ≤
√

|∇w+
0 (x0)|2 − δ/2 ≤

√
|∇w(xε, tε)|2 − δ/4,

for ε small. This contradicts (5.5) and completes the proof that (5.3) holds
in case τ < +∞.

Case II. Assume now that (5.4) does not hold. Then, For every j ∈ N

there exists εj > 0 and (xεj , tεj ) ∈ Q with εj → 0 and (xεj , tεj ) → (x0, t0) ∈
∂{w+ > 0} such that

wεj (xεj , tεj ) = −Aεj and |∇wεj (xεj , tεj )| < |∇w(xεj , tεj )|. (5.9)
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We proceed as before, but this time it holds that gε(0, 0) = 0. Then, we
define

ūε(y, t) =
1
ε
uε(yε1 + ε(y1 − R), y′ε + εy′, tε + ε2t)

f̄ε(y′, t) = R +
1
ε
fε(εy′, ε2t), ḡε(y′, t) = R +

1
ε
gε(εy′, ε2t)

and we let τε, ξε, τ and ξ as before.
So, the functions ūε are weak solutions to (5.7) where aε

ij(y) = aij(yε1 +
ε(y1 − R), y′ε + εy′) and bε

i (y, t) = εbi(yε1 + ε(y1 − R), y′ε + εy′, tε + ε2t).
Here R = A

|∇w+(x0,t0)| + A
|∇w−(x0,t0)| . Therefore, ḡε(y′, t′) → R as ε → 0

since 1
εgε(0, 0) = 0, |∇ḡε(0, 0)| → 0. On the other hand, proceeding as we

did with gε in Case I, we see that f̄ε(y′, t) → 0 uniformly on compact subsets
of R

N−1 × R. Now the proof follows exactly as in Case I. Here we use the
estimates of Lemmas 4.3 and 5.1 on the boundary y1 = R and the fact that
ϕ(R, y1) = limε→0 ūε(y,−τε) satisfies on y1 = R that ϕ′ = −

√
γ2 + δ0 − δ

with γ = |∇w−(x0, t0)|. So the proof is finished when (5.1) holds.

Eliminating the extra regularity assumption on |∇w±
0 |. Assume now

that (5.1) does not hold. Only small changes are needed in the above proof
to overcome the lack of differentiability of |∇w±

0 | in the definition of wε
0.

This is done as follows: We can construct sequences F±
ε of functions which

are C1+α on Σ such that, with the notation of (5.1), F±
ε → F± uniformly

in Σ as ε → 0, and
∂F±

ε

∂η′
= 0 on ∂Σ.

In fact, we cover a δ neighborhood of the boundary of Σ with a finite number
of sets which can be seen as images of sets of the form N×[0, δ], where N is a
ball in R

N−2 of radius δ. On each of these sets we construct an approximation
of F± with zero normal derivative in the following way. First we make a
convolution of the function F±(h−1(y)′) (already extended to {|yN | < 2δ}
in a symmetric way) with a kernel φε(y′) = ε−{N−1}φ(y′/ε) where φ is a
smooth function which is symmetric in the yN variable. The approximate
function is then obtained by going back to the original variables. On the
other hand, far from the boundary we perform a standard regularization.

In a similar way, we can construct a partition of unity associated to these
neighborhoods such that the functions of the partition with support inter-
secting the boundary of Σ have zero normal derivative. In this case, the
convolution of the characteristic function of 2N × [−2δ, 2δ] is made with
φδ(y′) = δ−{N−1}φ(y′/δ). This ends the construction of the functions F±

ε .



uniqueness in a two-phase free-boundary problem 1433

With this construction we take as initial datum for ε > 0 small

wε
0(x) = εϕ

( A

F+
ε (x′)

+
A

F−
ε (x′)

;
A

F+
ε (x′)

− w+
0 (x)

εF+
ε (x′)

+
w−

0 (x)
εF−

ε (x′)

)
instead of (5.2). From this point the proof follows as before. �

Now we state the compactness result that was used above.

Lemma 5.1. Let εj , ξεj and τεj be sequences such that εj > 0, εj → 0,
ξεj > 0, ξεj → ξ, with 0 ≤ ξ ≤ +∞, τεj > 0, τεj → τ with 0 ≤ τ ≤ +∞ and
such that τ < +∞ implies that ξ = +∞. Let ρ > 0 and Aεj =

{
(x, t) : |x| <

ρ
εj

, −min(τεj ,
ρ2

εj
2 ) < t < min(ξεj ,

ρ2

εj
2 )

}
. Let the uεj be weak solutions to

∑
i,k

∂

∂xi

(
a

εj

ik

∂uεj

∂xk

)
+

∑
i

b
εj

i

∂uεj

∂xi
− u

εj

t = β(uεj )

in {f̄εj (x
′, t) < x1 < ḡεj (x

′, t)} ∩ Aεj ,

uεj = A on {x1 = f̄εj (x
′, t)} ∩ Aεj ,

uεj = −A on {x1 = ḡεj (x
′, t)} ∩ Aεj ,

|uεj | ≤ A in {f̄εj (x
′, t) < x1 < ḡεj (x

′, t)} ∩ Aεj ,

with uεj ∈ C({f̄εj (x
′, t) ≤ x1 ≤ ḡεj (x

′, t)} ∩ Aεj ), and ∇uεj ∈ L2. Here
a

εj

ik → δik and b
εj

i → 0 uniformly on compact sets of R
N and of R

N × (−τ, ξ)
respectively, and f̄εj and ḡεj are continuous functions such that f̄εj → 0
and ḡεj → R uniformly on compact subsets of R

N−1× (−τ, ξ). Moreover, we
assume that ||f̄εj ||C1(K)+||∇x′ f̄εj ||Cα, α

2 (K)
and ||ḡεj ||C1(K)+||∇x′ ḡεj ||Cα, α

2 (K)

are uniformly bounded for every compact set K ⊂ R
N−1×(−τ, ξ). In addition

we assume that ||bεj

i ||L∞ and ||aεj

ik ||W 1,∞ are uniformly bounded. Moreover,
a

εj

ik are uniformly parabolic with constant independent of εj.
Then, there exists a function ū such that, for a subsequence,

ū ∈ C2+α,1+α
2
(
{0 ≤ x1 ≤ R, −τ < t < ξ}

)
,

uεj → ū uniformly on compact subsets of {0 < x1 < R, −τ < t < ξ},
∆ū − ūt = β(ū) in {0 < x1 < R, −τ < t < ξ},
ū = A on {x1 = 0, −τ < t < ξ},
ū = −A on {x1 = R, −τ < t < ξ},
|ū| ≤ A in {0 ≤ x1 ≤ R, −τ < t < ξ}.
If ξ < +∞, we require in addition that

||f̄εj (x
′, t + ξεj − ξ)||C1(K) + ||∇x′ f̄εj (x

′, t + ξεj − ξ)||
Cα, α

2 (K)
and
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||ḡεj (x
′, t + ξεj − ξ)||C1(K) + ||∇x′ ḡεj (x

′, t + ξεj − ξ)||
Cα, α

2 (K)

be uniformly bounded for every compact set K ⊂ R
N−1 × (−∞, ξ], and we

deduce that u ∈ C2+α,1+α
2 ({0 ≤ x1 ≤ R, t ≤ ξ}). If τ < +∞, we let

Bεj =
{
x : |x′| <

ρ

εj
, f̄εj (x

′,−τεj ) < x1 < ḡεj (x
′,−τεj )

}
,

and we require, in addition, that for every µ > 0

||uεj (x,−τεj )||Cα(Bεj∩Bµ(0)) ≤ C

and that there exists µ0 > 0 such that (with the notation x = (x1, x
′)),

||uεj (x,−τεj )||C1+α(Bεj∩Bµ0 (0,0)) ≤ C; ||uεj (x,−τεj )||C1+α(Bεj∩Bµ0 (R,0)) ≤ C.

Moreover, we assume that

||f̄εj (x
′, t − τεj + τ)||C1(K) + ||∇x′ f̄εj (x

′, t − τεj + τ)||
Cα, α

2 (K)
and

||ḡεj (x
′, t − τεj + τ)||C1(K) + ||∇x′ ḡεj (x

′, t − τεj + τ)||
Cα, α

2 (K)

are uniformly bounded for every compact set K ⊂ R
N−1 × [−τ,∞). Then,

it holds that u ∈ Cα, α
2 ({0 ≤ x1 ≤ R, −τ ≤ t}), uεj (x,−τεj ) → u(x,−τ)

uniformly on compact subsets of {0 < x1 < R},

∇u ∈ C
(
{(x, t) , 0 ≤ x1 < µ0 , |x′| < µ0 , t ≥ −τ}

)
,

and
∇u ∈ C

(
{(x, t) , R − µ0 < x1 ≤ R , |x′| < µ0 , t ≥ −τ}

)
.

In any case (τ, ξ infinite or finite) it holds that, when f̄εj (0, 0) = 0,

|∇uεj (0, 0, 0)| → |∇u(0, 0, 0)|,

and, when ḡεj (0, 0) = R, |∇uεj (R, 0, 0)| → |∇u(R, 0, 0)|.

Proof. The proof follows the lines of Lemma 4.4 in [17]. Here we use a
change of variables similar to that in Proposition 3.1 in [19] in order to
straighten up both lateral boundaries at the same time. This is, we take

y1 =
R

ḡεj (x′, t) − f̄εj (x′, t)

(
x1 − f̄εj (x

′, t)
)
, y′ = x′. �

We end this section by stating the corresponding result of approximation
of a supersolution.
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Theorem 5.2. Let w be a classical supersolution to P in Q, with ∂w
∂η = 0 on

∂NQ, satisfying (H1). Assume, in addition, that there exists δ0 > 0, with
|∇w−|2 > δ0 on the free boundary Q ∩ ∂{w > 0}, such that

|∇w+|2 − |∇w−|2 = 2M − δ0 on Q ∩ ∂{w > 0}.
Let A = A(L, M, δ0) be the constant in Lemma 4.2, where L > 0 is such
that |∇w| ≤ L in a neighborhood of the free boundary. Then, there exists a
family vε ∈ C(Q), with ∇vε ∈ L2

loc(Q), of weak supersolutions to Pε in Q,
with ∂vε

∂η = 0 on ∂NQ, such that, as ε → 0, vε → w uniformly in Q.
Moreover, vε = wε in {|w| ≥ Aε} and ∇vε ∈ C({|w| ≤ Aε} ∩ {t > 0}).

Proof. We construct the family wε exactly as we did in Theorem 5.1, but
this time we take as A the constant in Lemma 4.2 instead of Lemma 4.1,
and ϕ(R; s) is the solution to (4.5) corresponding to this choice of constant
A. Then, we let as in Theorem 5.1

vε =

{
w in {|w| ≥ Aε},
wε in D ε.

As before, an application of the maximum principle gives the uniform con-
vergence of vε to w in Q.

The proof of the fact that vε is a supersolution to Pε if ε ≤ ε0 follows in
a way similar to the corresponding proof for subsolutions in Theorem 5.1 by
using Corollary 4.2 and Lemma 4.4 instead of Corollary 4.1 and Lemma 4.3.
Thus, we omit it here.

6. Existence and uniqueness of the limit solution

In this section we prove that, under certain assumptions, a classical so-
lution to the initial and boundary value problem associated to P is the
uniform limit of any family of solutions to Pε with corresponding boundary
data. This in particular implies that such a limit exists and is unique.

In particular, under the assumptions of this section our classical solution
is the unique classical solution and also the unique viscosity solution (by the
results of Section 3).

Our first result is the approximation in a bounded cylinder. For the sake
of simplicity we will assume that Ω = (0, d) × Σ.

Theorem 6.1. Let Ω = (0, d)×Σ, Q = Ω×(0, T ), ∂NQ = (0, d)×∂Σ×(0, T )
and ∂DQ = ∂pQ \ ∂NQ. Let u be a bounded classical solution to P in Q,
with ∂u

∂η = 0 on ∂NQ, such that ux1 < 0 on ∂DQ. Assume that u(0, x′, t) > 0
for (x′, t) ∈ Σ × [0, T ] with u(0, x′, t) ∈ C2,1(Σ × [0, T ]) and u(d, x′, t) < 0
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for (x′, t) ∈ Σ × [0, T ] with u(d, x′, t) ∈ C2,1(Σ × [0, T ]). Let uε ∈ C(Q) with
∇uε ∈ C(Q∪ ∂NQ)∩L2

loc(Q) be a family of bounded weak solutions to Pε in
Q, with ∂uε

∂η = 0 on ∂NQ, such that uε → u uniformly on ∂DQ.
Then uε → u uniformly in Q.

Proof. Let a > 0; we will extend u to Qa = (−a, d + a)×Σ× (0, T ) in such
a way that u ∈ C(Qa), u > 0 in −a < x1 < 0, u < 0 in d < x1 < d + a,
Lu ≤ 0 in Qa ∩ {u > 0} and Lu ≥ 0 in Qa ∩ {u < 0}.

Let c > 0 be such that ux1 ≤ −c on ∂DQ. Let F0(x′, t) ∈ C2,1(Σ × [0, T ])
be such that u(0, x′, t) = F0(x′, t), and let Fd(x′, t) ∈ C2,1(Σ× [0, T ]) be such
that u(d, x′, t) = Fd(x′, t). Finally, let us define u(x1, x

′, t) in Qa \ Q in the
following way:

u(x1, x
′, t) = F0(x′, t) − cx1 − kx2

1 for x1 ∈ (−a, 0),

u(x1, x
′, t) = Fd(x′, t) − c(x1 − d) + k(x1 − d)2 for x1 ∈ (d, d + a).

Thus, clearly if k is large enough u satisfies all the requirements.
Given ρ > 0 and σ > 0 small, we define in Q, uρ,σ(x, t) = (1 + σ)u(x1 +

ρ, x′, t). Then, uρ,σ is a classical subsolution to P in Q ∩ {x1 ≤ d − µ} with
vanishing Neumann data on ∂NQ∩{x1 ≤ d−µ} where µ > 0 is chosen small
so that uρ,σ(0, x′, t) > 0 if ρ < µ.

Given δ > 0 we choose ρ and σ small so that uρ,σ ≥ u − δ. On the other
hand, using Corollary 3.3 and the results of [15], which imply that |∇u−| > 0
on Q ∩ ∂{u > 0}, we see that uρ,σ is under the hypotheses of Theorem 5.1
in Q ∩ {x1 ≤ d − µ}. Therefore, there exists a family vε (depending on ρ
and σ) of subsolutions to Pε in Q ∩ {x1 ≤ d − µ}, such that

∂vε

∂η
= 0 on ∂NQ ∩ {x1 ≤ d − µ},

vε → uρ,σ uniformly in Q ∩ {x1 ≤ d − µ}, as ε → 0. (6.1)

Let us observe that by the construction, vε = uρ,σ in a neighborhood of
{x1 = d − µ}, so that we can extend vε to Q letting vε = uρ,σ in d − µ ≤
x1 ≤ d, and it follows that the vε are subsolutions to Pε in Q satisfying (6.1)
up to x1 = d.

In addition, it follows from the uniform convergence of vε to uρ,σ that σ
can be chosen small enough (and ρ small depending on σ) so that we have,
for ε ≤ ε0(δ),

vε ≤ uε on ∂DQ,

∂vε

∂η
=

∂uε

∂η
= 0 on ∂NQ.
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Consequently, vε ≤ uε in Q. Therefore, uρ,σ − δ ≤ uε in Q, and finally we
obtain

u − 2δ ≤ uε in Q.

In order to show that uε ≤ u + 2δ, we proceed in a similar way.
For ρ > 0 and σ > 0 small, we define in Q

uρ,σ(x, t) = (1 − σ)u(x1 − ρ, x′, t).

We choose ρ and σ small enough so that uρ,σ ≤ u + δ. Then, if σ is small
enough, uρ,σ is under the hypotheses of Theorem 5.2 in the domain Q∩{x1 ≥
µ} where µ > 0 is chosen in such a way that uρ,σ(d, x′, t) < 0 if ρ < µ.
Therefore, there exists a family vε (depending on ρ and σ) of supersolutions
to Pε in Q ∩ {x1 > µ}, such that

∂vε

∂η
= 0 on ∂NQ ∩ {x1 > µ},

vε → uρ,σ uniformly in Q ∩ {x1 ≥ µ}, as ε → 0. (6.2)

Since by the construction in Theorem 5.2, vε = uρ,σ in a neighborhood of
x1 = µ, if we extend vε to the whole region Q letting vε = uρ,σ in 0 ≤ x1 ≤ µ,
it follows that the vε are supersolutions to Pε in Q satisfying (6.2) up to
x1 = 0.

We finally choose σ small enough (and ρ small depending on σ) so that
we have

vε ≥ uε on ∂DQ,

∂vε

∂η
=

∂uε

∂η
= 0 on ∂NQ

for ε ≤ ε1(δ). It follows that vε ≥ uε in Q. Therefore,

uρ,σ + δ ≥ uε on Q,

so that u + 2δ ≥ uε on Q. Thus, uε converges uniformly to u in Q. �
A similar result holds for a full cylinder as spatial domain, under suitable

monotonicity assumptions at x1 = ±∞.

Theorem 6.2. Let Ω = R × Σ, Q = Ω × (0, T ), ∂NQ = R × ∂Σ × (0, T )
and ∂DQ = ∂pQ \ ∂NQ. Let u be a bounded classical solution to P in Q,
with ∂u

∂η = 0 on ∂NQ and ||u||
Cα, α

2 (Q)
< ∞, such that u

∣∣
∂DQ

has a bounded,
nonempty free boundary. Assume that ux1 < 0 on ∂DQ and ux1(x, 0) ≤
−c1e

−c2 |x1| for |x1| ≥ a for some constants c1, c2, a > 0. Let uε ∈ C(Q)
with ∇uε ∈ C(Q ∪ ∂NQ) ∩ L2

loc(Q) be a family of bounded weak solutions to
Pε in Q, with ∂uε

∂η = 0 on ∂NQ, such that uε → u uniformly on ∂DQ, with

|uε(x, 0) − u(x, 0)| ≤ k1 e−k2 x2
1 for |x1| ≥ a for some constants k1, k2 > 0.
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Then uε → u uniformly in Q.

Proof. Step I. Behavior of uε and u for x1 → ±∞. Let us first see that we
can take a large enough so that, for some ε1 > 0,

uε ≥ ε for x1 ≤ −a, (6.3)

uε ≤ 0 for x1 ≥ a. (6.4)

In fact, let c, K0 > 0 be such that, for ε ≤ ε0, it holds that uε(x, 0) ≥ 2c
for x1 ≤ −K0. For δ0 > 0, K ≥ K0 and A ≥ ||a1||∞, let us consider the
function

v−(x, t) = c
(
1 − exp

{α

c
(x1 + At) +

α2

c2
t + K

α

c

})+

− γ

α
c
(
1 − exp

{α

c
(x1 + At) +

α2

c2
t + K

α

c

})−

where γ > 0 and α =
√

2M + δ0 + γ2. Then, for every R > 0, v− is a
bounded classical subsolution to P in Q ∩ {x1 ≤ R}, with ∂v−

∂η = 0 on
∂NQ∩{x1 ≤ R}, such that Q∩∂{v− > 0} is bounded and |∇v+

−|2−|∇v−−|2 =
2M + δ0 on Q ∩ ∂{v− > 0}. Moreover, it holds that v−(x, 0) ≤ c for x ∈ Ω.

Let us choose K large enough so that v−(x, t) ≤ −2C for x1 ≥ −K0, t ∈
[0, T ], where C ≥ ||uε||L∞(Q). Since v− satisfies the hypotheses of Theorem
5.1 with Ω = (−∞, R)×Σ for every R ≥ −K0, we can construct a family vε

−
of weak subsolutions to Pε in Q∩{x1 ≤ R} with

∂vε
−

∂η = 0 on ∂NQ∩{x1 < R},
such that vε

− → v− uniformly in Q ∩ {x1 ≤ R}.
Then, there exists 0 < ε1 ≤ ε0 such that vε

−(x, 0) ≤ 2c in Ω ∩ {x1 ≤ R},
vε
−(x, 0) ≤ −C for −K0 ≤ x1 ≤ R and vε

−(x, t) ≤ −C for x1 = R, t ∈ (0, T )
if ε ≤ ε1. Thus, vε

−(x, 0) ≤ uε(x, 0) in Ω ∩ {x1 ≤ R} for ε ≤ ε1 and

vε
−(x, t) ≤ uε(x, t) on x1 = R, for t ∈ (0, T ).

Therefore, vε
− ≤ uε in Q∩{x1 ≤ R} so that, if a is taken large enough, (6.3)

holds.
Let us now see that we can take a so large that (6.4) also holds. In fact,

let K0 > 0 such that uε(x, 0) ≤ 0 for x1 ≥ K0. Let

v+(x, t) = 2C
(
1− exp

{√
2M − δ0

2C (x1 +At)+
2M − δ0

4C2
t−

√
2M − δ0

2C K
})+

.

Then, if K > K0 is large enough, it holds that v+(x, 0) ≥ 3
2C if x1 ≤ K0.

On the other hand, v+ ≥ 0 in Q and v+ is a bounded classical supersolution
to P in Q with bounded free boundary such that |∇v+

+|2 = 2M − δ0 on
the free boundary. By Theorem 5.2 in [17] there exists a family vε

+ of weak
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supersolutions to Pε in Q with
∂vε

+

∂η = 0 on ∂NQ such that vε
+ → v+ uniformly

in Q. Thus, there exists ε2 > 0 such that for ε ≤ ε2

vε
+(x, 0) ≥ uε(x, 0) in Ω.

Therefore, vε
+ ≥ uε in Q, so that (6.4) holds if a is large.

On the other hand, u satisfies the hypotheses of Proposition 2.3. There-
fore, Q ∩ ∂{u > 0} is bounded, so that we may choose a large enough in
order to have, in addition, that

u > 0 in x1 ≤ −a,

u < 0 in x1 ≥ a.

Therefore, for ε ≤ ε1 and wε = uε − u, it holds that
Lwε = 0 in |x1| > a, 0 < t < T

wε(x, 0) ≤ k1e
−k2x2

1 in |x1| > a

wε ≤ L on |x1| ≥ a, 0 < t < T

for some constant L independent of ε. Therefore, there exist k̄1, k̄2 > 0 such
that, for some constant l1 > a independent of ε,

wε(x, t) ≤ k̄1e
−k̄2x2

1 in |x1| ≥ l1, if ε ≤ ε1.

We may replace the function wε above by −wε. Therefore,

|uε(x, t) − u(x, t)| ≤ k̄1e
−k̄2x2

1 in |x1| ≥ l1, if ε ≤ ε1. (6.5)

Let us now analyze the behavior of ux1 for x1 → ±∞. It holds that

Lux1 = 0 in |x1| > a, 0 < t < T

ux1(x, 0) ≤ −c1e
−c2|x1| in |x1| > a

ux1 ≤ −r on |x1| = a, 0 < t < T

for some positive constant r. Therefore, there exist c̄1, c̄2 > 0 and l2 > a
such that

ux1(x, t) ≤ −c̄1e
−c̄2|x1| in |x1| ≥ l2. (6.6)

Step II. Let δ > 0. We will show that

|uε − u| < 2δ in Q

if ε is small enough.
In fact, the proof follows exactly as that of Step II of Theorem 6.2 in [17].

In the present situation the comparison of the functions uρ,σ (respectively
uρ,σ) and u is done in the bounded cylinder Q∩ {|x1| ≤ l} where l is chosen
large enough. �
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Using the ideas of Theorems 6.1 and 6.2 we can prove the following the-
orem in a semicylinder. For the sake of simplicity we will state it for the
semicylinders (0,∞) × Σ and (−∞, d) × Σ.

Theorem 6.3. Let Ω = (0,∞)×Σ (respectively (−∞, d)×Σ), Q = Ω×(0, T ),
∂NQ = (0,∞)×∂Σ× (0, T ) (respectively ∂NQ = (−∞, d)×∂Σ× (0, T )) and
∂DQ = ∂pQ\∂NQ. Let u be a bounded classical solution to P in Q, with ∂u

∂η =
0 on ∂NQ and ||u||

Cα, α
2 (Q)

< ∞, such that u
∣∣
∂DQ

has a bounded, nonempty

free boundary. Assume that ux1 < 0 on ∂DQ and ux1(x, 0) ≤ −c1e
−c2 |x1|

for x1 ≥ a (respectively for x1 ≤ −a) for some constants c1, c2, a > 0.
Also, u(0, x′, t) ∈ C2,1(Σ × [0, T ]) with u(0, x′, t) > 0 for x′ ∈ Σ, t ∈ [0, T ]
(respectively u(d, x′, t) ∈ C2,1(Σ × [0, T ]) with u(d, x′, t) < 0 for x′ ∈ Σ,
t ∈ [0, T ]). Let uε ∈ C(Q) with ∇uε ∈ C(Q ∪ ∂NQ) ∩ L2

loc(Q) be a family
of bounded weak solutions to Pε in Q, with ∂uε

∂η = 0 on ∂NQ, such that

uε → u uniformly on ∂DQ, with |uε(x, 0) − u(x, 0)| ≤ k1 e−k2 x2
1 for x1 ≥ a

(respectively for x1 ≤ −a) for some constants k1, k2 > 0.
Then uε → u uniformly in Q.

7. Comments and concluding remarks

The results about uniqueness and coincidence of the classical, viscosity and
limit solution established in this paper for the two-phase problem are parallel
to similar results obtained for the one-phase problem in [17]. Also, the idea
of constructing super- and subsolutions of the problems Pε by rounding
the classical super- or subsolution of the free-boundary problem near the
free boundary is similar to the one-phase case. However, in the two-phase
problem the values of the slope of the super- or subsolution at each side
of the free boundary are not individually controlled since the free-boundary
condition only gives a relation between both slopes. Consequently, there
is a difference in technique that justifies the detailed derivation done in
this paper. In particular, the construction of the two-phase auxiliary ODE
profiles done in Section 4 is completely different. Moreover, the modified
sub- and supersolutions to the problems Pε constructed in Section 5 must
be pasted to the respective free-boundary sub- and supersolution at the levels
u = Aε and u = −Aε for a suitable constant A. There is also a delicate
construction of the initial data since we must use different profiles in different
directions. This entails a number of new theoretical steps.

Besides, there are other differences to be noted: conditions on the supports
that had to be imposed in the one-phase case to ensure uniqueness of the
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limit and viscosity solutions disappear from the statements of the two-phase
case.

The uniqueness result for the one-phase problem has been recently im-
proved by Cafferelli and Petrosyan in [12], where they show that uniqueness
of the limit solution holds without the assumption that a classical solution
exists. They use a different monotonicity condition corresponding to a dif-
ferent geometry, but this difference is not essential. It is not known how to
use their technique in the two-phase problem.

As was mentioned in the Introduction, the results of Sections 2 and 3
apply to the two-phase free-boundary problem with general jump condi-
tion G(|∇u+|, |∇u−|) = 0 with suitable assumptions on G(a, b): it must
be monotone nondecreasing in a and nonincreasing in b, and one of both
monotonicities has to be strict, as used in [9] for the elliptic case.
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