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Abstract. We investigate a two-phase free-boundary problem in heat
propagation that in classical terms is formulated as follows: to find a
continuous function u(z,t) defined in a domain D C RY x (0,7") which
satisfies the equation

Au—|—Zaiu1i —ur =0

whenever u(z,t) # 0, ie., in the subdomains Dy = {(z,t) € D :
u(z,t) > 0} and D_ = {(z,t) € D : u(x,t) < 0}. Besides, we as-
sume that both subdomains are separated by a smooth hypersurface,
the free boundary, whose normal is never time-oriented and on which
the following conditions are satisfied:

u=0, |Vu]?—|Vu |*=2M.

Here M > 0 is a fixed constant, and the gradients are spatial side-
derivatives in the usual two-phase sense. In addition, initial data are
specified, as well as either Dirichlet or Neumann data on the parabolic
boundary of D.

The problem admits classical solutions only for good data and for
small times. To overcome this problem several generalized concepts of
solution have been proposed, among them the concepts of limit solu-
tion and wiscosity solution. Continuing the work done for the one-phase
problem we investigate conditions under which the three concepts agree
and produce a unique solution for the two-phase problem.
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1. INTRODUCTION

In this paper we investigate a two-phase free-boundary problem in heat
propagation that in classical terms is formulated as follows: given a domain
D C RY x (0,T) and a constant M > 0, to find a continuous function u(z, t)
defined in D which satisfies the equation

Au—i—ZaiuIi —u; =0 (1.1)

in the subdomains Dy = {(z,t) € D : u(z,t) > 0} and D_ = {(x,t) €
D : u(x,t) < 0}, which represent the two different phases. Besides, both
subdomains must be separated by a smooth hypersurface, I', a so-called
free boundary, whose normal is never time-oriented, and such that D =
DL UD_UT. On I" we have u = 0 and we impose the jump condition

VuT)? — |[Vu | =2M, M >0, (1.2)

where Vu™ denotes the gradient of u restricted to {u > 0} and Vu~ is the
gradient of —u restricted to {u < 0}. We are thus imposing a discontinuity
of [Vul across I' since M # 0. Finally, initial data are specified, as well as
either Dirichlet or Neumann data on the parabolic boundary of D, as we will
see below. We will refer to this free-boundary problem as problem P.

This is a model of heat propagation with change of phase. There is a
corresponding one-phase problem, where u > 0, so that the negative domain
disappears and D_ is replaced in the domain division by the interior of the
null-set, Dy = {u = 0}°. The jump condition on I' reads then

|Vu™|? = 2M. (1.3)

This problem arises in several contexts, in particular in combustion theory
and in flows in porous media, and is currently the object of active investi-
gation. We have devoted the article [17] to investigating the questions of
uniqueness of different types of solutions for the one-phase problem. We
remark that the jump conditions (1.2) and (1.3) make these problems com-
pletely different from the two-phase and one-phase Stefan problems.

Let us recall that classical solutions to problem P in one space dimension
are relatively easy to construct, but the problem is much more difficult in
several space dimensions; cf. [21]. Generally, classical solutions exist only
locally in time, since singularities can arise in finite time even in the one-
phase problem; cf. [22].

One way of addressing the problem of existence of solutions in a more gen-
eral context is the introduction of viscosity solutions, defined by comparison
with classical solutions (see the precise definition in Section 2). Another way
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is to consider the problem as the limit of the equations
N
A+ aus, —uf = Bo(uf) (1.4)
1

with corresponding initial and boundary conditions. We call this equation
P-. In the one-phase problem this regularization for small £ appears in
combustion theory as the high activation energy range of the equation for
equidiffusional flames, and the limit has been proposed by Zeldovich and
Frank-Kamenetski [23] and produces the free-boundary problem P when
the reaction function B converges as ¢ — 0 to a Dirac delta in the following
scaling way:
1 s
5els) = 2B, (15)
see [2, 3, 13, 14]. In the two-phase problem the limit of P, has been studied
in [10, 11, 20]. We call the solution of P obtained by such a process the limit
solution.
Continuing the work done for the one-phase problem in [17] we investigate
in this paper conditions under which the concepts of classical, viscosity and
limit solution agree and produce a unique solution for the two-phase problem.

Main results. We take as spatial domain a cylinder of the form Q =1 x X
with ¥ € RV~! a smooth domain, and I = R (a full cylinder), I = (0, c0) or
I = (—00,d) (a semicylinder) or I = (0,d), d > 0 (a bounded cylinder), and
we put homogeneous Neumann conditions on the lateral boundary I x 9%.
We require monotonicity of the initial data in the direction of the cylinder
axis, but we make no requirement of monotonicity of the solution in time.
In the family of problems P. we assume that the functions 3. are defined by
scaling of a single function §: R — R satisfying the following:

e (3 is a Lipschitz-continuous function,

e 3>0in (0,1) and 8 = 0 otherwise,

e [B(s)ds= M.

We then define (:(s) = 1/e8(s/e). The coefficients a; of the first-order
terms in the differential operator are assumed to be independent of x1, the
direction of the cylinder axis, and belong to C*2 (X x [0, T]).

Our results can be summarized as saying that, with this type of domain,
coefficients and reaction function (., and under suitable assumptions on
the initial and boundary data, if a classical solution of problem P exists
i a certain time interval, then it is at the same time the unique classical
solution, the unique limit solution and also the unique viscosity solution in
that time interval. We show in particular that there is a unique limit solution
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independent of the choice of the function 8. Moreover, we actually prove
that the limit exists for any suitable approximation of the initial datum.

The present jump condition on the free boundary can be generalized in
the form

G(|Vut],|Vu~|) =0, (1.6)

for a suitable function G, increasing in the first argument and decreasing
in the second. Such a type of generalized jump condition appears in the
study of stationary problems, which arise in hydrodynamics; cf. [7, 8, 9] and
their references. The free-boundary evolution problem with jump function
G(a,b) = a — b — M has been studied by several authors; cf. [1], [4], [5].
Our results on uniqueness of classical and viscosity solutions apply without
changes to these general jump conditions. We have made the choice G(a,b) =
a’® — b? — 2M in this paper because it is the one obtained in the limit of the
regularized problems P..

Outline of the paper. In Section 2, we give precise definitions of the clas-
sical and viscosity solutions and prove a first consistency result (Propositions
2.1 and 2.2). In Section 3, we prove that, under certain assumptions on the
domain and on the initial datum, a classical solution to problem P is the
unique classical solution and also the unique viscosity solution (Theorems
3.1 and 3.2 and Corollary 3.1). These two sections are basically adaptations
of the results on the one-phase problem in [17].

The novelty of the two-phase problem begins in Section 4 where we con-
struct the one-dimensional stationary profiles which are needed later in the
analysis of the approximations of classical sub- and supersolutions. In par-
ticular they will appear as blowup profiles of solutions of the problems P,
as e — 0.

In Section 5, we prove that a classical subsolution to problem P is the
uniform limit of a family of subsolutions to problem P. and we prove the
analogous result for supersolutions. The technique of the construction differs
from that of the one-phase case in the choice of the approximate initial data,
the profiles used in rounding the free boundary gradient discontinuity and
the levels at which the pieces of solution are pasted in order to obtain the
super- and subsolutions to P..

In Section 6, we show that, under assumptions similar to those in Section
3, a classical solution to problem P is the uniform limit of any family of
solutions to problem P. (Theorems 6.1, 6.2 and 6.3).

A final section (Section 7) is devoted to discussing the technical differences
between this problem and the one-phase problem, and to commenting on
possible extensions and related works.



UNIQUENESS IN A TWO-PHASE FREE-BOUNDARY PROBLEM 1413

Notation. Throughout the paper N will denote the spatial dimension, > C
RN~! will be a bounded C? domain with unit exterior normal 7’ and 1 =
(0,n) will denote the unit exterior normal to RxX. In addition, the following
notation will be used:

For any 29 € RY, tg € R and 7 > 0, B.(xg) := {z € RN : |2 — xo| < 7}
and B, (zo,t0) := {(x,t) € RN o — 2|2 + |t — to|? < T2},

When necessary, we will denote points in RY by z = (z1,2'), with 2’ €
RN=1. Given a function v, we will denote v+ = max(v,0), v~ = max(—wv, 0).

The symbols A and V will denote the corresponding operators in the
space variables; the symbol J, applied to a domain will denote a parabolic
boundary.

Let us define the Holder spaces we are going to use. Let m > 0 be an
integer and 0 < a < 1. For a space-time cylinder Q = Q x (0,7) ¢ RN*1,

C’m“"mTM(Q) is the parabolic Holder space denoted by H m*“’mTM(Q) in

[16]. If D c RYN*! is a general domain, then Cmre 3% (D) will denote

the space of functions in Cera’mTM(Q) for every space-time cylinder QQ C
D. If D is bounded, we will say that u € C’m"'o"mTM(@) if there exists a
domain D’ with D C D’ and a function u’ € Cm+°"mT+a(D’) such that u =
v in D. If D is unbounded, we will say that u € C’m+a’m7+a(5) if u e
C’m"'o"mTM(ﬁ) for every bounded domain D’ C D. The space C'(D) is
defined in an analogous way.

In addition, M will denote a positive constant that will remain fixed
throughout the paper, corresponding to the free-boundary condition (1.2)
or its regularizations.

Given a domain D C RV, we will write

Lu=Au+) gty —u,  a€L>D)NC>2(D).

In all the results where the space domain is a cylinder, Q = I x ¥ with [
an interval, we also assume that the coefficients a; are independent of x;
that is, a; = a;(2',t), a; € C*%(Z x [0,T]). Finally, we will say that u is
supercaloric if Lu < 0 and w is subcaloric if Lu > 0.

2. PRELIMINARIES ON CLASSICAL AND VISCOSITY SOLUTIONS

In this section we give precise definitions of the concepts of classical and
viscosity solution and derive some consequences. In particular, we prove that
in the situations considered in this paper a classical solution is a viscosity
solution.
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Definition 2.1. Let @ be a space-time domain of the form Q x (71, T3),
with © ¢ RN. Let v be a continuous function in @. Then v is called a
classical subsolution (supersolution) to P in @ if

(i) Lv>0 (£0) nQT:=Qn{v>0}

(i) Lv>0 (<0) in Q :=Qn{v<0}°,

(i) ve CYQT)NCHQ™), Vv e ™2 (QF)NC™>(Q7),

(iv) For any (x,t) € {v =0} Nd{v > 0}, we have Vv T (x,t) # 0 and

<‘9$’_:)2 _ @%)2 SoM (< 2M), (2.1)

Vol We say that v is a classical solution to P in @ if it is

Vo
both a classical subsolution and a classical supersolution to P.

where v =

There is a subtle notation aspect in the preceding definition. According
to (iii) v* can be continued as a C! function in a neighbourhood of Q*.
What we are really imposing in (iv) is that the gradient of this extended
function does not vanish on {v = 0} N d{v > 0}, and we call this gradient
Vo™, though it really is the (lateral) gradient of v restricted to Q+. We

also have |Vou™| = —9v™t/Ov as an appropriate lateral limit. Using the same
conventions on the gradient of v~ we may write the jump condition as
Vot |2 — Vo | >2M (< 2M). (2.2)

Definition 2.2. Let u € C(Q); u is called a viscosity subsolution (super-
solution) to P in @ if, for every space-time subcylinder @' C @ and for
every v a bounded, classical supersolution (subsolution) to P in @', with
Q' N o{v > 0} bounded,

u<v (u>v) on 9,Q and

v>0 on {u>0}NdQ (u>0 on {v>0}Nn09Q")
implies that u < v (u > v) in Q'.

The function u is called a viscosity solution to P if it is both a viscosity

supersolution and a viscosity subsolution to P.

We can now prove the consistency between both concepts of solution.

Proposition 2.1. If u is a bounded, classical supersolution (subsolution)
to P in Q with Q N d{u > 0} bounded, then u is a viscosity supersolution
(subsolution) to P in Q.

Proof. The proof follows the lines of the proof of Proposition 2.1 in [17].
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Definition 2.3. Let Q C RY be a domain and let Q = Q2 x (0,7). Let 'y be
an open C! subset of 9Q and let OvQ = T'y x (0,T). We say that u € C(Q)
is a viscosity solution to P in @) with g—z = 0 on dN@Q, if the following holds:
for every space-time subcylinder Q' C @ and for every v a bounded, classical

supersolution (subsolution) to P in @', with @' N d{v > 0} bounded, such
that g—z =0 on 0,Q' NINQ,

u<v (u>v) on 9,Q \INQ and

v>0 on {u>0}N9Q \oNnQ (u>0 on {v>0}N9Q \INQ)

implies that u < v (u > v) in Q'

Proposition 2.2. Let Q@ = R x X (respectively (0,+00) x X, (—00,d) X X,
(0,d) xX), Q=02x(0,T) and ONQ = R x 09X x (0,T) (respectively ONQ =
(0,400) x 0¥ x (0,T), ONQ = (—00,d) x 0¥ x (0,T), OnQ = (0,d) x 0% X
(0,7)).

Let u be a bounded classical solution to P in Q with QNo{u > 0} bounded
and g—;; =0 on ONQ. Then u is a viscosity solution to P in Q with g—;; =0
on ONQ.

Proof. The proof follows the lines of the proof of Proposition 2.2 in [17]. O

In the next propositions we will show that, in the situations considered in
this paper, a classical solution has a bounded free boundary, and in partic-
ular, it is a viscosity solution.

Proposition 2.3. Let Q=R x X, Q =Q x (0,7), OnQ =R x 9¥ x (0,7T)
and Op@Q = 0,Q \ ONQ. Let u be a bounded classical solution to P in Q

with g—z =0 on OnQ and ||UHCO‘*%(§) < 00, such that u‘aDQ has a bounded,

nonempty free boundary and uy, <0 on dpQ. Then QNI{u > 0} is bounded.

Proof. The proof follows the lines of the proof of Proposition 2.4 in [17]. In
fact, for A > [la1]|, L = [[ul|p~ (@), ¢ > 0 small and K > 0 large, let

2 +
v_(z,t) = c(l —exp{%(xl + At) + 3—275—1—[(%})
2
5 o o Q"

where v > 0 and a = 1/2M + 2, and let

W gy s 2 KV

ve(@,1) = 2L<1 - eXp{ oL AL? 2L
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It holds that v_ is a bounded classical subsolution to P in @ and vy is a
bounded classical supersolution to P in @) with 85—; = 85—7]* = 0 on ONQ.
In addition, vy have bounded free boundaries, and v_(z,0) < u(z,0) <
v4(z,0). Moreover,

u>0 on{v_>0}N{t=0}, vy >0 on{u>0}Nn{t=0}
Therefore, proceeding as in the proof of Proposition 2.4 in [17] we get
v_(z,t) <u(z,t) <vy(z,t) in QN{t<T},

which implies that @ N 9{u > 0} is bounded and completes the proof. [
The next propositions can be proved in a way similar to Proposition 2.3

(in the proof of Proposition 2.5 we use Proposition 2.1 instead of Proposition
2.2).

Proposition 2.4. Let Q = (0,400) x 3, Q@ =Q x (0,T), InQ = (0, +00) x
0¥ x (0,T) and OpQ = 0,Q \ ONQ. Let u be a bounded classical solution
to P in Q with ‘3—:7‘ = 0 on ONQ and ||UHCO"%(@) < o0, such that u‘aDQ
has a bounded, nonempty free boundary and u,, <0 on OpQ. Assume that
w(0,2',t) > 0 for (2',t) € £ x [0,T]. Then Q N d{u > 0} is bounded.

An analogous result holds if we let ) = (—o0,d) x ¥ or Q = (0,d) x X
with the corresponding sign assumptions on u on x1 = 0,d.

Proposition 2.5. Let Q = (0,400) x X, Q@ = Q x (0,T) and 0pQ = 0,Q).

Let u be a bounded classical solution to P in Q with HuHCa,%@) < 00, such

that u‘aDQ has a bounded, nonempty free boundary and uy, < 0 on OpQ.
Assume that u(0,2',t) > 0 for (2/,t) € ¥ x [0,T]. Then Q N O{u > 0} is
bounded.

The same result holds if we let instead = R x X (with no assumptions
on u on {0} x X x [0,T]), and also if Q = (—o0,d) x ¥ or Q = (0,d) x ¥

with the corresponding sign assumptions on u on x1 = 0,d.

3. UNIQUENESS OF CLASSICAL AND VISCOSITY SOLUTIONS

In this section we show that, under suitable assumptions, a classical solu-
tion is the unique viscosity solution to the initial and boundary value problem
associated to P and, in particular, it is the unique classical solution. This is
done in Theorems 3.1 and 3.2 and Corollary 3.1. We also show comparison.

Theorem 3.1. Let Q2 = (0,d)x%, Q@ = Q2x(0,T), OnQ = (0,d)x9Xx(0,T)
and OpQ = 0,Q \ ONQ. Let u be a bounded classical solution to P in Q,
with g—z =0 on ONQ, such that uy, <0 on dpQ. Assume that u(0,2',t) > 0
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for (2',t) € ¥ x [0,T] with u(0,2',t) € C*L(Z x [0,T]) and u(d,z’,t) < 0
for (2',t) € T x [0, T] with u(d,a’,t) € C*L(X x [0,T]). Let v € C(Q) be a
viscosity solution to P in Q with g_:; =0 on ONQ. If v =u on IpQ, then
V=1u1in @

An analogous result holds if we let Q = (0,+00) x ¥ or Q = (—o0,d) X X,
with the corresponding sign condition on u on x1 = 0 or x1 = d, or if
Q =R x X with no sign condition on u. In these cases we require that u‘aDQ

has a bounded, nonempty free boundary and ||ul| < 00.

(@)
Proof. Let a > 0; we will extend u to Q, = (—a,d+a) x X x (0,T) in such a
way that u € C(Q,), v >0in —a<z; <0,u<0ind <z < d+a, Lu <0
in QaN{u > 0} and Lu > 0in Q,N{u < 0}. Let ¢ > 0 be such that u,, < —c
on OpQ. Let Fy(a',t) € C*1(X x [0,T]) be such that u(0,2',t) = Fy(a',t),
and let Fy(2',t) € C%1(X x[0,T]) be such that u(d, ', t) = Fy(z',t). Finally,
let us define u(z1,2’,t) in Q, \ @ in the following way:

u(zy, 2’ t) = Fy(z',t) — cxy — ka?  for 21 € (—a,0),
u(wy, 2’ t) = Fy(2',t) — c(v1 — d) + k(zy — d)?  for z1 € (d,d + a).

Thus, clearly if k is large enough w satisfies all the requirements. Now the
result follows by proceeding in a way similar to the proof of Theorem 3.1 in
[17]. O

For two classical solutions we have the following uniqueness result, a con-
sequence of Proposition 2.2 and Theorem 3.1.

Corollary 3.1. Let Q, Q, OnNQ, OpQ and u be as in Theorem 3.1. Let v be
a bounded classical solution to P in @ with g—z =0 on INQ, such thatv =u

on OpQ. Then, v=u in Q.

A comparison principle for bounded classical solutions follows from Propo-
sition 2.2 if the free boundaries are bounded in @ and separated on dpQ.
With a monotonicity assumption on dp@), we get a different comparison
result.

Corollary 3.2. Let 2, Q, OnQ, OpQ@ and u as in Theorem 3.1. Let v be
a bounded classical solution to P in Q with g—z =0 on ONQ, and such that

Q N o{v > 0} is bounded. If v > u on OpQ, it holds that v > u in Q.

In the next theorem we prove the uniqueness of the viscosity solution
under different assumptions from those in Theorem 3.1. As in Corollaries
3.1 and 3.2, uniqueness and comparison of classical solutions follow.
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Theorem 3.2. The results of Theorem 3.1 hold if we let instead ONQ = ()
s0 that OpQ = 0,Q.

Corollary 3.3. Let u be as in Theorem 3.1. Then u is a decreasing function
in Q in the direction e; = (1,0,...,0) and uy, <0 in QN {u > 0} and in
QN {u < 0}. Moreover, for every ¢ # 0, the level set {u = ¢} is given by
x1 = ge(2/,t) with g. € CYE x [0,T)) and Vyg. € C*2 (T x [0,T)).

The same conclusion holds under the assumptions of Theorem 3.2.

Proof. Proceeding as in Corollary 3.3 in [17], we deduce that for every § > 0
small, u(z,t) > us(x,t) = u(zy + 6,2',t) for (z,t) € Q, which implies that
Uy, <0in {u >0} U {u <0}°.

Then, reasoning in a way similar to Corollary 3.3 in [17] we can see that
Uz, < 0bothin {u > 0}NQ and in {u < 0}°NQ, and thus the result follows.

4. AUXILIARY TWO-PHASE PROFILES

This section contains the construction of the one-dimensional stationary
solution of the simplified problem

Au —up = [B(u) (4.1)

where the function (3 is as in Section 1 and M = [ 3(s) ds. The results will
be used in the next sections where (4.1) appears as a blowup limit. The
transport term will disappear in the blowup process.

We start from the piecewise-linear solution of the free-boundary problem
given in an interval (0, R) by the formula: u(s) = A —as for 0 < s < 4,
u(s) = —A— (s — R) for 2 < s < R, where A,a,v >0 and R = ng%.
The free-boundary condition implies the relation o? = 2M + 2. We are
interested in constructing sub- and supersolutions. In the first case we will
replace the term 2M in the previous free-boundary condition by 2M + dg,
in the second case, by 2M — dj.

Our aim is to construct solutions of (4.1) in the same interval joining the
level w = A at s =0tou = —A at s = R in such a way that the slope
at s = 0 is larger than —a and at s = R smaller than —v for the case of
subsolutions. The inequalities are reversed for the case of supersolutions.

We start by analyzing the initial value problem.

Lemma 4.1. For every L >0 and §p > 0 there exists A(L, M,dp) > 1 such
that for every A > A(L, M, &), a,y > 0 and v < L with o = 2M + §q + >
there exists 0 < 6 < &g such that the solution to

{w” =pW)  fors>0 42)

YO = A, W(0) = Va5
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A Y

FIGURE 1. Construction of ¥, o/ =+va2 -6, v/ =+/72+d — 0

satisfies that Y (R) = —A, where R =

SIEN

_l’_

V(R) =~V 400 -6 < .

Proof. Observe that 3 acts only on the range 0 < ¢ < 1 and also that we
will take A > 1. Let 0 < § < §p and A > 1 be fixed for the moment. Let

S0 = \/’22_—;. Then the solution v to (4.2) satisfies 1(s) = A —+va? —§ s for

0<s<spand ¥(sg) =1. Let B(yp) = f(;p B(7)dr. Then,

= [

. Moreover,

1
W) =a>—56-2 » (1) dr =~ + 8 — 5 + 2B((s)),

so that

foo 7
=S5 — 5.
(s) /7% + 00 — 0+ 2B(1))
Let s1 = so + fol \/72+50d¢ Then ¥(s1) =0, ¥'(s1) = —/72+ o — 0

—6+2B(¢)

and 1(s) = —\/72 +dp — 0 (s — s1) for s > s1. Thus,
(R) = =72+ 00 — 6(R — s1).
Therefore, 1)(R) = —A if and only if
—1 1 1

A + + =] = s1. 4.3
[\/72+50—5 V2M + 6 + 2 ’Y] . (43)
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Equation (4.3) is equivalent to

1 1 1 1
A — + -
[\/2M+50+72 V2M +60—6+72 7 \/72+50—6]
1 1
+ —/ av =0. (4.4)
V2M + 8 —85+92  Jo /2 +d0—+2B(¥)
In order to solve this equation we consider the function
1 1 1 1
f6)= A - b
[\/2M+50—|—72 V2M +60—0+92 7 \/724—60—5]

N 1 /1 dyp
V2M +60—6+~2 Jo /A2 +d —0+2B¥)
We will see that there exists A(L, M,dp) > 1 such that if A > A(L, M, )

it holds that f(0) > 0 and f(dp) < 0. This will prove the lemma. In fact,
since 0 < v < L,

FO) = AL - )+ - —/1 i
TV +sT V2M A+ 6+ Jo /2460 +2B(W)
> A % + 1 /IL
T2L2+450): VEM+&+LZ o /5o +2B()
1
s 4 >0

2(L2 4+ 60) VDo
if A> Aog(L,dp). On the other hand, if A > A;(L,dy, M), then

1 1 1 ! d
f(80)=A( =~ =)+ 2—/ 2—¢
V2M + 00+ V2M +~2" \2M ++2  Jo /42 +2B(%)
5o 1
<-A + <0.
22M + 6 + L?)2  V2M

Corollary 4.1. Let L > 0 and §op > 0. Let A(L, M, dp) > 1 as in Lemma 4.1.
Then, for every A > A(L, M,dy), a,y > 0 and v < L with a® = 2M+6+~2,
there exists a unique solution to

{np”:ﬂ(go) for0<s<R

o0) = A (R) = —A (45)

with R = é + %. This solution satisfies that there exists 0 < § < dy such

10'(0)|=vVaz—35§ and | (R)|=+/72+ do — 9. (4.6)
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Proof. Let A(L,M,dy) be as in Lemma 4.1. Let 0 < § < Jp be such that
the solution ¥ to (4.2) satisfies that 1°(R) = —A. Then, 1° satisfies (4.6).
So that, it only remains to prove that this is the only solution to (4.5). In
fact, let ¢, be the solution to

' = B(Y) for s >0
¥(0)=A4, ¢'(0)=-b.

If b < v/2M, it holds that ¢, > 0 (see [17], Lemma 4.1) so that ¢ (R) # —A.
If b > v/2M, it holds that

(4.7)

B A-1 ! dyp
vp(R) = =2 —2M (R_T_/O \/QB(¢)—2M+b2)'

From this formula, it is easy to see that iy, (R) < ¥s,(R) if by > b, so that
¥ is the unique solution to (4.5), and the corollary is proved. ([l
We turn now to the case of supersolutions.

Lemma 4.2. For every L > 0 and d9 > 0 there exists A(L,M,dy) > 1
such that for every A > A(L,M,d), a > 0 and /g < v < L with o? =
2M — 8o + 2, there exists 0 < § < &y such that the solution to

P’ =p1)  fors>0
W(0)=A, ¢'(0)=—vVaZto

1 — _ A A
satisfies that Y(R) = —A where R = £ + 2. Moreover,

Y(R) = -2 =00+ 6 > —7.

Proof. The proof follows as that of Lemma 4.1.

(4.8)

Corollary 4.2. Let L > 0 and §9 > 0. Let A(L,M,dy) > 1 as in Lemma
4.2. Then, for every A > A(L,M,d), a > 0 and \/dg < v < L with o® =
2M — 6o + 2, there exists a unique solution to (4.5) with R = é + % This
solution satisfies that there exists 0 < § < &g such that

|0'(0)|=vVaz+d§ and | (R)|=+/72— o+ 9. (4.9)

Proof. The proof follows as that of Corollary 4.1. O
Let us now make precise the relation between the solution to (4.7) and
that of (4.5). For b > v/2M, let us call ¢ (b, s) the solution to (4.7). Let
A-1 di A

1
R == +/0 J2BW) M 10 VP =2




1422 C. LEDERMAN, J.L. VAZQUEZ, N. WOLANSKI

Then, ¢ (b, R(b)) = —A. On the other hand, let

s(b

)_A—1+/1 dy) _

b 0 2B(Y) —2M + b2’

then (b, s(b)) = 0. Observe that R(b) and s(b) are C° functions in
(V2M,00), and % < 0. Now, let b(R) be the inverse of R(b), so that
b € C>(0,+00). Finally, let (R, s) = ¥(b(R),s). That is, ¢(R,s) is the
solution to (4.5). The following holds:

Proposition 4.1. ¢ is locally Lipschitz continuous in {(R,s) : R > 0,0 <
s < R}. Moreover, for every Ry > 0 there exists r1 > 0 such that ¢ €
C®{(R,s) : R>R1,0<s<r}U{(R,s) : R>R;, R—11 <s<R}).

Proof. The Lipschitz continuity of ¢ as a function of (R, s) follows imme-
diately from that of ¢ as a function of its initial datum b and the variable
s. On the other hand,

P(b,s) = A—bs for0<s<(A—-1)/b
(b, s) = —V/b>—2M (s — s(b)) for s > s(b).
Therefore, if b < by it follows that there exists r; > 0 such that
P(b,s) = A—bs for 0 <s <

(b, s) = —\/b%> —2M (s — s(b)) for R(b) —r1 < s < R(b).
Thus, for every Ry > 0 if we let by = b(R;), we see that the result on the
C® regularity of ¢ follows. O

Now we prove a characterization of global solutions to (4.1).

Lemma 4.3. Let R, = {(z,t) : 0 < 21 < R,—oo <t <n}, A= A(L, M, d)
> 1 as in Corollary 4.1 and U € C***3(R,) be such that

AU - U, =B(U) inR,

U=A4A in {x; =0} (4.10)
U=-4 in {1 = R} .
—A<U<A in Ry

wz’thRZS—i—%, a? =72 =2M + 6y, o,y >0, vy < L and 69 > 0. There
exists 0 < & < &y such that U(z,t) = ¢°(x1) where ¢° is the solution to

(4.2). Thus,

IVUlzy=0 = Va? =6 , [VUlp=r=V7*+d — 0. (4.11)
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Proof. Let V be the solution to
AV -V, =p(V) for0<xz; <R, t>0

V=A forxy =0, t>0
V=-A forz; =R, t>0
V=-A for t =0,

and let W be the solution to
AW — W, = B(W) for0O<zi<R,t>0

W=A forxy =0,t>0
W=-A forxcy=R,t>0
W=A for t = 0.

Then, V = V(x1,t) and W = W (z1,t). Let Vi(z,t) = V(x, t+k), Wi(z,t) =
W(z,t+ k) for t > —k. Then,

Vie(z,t) < U(z,t) < Wi(x,t) forO<z <R, -k<t<n.
Since Vi(z,t) — ¥~ (x) and Wy(x,t) — T (z), k — oo where ¢~ = ¢~ (1)
and ¢t = T (x1) are solutions to (4.5), and (4.5) has a unique solution 1)
(by Corollary 4.1), it holds that U(z,t) = ¢(x1). In particular, by Corollary
4.1 there exists 0 < § < g such that |VU|z—0 = [¢/(0)] = Va? —§ and

|VU|z,=r = [/ (R)| = \/7? + o — I, so that the lemma is proved. O
Analogously,

Lemma 4.4. Let R, and U be as in Lemma 4.3 with R = §+ %, a? —72 =

2M — 6y, a > 0, /oo < v < L and A = A(L,M,d) as in Corollary 4.2.
There exists 0 < § < dy such that

|VU|901=0 = a? + 57 |VU|:101:R =/ ’Y2 — 50 + 4. (4.12)

Proof. The proof follows as that of Lemma 4.3. Here we use Corollary 4.2
instead of Corollary 4.1.

5. APPROXIMATION RESULTS

In this section we prove that, under certain assumptions, a classical sub-
solution to problem P is the uniform limit of a family of subsolutions to
problem P. (Theorem 5.1). We prove the analogous result for supersolu-
tions (Theorem 5.2).

Throughout this section we will assume that @ = R x ¥ is a full cylinder
(respectively Q = (0,400) x ¥ and Q = (—o0,d) x ¥ is a semicylinder or
Q = (0,d) x ¥ is a bounded cylinder). We define @ = Q x (0,7"), and we
let OnQ =R x 9% x (0,T) (respectively OnQ = (0,400) x 9% x (0,7T) and
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ONQ = (—00,d) x 0¥ x (0,T) or ONQ = (0,d) x 0¥ x (0,7")). In addition,
w will be a function satisfying the following list of conditions:

(i) For every A > 0, there exists ¢g > 0 such that if ¢ < gg, {w > Ae}
is given by 21 < p.(2/,t) and {w < —Ae} is given by z1 > ¢.(2/,t), with
pesge € CHE x [0,T]) and Vype,Vage € C*2(% x [0,T]). Moreover,
[Ipe (2", 0)|| 15y < € and ||g=(2", 0)||c14a(x) < C for € small.

(i) |Vw™(xo,to)| > 0 for every (zo,t0) € @ NI{w > 0}.

(iii) In case Q = (0,+00) x X, we assume that w(0,2’,t) > 0 for (2/,t) €
3 x [0,T).

(iv) In case Q = (—o0,d) x X, we assume that w(d,2’,t) < 0 for (2/,t) €
¥ x [0,T).

(v) In case Q = (0,d) x X, we assume that w(0,2',t) > 0 for (2/,t) €
3 x [0, T] and that w(d,2’,t) < 0 for (z/,t) € T x [0, 7).

We call this list of conditions (H1).

Theorem 5.1. Let w be a classical subsolution to P in @, with ‘?9—17;’ =0 on
OnQ, satisfying (H1). Assume, in addition, that there exists 6y > 0 such
that

Vwt? = |[Vw > =2M 46y on QN d{w > 0}.
Let A= A(L, M, o) > 1 be the constant in Lemma 4.1, where L > 0 is such
that |Vw| < L in a neighborhood of the free boundary Q N o{w > 0}.

Then, there exists a family v € C(Q), with Vv¢ € L} (Q), of weak
subsolutions to P. in Q), with %—1;75 =0 on ONQ, such that, ase — 0, v — w
uniformly in Q.

Moreover, v° = w in {|w| > Ae} and Vv© € C({|Jw| < Ae} N {t > 0}).

Proof. Step I. Construction of the family v®. For every ¢ > 0 small, we
define the domain D¢ in the following way: D¢ = {(x,t) € Q : p(2/,t) <
x1 < qe(2/,t)}. Let w® be the solution to P, in D¢ with boundary data

‘(2. 1) Ae on x1 = p(2',t),
wé(z,t) =
’ —Ae  onxy = q.(2,1),

owe

on

=0on OyD® :=9D° NINQ,

and initial data
we () on 0D N{t=0}.

In a first stage we make an additional assumption. We need some no-
tation: For every =z € Q, we let r(z) € d{w(x,0) > 0} be defined as
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r(z) = (po(2'),2") where {z1 = po(z'), 2" € X} = QN d{w(z,0) > 0},
and py € C1T(¥), so that r € C1T¥(Q; Q) and

r(z) — xo if zp € QN H{w(x,0) >0} and z — xo.
Then, we assume that

Vg (r(2))| = F*(2') € C'*(E)  with %Fi:()onaz. (5.1)

In order to construct the approximate initial function w§ we smooth out wy
near its free boundary by means of the profile ¢ = ¢(R;s), with 0 < s < R,
the solution to (4.5). This is, we let

wg(z) = E(p( A n A ‘ A
0 [Vwg (r(z))] [V (r(z))]” [Vwg (r(z))]
e[ Vg (r(@))] a|vw0—<r<x)>\)7 (5.2)

where wo(x) = w(z,0). Clearly, wg € C*(D° N {t = 0}).

For the existence and regularity of the solution w® of the problem thus
stated we refer to Theorem 4.1 in [19], where it is shown that there exists a
unique solution w® € C(D°) with Vw® € C(D° N {t > 0}) N L*(D*).

Finally, we define the family v* as follows:

o — {w in {Jw| > Ae},

w® in DE.

On the other hand we can see that, if t. /e is small enough, w§ is C'T* in a
neighborhood of each point z. such that w(z.,t.) = +Ae.

In fact, let us write w§(z) = ep(R(x), se(z)). Let L be such that |Vw], |w|
< L in a neighborhood of @ N 9{w > 0}, and let Ry = 2. Now let 1 > 0 be
the constant in Proposition 4.1 and let (x.,t.) be such that w(z,t.) = Ae.
Then,

A
wo(x) = wo(x) — w(xe, te) + Ae > Ae — L(|lz — x|+ to) > 5E> 0

if | — x| < e and % < p1, where pq is small enough.
Therefore, for |z — z.| < p1e and % < pu1,

5o(z) = Ae — wp(x) < L(jz — x| + t.)
TN =T evan

if |x — x| < poe and tf < po, where pg < puy.

<nr
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Analogously, let R(z) = |Vw()+‘?r(x))| + IVwEI?T(I))I' If w(ze,t.) = —Ae, there

exists piz > 0 such that wo(z) < 0 when |z — .| < pge and %= < pp.
Therefore, if |z — x| < poe, %5 < pp and pyg is small enough,

_ o —Aﬁ—wg(ﬂf) ) — L(’SC—.T5|+7§€)
= s e - T T

> R(z) —m

where v > 0 is such that |[Vwg | > 7.

So, since R(x) > Ry, it holds that w§ € C(Q N Byye(x.)) if w(z.,t:) =
+Ae and %5 < po-

Step II. Passage to the limit. Since |p(R;s)| < Afor 0 < s < R, it follows
that [w®(z,0)| < Ae in D° N {t = 0}. Applying the comparison principle for
solutions of P. we deduce that |w®| < Ae in D*. Hence,

sup [v° — w| < 24e,
Q
and therefore the convergence of the family v follows.

Step III. Let us show that there exists €9 > 0 such that the functions v*®
are subsolutions to P, for € < &y.

If |v°| > Ae, then v = w, which by hypothesis is subcaloric. Since
Be(s) =0 when s > € or s < 0, it follows that the v* are subsolutions to P,
here.

If |v°] < Ae, then we are in D€, and therefore, by construction, the v®
are solutions to P.. That is, the v®’s are continuous functions, and they
are piecewise subsolutions to P.. In order to see that the v® are globally
subsolutions to P, it suffices to see that the jumps of the gradients (which
occur at smooth surfaces) have the right sign.

To this effect, we will show that there exists eg > 0 such that

[Vw®| < |[Vw| on {w= Ae}, fore <ey, and (5.3)

|[Vw®| > [Vw| on {w = —Ae}, for e < . (5.4)

Case I. If (5.3) does not hold, then, for every j € N, there exist £; > 0

and (z¢,,t;) € Q, with &5 — 0 and (=.,,tc;) — (v0,%0) € d{w > 0}, such
that

W (ze;,te;) = Aey and  [Vw (ze,, te;)| > [Vw(ze,, te;)|- (5.5)

From now on we will drop the subscript j when referring to the sequences
defined above and € — 0 will mean j — oco.

Since on the lateral boundary we have the Neumann data 88—“7’; =0, we will
use a reflection argument and assume that the points (z.,t.) are far from
the lateral boundary (with a different equation).
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In fact, if (zo,t0) € R x 0% x [0,T] we apply Proposition A.1 in [17] and
deduce that there exists a change of variables y = h(x) such that h(zg) =0
and such that the function

(1) we (z, 1) for yy >0
u y =
Y us(ylw"anyh_yN?t) for ?JN<O

is a weak solution to

9 ou® out
A W) ) + D by, t) 5 — —uf = () in {|u°| < Ae
Zjayi(ﬂy)ayj) Doy o = 0 i (o] < )

for y in a neighborhood N of the origin and ¢ € [0,T]. Here a;; € WH(N),
b € L¥(N x [0,T7)).

We choose the variables in such a way that Vhi(xo) Yw(zoto)

= T NVuwt(zobo)]
—%, th(ﬂfo) . Vh](.%‘()) == 6@']’ and aij(O) = 51] We will sometimes
denote y = (y1,v¥’). And we denote y. = h(xz.). We point out that the
change of variables, the neighborhood A and the coefficients in the equation
depend only on the domain X.

If, on the other hand, (zo, %) € %[0, 7] we change the origin and perform
a rotation in the space variables, and we are in a situation similar to the one
above. N

In any case, since Vhl(ﬂfo) == *%, Vhl($0)Vh] (l‘o) = 52']" {wa =
Ae} = {w = Ae} and {w® = —Ae} = {w = —Ae}, there exist a family f.
and a family g. of smooth functions such that, in a neighborhood of (ye, t.),

{u* =Ae} ={(y: ) 11 —yer = fo(y' =y t — o)},

{uf = —Ae} ={(y:t) s y1 —yer = 0=(y/ — ' t — o)}, (5-6)

{luf| < Ae} = {(y,t) : fe(y' =yt — 1) <1 —yer < ge(y' —y'st —t)},
where it holds that f.(0,0) = 0, |V, f:(0,0)] — 0, [V4g-(0,0)] — 0 and

e — 0. We can assume that (5.6) holds in (B,(y:) X (t- — p®,t- + p?)) N{0 <
t < T} for some p > 0. Let us now define

1
aa(y’ t) = gua(ye + ey, te + 52t)7

_ 1 ) 1
f,t) = gfe(ey’,s%), g:(y 1) = gge(ey’,€2t),
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and let 7. = ;—3, &= % We have, for a subsequence, 7. — 7 and & — &,
where 0 < 7,& < +00 and 7 and £ cannot be both finite. We now let

P p* p?
A= {0l < 2.~ min(re, ) < ¢ < minie, )}

Then, the functions u® are weak solutions to

0 ou’ ou® N _
Z@(a’bgj ay)+ bf 8y - ai = ﬁ(aE) m {fE(y,at)< y1< gE(y/at)} m A87
ij 0t J i !

ut = A on {y1 = f-(v/, 1)} N A,
ut = —A on {y; = ge(y,at)} N A,
‘aa‘ <A in {fs(y/at) <y < ge(ylyt)} mI&a (5'7)

where af;(y) = ai;(ye +€y), bj(y, 1) = ebi(ye + ey, te + ).

Note that f.(3/,t) — 0 uniformly for (3/,t) in compact subsets of RV =1 x

R. Let us see that g.(y',t) — R uniformly for (y/,¢) in compact subsets of
A

N-1 _ A
R x R, where R = o (o)) + NTEEDIE

In fact, it suffices to prove that g-.(0,0) — R. Let u(y,t) = w(z,t).
Let di > 0 be such that u(y.; + d1,y.,tc) = 0 and d2 > 0 be such that

w(Yeq + di +do, yl,t.) = —Ae . Then,

di
—Ae = / “yl(s + Ye1; yévta) ds = uy, (5 + y€17y27ts) di,
0

and
d1+da 5
—Ae = / Uy, (5 + y&l’yévts) ds = Uy (§ + yslayéata) d2-
d1
So,
9:(0,0) _ dy + ds _ A n A
€ € |uyl(§+y517yé7t5)| |uy1(§+yalay‘/§7t€)|.
Therefore,
0,0 A
gE(O’O) — gE( ) — T _|_ -
€ |y, (0,0)] |y, (0,0)]
A A

=R.

= +
’V'LU"'(:L'o,to)’ ]Vw—(xo,to)\

So we are under the hypotheses of a compactness result which is precisely
stated at the end of this proof as Lemma 5.1. According to this result there
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exists a function @ such that, for a subsequence,
aeCPHO ({0<y <R, —7 <t<§)}),
u —u uniformly on compact subsets of {0 < y1 < R, —7 <t < &},
Au—u =) m{0<y <R, —7<t<E},

=A on {y; =0, —7 <t <&},

u=—-A on{y1 =R, —T<t<E},

lul < A in{0<y; <R, —7<t<E}

We will divide the remainder of the proof into two cases, depending on
whether 7 = +o00 or 7 < +o00.
So, assume first that 7 = 4-o00. In this case, Lemma 5.1 also gives

[Va®(0,0)] — [Va(0,0)].

On the other hand, # is under the hypotheses of Lemma 4.3, and therefore
there exists § > 0 such that

‘va’ - \/‘Vw+($0,t0)’2 —d on {yl = 0}1

|

which yields

V@ (0,0)] < v/[Vw (zo, t0) 2 — 6/2,
for € small. But this gives
[Vw®(ze, te)| < [Vw(ze, t)],

for € small. This contradicts (5.5) and completes the proof in case T = +o0.
Assume now that 7 < +4o0o. (In this case & = 4o00.) It holds that
w(y, —7:) = %us(ye + €y,0); then,

u(y, —7e) = 90( g + : '
C Vg (r(h= (ye +ey))l - [Vwg (r(h (ye +ey)))|
A w(—)i_(h_l(ya + 59))

Vwg (r(h=(ye +ey)))| el Vug (r(h=(ye + £y)))]
wy (W™ Hy: +€y)) )
e|Vwy (r(h=(y= +€y)))|

when zgp € R x ¥. When zy € R x 9%, (5.8) holds for (y. + ey)n > 0 and
we obtain u®(y, —7¢) for (y- + ey)n < 0, recalling that

(5.8)

ua(yao):ua(yla--'ayN—la_vao) for YN <0.

We want to apply here the result of Lemma 5.1 corresponding to 7 < +oc0. In
fact, we can see that there exist C, uo > 0 such that [[a°(y, —7)lc1+a(z,, (o))
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< C. In case 29 € R x ¥ we use the fact that &= — 0 (and therefore ¢y = 0)

when 7 < +00, so that w§ € CT*(Q N Byye(z:)). In case that zg € R x 9%

we argue in a similar way and we also use that gyijj(y, 0) =0 on {yny =0}.
For a proof of this last statement let us recall that, on {yy = 0},

8 _ 8w0
%wo(h Y(y) = a—n(l‘) =0

9 T
%]Vwo (r(h™(y)| = 8—77’(36/) =0
for x = h~!(y). Now Lemma 5.1 gives, for a subsequence,

aeC™2({0<y <R t>-1}),

u(y, —7z) — u(y, —7) uniformly on compact subsets of {0 < y; < R}.

Let us observe that for every g > 0 and x > 0 there exists €9 > 0 such that
for 0 < e < e, if |y| < p,

A

| < ——— —x implies that wo(h ™ (y. +ey)) > 0,
|Vwg (o) )

Y

Yy > m +x implies that wo(h™*(ye + ey)) < 0.
. + _
Therefore, using the fact that Vhi(zg) = —|§Z+E§EZ§§§| - _Igz‘gigzitgg' and

Vhi(zo) - Vhj(xo) = 6;j, and the fact that h™1(y: +ey) — 2o and & — 0 we

1>
. A
get, if y1 < Vg @)l

4 woh (e +ey)) _ wg (B (ye)) —wg (B! (ye +ey))
’w+(h_l(y€)7 te)e— wa_(h_l(ye)) _ 7vwar($€)Dh—1(ys) Y+ 0(1)

— Vg (zo)| y1.-

+

So that, since r(x) — zg if g € d{w > 0} is such that x — xo,

u(y,—7:) — p(R;vy1), (¢ —0) in {0 <y < W}.
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) A
On the other hand, if R > y; > [Vwd (z0)]’

A w&(h_l(ya + 53/))

Vg (e + ep))| | e[V (r(h= (g + <)
_ A n A

Vg (e + )] | [Vawy (A (g + 29))]

wo(h™ (ye + e9) |

( : ) S e e )
| [Vwy (@)

|Vwg (o)

—>R (R_yl):yl-

In fact,

wo(h™'(ye +2p)) , _ wolh™'(ye +ey)) — wo(h~ (v + (1 + 6-)ey))
£ 5
wo(h™Hye + (14 0)ey)) — w(h™Hye + (1 + 0:)ey), te)
5
where 6. is such that w(h=(y. + (1 + 0.)ey),t.) = —Aes. So that, since
(1+6-)y7 — Rase — 0,

wo(h™(ye + €y))
= —Vwo(h ™' (y-)) Dh™ " (y)0=y + o(1) — |Vwg (z0)| (R — 1)

Thus, we get that u(y, —7) = p(R;y1).

Since the function ¢(R;y1) is a stationary solution to equation (4.1), and
4 = ¢ on the parabolic boundary of the domain {0 <y <R, t> —T}, we
conclude that u(y,t) = ¢(R;y1) in {O <y <R,/ t> —T}. It follows that
there exists 0 > 0 such that

Val = IV (@0)2 — 8§ on fy1 = 0,¢ > —7}.
But Lemma 5.1 gives |Va®(0,0)| — |Vu(0,0)], so that

_|_

+A

[V (e, te)| < \/!Vw(T(wo)P =0/2 < V/[Vw(ae, te)? - /4,

for € small. This contradicts (5.5) and completes the proof that (5.3) holds
in case T < +o0.

Case II. Assume now that (5.4) does not hold. Then, For every j € N
there exists ¢; > 0 and (z,,t;) € Q with &5 — 0 and (z¢,,tc;) — (w0,t0) €
d{w™ > 0} such that

W (e, te,) = —Ag and |Vw (ze,, te;)| < |[Vw(ze,,te;)]. (5.9)
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We proceed as before, but this time it holds that g.(0,0) = 0. Then, we
define

) 1
@ (y,1) = Zu(yer + 21 = R), YL + eyl te + %)

- 1 B 1
fa(y/7t) =R+ gfg(EyI,EQt), ge(y/7t) =R+ ggs(&/, 52t)

and we let 7., &, 7 and £ as before.
So, the functions @ are weak solutions to (5.7) where af;(y) = aij(ye1 +
e(yr — R),y. +ey’) and b5 (y,t) = ebi(yey +e(y1 — R), 4L + ey, te +%).

Here R = oo (oomy T [vom(am) Toerefore, Ge(y/,#) — Rase — 0

since 1g.(0,0) = 0, [Vg=(0,0)| — 0. On the other hand, proceeding as we
did with g. in Case I, we see that f.(y,t) — 0 uniformly on compact subsets
of RN=1 x R. Now the proof follows exactly as in Case I. Here we use the
estimates of Lemmas 4.3 and 5.1 on the boundary y; = R and the fact that
©(R,y1) = lim._o@®(y, —7) satisfies on y; = R that ¢’ = —\/72+ g — 0
with v = |Vw™ (z9,%0)|. So the proof is finished when (5.1) holds.

Eliminating the extra regularity assumption on |Vw(jf|. Assume now
that (5.1) does not hold. Only small changes are needed in the above proof
to overcome the lack of differentiability of |[VwZ| in the definition of wg.
This is done as follows: We can construct sequences F-= of functions which
are C'7® on ¥ such that, with the notation of (5.1), F¥ — F* uniformly
in ¥ as e — 0, and
OFF
on’'
In fact, we cover a ¢ neighborhood of the boundary of 3 with a finite number
of sets which can be seen as images of sets of the form N x [0, d], where NV is a
ball in RN~=2 of radius 6. On each of these sets we construct an approximation
of F* with zero normal derivative in the following way. First we make a
convolution of the function F*(h~1(y)') (already extended to {|yn| < 26}
in a symmetric way) with a kernel ¢.(y') = e N=1¢(y/ /e) where ¢ is a
smooth function which is symmetric in the yy variable. The approximate
function is then obtained by going back to the original variables. On the
other hand, far from the boundary we perform a standard regularization.
In a similar way, we can construct a partition of unity associated to these
neighborhoods such that the functions of the partition with support inter-
secting the boundary of ¥ have zero normal derivative. In this case, the
convolution of the characteristic function of 2N x [—24,26] is made with
bs(y') = 6~ IN=1}p(3//5). This ends the construction of the functions FZF.

=0 on 0X.
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With this construction we take as initial datum for £ > 0 small

wi(2) = ¢ < A N A A B wa'(x) wq () )
O =N @) T (@) FF ) eFS () | eFs (o)
instead of (5.2). From this point the proof follows as before. O

Now we state the compactness result that was used above.

Lemma 5.1. Let ¢j, &, and 7., be sequences such that j > 0, €5 — 0,
§e; >0, &, =& with0 <§ <400, 7, >0, 7.; = 7 with 0 <7 < 400 and
such that T < 400 implies that § = —|—oo Let p> 0 and Ae; = {(z,1) : |2| <

£ - min(7,,, —) <t< mln(fej, _ } Let the u% be weak solutions to

5Jau 53’@_—51'_ €5
%:ax “ik Dy HZZ,:Z’Z‘ oy = PE)

in {fsj(x’,t) <y < gy (o, 1)} NA,

i = A on {331 = fgj ($/,t)} N AEj?
ﬂej = —A on {33]_ = gaj (1‘,71:)} N Agj’
‘ﬂsj’ < A m {fgj ("L’/,t) <1 < gej- (mlvt)} N Aaj’

with w¥ € C({f;(2',t) < 1 < g, (@', )} N Ac,), and VU € L?. Here
affﬁ' — ik and bfj — 0 uniformly on compact sets of RN and of RN x (—7,&)
respectively, and f.; and ge; are continuous functions such that fo; — 0
and ge, — R uniformly on compact subsets of RN=1x (—7,€). Moreover, we
assume that ||z, os () H Ve oy g gy a1 113 ooy 1V, | gt g
are uniformly bounded for every compact set K ¢ RN=1x(—7,¢). In addition
we assume that ||b;’||e and ||agi ||y are uniformly bounded. Moreover,
alk are uniformly parabolic with constant independent of ;.
Then, there exists a function @ such that, for a subsequence,

€0 ({0<a <R, —T <t <&},

U — U uniformly on compact subsets of {0 < x1 < R, —7 <t <},
Au — up = () in{0 <z <R, -7 <t<E},

u=A on{r1 =0, -7 <t <},

u=—-A on{r1 =R, -7 <t <&},

lu] < A in{0<z <R, —7<t<E}

If ¢ < 400, we require in addition that
Hf;j (xlat + f&j - S)Hcl(K) + Hvr’fs] (l’l,t + §€j - g)”ca’%(K) and
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Hgaj (I/,t + 55]' - E)HC’l(K) + Hvx’gaj (:L‘/,t + 55]' - E)Hca%(K)
be uniformly bounded for every compact set K C RN~ x (—o0, €], and we
deduce that w € C2+O"1+%({O <z <R, t<&}). If T < 400, we let
BE]' - {Z’ : ’.’L‘l| < Eﬁj’ ij(wla_Taj) <r1 < gsj(x,a _7—5]')}7

and we require, in addition, that for every p > 0
Hufj (.’,U, _ng)HCa(Eaiju(O) S C
and that there exists pg > 0 such that (with the notation x = (x1,2")),
Hﬂfj (33‘, _TEJ')HCU’O‘(EsijuO (0,0)) < C, Hﬂfj (gj’ —7'5]->H01+Q(E€j NBy, (R,0)) < C.
Moreover, we assume that

Hfgj(x',t — 7, +Dller iy + Hvszgj(w’,t — T, —i—T)HCa,%(K) and

ngj(x/at — Tej + T)HCI(K) + Hvx’gq(xlat — Te; + T)Hca%(K)

). Then,
ﬂ(.%, _T)

&

it holds that u € C*2({0 < w1 < R, —7 < t}), w5 (z, —7;)
uniformly on compact subsets of {0 < z1 < R},

are uniformly bounded for every compact set K C RN71 x [—7, 00
—

Vue C({(z,t),0<z1 < po, 2| <po,t>-7}),
and
VieC({(z,t), R—po <z <R, |2/| <po,t>—1}).
In any case (1,& infinite or finite) it holds that, when fgj(O, 0) =0,
|V@(0,0,0)| — |Vu(0,0,0)],
and, when g.,(0,0) = R, |Vu® (R,0,0)| — |[Vu(R,0,0)|.

Proof. The proof follows the lines of Lemma 4.4 in [17]. Here we use a
change of variables similar to that in Proposition 3.1 in [19] in order to
straighten up both lateral boundaries at the same time. This is, we take

_ R
gaj (‘T/7 t) - faj (xla t)
We end this section by stating the corresponding result of approximation
of a supersolution.

Y1 (LIZ‘l _faj(xlat))) y/ :xl' O
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Theorem 5.2. Let w be a classical supersolution to P in Q, with %—17‘7’ =0 on

ONQ, satisfying (H1). Assume, in addition, that there exists g > 0, with
|Vw™|? > 8 on the free boundary Q N d{w > 0}, such that

VT |? = |[Vw > =2M -6  on QN d{w > 0}.

Let A = A(L,M,éy) be the constant in Lemma 4.2, where L > 0 is such
that [Vw| < L in a neighborhood of the free boundary. Then, there exists a
family v¢ € C(Q), with Vov° € L (Q), of weak supersolutions to P. in Q,
with %L; =0 on OnQ, such that, as e — 0, v° — w uniformly in Q.

Moreover, v¢ = w® in {|w| > Ac} and Vv© € C({|w| < Ae} N {t > 0}).

Proof. We construct the family w® exactly as we did in Theorem 5.1, but
this time we take as A the constant in Lemma 4.2 instead of Lemma 4.1,
and ¢(R;s) is the solution to (4.5) corresponding to this choice of constant
A. Then, we let as in Theorem 5.1

o — { w in {|lw| > Ae},

w® in DE.

As before, an application of the maximum principle gives the uniform con-
vergence of v° to w in Q.

The proof of the fact that v° is a supersolution to P; if ¢ < gq follows in
a way similar to the corresponding proof for subsolutions in Theorem 5.1 by
using Corollary 4.2 and Lemma 4.4 instead of Corollary 4.1 and Lemma, 4.3.
Thus, we omit it here.

6. EXISTENCE AND UNIQUENESS OF THE LIMIT SOLUTION

In this section we prove that, under certain assumptions, a classical so-
lution to the initial and boundary value problem associated to P is the
uniform limit of any family of solutions to P. with corresponding boundary
data. This in particular implies that such a limit exists and is unique.

In particular, under the assumptions of this section our classical solution
is the unique classical solution and also the unique viscosity solution (by the
results of Section 3).

Our first result is the approximation in a bounded cylinder. For the sake
of simplicity we will assume that = (0,d) x X.

Theorem 6.1. Let Q2 = (0,d)x%, Q@ = Q2x(0,T), OnQ@ = (0,d) x9Xx(0,T)
and OpQ = 0,Q \ ONQ. Let u be a bounded classical solution to P in Q,
with g—qj] =0 on ONQ, such that uy, <0 on dpQ. Assume that u(0,z',t) > 0

for (z',t) € ¥ x [0,T] with u(0,2',t) € C>1(X x [0,T]) and u(d,2',t) < 0
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for (z',t) € B x [0,T] with u(d,x’,t) € C**(X x [0,T]). Let u® € C(Q) with
Vus € C(QUAINQ)NLE (Q) be a family of bounded weak solutions to P- in

loc

Q, with % =0 on ONQ, such that u® — u uniformly on 0pQ.

Then u — u uniformly in Q.

Proof. Let a > 0; we will extend u to Q4 = (—a,d+a) x X x (0,T) in such
a way that u € C(Q,), u > 0in —a < x <0, u<0ind <z < d+ a,
Ly <0in Qg N{u >0} and Lu > 0 in Q4 N {u < 0}.

Let ¢ > 0 be such that u,, < —c on dpQ. Let Fy(a',t) € CHL(Z x [0,T))
be such that u(0,2',t) = Fo(a/,t), and let Fy(2',t) € C**(X x [0,7T]) be such
that u(d,z’,t) = Fy(«/,t). Finally, let us define u(x1,2’,t) in @, \ @ in the
following way:

u(zy,2',t) = Fo(2',t) — cxy — ka?  for x1 € (—a,0),
u(zy, 2’ t) = Fy(a',t) — c(xy —d) + k(zy — d)?  for 1 € (d,d + a).

Thus, clearly if k is large enough u satisfies all the requirements.

Given p > 0 and o > 0 small, we define in Q, u,(z,t) = (1 +0)u(z1 +
p,x’,t). Then, u,, is a classical subsolution to P in @ N {z1 < d — p} with
vanishing Neumann data on OyQ N{x; < d— u} where p > 0 is chosen small
so that u,(0,2',t) > 0 if p < p.

Given 6 > 0 we choose p and o small so that u,, > u — J. On the other
hand, using Corollary 3.3 and the results of [15], which imply that |[Vu™| > 0
on @ No{u > 0}, we see that u,, is under the hypotheses of Theorem 5.1
in @N{xy < d— p}. Therefore, there exists a family v* (depending on p
and o) of subsolutions to P in @ N{z1 < d — u}, such that

8 15
81;7:0 on ONQN{xy <d— pu},
v* = u,, uniformly in QN {xy <d—p}, ase — 0. (6.1)

Let us observe that by the construction, v* = u,, in a neighborhood of
{x1 = d — p}, so that we can extend v® to @ letting v* = u,, in d — p <
x1 < d, and it follows that the v° are subsolutions to P. in @ satisfying (6.1)
up to z1 =d.

In addition, it follows from the uniform convergence of v* to u,, that o
can be chosen small enough (and p small depending on o) so that we have,
for e < e¢(9),

v* <u®  on dpQ,
ov®  Ouf
on  On

=0 on JINQ.
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Consequently, v* < u° in Q. Therefore, Upo — 0 < uf in Q, and finally we
obtain B
u—20 <u®  in Q.
In order to show that u® < u + 24, we proceed in a similar way.
For p > 0 and o > 0 small, we define in Q)

upﬂ(x’t) = (1 - U) U(Qj‘l - P xlvt)'

We choose p and o small enough so that u”? < w + 6. Then, if o is small
enough, u”? is under the hypotheses of Theorem 5.2 in the domain @QN{z; >
wu} where g > 0 is chosen in such a way that u”?(d,2’,t) < 0if p < p.
Therefore, there exists a family v® (depending on p and o) of supersolutions
to P in Q N {x1 > p}, such that

v 0 ONQ N {z1 > p}
on x
977 N 1 )
v —u” uniformly in @ {.Tl > ,u}, as e — 0. (6.2)

Since by the construction in Theorem 5.2, v® = u”? in a neighborhood of
x1 = u, if we extend v to the whole region @ letting v* = v in0 < 1 < p,
it follows that the v° are supersolutions to P. in @ satisfying (6.2) up to
xr1 = 0.

We finally choose o small enough (and p small depending on o) so that

we have . .
v®* >u®  on JpQ@,

ov®  ou®
= =0 0
o ~ o on INQ
for € < e1(6). Tt follows that v > u® in Q. Therefore,
u?? +5>u° on Q,

so that u + 26 > «f on Q. Thus, u° converges uniformly to u in Q. O
A similar result holds for a full cylinder as spatial domain, under suitable
monotonicity assumptions at x; = +o0.

Theorem 6.2. Let Q =R x X, Q = Q x (0,7), OnQ = R x 9% x (0,T)
and OpQ = 0,Q \ ONQ. Let u be a bounded classical solution to P in @Q,

with g—z =0 on ONQ and HuHCa,%@) < o0, such that u‘aDQ has a bounded,

nonempty free boundary. Assume that uy, < 0 on OpQ and ug, (z,0) <
—cre= 1l for |z > a for some constants ci, ¢z, a > 0. Let u® € C(Q)
with Vu® € C(QUINQ) N L2 (Q) be a family of bounded weak solutions to

P- in Q, with %—f =0 on INQ, such that u® — u uniformly on OpQ, with

|u (2,0) — u(z,0)| < kie ™% for |z1| > a for some constants ky, ky > 0.
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Then v — u uniformly in Q.

Proof. Step 1. Behavior of u* and w for 1 — +o0o. Let us first see that we
can take a large enough so that, for some ;1 > 0,

u® >¢ for 1 < —a, (6.3)
u® <0 for z1 > a. (6.4)
In fact, let ¢, Ky > 0 be such that, for ¢ < g, it holds that u®(x,0) > 2¢

for x1 < —Ky. For 9 > 0, K > Ky and A > ||ai]|eo, let us consider the
function

2 +
v_(w,t):c<1—exp{g(:v1+At)+a—2t+Kg}>
c c c
2
v ( a a o >—
~De(1—expf? H+ L g2
_ exp{c(a:1+A)+ att C}

where v > 0 and o = /2M + dyp + 2. Then, for every R > 0, v_ is a
bounded classical subsolution to P in @ N {z; < R}, with 85—77* = 0 on
ONQN{z; < R}, such that QNd{v_ > 0} is bounded and |Vv|?—|Vv_ |2 =
2M + §p on Q N O{v_ > 0}. Moreover, it holds that v_(z,0) < ¢ for z € Q.

Let us choose K large enough so that v_(z,t) < —2C for x1 > —Ky, t €
[0, T], where C > [[u®||o0(q). Since v_ satisfies the hypotheses of Theorem
5.1 with Q = (—o0, R) x X for every R > — Ky, we can construct a family v<
of weak subsolutions to P, in QN{z; < R} with a(;;_?; = 0on OnQN{z1 < R},
such that v* — v_ uniformly in Q N {z; < R}.

Then, there exists 0 < g1 < g¢ such that v¢ (z,0) < 2¢ in QN {z; < R},
v (2,0) < —C for —Ky < 1 < R and v%(x,t) < —C for x1 = R, t € (0,T)
if ¢ <ej. Thus, v& (2,0) < u®(x,0) in QN {z; < R} for ¢ <ej and

ve (x,t) <u(x,t) onz =R, forte (0,7).

Therefore, v < uf in QN {x; < R} so that, if a is taken large enough, (6.3)
holds.

Let us now see that we can take a so large that (6.4) also holds. In fact,
let Ky > 0 such that u®(z,0) <0 for 1 > K. Let

V2M — & 2M — by 2M — g +

) =20(1-exp{ Y= =0 t— K}).
vrle,t) = 20(1 —expy 55 AC? 2C

Then, if K > Kj is large enough, it holds that vy (z,0) > %C if z1 < K.

On the other hand, v > 0 in @ and vy is a bounded classical supersolution

to P in () with bounded free boundary such that \VUI 2 = 2M — 6y on

the free boundary. By Theorem 5.2 in [17] there exists a family v5 of weak

($1 + At) +
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. . . ovs .
supersolutions to P, in () with (% = 0 on OyQ such that v — v uniformly
in Q. Thus, there exists €5 > 0 such that for ¢ < &9

v3 (2,0) > u®(x,0) in Q.

Therefore, v > u® in @, so that (6.4) holds if a is large.

On the other hand, u satisfies the hypotheses of Proposition 2.3. There-
fore, @ N O{u > 0} is bounded, so that we may choose a large enough in
order to have, in addition, that

u >0 in 1 < —a,
u <0 in x1 > a.
Therefore, for € < &7 and w® = u® — u, it holds that
Lw® =0 in |z >a, 0<t<T
w(z,0) < kie Rt in |z1| > a
w® <L onl|zi|>a, 0<t<T

for some constant L independent of €. Therefore, there exist kq, ks > 0 such
that, for some constant [; > a independent of ¢,

w®(z,t) < ke F2et in|z1| > 1, ife <ey.
We may replace the function w® above by —w*®. Therefore,
W (z,t) — u(z,t)] < ke ™ in|zy| > 1y, ife <ey. (6.5)

Let us now analyze the behavior of u,, for 1 — £o0o. It holds that

Lugy, =0 inl|z1|>a, 0<t<T
Uz, (2,0) < —cre™ @™ in |2 > a
Uy, < =T onlzi|=a, 0<t<T

for some positive constant r. Therefore, there exist ¢1, ¢ > 0 and ls > a
such that
Ug, (2, 1) < —cre™ @2 in || > 1. (6.6)
Step II. Let 6 > 0. We will show that
|u® —u| < 26 in Q

if € is small enough.

In fact, the proof follows exactly as that of Step II of Theorem 6.2 in [17].
In the present situation the comparison of the functions u,, (respectively
u”?) and w is done in the bounded cylinder @ N {|x1| < I} where [ is chosen
large enough. O
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Using the ideas of Theorems 6.1 and 6.2 we can prove the following the-
orem in a semicylinder. For the sake of simplicity we will state it for the
semicylinders (0, 00) x ¥ and (—o0,d) x X.

Theorem 6.3. Let Q = (0,00)x3 (respectively (—oo,d)xX), Q = Qx(0,T),
OnQ = (0,00) x 0% x (0,T) (respectively OnQ = (—o00,d) x 90X x (0,T)) and
OpQ = 0,Q\ONQ. Letu be a bounded classical solution to P in Q, with ‘g—z =
0 on ONQ and Hu”ca,%@)
free boundary. Assume that ug, < 0 on O0pQ and uy, (,0) < —cie
for x1 > a (respectively for x1 < —a) for some constants ci, ca, a > 0.
Also, u(0,2',t) € C>1(Z x [0,T)) with uw(0,2',t) > 0 for 2’ € ¥, t € [0,T]
(respectively u(d,x’,t) € C?1(Z x [0,T]) with u(d,2',t) < 0 for 2’ € %,
t €[0,T)). Let u* € C(Q) with Vu® € C(Q U INQ) N L2 (Q) be a family
of bounded weak solutions to P. in @Q, with %—’5 = 0 on ONQ, such that
uf — w uniformly on dpQ, with |uf(z,0) — u(z,0)| < ki e %27 for 21 > a
(respectively for 1 < —a) for some constants ki, ko > 0.
Then u — u uniformly in Q.

< 00, such that U‘BDQ has a bounded, nonempty

—c2 |21

7. COMMENTS AND CONCLUDING REMARKS

The results about uniqueness and coincidence of the classical, viscosity and
limit solution established in this paper for the two-phase problem are parallel
to similar results obtained for the one-phase problem in [17]. Also, the idea
of constructing super- and subsolutions of the problems P. by rounding
the classical super- or subsolution of the free-boundary problem near the
free boundary is similar to the one-phase case. However, in the two-phase
problem the values of the slope of the super- or subsolution at each side
of the free boundary are not individually controlled since the free-boundary
condition only gives a relation between both slopes. Consequently, there
is a difference in technique that justifies the detailed derivation done in
this paper. In particular, the construction of the two-phase auxiliary ODE
profiles done in Section 4 is completely different. Moreover, the modified
sub- and supersolutions to the problems P. constructed in Section 5 must
be pasted to the respective free-boundary sub- and supersolution at the levels
u = Ae and u = —Ae for a suitable constant A. There is also a delicate
construction of the initial data since we must use different profiles in different
directions. This entails a number of new theoretical steps.

Besides, there are other differences to be noted: conditions on the supports
that had to be imposed in the one-phase case to ensure uniqueness of the
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limit and viscosity solutions disappear from the statements of the two-phase
case.

The uniqueness result for the one-phase problem has been recently im-
proved by Cafferelli and Petrosyan in [12], where they show that uniqueness
of the limit solution holds without the assumption that a classical solution
exists. They use a different monotonicity condition corresponding to a dif-
ferent geometry, but this difference is not essential. It is not known how to
use their technique in the two-phase problem.

As was mentioned in the Introduction, the results of Sections 2 and 3
apply to the two-phase free-boundary problem with general jump condi-
tion G(|Vu™],|Vu~|) = 0 with suitable assumptions on G(a,b): it must
be monotone nondecreasing in a and nonincreasing in b, and one of both
monotonicities has to be strict, as used in [9] for the elliptic case.
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