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1. Introduction

The area of “dynamic equations on time scales” [3, 4, 14] is a new and general field of
mathematics that enables a more accurate mathematical description of discrete-continuous
processes than the singular fields of differential or difference equations. Such hybrid
processes appear in the population dynamics of certain species that feature nonoverlap-
ping generations: the change in population from one generation to the next is discrete
and so is modelled by a difference equation, while within-generation dynamics vary con-
tinuously (due to mortality rates, resource consumption, predation, interaction etc.) and
thus are described by a differential equation [5, p. 619]. In particular, the area of dynamic
equations on time scales is more general and flexible than either differential equations
or difference equations and hence appears to be the way forward when modelling the
above types of hybrid processes.

This work is concerned with the existence of solutions for the second order dynamic
equation on time scales

y�� = f (t, yσ ), t ∈ [0, T ]T (1.1)

under periodic conditions

y(0) = y(σ 2(T )), y�(0) = y�(σ(T )). (1.2)

We shall study (1.1)–(1.2) by variational methods in two particular situations:
Firstly, when the nonlinearity f is ω-periodic in the second variable for some ω > 0.

More precisely, we shall consider as a model case the forced pendulum equation on time
scales

y�� + a sin(yσ ) = p(t), t ∈ [0, T ]T. (1.3)

For the continuous case T = R, it is well known that if p := 1

T

∫ T

0
p(t)dt = 0, then

(1.3) has at least two geometrically different T -periodic solutions, i.e., not differing in
a multiple of 2π . The first solution was obtained by Hamel [7] in 1922, and the second
one by Mawhin and Willem [10] in 1984. In this work, we extend this result for a general
time scale.

Secondly, we study the case of a nonperiodic but bounded nonlinearity f under the
so-called Landesman–Lazer conditions.

A vast literature exists on Landesman–Lazer type conditions for resonant problems
in the continuous case, starting at the pioneering work [9] for a second order elliptic
(scalar) differential equation under Dirichlet conditions. For a survey on Landesman–
Lazer conditions see e.g., [11].

Existence results for both of the above situations on time scales have been obtained
in [2] by topological methods. Here, the focus is put on the variational structure of the
problem. This allows, in particular, to give a positive answer to the problem of finding
a periodic solution of equation (1.3) when the forcing term p has zero average. It is
pertinent to note, however, that the variational setting for the periodic problem does not
include the case σ 2(T ) �= σ(T ).
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For completeness, let us recall the essential terminology of time scales.

Definition 1.1. A time scale T is a nonempty, closed subset of R, equipped with the
topology induced from the standard topology on R.

Definition 1.2. The forward (backward) jump operator σ at t for t < sup T (respectively
ρ at t for t > inf T) is given by

σ(t) = inf{τ > t : τ ∈ T}, (ρ(t) = sup{τ < t : τ ∈ T}) for all t ∈ T.

Additionally σ(sup T) = sup T if sup T < ∞, and ρ(inf T) = inf T if inf T > −∞.
Furthermore, denote σ 2(t) = σ(σ(t)) and yσ (t) = y(σ (t)).

Definition 1.3. If σ(t) > t , then the point t is called right-scattered, while if ρ(t) < t ,
then t is termed left-scattered. If t < sup T and σ(t) = t , then the point t is called
right-dense, while if t > inf T and ρ(t) = t , then we say that t is left-dense.

If T has a left-scattered maximum at m, then we define T
κ = T \ {m}. Otherwise

T
κ = T.

Definition 1.4. Fix t ∈ T
κ and let y : T → R. Then y�(t) is the number (if it exists)

with the property that given ε > 0 there is a neighborhood U of t such that, for all s ∈ U

|[y(σ (t)) − y(s)] − y�(t)[σ(t) − s]| ≤ ε|σ(t) − s|.
Here y�(t) is termed the (delta) derivative of y(t) at t .

Theorem 1.5. [8] Assume that y : T → R and let t ∈ T
κ .

(i) If y is differentiable at t , then y is continuous at t .

(ii) If y is continuous at t and t is right-scattered, then y is differentiable at t and

y�(t) = y(σ (t)) − y(t)

σ (t) − t
.

(iii) If y is differentiable and t is right-dense, then

y�(t) = lim
s→t

y(t) − y(s)

t − s
.

(iv) If y is differentiable at t , then y(σ (t)) = y(t) + µ(t)y�(t).

Definition 1.6. The function y is said to be right-dense continuous, that is y ∈ Crd(T; R)

if:

(a) y is continuous at every right-dense point t ∈ T, and



4 P. Amster, P. De Nápoli and C.C. Tisdell

(b) lim
s→t−

y(s) exists and is finite at every left-dense point t ∈ T.

We shall use the standard notation for the different intervals in T. For example, if
a, b ∈ R with a < b, then the closed interval of numbers between a and b will be denoted
by [a, b]T := {t ∈ T : a ≤ t ≤ b}.

The paper is organized as follows. In Section 2 we introduce some preliminary results
concerning the Sobolev spaces in time scales.

In Section 3, we study the periodic problem for equation (1.3). Following the ideas
in [10], we generalize a standard existence and multiplicity result to the context of time
scales.

Finally, in Section 4 we obtain a Landesman–Lazer type result for (1.1) under periodic
conditions.

2. Preliminary Results

Let us recall the Lebesgue measure in times scales, defined for example in [6], which
can be constructed in the following way.

For a < b ∈ T, consider A ⊂ P([a, b)T), the σ -algebra generated by the family

{[x, y)T : a ≤ x < y ≤ b, x, y ∈ T}.
Hence, there is a unique σ -additive measure µ� : A → R

+ defined over this basis as:
µ�([x, y)T) = y −x. As mentioned in [1], it is easy to see that µ� can be characterized
as

µ� = λ +
∑
i∈I

(σ (ti) − ti)δti ,

where λ is the Lebesgue measure on R, and {ti}i∈I is the (at most countable) set of all
right-scattered points of T. A function f which is measurable with respect to µ� is
called �-measurable, and the Lebesgue integral over [a, b)T is denoted by

∫ b

a

f (t) �t :=
∫

[a,b)T

f (t) dµ�.

Thus, for 1 ≤ p < ∞ the Banach spaces Lp may be defined in the standard way, namely

L
p
�([a, b)T) :=

{
f̂ : f is �-measurable and

∫ b

a

|f (t)|p �t < ∞
}

,

where f̂ denotes the equivalence class of f of all the �-measurable functions that
coincide with f almost everywhere for the �-measure. The norm of this space will be
denoted by

‖f ‖L
p
�

:=
(∫ b

a

|f (t)|p �t

)1/p

.
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Next, we shall introduce as in [1] the idea of weak time scale derivative (for brevity,
weak derivative):

Definition 2.1. Let f ∈ L
p
�([a, b)T). A weak derivative of f (if it exists) is a �-

measurable function g such that∫ b

a

f (t)ϕ�(t)�t = −
∫ b

a

g(t)ϕσ (t)�t

for any ϕ ∈ [C1
rd]0([a, b]) := {ϕ ∈ C1

rd([a, b]) : ϕ(a) = ϕ(b) = 0}.
Remark 2.2. If f ∈ C1

rd([a, b]), then by the product rule it follows that f � is also a
weak derivative of f .

Remark 2.3. Let g ∈ Crd([a, b]), and define f (t) =
∫ t

0
g(s)�s. Then, by the funda-

mental theorem (see [6]) it follows that g is a weak derivative of f .

Remark 2.4. It is easy to see that if f has zero weak derivative, then f ≡ c for some
constant c. In view of the previous remark, we deduce that if f has a right-dense
continuous weak derivative, then it belongs to C1

rd.

Thus, the Sobolev spaces W
1,p
� ([a, b)) may be defined as in the continuous case:

W
1,p
� ([a, b)) := {f ∈ L

p
�([a, b)) : f has a weak derivative f � ∈ L

p
�([a, b))},

equipped with the norm

‖f ‖
W

1,p
�

:=
(

‖f ‖p

L
1,p
�

+ ‖f �‖p

L
1,p
�

)1/p

.

In particular, for p = 2 we shall denote H 1
�([a, b)) := W

1,2
� ([a, b)), and its norm is

induced by the inner product given by

〈f, g〉H 1
�

:=
∫ b

a

[f (t)g(t) + f �(t)g�(t)] �t.

Basic properties of Sobolev spaces in time scales can be found in [1].

3. The Forced Pendulum Equation

In this section we prove the existence of periodic solutions for the pendulum equation
on a time scale T when the forcing term has zero average. Note that if y is a solution of
(1.3)–(1.2), then y + 2kπ is also a solution for any integer k. So, in order to establish an
appropriate multiplicity result we shall say that two solutions y1, y2 are geometrically
different if y1 − y2 �= 2kπ for all k ∈ Z.
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Theorem 3.1. Assume that σ 2(T ) = σ(T ), and that p ∈ L1([0, σ (T )) satisfies p = 0,

where p := 1

σ(T )

∫ σ(T )

0
p(t)�t . Then problem (1.3)–(1.2) has at least two geometri-

cally different solutions, i.e., not differing in a multiple of 2π .

For a proof of Theorem 3.1, let us consider the space

H := R + H 1
0 ([0, σ (T ))T) = {y : H 1([0, σ (T )) : y(0) = y(σ (T ))}

with the induced norm ‖y‖ := ‖y‖H 1
�
, and the functional Jp : H → R given by

Jp(y) =
∫ σ(T )

0

(
y�(t)2

2
+ a cos(yσ (t)) + p(t)yσ (t)

)
�t.

It is clear that if y is a critical point of Jp, then y is a weak solution of the problem
(and then, from Remark 2.4, classical). Indeed, by simple computation it follows that
Jp ∈ C1(H, R), and its derivative DJp : H → H ∗ is given by:

DJp(y)(ϕ) =
∫ σ(T )

0

(
y�(t)ϕ�(t) − a sin(yσ (t))ϕσ (t) + p(t)ϕσ (t)

)
�t.

Thus, if we consider ϕ ∈ H 1
0 ([0, σ (T ))T) we deduce that y is a weak solution of equation

(1.3), and hence classical. Moreover, taking ϕ ≡ 1 we obtain:

a

∫ σ(T )

0
sin(yσ (t)) �t =

∫ σ(T )

0
p(t) �t = 0.

Integrating (1.3) we conclude that

y�(σ(T )) − y�(0) =
∫ σ(T )

0
y��(t) �t = 0.

In order to obtain solutions of (1.3)–(1.2) as critical points of Jp, we need a compactness
condition. It is worthy to note, however, that Jp does not satisfy the so-called Palais–
Smale condition.

Definition 3.2. Let E be a Banach space and J ∈ C1(E, R). It is said that J satisfies (PS)
if any sequence {yn} ⊂ E such that |J (yn)| ≤ c for some constant c and DJ(yn) → 0,
has a convergent subsequence in E.

This “lack of compactness” is due to the fact that the functional Jp is 2π -periodic,
i.e., Jp(y) = Jp(y + 2π). Indeed, from the computations below it follows that Jp

admits a Palais–Smale sequence, i.e., a sequence {yn} such that Jp(yn) is bounded and
DJp(yn) → 0. If {yn} has a convergent subsequence, still denoted {yn}, then {yn +2nπ}
is a Palais–Smale sequence with no convergent subsequences.
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The following version of the mountain pass lemma, proved by Pucci and Serrin
in [12], assumes a weaker compactness condition which is appropriate for the present
case:

Theorem 3.3. Let E be a Banach space and let J ∈ C1(E, R), e ∈ E and R > r > 0
such that ‖e‖ > R, and

max{J (e), J (0)} ≤ b := inf
r≤‖x‖≤R

J (x).

Let
� = {γ ∈ C([0, 1]), E) : γ (0) = 0, γ (1) = e},

and
c := inf

γ∈�
sup

t∈[0,1]
J (γ (t)).

Moreover, assume that the following conditions hold:

1. If {yn} ⊂ H satisfies J (yn) → c and DJ(yn) → 0, then c is a critical value of J .

2. (BPS) If the sequence {yn} ⊂ H is bounded, withJ (yn)bounded andDJ(yn) →
0, then {yn} has a convergent subsequence in H .

Then c is a critical value of J . Moreover, if c = b, then there is a critical point y such

that J (y) = b and ‖y‖ = r + R

2
.

Proof of Theorem 3.1. As p = 0, it is immediate that Jp is bounded from below. On the
other hand, from the 2π -periodicity of Jp we may assume, for a minimizing sequence

{yn}, that yn(0) ∈ [0, 2π ], then writing yn(t) − yn(0) =
∫ t

0
y�

n (s) �s we deduce that

‖yn‖ ≤ ‖yn − yn(0)‖ + D ≤ C‖y�
n ‖L2

�
+ D

for some constants C and D. Furthermore,

‖y�
n ‖2

L2
�

≤ 2Jp(yn) + C

for some C, and as Jp(yn) is bounded we deduce that {yn} is bounded. As H is reflexive,
from standard results we conclude that Jp achieves a minimum y0.

Next, consider the functional I (y) := Jp(y0 + y). Then

I (0) = I (2π) = min
y∈H

I (y),

and if we set 0 < r < R < 2π , all the assumptions of Theorem 3.3 hold for e = 2π .
Indeed, if I (yn) → c and DI (yn) → 0, as before we may assume that yn(0) ∈ [0, 2π ].
Then {yn} is bounded, and from the compactness of the imbeddings H ↪→ C([0, σ (T )])
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and H ↪→ (H, w) (where w denotes the weak topology), we may assume also that
yn → y uniformly, and weakly in H . Then DI (yn)(y − yn) → 0, that is to say:∫ σ(T )

0

((
y�

n + y�
0

) (
y�

n − y�
) − a sin(yσ

n + yσ
0 )(yσ

n − yσ ) + p(yσ
n − yσ )

)
(t)�t → 0.

It follows that
∫ σ(T )

0
y�

n (t)(y�
n (t) − y�(t)) �t → 0, and as

∫ σ(T )

0
y�(t)(y�

n (t) −
y�(t)) �t → 0 we conclude that∫ σ(T )

0
(y�

n − y�)2(t)�t → 0,

i.e., yn → y in H (and DI (y) = 0). In a similar way, it is seen that I satisfies (BPS).
Now, if c > min

y∈H
I (y), then there exists a critical point z of I with I (z) = c �= I (y0),

and y = y0 + z is a critical point of Jp such that y − y0 /∈ 2πZ. On the other hand,

if c = min
y∈H

I (y), then there exists a critical point z of I with ‖z‖ = R + r

2
, and hence

y = y0 + z is a critical point of Jp, with 0 < ‖y − y0‖ < 2π . �

4. Landesman–Lazer Conditions

In this section we study problem (1.1)–(1.2) under Landesman–Lazer type conditions.
As before, for a variational formulation of the problem we shall assume that the time
scale satisfies the condition σ 2(T ) = σ(T ).

Let F(t, u) =
∫ u

0
f (t, s)ds, and consider the functional

J (y) =
∫ σ(T )

0

(
y�(t)2

2
− F(t, yσ (t))

)
�t,

defined over the space H given in the previous section. Then

DJ(y)(ϕ) =
∫ σ(T )

0

(
y�(t)ϕ�(t) − f (t, yσ (t))ϕσ (t)

)
�t,

and as before we deduce that any critical point of J is a classical solution of (1.1)–(1.2).
We shall prove the existence of critical points of J under the following conditions:

Let f : [0, T ]T × R → R be bounded and continuous, with limits at infinity

lim
s→±∞ f (t, s) := f ±(t).

In this context, the Landesman–Lazer conditions for problem (1.1)–(1.2) read as follows:∫ σ(T )

0
f +(t) �t < 0 <

∫ σ(T )

0
f −(t) �t (4.1)
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or ∫ σ(T )

0
f −(t) �t < 0 <

∫ σ(T )

0
f +(t) �t. (4.2)

Theorem 4.1. Assume that (4.1) or (4.2) holds. Then (1.1)–(1.2) admits at least one
solution.

For a proof of Theorem 4.1 we shall apply two standard results.

Theorem 4.2. Let J satisfy (PS), and assume that J is coercive. Then there exists
y0 ∈ H such that J (y0) = inf

y∈H
J (y).

Theorem 4.3. (Rabinowitz, [13]) Let E be a Banach space and J : E → R a C1

functional satisfying (PS). Furthermore, assume that E = E1 ⊕E2, with dim(E1) < ∞,
and

max
x∈E1:‖x‖=R

J (x) < inf
y∈E2

J (y)

for some R > 0. Then J has at least one critical point.

Proof of Theorem 4.1. In the first place, let us prove that J satisfies the Palais–Smale
condition given in Definition 3.2. Assume that

|J (yn)| ≤ c, ‖DJ(yn)‖H ∗ := εn → 0, (4.3)

where H ∗ denotes the dual space of H . We claim that yn is bounded: Indeed, otherwise

we may suppose that ‖yn‖ → ∞. Set vn = yn

‖yn‖ , then as in the previous section taking

a subsequence we may assume that vn → v weakly and vn → v uniformly. Moreover,
from the inequality ∫ σ(T )

0

(
y�

n (t)2

2
− F(t, yσ

n (t))

)
�t ≤ c

and the fact that

|F(t, u)| =
∣∣∣∣
∫ u

0
f (t, s)ds

∣∣∣∣ ≤ C|u|
for some constant C, we deduce that∫ σ(T )

0

y�
n (t)2

‖yn‖2
�t → 0.

As before, we have that
‖yn − yn(0)‖ ≤ C‖y�

n ‖L2
�

for some constant C. Thus, if we write

vn = yn − yn(0)

‖yn‖ + yn(0)

‖yn‖ ,
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the first term goes to 0. Then, taking a subsequence we may assume that vn → c0
uniformly for some constant c0 �= 0. Furthermore,

v�
n = y�

n

‖yn‖ → 0,

and we conclude that vn → c0 in H .
On the other hand, from (4.3) we have

−2c ≤
∫ σ(T )

0

(
y�

n (t)2 − 2F(t, yσ
n (t))

)
�t ≤ 2c

and ‖DJ(yn)(yn)‖ ≤ εn‖yn‖, or equivalently

−εn‖yn‖ ≤
∫ σ(T )

0

(−y�
n (t)2 + f (t, yσ

n (t))yσ
n (t)

)
�t ≤ εn‖yn‖.

Hence ∣∣∣∣∣
∫ σ(T )

0
[f (t, yσ

n (t)) − 2F̃ (t, yσ
n (t))]vσ

n (t) �t

∣∣∣∣∣ ≤ 2c

‖yn‖ + εn, (4.4)

where

F̃ (t, u) =
{

F(t, u)

u
if u �= 0

f (t, 0) if u = 0.

Suppose for example that c0 > 0. Then yn(t) → +∞ uniformly. Moreover, for any

ε > 0 and t ∈ [0, σ (T )]T we may fix u0 such that if u ≥ u0, then |f (t, u)−f +(t)| <
ε

2
.

Then∣∣∣∣F(t, u)

u
− f +(t)

∣∣∣∣ =
∣∣∣∣F(t, u0)

u
+ 1

u

∫ u

u0

[f (t, s) − f +(t)] ds − u0

u
f +(t)

∣∣∣∣ < ε

for u � 0. It follows that F̃ (t, u) → f +(t) for u → +∞, and by dominated conver-
gence and (4.4) we conclude that∫ σ(T )

0
f +(t)c0 �t = 2

∫ σ(T )

0
f +(t)c0 �t,

which contradicts (4.1) and (4.2). Thus, yn is bounded (the proof is analogous if c0 < 0).
Next, taking a subsequence we may assume that yn → y weakly in H and uniformly

for some y. As ‖yn‖ is bounded,

|DJ(yn)(yn − y)| ≤ εn‖yn − y‖ → 0.

Moreover, as f is bounded, the uniform convergence of yn → y implies that the second
term of DJ(yn)(yn − y) tends to 0, and hence∫ σ(T )

0
y�

n (t)(y�
n (t) − y�(t)) �t → 0.
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Then, as yn → y weakly in H , we conclude that∫ σ(T )

0
(y�

n − y�)2(t)�t → 0,

and thus yn → y in H .
Next, we shall prove that if (4.1) holds, then J is coercive. Indeed, suppose that

J (yn) ≤ c and ‖yn‖ → ∞. In the same way as before, we deduce that
yn

‖yn‖ → c0 ∈
R \ {0}. If for example c0 > 0 then

lim
n→∞

∫ σ(T )

0

F(t, yσ
n (t))

‖yn‖ �t = c0

∫ σ(T )

0
f +(t) �t < 0,

and the same conclusion holds if c0 < 0. As J (yn) ≤ c, for n large we obtain that

‖y�
n ‖2

L2
�

‖yn‖ < 0,

a contradiction.
Finally, we observe that if (4.2) holds, then J satisfies the assumptions of Theorem

4.3. Indeed, we may decompose H into a direct sum H = R ⊕ H1, with H1 := {y ∈
H : y(0) = 0}. Then

‖y‖ ≤ C‖y�‖L2
�

for all y ∈ H1.

Hence

J (y) = 1

2
‖y�‖2

L2
�

−
∫ σ(T )

0
F(t, yσ (t)) �t ≥ 1

2
‖y�‖2

L2
�

− C‖y‖L2
�
,

which proves that J is coercive on H1. Then inf
y∈H1

J (y) > −∞. On the other hand, if

y ∈ R, then

J (y) = −
∫ σ(T )

0
F(t, y(t)) �t = −y

∫ σ(T )

0
F̃ (t, y(t)) �t.

As
∫ σ(T )

0
F̃ (t, y(t)) �t →

∫ σ(T )

0
f ±(t) �t for y → ±∞, we conclude that J (y) →

−∞ as y → ±∞. Then, if |y| = R � 0, it follows that |J (y)| < inf
y1∈H1

J (y1), and this

completes the proof. �

Example 4.4. Let f (t, y) = ξ(t)arctan(y), where ξ : [0, T ]T → R is continuous and
satisfies ∫ σ(T )

0
ξ(t) �t �= 0.
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Then (1.1)–(1.2) admits at least one solution.
Indeed, in this case

f ±(t) = ±π

2
ξ(t),

and clearly one of the conditions (4.1) or (4.2) is fulfilled.
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