
A&A 650, A109 (2021)
https://doi.org/10.1051/0004-6361/202040252
c© ESO 2021

Astronomy
&Astrophysics

pyUPMASK: an improved unsupervised clustering algorithm
M. S. Pera1, G. I. Perren1, A. Moitinho2, H. D. Navone3,4, and R. A. Vazquez5

1 Instituto de Astrofísica de La Plata (IALP-CONICET), 1900 La Plata, Argentina
e-mail: msolpera@gmail.com

2 CENTRA, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
3 Facultad de Ciencias Exactas, Ingeniería y Agrimensura (UNR), 2000 Rosario, Argentina
4 Instituto de Física de Rosario (CONICET-UNR), 2000 Rosario, Argentina
5 Facultad de Ciencias Astronámicas y Geofísicas (UNLP-IALP-CONICET), 1900 La Plata, Argentina

Received 28 December 2020 / Accepted 24 March 2021

ABSTRACT

Aims. We present pyUPMASK, an unsupervised clustering method for stellar clusters that builds upon the original UPMASK package.
The general approach of this method makes it plausible to be applied to analyses that deal with binary classes of any kind as long as
the fundamental hypotheses are met. The code is written entirely in Python and is made available through a public repository.
Methods. The core of the algorithm follows the method developed in UPMASK but introduces several key enhancements. These
enhancements not only make pyUPMASK more general, they also improve its performance considerably.
Results. We thoroughly tested the performance of pyUPMASK on 600 synthetic clusters affected by varying degrees of contamination
by field stars. To assess the performance, we employed six different statistical metrics that measure the accuracy of probabilistic
classification.
Conclusions. Our results show that pyUPMASK is better performant than UPMASK for every statistical performance metric, while
still managing to be many times faster.

Key words. open clusters and associations: general – methods: data analysis – open clusters and associations: individual: NGC 2516 –
methods: statistical

1. Introduction

Galactic open clusters are of great importance for the study of
the Galaxy’s chemical evolution, structure, and dynamics; these
sources also provide test beds for astrophysical codes that model
the evolution of stars. Located largely on the disk of the Milky
Way, analyses of open clusters is severely hindered by the pres-
ence of contaminating field stars, located in the foreground and
background of the object of interest. These stars are projected
on the observed field of view and end up deeply mixed with the
cluster members. The process of disentangling these two classes
of elements, of members from nonmembers (i.e., field stars), can
be referred to as “decontamination”.

A proper decontamination of the cluster region is a key pre-
vious step to the analysis of the cluster sequence in search of fun-
damental parameters (e.g., metallicity, age, distance and extinc-
tion) that characterize the open cluster. This analysis, which is
often performed in photometric space, requires a sequence that
is as complete as possible, but also as free of contaminating field
stars (nonmembers) as possible. The goal of a decontamination
algorithm is to obtain a subset of stars that fulfills both these
conditions simultaneously.

Over the years, a handful of decontamination algorithms have
been presented in the stellar cluster literature. Most of these are
variations of the Vasilevskis-Sanders method (Vasilevskis et al.
1958; Sanders 1971) applied over proper motions, which are
generally considered to be much better member discriminators
than photometry. Nonparametric approaches have also been
developed (Cabrera-Cano & Alfaro 1990; Javakhishvili et al.
2006) and even an interactive tool to determine membership

probabilities was presented (Balaguer-Núñez et al. 2020)1. More
references regarding membership estimation methods can be
found in Krone-Martins & Moitinho (2014, henceforth KMM14)
and Perren et al. (2015).

The Unsupervised Photometric Membership Assignment in
Stellar Clusters algorithm (UPMASK), originally presented in
KMM14, has the advantage of being not only nonparametric, but
also unsupervised. This means that no a priori selection of field
stars is required to serve as a comparison model, which is gen-
erally the case in the previously mentioned methods. Although
UPMASK was motivated by the need of assigning cluster mem-
berships from photometric data, KMM14 had pointed out that
the method is general and could be easily applied to other data
types and clusters of objects. Recent examples of UPMASK
used on proper motions (and parallax data) can be found in
Cantat-Gaudin et al. (2018a,b, 2019), Carrera et al. (2019), and
Yontan et al. (2019).

In the six years since its publication, the KMM14 article has
been referenced almost 50 times; this work has also been applied
to stellar proper motions and to study clusters of galaxies, which
indicates a wide adoption by the astrophysical community.

In this work we present an improved version of the original
UPMASK algorithm, which we call pyUPMASK because it is
written entirely in Python. We believe this new package can be
of great use, particularly with the advent of the recent early data
release 3 (eDR3, Gaia Collaboration 2021) of the Gaia mission
(Gaia Collaboration 2016). This package is made available as a

1 Clusterix 2.0: http://clusterix.cab.inta-csic.es/clust
erix/
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stand-alone code, but it will also be included in an upcoming
release of our Automated Stellar Cluster Analysis tool (ASteCA,
Perren et al. 2015).

Throughout the article we refer to statistical clusters as sim-
ply clusters and explicitly distinguish them from stellar clusters
when required.

This paper is organized as follows: In Sect. 2 we give a brief
summary of the UPMASK algorithm and present the details of
the enhancements introduced in our code. Section 3 introduces
the synthetic cluster sample used in the analysis, and describes
the selected statistical performance metrics employed to assess
the behavior of UPMASK and pyUPMASK. The results are
summarized in Sect. 4. Finally, our conclusions are given in
Sect. 5.

2. Methods

We present a brief description of the general algorithm used
in UPMASK as well as the major enhancements introduced in
pyUPMASK. Both methods are open source and their codes can
be found in their respective public repositories2,3.

2.1. The UPMASK algorithm

The UPMASK package is described in full in KMM14 and we
do not repeat it in this work. We give instead a summary of the
most relevant parts and of its core algorithm. The original article
provides a more detailed description.

Assigning probability memberships to the two classes of ele-
ments within a stellar cluster field (members and field stars) is a
notably complicated problem for two main reasons. First, the
classes are usually very much imbalanced. This means that one
of the classes (field stars) can make up a lot more than 50% of
the total dataset. In some extreme cases, the frame of an observed
stellar cluster can consist of over 90% of field stars and less than
10% of actual true members. Even worse, this information (i.e.,
the true balance) cannot be assumed to be known a priori. Sec-
ond, the two classes are deeply entangled. This is particularly
true in the two-dimensional coordinates space where members
and field stars are mixed throughout the entire cluster region. Off
the shelf clustering methods normally assume that there is some
kind of frontier that largely separates the classes with minimal
overlap. This is not the case in stellar clusters analysis.

The UPMASK algorithm deals with both of these issues in
a clever and effective way, by taking advantage of the fact that
we can approximate the distribution of field stars in the coordi-
nates space with a uniform model. This is further discussed in
Sect. 2.2.2.

The UPMASK algorithm is composed of two main blocks:
an outer loop and an inner loop. The outer loop is responsible
for taking into account the uncertainties in the data and rerun-
ning the inner loop a manually fixed number of times; these
uncertainties are optional and turned off by default. The latter
is required because of the inherent stochasticity of the K-means
(KMS) method (MacQueen 1967), employed by the inner loop.
The number of runs for the outer loop is one of the two most
important parameters in the algorithm.

The inner loop holds the two main parts that make up the core
of the algorithm: the clustering method (KMS, as stated before),
and the random field rejection method (henceforth: RFR). The

2 UPMASK: https://cran.r-project.org/web/packages/
UPMASK/
3 pyUPMASK: https://github.com/msolpera/pyUPMASK

clustering method is applied on the nonpositional features (e.g.
photometry and proper motions), and separates the cluster data
into N clusters. The N value is determined by a parameter that
determines the number of elements that should be contained in
each cluster. That is, dividing the total number of stars by this
value gives N, the final number of clusters that are generated.

After the clustering method is applied, the RFR method
serves the purpose of filtering those clusters identified by the
KMS that are consistent with a random uniform distribution of
elements. This consistency is assessed in UPMASK by means of
a two-dimensional kernel density estimation (KDE) analysis. In
short: the KDE of the coordinates space of each cluster (identi-
fied by the KMS in the previous step) is compared with the KDE
of a two-dimensional uniform distribution in the same range. If
these are deemed to be similar enough, the cluster is discarded
as a realization of a random selection of field stars, and all its
stars are assigned a value of 0. Those clusters that survive the
RFR process are kept for a subsequent iteration of the inner loop.
When no more clusters are rejected and the inner loop is finished,
all the stars within surviving clusters are assigned a value of 1.
After this, a new iteration of the outer loop is initiated.

The final probabilities assigned to each star are simply the
averages of the (0, 1) values assigned by the inner loop at each
run of the outer loop.

The two parameters mentioned above are the most important
parameters in UPMASK, since varying their value can substan-
tially affect the performance of the method. We comment on how
we selected these parameters in Sect. 3.3.

2.2. The pyUPMASK algorithm

An obvious difference between pyUPMASK and UPMASK is
that the former is written entirely in Python4 instead of R5, as
is the case with UPMASK. We believe that this is a consider-
able advantage given the noticeable shift of the astrophysical
community toward the Python language in recent years. This is
made evident by large Python-based projects such as Astropy6

(Astropy Collaboration 2013, 2018) and international confer-
ences such as Python in Astronomy7. A recent survey found that
Python is the most popular programming language in the astro-
nomical community (Momcheva & Tollerud 2015; Tollerud et al.
2019).

The general structure of pyUPMASK closely follows the
UPMASK algorithm: an outer loop containing an inner loop that
applies the cluster identification and rejection methods. What
sets these two algorithms apart is twofold: First, pyUPMASK
supports almost a dozen clustering methods, while UPMASK
only supports KMS; and second, pyUPMASK contains three
added analysis blocks that are not present in UPMASK. In Fig. 1
we show the complete flow chart of the pyUPMASK algorithm.
The blocks indicated in violet are those that are either enhanced
or added in this work.

The enhanced clustering methods block and the three added
blocks are detailed in Sects. 2.2.1–2.2.4, respectively. The
remaining portions of the code are mostly equivalent to those
described in KMM14 for UPMASK and, for the sake of brevity,
we do not repeat their details or purpose in this work.

4 https://www.python.org/
5 https://www.r-project.org/
6 http://www.astropy.org
7 http://openastronomy.org/pyastro/
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Fig. 1. Flow chart of the pyUPMASK code. The enhanced clustering
block and the analysis blocks added in this work are indicated in violet.

2.2.1. Clustering methods

While UPMASK supports the KMS method exclusively (as
of the current version 1.2), pyUPMASK relies on the Python
library scikit-learn8 (Pedregosa et al. 2011) for the imple-

8 https://scikit-learn.org/

mentation of most of the supported clusterings methods. This
library includes around a dozen different clustering methods for
unlabeled data, which are all available to use in pyUPMASK.
Eventually this can be extended to support even more methods
in future releases of the code via the PyClustering library9.

Once chosen, the clustering method processes the nonspa-
tial data at the beginning of the inner loop as shown in Fig. 1.
The number of individual clusters to generate is fixed indirectly
through a user-selected input parameter, as done in UPMASK.
Each of these clusters is then analyzed by the RFR method and
kept or rejected given its similarity with a random uniform dis-
tribution of elements. This is further discussed in Sect. 2.2.2.

In Sect. 4 we present a suit of tests performed with
four of the methods provided by scikit-learn: KMS, mini
batch k-means (MBK, Sculley 2010), Gaussian mixture mod-
els (GMM, Baxter et al. 2010), and agglomerative cluster-
ing (AGG, Zepeda-Mendoza & Resendis-Antonio 2013). In
addition to these we include tests performed with two methods
developed in this work: the nearest neighbors density method
(KNN), which is based on the density peak approach introduced
in Rodriguez & Laio (2014); and the Voronoi (VOR) method,
which is based on the construction of N-dimensional Voronoi
diagrams (Voronoi 1908). The latter three methods (AGG, KNN
and VOR) have a characteristic in common: no stochastic pro-
cess or approximation is employed by any of them. In other
words, these methods are deterministic. This means that, for
the same input data and input parameters, different runs lead
to one single result. Assuming that no data resampling is per-
formed (the default setting in both UPMASK and pyUPMASK)
the outer loop then needs to be run only once because subse-
quent runs would produce the same probabilities each time. For
this reason we refer to these as “single-run” methods. As can
easily be inferred, these are significantly faster than UPMASK
and the rest of the tested methods, which require multiple outer
loop runs.

The results obtained with the six selected methods are com-
pared to UPMASK results obtained on the same dataset of syn-
thetic clusters. The synthetic clusters dataset is described in
Sect. 3.1.

2.2.2. Ripley’s K function

After the clusters are generated on the nonspatial data, the RFR
block is used to filter out those that are consistent with the
realization of a random uniform distribution on the spatial data
(i.e., coordinates). The hypothesis at work is that field stars are
randomly scattered throughout the two spatial dimensions of
the frame, following somewhat closely a uniform distribution.
Actual star cluster members, on the other hand, present a more
densely packed spatial distribution. The latter is of course an
approximation to the real, and unknown, probability distribution
of field stars, but it is still a very reasonable one as the results
show.

The UPMASK algorithm employs a KDE-based method to
characterize the distribution of each cluster found in the spatial
dimensions. This distribution is then compared to that of thou-
sands of random uniform distributions generated in the same
two-dimensional range and with the same number of elements.
After that, a “KDE distance” is obtained by comparing their
means, maximum, and standard deviation values. If the distance
between both distributions is less than a user-defined thresh-
old parameter, the cluster is considered to be close enough to a

9 https://pyclustering.github.io
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realization of a random uniform distribution. When this condi-
tion is met, the cluster is rejected as a “fake cluster” (see Fig. 1).

In pyUPMASK we introduce Ripley’s K function (Ripley
1976, 1979) to assess the closeness of a cluster to a random uni-
form distribution. This function is defined as

R̂(r) =
A

N2

N∑
i

N∑
j,i

I(di j < r)ei j, (1)

where A is the area of the domain (our observed frame), N is
the number of points within it, di j is the distance between points
i, j, I is a function that results in 1 if the condition is met and
0 otherwise, ei j is the edge correction (if required), and r is the
scale at which the R̂ function is calculated.

Ripley’s K function is employed to test for complete spa-
tial randomness (CSR), also called homogeneous Poisson point
process, which basically consist of points randomly located on
a given domain. In a two-dimensional space it is trivial to prove
that if points are distributed following CSR, then K(r) equals
πr2 (Streib & Davis 2011). The K function is thus a perfect
match for our intended usage which is precisely to test if a set of
points (stars) are distributed following uniform spatial random-
ness. We employ the form of the K function given by

L̂(r) = [K̂(r)/π]2, (2)

which converges to r under CSR. Following Dixon (2014) we
combine information from several distances (r values) in a single
test statistic defined as

L̂m = sup
r
|L̂(r) − r|, (3)

where sup is the supremum. Given that the lengths of the
observed frame are normalized by default to the range [0, 1] prior
to processing, the list of distances at which Eq. (3) is calculated
are chosen to be in the range [0, 0.25]. This is the range advised
in the Kest function of the spatstat package (Baddeley et al.
2015)10.

The null hypothesis (H0) for the L̂m is that the points follow
CSR. We need to select a critical value such that if the test is
greater than that value, the test is considered to be statistically
significant and H0 is rejected. Such critical values were esti-
mated by Monte Carlo simulations in Ripley (1979). The pyUP-
MASK algorithm uses the 1% critical value; that is, there is a
1% probability of erroneously rejecting H0 (also called a Type I
error). This critical value is approximated for L̂m as 1.68

√
A/N,

where A and N are the area and number of points, respectively.
In future releases of the code we plan on integrating analytical
expressions for the critical values, for example, those obtained
in Lagache et al. (2013) and Marcon et al. (2013).

The pyUPMASK algorithm employs the astropy imple-
mentation of the K function, which includes the required edge
corrections for points that are located close to the domain bound-
aries. Compared to the UPMASK KDE test, the K function is
not only a more natural choice for this task, it is also orders of
magnitude faster.

2.2.3. Gaussian-uniform mixture model

After the RFR block is finished and the fake clusters are rejected,
only those stars that were found in clusters sufficiently differ-
ent from a random uniform distribution of points are kept. This

10 http://spatstat.org/

dataset of stars is nonetheless still affected by contamination
from field stars that could not be removed. This is because these
field stars were, by chance, associated with a cluster composed
mainly of true star cluster members and thus not rejected. We
developed a method to clean this region, applied to the two-
dimensional coordinates space that we call GUMM, because
it is based on fitting a Gaussian-uniform mixture model to the
dataset. This can be thought of as a simpler version of the spa-
tial plus proper motions space modelization found in previous
works, for example, Jones & Walker (1988).

A D-dimensional Gaussian distribution can be written as

N(x|µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

(
−

1
2

(x − µ)T Σ−1(x − µ)
)
, (4)

where x is the D-dimensional data vector, and (µ,Σ) are the mean
and covariance matrix. A GMM with K components (i.e., Gaus-
sians) is defined as

ρGMM =

K∑
i=1

πiN
(
x|µi,Σi

)
, (5)

where πi are the weights (or mixing coefficients) associated with
each of the K components. Similar to the GMM, we define the
GUMM as a two-dimensional mixture model composed of a
Gaussian, representing the stellar cluster, and a uniform distri-
bution, representing the noise due to contaminating field stars.
The full model is then written as

ρGUMM = π0N
(
x|µ,Σ

)
+ π1U[0, 1], (6)

where U[0, 1] is the uniform distribution in the range [0, 1], and
πx(x = 0, 1) are the unknown weights for each model. No restric-
tions are imposed on the position, shape, or extension of the 2D
Gaussian representing the stellar cluster. Following the recipe
employed by the classic GMM, we use the iterative expectation-
maximization algorithm (EM, Dempster et al. 1977) to estimate
these weights as well as the mean and covariance of the 2D
Gaussian. After the EM algorithm converges to a solution, each
star is assigned a probability of belonging to the 2D Gaussian
(i.e., to the putative cluster). We then need to decide which stars
to reject as field stars based on these probability values. To do
this the percentile distribution of the probabilities is generated
and the value at which the curve begins a sharp climb toward
large probabilities is automatically identified as the probability
cut. The value corresponding to the climb in the percentile curve
is estimated with the method developed in the kneebow pack-
age11. The user can input a manual value for this probability cut
(or even skip the GUMM altogether), but after extensive testing
this method has proven to give very good results and it is thus the
recommended default. Stars below this value are rejected as con-
taminating field stars and the surviving stars are kept as cluster
members.

The results of processing a group of stars from a synthetic
cluster with the GUMM can be seen in Fig. 2. The plot in panel a
shows the 2D coordinates space after the RFR block rejects those
clusters consistent with a random uniform distribution. It can be
seen that, even after clusters mainly composed of field stars are
rejected, the central overdensity is still visibly contaminated by
the surrounding field stars. The plot in panel b shows the prob-
abilities assigned to each star of belonging to the 2D Gaussian
via the GUMM process. In the plot in panel c, we show the per-
centile diagram for the probabilities, where the red line shows

11 https://github.com/georg-un/kneebow
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Fig. 2. GUMM process in four steps. Panel a: the set of stars that sur-
vived the RFR block. Panel b: probabilities assigned by the GUMM to
all the stars in the frame. Panel c: the method for selecting the probabil-
ity cut value using a percentile plot. Panel d: the final set cleaned from
most of the contaminating field stars.

the value at which the cut is imposed. Finally, the plot in panel
d shows the region after those stars with probabilities below the
aforementioned cut are rejected.

This process, although almost trivial at first glance, greatly
improves the purity of the final sample of estimated true mem-
bers at very little cost regarding completeness. The hypothesis at
work is of course that the putative stellar cluster is more concen-
trated in the coordinates space than regular field stars, as previ-
ously stated.

2.2.4. Kernel density estimator probabilities

Once a run of the inner loop is finished, each star in the observed
field is classified to be either a cluster member or a field star.
Although continuous (spatial) probabilities are assigned in the
GUMM step, these are used to apply a coarse classification
between members and nonmembers. The information that moves
on to the next segment is the hard binary classification. This
means that only probability values of 0 and 1 are assigned up
to this stage. The KDE block takes these binary probabilities
and turns them into continuous probabilities in the range [0, 1].
This improves the final results in general by assigning more real-
istic probability values. Furthermore, this block is essential for
single-run clustering methods (defined in Sect. 2.2.1). Cluster-
ing methods such as KMS or GMM require multiple outer loop
runs. The final probabilities are then estimated by averaging all
the binary probability values, which breaks the binarity. Single-
run methods work, as the name indicates, on a single run of the
outer loop. This means that without this block, single-run meth-
ods would assign probabilities of 0 and 1 exclusively.

The KDE probabilities are assigned after a full run of the
inner loop, with all stars classified as either members or non-
members. The process is as follows:

Fig. 3. KDE probabilities method shown in the coordinates space.
Panel a: members and nonmembers, as estimated by the inner loop
process. Panel b: KDEs for both classes. Panel c: final Pcl probabili-
ties assigned in the coordinates space. Panel d: same as panel c, but for
proper motions.

1. Separate each of those two classes into different sets.
2. Estimate the KDE for each class using all the available data,

that is, coordinates plus the data dimensions used for cluster-
ing (photometry, proper motions, etc.).

3. Evaluate all the data in the frame in the KDE obtained for
each class.

4. Use the above evaluations as likelihood estimates in the
Bayesian probability for two exclusive and exhaustive
hypotheses (i.e., a star belongs to either the members dis-
tribution or the field stars distribution).

The final cluster membership probability (using uniform equal
priors) is written as

Pcl = KDEm/(KDEm + KDEnm), (7)

where KDEm and KDEnm are the KDE likelihoods for the mem-
bers and nonmembers (field), respectively. The process can be
seen in Fig. 3 for the coordinates dimensions (even though it
is applied on all the data dimensions, described in Sect. 3.1).
The plot in panel a shows the two classes, members and non-
members, generated after the inner loop is finished. In the plot
in panel b, we show the two-dimensional coordinates KDEs for
both classes, noting again that this is applied on all the data
dimensions. The plot in panel c shows the nonbinary Pcl proba-
bilities assigned by the method in the coordinates space. Finally,
the plot in panel d is equivalent to the plot in panel c, but for the
proper motions space.

3. Validation of the method

In order to perform a thorough comparison of the performance
of pyUPMASK with that of UPMASK, we applied both methods
to a large number of synthetic clusters and quantified the results
using numerous statistical metrics. In this section, we describe
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Fig. 4. Top row: coordinates and CMD for a PHOT synthetic cluster
with moderate CI. Bottom row: coordinates and vector-point diagram
for a PM synthetic cluster with moderate CI.

the set of synthetic clusters, the selected metrics, and the reason-
ing behind the choice of input parameters.

3.1. Synthetic datasets

We employed a total of 600 synthetic clusters to analyze the
performance of UPMASK and pyUPMASK, the latter in the
six configurations mentioned in Sect. 2.2.1. This set is divided
into a subset of 320 clusters, and another of 280 clusters. The
first subset is equivalent to that used in the original UPMASK
article (KMM14) in the sense that it is composed of clusters
with synthetic photometry generated with the same process as
that used in KMM14. We refer to this subset as PHOT here-
inafter. The second subset contains 280 clusters generated by
adding synthetic proper motions to all the stars in the frame; we
refer to this subset as PM hereinafter. The idea is to see how
the two algorithms handle the case in which only photometry is
available (i.e., the PHOT dataset), and the increasingly common
case (thanks to the Gaia mission) in which proper motions with
very reasonable quality are available (i.e., the PM dataset). The
performance of UPMASK and pyUPMASK is tested using the
600 synthetic clusters obtained by combining the PHOT and PM
datasets.

Clusters were generated with a wide range of field star con-
tamination. The level of contamination is measured by the con-
tamination index (CI), which is defined as the number of field
stars to cluster members in the frame to match the “contami-
nation rate” used in KMM14. The maximum CI in our set of
synthetic clusters is 200.

In Fig. 4 we show examples of a PHOT (top) and PM (bot-
tom) synthetic clusters, which are generated with moderate con-
tamination (CI≈ 50).

3.2. Performance metrics

A proper choice for evaluating the classification perfor-
mance of a probabilistic model (such as UPMASK or pyUP-
MASK) is a debate that carries on even today (Hand 2009;

Hernández-Orallo et al. 2012). Different metrics or scoring
rules yield different results regarding the performance of the
model (Merkle & Steyvers 2013), which means that relying on a
single metric is not recommended. This is particularly true when
dealing with datasets that can be highly imbalanced, as is our
case. We thus chose to employ multiple metrics. By combining
all of these, we expect to obtain a non-biased assessment of the
overall performance of pyUPMASK versus UPMASK.

We selected six metrics that can be divided into two groups
of three each. The first group consists of strictly proper scoring
rules, which guarantee that they are only optimized when the
true classification is obtained. This group is composed of the
following metrics:

Logarithmic scoring rule:

LSR = 1 +
1
N

N∑
i=1

ytrue log(p) + (1 − ytrue) log(1 − p), (8)

where N is the number of elements, ytrue ∈ {0, 1} is the true label,
and p = Pr(y = 1) is the probability that y = 1, that is, the
probability that the element belongs to the class identified with a
1 (Good 1952). The LSR (also called log-loss or cross-entropy)
heavily penalizes large differences between ytrue and p.

Brier score loss:

BSL = 1 −
1
N

N∑
i=1

(p − ytrue)2, (9)

which is equivalent to the mean squared error for binary classifi-
cation; it was originally introduced in Brier (1950).
H measure:

HMS = 1 −
L

Lmax
, (10)

where L is the loss function, and Lmax is the maximum loss;
the expression for the loss function is much too mathematically
involved to be presented here, it can be seen in full in Hand
(2009). This is a relatively new metric. It was developed as a
replacement of the popular AUC (area under the receiver oper-
ating characteristic curve) score; now known to be an incoherent
performance measure and thus not recommended (Lobo et al.
2008; Parker 2011; Hand & Anagnostopoulos 2014). The HMS
automatically handles unbalanced classes by treating the mis-
classification of the smaller class (in our case almost always true
members, except for extremely low CI values) as more serious
than those of the larger class.
It is worth noting that the definitions of LSR and BSL were
altered from their original forms by multiplying by -1 and adding
plus 1. This way all the metrics defined assign 1 to a perfect
score.

The three metrics in the first group can be used directly on
the membership probabilities in the [0, 1] range, resulting from
UPMASK or pyUPMASK.

The second group defined below consists of scoring rules
that are applied to binary classifiers. These are the types of met-
rics used in the original KMM14 article and we employ them in
this work for consistency12. In the definitions that follow TP is
a true positive (a member star correctly classified as such), TN
is a true negative (a field star correctly classified as such), FN
is a false negative (a member star incorrectly classified as field),

12 We note that in KMM14 the statistical measures TPR and MMR are
incorrectly defined. What the authors call “TPR” is the PPV, and what
they call “MMR” is the properly defined TPR.
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and FP is a false positive (a field star incorrectly classified as
member):

True positive rate:

TPR =
TP

TP + FN
, (11)

which is also called sensitivity or recall; it measures the propor-
tion of true members that are correctly identified.

Positive predictive value:

PPV =
TP

TP + FP
, (12)

which is also called precision; it measures how many stars clas-
sified as members are true members.

Matthews correlation coefficient:

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

, (13)

which was introduced in Matthews (1975); it can be thought of
as an equivalent to Pearson’s correlation coefficient for binary
classifiers. Unlike the TPR and PPV, the MCC also takes the TNs
into account. It is recommended when dealing with imbalanced
classes, as is our case.

To turn the problem into one of binary classification and to
be able to use the three metrics defined in the second group, we
must first select a probability threshold that separates the stars
into the members and nonmembers classes. In KMM14 a single
threshold of 90% was used. Since the choice of a threshold can
affect the results from these three metrics, we decided to use the
following two different thresholds: 50% and 90%. This way we
end up with the following nine metrics to test the performance
of UPMASK and pyUPMASK: LSR, BSL, HMS, TPR5, PPV5,
MCC5, TPR9, PPV9, and MCC9; where the subindex 5 and 9
indicate the 50% and 90% thresholds, respectively.

3.3. Input parameters selection

There are two main parameters in UPMASK and pyUPMASK
that affect the outcome of the methods: the number of stars per
cluster and the number of runs of the outer loop. The former,
which we refer to as Nclust, was investigated in KMM14, in which
the authors concluded that a value between 10 to 25 is appropri-
ate. In the latest version (v1.2) of the UPMASK code, depending
on how it is run, the default value for Nclust is either 25 or 5013.

We performed our own tests using 100 synthetic clusters
(50 PHOT and 50 PM) covering the full CI range, selected at
random from the full list of 600 mentioned in Sect. 3.1. This
set was analyzed with the nine performance metrics described in
Sect. 3.2. In Fig. 5 we show the results obtained for three Nclust
values 15, 25, and 50. We combined all the metrics for the 100
synthetic clusters into one set and subtracted these (900) values
for a given Nclust value from another. The results are plotted ver-
sus the CI of the synthetic clusters. From panels a to c the com-
binations N15 − N25, N15 − N50, and N25 − N50 are shown, where
a positive value means that the Nclust value on the left performed
better than the value on the right, and vice versa for negative val-
ues. As can be seen, the differences are rather small and do not
tend to change for different CI values. We thus decided to use the
middle value Nclust = 25 for all the UPMASK and pyUPMASK

13 It is 50 if we run the code using the UPMASKfile function, and 25 if
we use the UPMASKdata function.

Fig. 5. Panel a–c: boxplot of the combined metrics difference vs. CI
for the 100 synthetic clusters used in the test. Combinations for the
N15, N25, N50 values are shown. Panel d: outer loop convergence anal-
ysis. The convergence percentile of the nine metrics vs. the number of
outer loop run is shown. The black dashed line indicates the 90% con-
vergence point.

runs, as a reasonable number of default stars per cluster for all
the CI range.

Deciding how many times the outer loop should run is the
other important parameter: a low number terminates the code
before it is able to present fully converged probability values and
a large number wastes processing time. We processed the same
set of 100 synthetic clusters with Nclust = 25 and analyzed when
each of the nine metrics converged to a stable value. The stabi-
lization point is defined as the outer loop run where the metric
changes inside the ±0.025 range for five consecutive runs. The
results are shown in Fig. 5d. plot as a the convergence percentile
(i.e., the percentage of clusters that have converged) for each
metric versus the outer loop run. Almost all the metrics reach
a convergence above 90% before the 25th outer loop run. The
two exceptions are TPR9 and PPV9, which still show a conver-
gence above 85% before the 25th run. Given these results we use
25 runs in the outer loop for all the UPMASK and pyUPMASK
analyses with the obvious exceptions of the single-run methods
described in Sect. 2.2.1.

The PHOT set was processed using all the available photom-
etry as input (V, B − V,U − B,V − I, J − H,H − K) but selecting
only the four principal dimensions after the principal compo-
nent analysis dimensionality reduction. For the PM set we used
the proper motions (µα, µδ), with no dimensionality reduction.
Proper motions are generally regarded as better cluster mem-
bers discriminators than photometry, owing to the rounded shape
of its distribution in contrast with the irregular shape of the
sequence of a cluster in the photometric space.

4. Results

To ensure that the results are comparable between the pyUP-
MASK and UPMASK runs, all the analyses were performed
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Fig. 6. Results for the 320 synthetic clusters in the PHOT dataset processed with the six clustering methods used in pyUPMASK vs. UPMASK. For
each metric, the blue and red bars represent the cases where pyUPMASK and UPMASK performed better, respectively. The yellow bars represent
cases in which both methods performed equally well.

Fig. 7. Same as Fig. 6 but for the 280 synthetic clusters in the PM dataset, exclusively.

on the same computer cluster. In what follows, the results are
classified according to whether pyUPMASK or UPMASK per-
formed better for a given metric and synthetic cluster. We allow
for a small range of ±0.005 to act as a “tie zone” in which the
two methods can be thought of as performing equally well. In
Appendix A we show the results of comparing pyUPMASK
with the Bayesian method included in AsteCA. These are not
included here because the methods are not directly comparable,
as explained in the Appendix.

In Figs. 6 and 7 we show the metrics for the 320 and 280
synthetic clusters in the PHOT and PM datasets, respectively,
for each of the six clustering methods used in pyUPMASK.
The blue, yellow, and red bars depict the proportion of cases
for which pyUPMASK performed better, equally well, and for
which UPMASK performed better, respectively. It is easy to
see that, although with some variation across clustering meth-
ods, pyUPMASK has a better performance than UPMASK for
all the methods and all the metrics, particularly for the PM
dataset. This is an outstanding result that unmistakably shows
the large improvement brought by pyUPMASK. The three meth-
ods that apply multiple outer loop runs (MBK, KMS, GMM)
show a clear advantage over the remaining single-run methods,

regarding the proportion of cases for which pyUPMASK
resulted in larger metric values.

In Cantat-Gaudin et al. (2018a) the authors used a modi-
fied version of UPMASK to estimate membership probabili-
ties for more than 1200 cataloged clusters. The modification
was motivated by the need to increase the speed for process-
ing large numbers of clusters. This modification mainly consists
in replacing the default KDE based method in the RFR block in
UPMASK for a minimum spanning tree method (see article for
more details). We tested this modified version14, which we refer
to as MST, using the same set of synthetic clusters and metrics
employed so far. The code was executed with 25 runs of the outer
loop and 15 stars per cluster; internal tests showed that this gave
more adequate results than using 25.

The results of our six clustering methods, plus the MST
method, versus UPMASK can be compressed into a sin-
gle matrix plot as shown in Fig. 8. We show the X minus
UPMASK percentage metric difference, where X represents
each of the pyUPMASK clustering methods plus MST. This
value is obtained subtracting the number of synthetic clusters,

14 Thanks to Dr Cantat-Gaudin who shared the code with us.
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Fig. 8. Matrix plot of the six pyUPMASK clustering methods plus MST,
vs. the nine defined metrics for the 600 synthetic clusters. Each square
shows the percentage difference of the number of cases for which pyUP-
MASK/MST performed better, minus the number for which UPMASK
performed better.

where pyUPMASK/MST performed better than UPMASK, from
the number of clusters where UPMASK showed a better perfor-
mance, and taking the percentage. This difference ranges from
-100, which would indicate that UPMASK performed better on
all 600 synthetic clusters, to 100, indicating that pyUPMASK
(or MST) was the better performer for the 600 clusters. A value
of 0 indicates that both methods performed better on an equal
number of cases.

As can be seen, for the pyUPMASK methods all the squares
in the matrix are positive (the smallest being the PPV5 metric
for the VOR method), which again shows that pyUPMASK per-
formed significantly better than UPMASK, measured by any of
the employed metrics. The advantage of the MBK, KMS and
GMM methods over the single-run methods is easier to see here
compared to Figs. 6 and 7. The only exception is the TPR9 metric
for which the VOR, KNN, and AGG methods show a larger dif-
ferential than the remaining multiple-runs methods; that is, more
true members are classified as such. This comes at the expense of
the PPV9 metric, for which the MBK, KMS and GMM methods
show much larger values; that is, fewer field stars are incorrectly
classified as members. Other than this, there is no visible relation
between any clustering method and a given performance metric.

The MST method shows a somewhat erratic behavior across
the metrics. It performs worse than UPMASK for almost all of
the clusters for several metrics (i.e., HMS, TPR5, MCC9 and
TPR9) and better for a few others (e.g. LSR and BSL). Over-
all, the statistical performance of the MST method is worse than
UPMASK and pyUPMASK with any of the tested clustering
methods. Notwithstanding, MST is faster than UPMASK (as we
show below) and outperforms all other methods in the LSR and
BSL metrics.

In Fig. 9 we show the dependence with CI for the pyUP-
MASK minus UPMASK difference for all the metrics, for
each clustering method. A positive value (green region) means

Table 1. Aggregated results for all the metrics and all the synthetic clus-
ters, for the six pyUPMASK clustering methods used, as percentage
of results where pyUPMASK outperformed UPMASK, and vice versa,
respectively.

Method pyUPMASK UPMASK
min | max min | max

VOR 66 29
55 (BSL) | 78 (TPR9) 13 (TPR9) | 42 (PPV5)

KNN 68 27
57 (BSL) | 85 (TPR9) 8 (TPR9) | 40 (PPV5)

AGG 72 24
59 (BSL) | 90 (TPR9) 4 (TPR9) | 38 (PPV5)

MBK 77 16
51 (TPR9) | 90 (MCC5) 8 (HMS) | 36 (TPR9)

KMS 79 15
66 (TPR9) | 88 (HMS) 8 (PPV9) | 22 (TPR9)

GMM 83 11
74 (TPR9) | 93 (HMS) 5 (HMS) | 16 (LSR)

Notes. The missing percentage to add up to 100 corresponds to ties.
The second rows for each method show the minimum and maximum
percentage values obtained for any single metric (shown in parenthesis),
for that method.

that pyUPMASK performed better, while a negative value (red
region) means that it performed worse than UPMASK. The
PHOT and PM sets are shown with triangles and circles, respec-
tively. There is no apparent trend with CI for the results of any
clustering method. What is clear is that pyUPMASK performs
even better for the PM set as evidenced by the overall larger
(more positive) differences, particularly for clusters with large
CI values. This is a very desirable result taking into account that
high quality proper motions are becoming more accessible very
fast.

We can further compress the results by combining each
metric into a single value, for each of the clustering methods
tested in pyUPMASK. That is, we take the 5400 results for
each clustering method (600 synthetic clusters times nine met-
rics) and calculate the percentage at which pyUPMASK outper-
formed UPMASK. The same process can be applied to the syn-
thetic clusters for which UPMASK outperformed pyUPMASK
to obtain a similar, inverted, percentage. The results are shown
in Table 1. This table shows that even the worst pyUPMASK
performer (VOR) gives better metrics than UPMASK 66% of
the times. The method with the highest pyUPMASK percent-
age (GMM) outperforms UPMASK 83% of the times, which
is a massive advantage. The worst individual metric result is
obtained for TPR9 in the MBK method. Still the value is larger
than 50%, which means that the majority of the cases were bet-
ter handled by pyUPMASK. On the other end of the analysis the
best metric result is found for HMS in the GMM method, for
which pyUPMASK manages to outperform UPMASK for virtu-
ally all of the cases.

Another important aspect along with the performance mea-
sured by the statistical metrics is the performance measured in
computing time. This is shown in Fig. 10 as a bar plot normalized
to the total time used by UPMASK to process the 600 synthetic
clusters. The numbers on top of the bars display how many times
faster each clustering method in pyUPMASK is compared to
UPMASK. We also show the time performance of the MST mod-
ification mentioned previously. The fastest method is expectedly
a single-run method, KNN, which performs 170 times faster than

A109, page 9 of 13

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202040252&pdf_id=8


A&A 650, A109 (2021)

Fig. 9. Differences between pyUPMASK vs. UPMASK results for all the metrics combined, vs. the CI (shown as a logarithm). Each clustering
method is shown separately, as are the PHOT and PM sets using blue triangles and black circles, respectively. The red and green regions correspond
to the regions for which pyUPMASK gives worse and better results than UPMASK, respectively.

Fig. 10. Amount of time employed in processing the 600 synthetic
clusters by each pyUPMASK method (blue bars), the MST method
(orange bar), and UPMASK (red bar). The bars are normalized so that
UPMASK corresponds to a total value of 1.

UPMASK. This is an enormous margin of difference. Even the
slowest method, GMM, is faster than UPMASK: this method
manages to process the set of synthetic cluster employing almost
38% less time than UPMASK or 1.6 times faster. On average
we can say that pyUPMASK using a single-run method is over
100 times faster than UPMASK and is more than 3 times faster
for the multiple run methods.

The choice between which clustering method to employ in
pyUPMASK then depends on the specific requirements of the
analysis. If the absolute best performance measured by a classi-
fication metric is sought after, then clearly GMM is the method
to chose (with the advantage of being faster than UPMASK). If
we can trade some performance for a faster process, then KMS
or MBK can be used. And if we are willing to trade even more
classification performance, while still performing much better
than UPMASK, then VOR, KNN, or AGG are by far the fastest
approaches.

Finally, we consider the issue of computational resources
requirements. We found that for very large input data files mem-
ory and processing power requirements can be too much for most
methods to handle. Although the VOR clustering method is the
worst performer out of the six tested methods (measured by clas-
sification metrics), it has an advantage compared to all the others,
including UPMASK, when it comes to analyzing large files.

To obtain the Voronoi diagram of an N-dimensional set
of points, the Python scipy package relies on the Qhull
library (Barber et al. 1996)15. This library is written in the
C language which makes it extremely efficient, thus making the
pyUPMASK VOR method very efficient for large datasets.

To test this we downloaded a large 6× 6 deg region
around the NGC2516 cluster from the Gaia second data
release (Gaia Collaboration 2018). The resulting field contains
over 420 000 stars up to a maximum magnitude of G = 19 mag.
This limit was imposed because beyond this value the photomet-
ric errors grow exponentially.

The frame was processed with the six tested pyUPMASK
clustering methods and UPMASK, using proper motions and
parallax as input data. We used 25 outer loop iterations for all
the methods, except of course for the single-run methods, and a
value of 25 for the parameter that determines the number of ele-
ments per cluster (i.e., the default values for both parameters as
explained in Sect. 3.3).

Only three methods were able to complete the process: VOR,
KNN, and MBK. The methods AGG, KMS, and GMM failed
owing to memory requirements as they attempted to allocate
arrays of ∼640 Gb, ∼31 Gb, and ∼31 Gb on memory, respec-
tively. The UPMASK algorithm was not able to finish even the
first iteration of the inner loop within the first iteration of the
outer loop after a full week of running, so it was halted. The
results of the VOR, KNN, and MBK methods can be seen in
a color-magnitude diagram (CMD) in Fig. 11. We plotted the
1500 stars with larger membership probabilities given by each
method, as this is the approximate number of cluster members
in the frame (given by a simple stellar density analysis). It is

15 http://www.qhull.org/
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Fig. 11. Results for the NGC2516 cluster by the VOR (left), KNN (center), and MBK (right) methods. Estimated members are shown as green
circles; the field stars are shown as gray dots.

evident that the VOR method returns the most reasonable and
less contaminated CMD out of the three. Furthermore, this
method managed to process the cluster almost 4 and 40 times
faster than KNN and MBK, respectively. It is worth noting that
on a personal computer, which has far less resources than a com-
putational cluster, VOR was the only method that was able to
run.

A smaller field containing this same cluster was analyzed
with UPMASK in Cantat-Gaudin et al. (2018a). The processed
area contains only ∼1100 stars associated with this cluster up
to a magnitude of G = 18 mag. The analysis done in this
work resulted in less than 800 stars with membership probabil-
ities (MPs) above 0.5 and ∼100 stars with MPs> 0.9. In con-
trast, using the same magnitude cut, we are able to obtain with
the VOR method on our very large field over 1700 stars with
MPs> 0.99 tracing a well-defined sequence. The advantage of
studying a cluster using almost all of its members versus using
less than 10% of the members (comparing the large MPs sub-
sets), is obvious.

The VOR method is thus the only one that was able to pro-
duce quality results for this very large dataset, and it did so while
using the least amount of processing time by a wide margin.

5. Conclusions

Since its development in KMM14 the UPMASK code has been
used to analyze thousands of clusters. This is because it is a very
smart, general, and efficient unsupervised method, that requires
no prior knowledge about the observed field.

In this work we introduced pyUPMASK, a tool based on the
general UPMASK algorithm with several added enhancements.
The primary aim of pyUPMASK is the assignment of member-
ship probabilities to cluster stars observed in a frame contami-
nated by field stars.

We tested our code extensively using 600 synthetic clusters
affected by a large range of contamination. Six performance met-
rics were employed, three of which were in two different config-
urations, to ensure sufficient coverage when assessing statistical
classification. The results from six different clustering methods
in pyUPMASK were compared to those from UPMASK. Under
the conditions established for the analysis, the pyUPMASK tool

proved to clearly outperform UPMASK while still managing to
be faster (and, for the single-run methods, extremely faster).

This new tool is thus highly configurable (around a dozen
clustering algorithms supported), fast, and an excellent per-
former measured by several metrics. The pyUPMASK algorithm
is fully written in Python and is made available for its use under
a GPL v3 general public license16.
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Appendix A: pyUPMASK versus ASteCA results

We present a comparison between the membership probability
estimation algorithm included in ASteCA and pyUPMASK. It is
worth noting that ASteCA is a complete package for process-
ing stellar clusters that includes a Bayesian membership esti-
mation method. This method, which has not changed since the
Perren et al. (2015) article was published, is based on compar-
ing the distributions of field stars and stars within the cluster
region in whatever data space the user decides to use (photomet-
ric, proper motions, parallax, or any combination). The cluster
region is defined by the center coordinates and radius values esti-
mated by separate methods in ASteCA that were applied previous
to the Bayesian membership method. The pyUPMASK method
(similarly UPMASK), on the other hand, is a method for estimat-
ing membership probabilities. That is, it represents just a portion
of what the ASteCA package comprises.

The reason for not including this comparison in the main
article is that the Bayesian method in ASteCA and pyUP-
MASK are not directly comparable. Unlike UPMASK and
pyUPMASK, which are unsupervised methods, the membership
method included in ASteCA is supervised because it requires

an a priori separation of classes. That is: the field stars, iden-
tified as those stars located in the field region, and the possible
cluster members, identified as those stars located in the cluster
region, must be segregated before the membership method can
be applied. Hence, the membership probabilities obtained with
the Bayesian method in ASteCA are a reflection not only of the
method itself, but also of the separate methods used to estimate
the center and radius values.

The ASteCA algorithm was thus applied on both datasets
(PHOT and PM), allowing it to automatically estimate the center
coordinates and radius value of the synthetic cluster. As shown
in Figs. A.1 and A.2, pyUPMASK performs better than ASteCA
for both datasets, particularly for the PHOT synthetic clusters.
We emphasize again that these results are not directly compara-
ble because, in the case of the ASteCA membership probabili-
ties, we also include the performance of the center of the cluster
and radius estimation methods. If any of these fail, which is not
uncommon for scarcely populated clusters or those embedded in
fields with large amounts of contamination, then the Bayesian
membership estimation method in ASteCA fails too. This fact
notwithstanding, this is another great result that demonstrates the
capabilities of pyUPMASK.

Fig. A.1. Same as Fig. 6 but showing pyUPMASK versus ASteCA.

Fig. A.2. Same as Fig. 7 but showing pyUPMASK versus ASteCA.
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