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Abstract. We exhibit a probabilistic algorithm which solves a polynomial system
over the rationals defined by a reduced regular sequence outside a given hypersurface.
Its bit complexity is roughly quadratic in the Bézout number of the system and linear
in its bit size. Our algorithm solves the input system modulo a prime number p and
applies p–adic lifting. For this purpose, we establish a number of results on the bit
length of a “lucky” prime p, namely one for which the reduction of the input system
modulo p preserves certain fundamental geometric and algebraic properties of the
original system. These results rely on the analysis of Chow forms associated to the set
of solutions of the input system and effective arithmetic Nullstellensätze.

1. Introduction

Solving polynomial systems defined over Q is a fundamental task of computational
algebraic geometry, which has been the subject of intensive work for at least 40 years.
Symbolic approaches to this problem include Gröbner basis technology, triangular de-
composition, resultants, Macaulay matrices and Kronecker–like algorithms (see, e.g.,
[37] and [38] for an overview of the existing methods). The corresponding arithmetic
complexity, namely the number of arithmetic operations in Q, has been analyzed in,
e.g., [32], [17], [9], [14], [18], [21], [33] and [10], among others. The complexity paradigm
arising from these works is that polynomial systems can be solved with a number of
arithmetic operations which is polynomial in the Bézout number of the system. This
conclusion nearly matches the lower bounds of [6], [16] and [1], under the assumption
that the corresponding algorithms are “geometrically robust”, namely they are universal
and allow the solution of certain “limit” problems.

On the other hand, less work has been done to analyze the bit complexity of these
algorithms. Concerning Gröbner bases, the work [23] by Hashemi and Lazard shows that
zero–dimensional Gröbner bases can be computed essentially in polynomial time in the
input size and Dn, where n is the number of unknowns and D is the mean value of the
degrees of the defining polynomials. The bit complexity of Kronecker–like algorithms
for complete intersections is analyzed in, e.g., [18] and [22], where it is shown that it
is polynomial in the input size and certain invariant called the “system degree” (which
is upper bounded by the Bézout number of the system). Further, the recent work by
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Schost and Safey El Din [41] considers the bit complexity of multi–homogeneous zero–
dimensional systems and proves that such systems can solved with quadratic complexity
in the multi–homogeneous Bézout number and a corresponding arithmetic analogue of
it. Finally, [18] provides a lower bound on the bit size of the output when “standard”
representations are used.

This paper is devoted to analyze the bit complexity of a family of Kronecker–like
algorithms originally due to [19] and [18]. We shall consider the improved version of
this algorithm due to [21] (see also [10]), which we now discuss. Let F1, . . . , Fr, G ∈
Z[X1, . . . , Xn] be polynomials such that F1, . . . , Fr form a reduced regular sequence in
the open set {G 6= 0}, that is, the ideal Is := (F1, . . . , Fs) : G∞ ⊂ Q[X1, . . . , Xn] is
radical and the affine subvariety Vs := V(Is) ⊂ Cn defined by Is is equidimensional of
dimension n − s for 1 ≤ s ≤ r. Denote by δs := degVs the degree of Vs for 1 ≤ s ≤ r.
Let V := Vr and δ := max1≤s≤r δs. The algorithm outputs a suitable “parametrization”
of a “lifting fiber” of V, that is, a Q–definable (zero–dimensional) fiber of maximal
cardinality of a general linear projection π : V → Cn−r defined over Q (see Section 4 for
details). Such a parametrization is called a “Kronecker representation”. Several works
show that this constitutes a good representation of V, namely a “solution” of the system
F1 = 0, . . . , Fr = 0, G 6= 0, both from the numeric and the symbolic point of view (see,
e.g., [25], [43], [33], [5], [46]).

The computation of the Kronecker representation of such a lifting fiber proceeds in r
stages. In the sth stage we compute a Kronecker representation of a lifting fiber of Vs+1

from one of Vs. Following a suggestion of [21], to keep the bit length of intermediate
results under control, these computations are performed modulo a prime number p,
followed by a step of p–adic lifting to recover the integers which define the Kronecker
representation of V. As a consequence, the determination of a prime number p with
“good” modular reduction is crucial to estimate the bit complexity of the procedure.

For our purposes, the modular reduction defined by a prime number p is “good”, and
the corresponding prime p is called “lucky”, if basic geometric and algebraic features
of the variety Vs and its defining ideal (F1, . . . , Fs) : G∞ are preserved under modular
reduction for 1 ≤ s ≤ r. Among them, we may mention dimension, degree and generic
smoothness. Further, our algorithm also requires that the modular reduction of the lift-
ing fibers under consideration preserves dimension, degree and non–ramification. Partial
results in this direction have been obtained in [42] (see also [36]), on modular reduction
of smooth fibers of parametric families of zero–dimensional varieties, and [8], on modular
reduction of zero–dimensional varieties defined over Z. Unfortunately, these results are
not enough for our purposes (particularly for the analysis of Section 5.2; see the remarks
after Theorem 1.2).

For the analysis of the bit length of lucky primes, we establish conditions on the
coefficients of linear forms Y1, . . . , Yn−s+1 ∈ Q[X1, . . . , Xn] and the coordinates of a
point p ∈ Qn−s which imply that the projection πs : Vs → Cn−s defined by Y1, . . . , Yn−s
is “general” in the sense above, p defines a lifting fiber and Yn−s+1 separates the points
of π−1

s (p) (we say that Yn−s+1 induces a primitive element of π−1
s (p)). Such a point p is

called a “lifting point”. As we need to analyze both conditions for projections and fibers
defined over Z, and their modular reductions, a natural framework for this analysis is
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that of an affine variety defined over a infinite perfect field K. Our main result is the
following (see Proposition 3.4 and Theorem 4.9).

Theorem 1.1. Let V ⊂ Kn
be an equidimensional variety defined over K of dimension

n − s and degree δs > 0. Let Λij (1 ≤ i ≤ n − s + 1, 1 ≤ j ≤ n) and Z1, . . . , Zn−s
be indeterminates over K[V ]. Denote Z := (Z1, . . . , Zn−s), Λ := (Λij)1≤i≤n−s+1,1≤j≤n,
Λ∗ := (Λij)1≤i≤n−s,1≤j≤n and Λi := (Λi1, . . . ,Λin) for 1 ≤ i ≤ n − s + 1. There exist
polynomials AV ∈ K[Λ∗] and ρV ∈ K[Λ,Z] such that degΛi

AV = δs (1 ≤ i ≤ n − s),
degΛi

ρV ≤ δs(2δs − 1) (1 ≤ i ≤ n − s + 1), degZ ρV ≤ δs(2δs − 1) and the following

properties hold: for any λ ∈ K(n−s+1)n and p ∈ Kn−s with AV (λ∗)ρV (λ,p) 6= 0, if
(Y1, . . . , Yn−s+1) := λX, then

(1) the mapping π : V → An−s defined by Y := (Y1, . . . , Yn−s) is a finite morphism;
(2) rankK[Y ]K[V ] = δs;
(3) p is a lifting point of π and Yn−s+1 induces a primitive element of π−1(p).

Our main technical tool is the analysis of the Chow form of V . A similar analysis is
obtained in [5] under stronger assumptions, namely that K is a finite field Fq and V is
an absolutely–irreducible complete intersection.

Then we compare the conditions underlying Theorem 1.1 for K = Q and K = Fp,
where Fp is a given prime field. This yields an integer multiple N of all primes p which
are not lucky in the sense above. We upper bound the bit length of this integer N using
estimates for heights of equidimensional varieties of [7], and then obtain a lucky prime
p with “low” bit length. The following statement summarizes our results on modular
reduction (see Theorems 5.10 and A.20).

Theorem 1.2. Let F1, . . . , Fr, G ∈ Z[X1, . . . , Xn] be polynomials of degree at most d
with coefficients of bit length at most h. Assume that F1, . . . , Fr form a reduced regular
sequence in the open set {G 6= 0} and denote Is := (F1, . . . , Fs) : G∞, Vs := V(Is) ⊂ Cn

and δs := degVs for 1 ≤ s ≤ r. Let δ := max1≤s≤r δs. Let λ ∈ Zn2 \ {0} and
p := (p1, . . . , pn−1) ∈ Zn−1 be randomly chosen elements with entries of bit length at
most c1 log(n2δ3), for a suitable c1 > 0. Let (Y1, . . . , Yn) := λX and ps := (p1, . . . , pn−s)
for 1 ≤ s ≤ r.

Let p be a random prime number of bit length c2 log(ndrh), for a suitable c2 > 0.
Denote by F1,p, . . . , Fr,p, Gp, Y1,p, . . . , Yn,p and pp the corresponding reductions modulo
p. Then the following conditions are satisfied for 1 ≤ s ≤ r with probability at least 2/3:

(1) the ideal Is,p := (F1,p, . . . , Fs,p) : G∞p ⊂ Fp[X] is radical and the variety Vs,p :=

V(Is,p) ⊂ Fnp is equidimensional of dimension n− s and degree δs;

(2) the mapping πs,p : Vs,p → Fn−sp defined by Y1,p, . . . , Yn−s,p is a finite morphism,

psp ∈ Fn−sp is a lifting point of πs,p, and Yn−s+1,p induces a primitive element of

π−1
s,p(psp);

(3) any q ∈ πs,p
(
π−1
s+1,p(p

s+1
p )

)
is a lifting point of πs,p and Yn−s+1,p induces a prim-

itive element of π−1
s,p(q).

We observe that the analysis of lucky primes becomes much simpler if only conditions
(1) and (2) above are required. An analysis along these lines can be deduced from [42]
(compare with [36]). Nevertheless, condition (3), which is critical to prove the correctness
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of our algorithm for solving the system F1 = 0, . . . , Fr = 0, G 6= 0, requires a significant
extension of these techniques.

Finally, we combine the algorithm of [5] with p–adic lifting, as in [21], to obtain an
algorithm for solving the system F1 = 0, . . . , Fr = 0, G 6= 0 with good bit complexity.
We prove the following result (see Theorem 6.9 for a precise statement).

Theorem 1.3. Let F1, . . . , Fr, G be polynomials of Z[X1, . . . , Xn] as in the statement
of Theorem 1.2. There exists a probabilistic algorithm that takes as input an algorithm
evaluating F1, . . . , Fr, G with at most L arithmetic operations in Z and integer parameters
of bit size at most h, and outputs a parametrization of a lifting fiber of V(Ir) with
O∼
(
(nL+ n5)δ(dδ + ndrh)

)
bit operations.

The paper is organized as follows. In Section 2 we recall the notions and results of alge-
braic geometry and commutative algebra we shall use, and discuss the representation of
multivariate polynomials by straight–line programs and algebraic varieties by Kronecker
representations. In Section 3 we recall the notion of Chow form of an equidimensional
variety, discuss its basic properties and obtain conditions (1)–(3) of Theorem 1.1. In
Section 4 we discuss the notion of lifting point and finish the proof of Theorem 1.1. In
Section 5 we prove Theorem 1.2. For sake of readability, all estimates on heights of vari-
eties underlying the proof of this result are postponed to Appendix A. Finally, in Section
6 we describe our algorithm for solving the input system F1 = 0, . . . , Fr = 0, G 6= 0 and
analyze its bit complexity, showing thus Theorem 1.3.

2. Notions and notations

We use standard notions and notations of commutative algebra and algebraic geometry
as can be found in, e.g., [30], [11], [44].

Let K be a field and K its algebraic closure. Let K[X1, . . . , Xn] denote the ring of
n–variate polynomials in indeterminates X1, . . . , Xn and coefficients in K. For F ∈
K[X1, . . . , Xn] and S ⊂ {X1, . . . , Xn}, degS F denotes the degree of F as an element of
the ring R[S] with R := K[{X1, . . . , Xn} \ S], while degF denotes its total degree.

Let An := An(K) be the affine n–dimensional space over K. A subset of An is called a
K–definable affine subvariety of An (a K–variety for short) if it is the set of common zeros
in An of a set of polynomials in K[X1, . . . , Xn]. We will use the notations V(F1, . . . , Fs)
and {F1 = 0, . . . , Fs = 0} to denote the K–variety defined by F1, . . . , Fs. Further, if
I is an ideal of K[X1, . . . , Xn], then V(I) denotes the K–variety of An defined by the
elements of I. On the other hand, we shall denote by I(V ) the vanishing ideal of a K–
variety V ⊂ An in K[X1, . . . , Xn] and by K[V ] its coordinate ring, namely the quotient
ring K[V ] := K[X1, . . . , Xn]/I(V ).

For polynomials F1, . . . , Fr, G ∈ K[X1, . . . , Xn], we write (F1, . . . , Fr) : G∞ := {F ∈
K[X1, . . . , Xn] : ∃m ≥ 0 with GmF ∈ (F1, . . . , Fr)} for the saturation of the ideal
(F1, . . . , Fr) ⊂ K[X1, . . . , Xn] with respect to G. We remark that, if I ⊂ K[X1, . . . , Xn]
denotes the saturation I := (F1, . . . , Fr) : G∞, then V(I) ⊂ An is the Zariski closure of
the locally closed set V(F1, . . . , Fr) \ V(G).

Let V ⊆ An be a K–variety. We denote by dimV its dimension with respect to
the Zariski topology over K (which agrees with the Krull dimension of K[V ]). More
generally, if R is a ring, then dimR denotes its Krull dimension. Suppose further that
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V is irreducible with respect to the Zariski topology over K. We define its degree as the
maximum number of points lying in the intersection of V with an affine linear K–variety
L of An of codimension dimV for which #(V ∩ L) < ∞. Now, if V = C1 ∪ · · · ∪ CN
is the decomposition of V into irreducible K–components, we define the degree of V as
deg V =

∑N
i=1 deg Ci (cf. [24]). This definition of degree satisfies the following Bézout

inequality ([24]; see also [15]): if V and W are K–varieties of An, then

(2.1) deg(V ∩W ) ≤ deg V degW.

2.1. Notions and results of commutative algebra. A proper ideal I of a Noetherian
ring R is unmixed if the codimensions of its associated primes are all equal. We say
that the unmixedness theorem holds for R if any proper ideal I of R of codimension
r generated by r elements is unmixed for any r ≥ 0. A classical result asserts that
the unmixedness theorem holds for any localization S−1K[X1, . . . , Xn] (see, e.g., [35,
Theorems 17.6 and 17.7]).

Let I ⊂ K[X1, . . . , Xn] be an ideal of dimension n − r. Then I is unmixed and
defines an equidimensional K–variety V ⊂ An. Let Y1, . . . , Yn ∈ K[X1, . . . , Xn] be
linearly–independent linear forms such that the mapping π : V → An−r defined by
Y1, . . . , Yn−r is a finite morphism. The change of variables (X1, . . . , Xn)→ (Y1, . . . , Yn)
is called a Noether normalization of V (or I) and we say that the variables Y1, . . . , Yn
are in Noether position with respect to V (or I), the variables Y1, . . . , Yn−r being
free. Let R := K[Y1, . . . , Yn−r] and let R′ denote the field of fractions of R. De-
note B := K[X1, . . . , Xn]/I and let B′ := R′ ⊗K B := R′[Yn−r+1, . . . , Yn]/Ie, where
Ie is the extension of I to R′[Yn−r+1, . . . , Yn]. We consider B as an R–module and
B′ as an R′–vector space respectively. Since B is finitely generated, B′ is a finite–
dimensional R′–vector space, whose dimension we denote by dimR′ B

′. In particular, for
any F ∈ K[X1, . . . , Xn] we may consider the characteristic polynomial χ ∈ R′[T ] (re-
spectively the minimal polynomial µ ∈ R′[T ]) of the homothety of multiplication by F in
B′. In this situation we have that χ and µ belong to R[T ] (see, e.g., [10, Theorem 1.27]).
We shall call χ and µ respectively the characteristic and the minimal polynomials of F
modulo I (with respect to the Noether normalization defined by Y1, . . . , Yn).

Now assume further that K is an infinite perfect field. Then B is a free R–module of
finite rank rankRB (see, e.g. [20, Lemma 3.3.1]). Since any basis of B as an R–module
induces a basis of B′ as an R′–vector space, we have rankRB = dimR′ B

′. In this case,
we say that G ∈ K[X1, . . . , Xn] induces a primitive element for I if the powers of the
image g of G in B′ generate the R′–vector space B′. We shall also say that G induces a
primitive element of the ring extension R ↪→ B.

The following criterion for deciding radicality of an ideal, probably well–known, is
stated and proved here for lack of a suitable reference.

Lemma 2.1. Let K be a perfect field and F1, . . . , Fs, G ∈ K[X1, . . . , Xn] polynomials
such that the ideal I := (F1, . . . , Fs) ⊂ K[X1, . . . , Xn] satisfies codim(I : G∞) = s. Let
J be the ideal of R := K[X1, . . . , Xn]/(I : G∞) generated by the (s × s)–minors of the
Jacobian matrix (∂Fi/∂Xj)1≤i≤s,1≤j≤n taken modulo I : G∞. Then I : G∞ is radical if

and only if codimR(J ) ≥ 1.

Proof. Let IG := IK[X1, . . . , Xn]G and let K be the ideal of S := K[X1, . . . , Xn]G/IG
generated by the (s × s)-minors of the Jacobian matrix (∂Fi/∂Xj)1≤i≤s,1≤j≤n taken
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modulo IG. Since codim(IG) = codim(I : G∞) = s, by [11, Proposition 18.3] we deduce
that S is a Cohen-Macaulay ring. Then we can apply [11, Theorem 18.15] and deduce
that IG is radical if and only if codimSK ≥ 1. Since I : G∞ is radical if and only if IG
is radical, and codimR(J ) ≥ 1 if and only if codimSK ≥ 1, the lemma follows. �

2.2. Kronecker representations. Let V ⊂ An be an equidimensional K–variety of
dimension n − s, and let I ⊂ K[X1, . . . , Xn] be its vanishing ideal. For a change of
variables (X1, . . . , Xn) → (Y1, . . . , Yn), denote R := K[Y1, . . . , Yn−s], B := K[V ] and
R′ := K(Y1, . . . , Yn−s). Consider B′ := R′[Yn−s+1, . . . , Yn]/Ie as an R′-vector space,
where Ie is the extended ideal IR[Yn−s+1, . . . , Yn], and let δ := dimR′ B

′.

Definition 2.2. A Kronecker representation of I (or V ) consists of the following items:

• a Noether normalization of I, defined by a linear change of variables (X1, . . . ,Xn)
→ (Y1, . . . , Yn) such that Yn−s+1 induces a primitive element for I;
• the minimal (monic) polynomial Q ∈ R[T ] of Yn−s+1 modulo I;
• the (unique) polynomials Wn−s+2, . . . ,Wn ∈ R′[T ] of degree at most δ − 1 such

that the following identity of ideals holds in R′[Yn−s+1, . . . , Yn]:
(2.2)
Ie=

(
Q(Yn−s+1),Q′(Yn−s+1)Yn−s+2−Wn−s+2(Yn−s+1), . . . , Q′(Yn−s+1)Yn−Wn(Yn−s+1)

)
,

where Q′ denotes the first derivative of Q with respect to T .

Considering instead polynomials Vn−s+2, . . . , Vn of degree at most δ − 1 such that

Ie =
(
Q(Yn−s+1), Yn−s+2 − Vn−s+2(Yn−s+1), . . . , Yn − Vn(Yn−s+1)

)
,

we have a univariate representation of I (or V ).

Identity (2.2) may be interpreted in geometric terms as we now explain. Let ` :
An → An be the linear mapping defined by Y1, . . . , Yn and W := `(V ). We interpret
Y1, . . . , Yn as new indeterminates and consider the mapping Π : W → An−s+1 defined
by the projection on the first n − s + 1 coordinates. Considering Q as an element of
K[Y1, . . . , Yn−s+1], it turns out that Π defines a birational isomorphism between W and
the hypersurface {Q = 0} of An−s+1, whose inverse is the rational mapping Φ : {Q =
0} →W defined in the following way:

Φ(y) :=

(
y,
Wn−s+2(y)

Q′(y)
, . . . ,

Wn(y)

Q′(y)

)
.

A univariate representation of I as above has a simpler structure than a Kronecker
representation, and it can be easily obtained from the latter by inverting Q′ modulo Q.
Nevertheless, since such an inversion typically implies a degree growth of the elements
of R involved, we shall be rather concerned with Kronecker representations.

2.3. Model of computation. In the sequel, log denotes logarithm to the base 2. Be-
sides the Big–Oh notation O, we also use the standard Soft–Oh notation O∼ which does
not take into account logarithmic terms. More precisely, given two function f = f(n, d, h)
and g = g(n, d, h) in integer parameters n, d, h, we say that f is in O∼(g) if there exists
s ≥ 0 such that f is in O(g logs g). We remark that the cost of certain basic operations
(such as addition, multiplication, division, and gcd) with integers of bit length m is in
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O∼(m). In particular, arithmetic operations in the prime finite field Fp of p elements
can be performed with O∼(log p) bit operations.

Algorithms in computer algebra usually consider the standard dense (or sparse) rep-
resentation model, where multivariate polynomials are encoded by means of the vector
of all (or of all nonzero) coefficients. However, since a generic n–variate polynomial

of degree d has
(
n+d
n

)
= O(dn) nonzero coefficients, its dense or sparse representation

requires an exponential size in d and n, and their manipulation usually requires an
exponential number of arithmetic operations with respect to d and n. To avoid this
phenomenon we will use an alternative representation for multivariate polynomials by
means of straight–line programs (cf. [4]). A (division–free) straight–line program β in
K[X1, . . . , Xn] which represents or evaluates polynomials F1, . . . , Fs ∈ K[X1, . . . , Xn] is
a sequence (Q1, . . . , Qr) of elements of K[X1, . . . , Xn] satisfying the following conditions:

• {F1, . . . , Fs} ⊆ {Q1, . . . , Qr};
• there exists a finite subset T ⊂ K, called the set of parameters of β, such that

for every 1 ≤ ρ ≤ r, the polynomial Qρ either is an element of T ∪{X1, . . . , Xn},
or there exist 1 ≤ ρ1, ρ2 < ρ such that Qρ = Qρ1 ◦ρ Qρ2 , where ◦ρ is one of the
arithmetic operations +,−,×.

The length of β is defined as the total number of arithmetic operations performed during
the evaluation process defined by β.

Our model of computation is based on the concept of straight–line programs. However,
a model of computation consisting only of straight–line programs is not expressive enough
for our purposes. Therefore we allow our model to include decisions and selections
(subject to previous decisions). For this reason we shall also consider computation trees,
which are straight–line programs with branchings. Length of a given computation tree
is defined similarly to the case of straight–line programs (see, e.g., [4] for more details
on the notion of computation trees).

Our algorithm is probabilistic, of Monte Carlo type (see, e.g., [47]). One of the
probabilistic aspects is related to random choices of points outside certain Zariski open
sets. A basic tool for estimating the corresponding probability of success is the following
well–known result (see, e.g., [47, Lemma 6.44]).

Lemma 2.3. Let R be an integral domain, U1, . . . , Uk indeterminates over R, S ⊆ R a
finite set with s := #S elements, and F ∈ R[U1, . . . , Uk] a nonzero polynomial of degree
at most d. Then F has at most dsk−1 zeros in Sk.

We shall interpret Lemma 2.3 in terms of probabilities: for an element u chosen
uniformly at random in Sk, the probability that F (u) 6= 0 is greater than 1− d/s.

The second probabilistic aspect concerns the choice of a “lucky” prime number p. In
connection with this matter, we have the following result (see, e.g., [47, Section 18.4]).

Lemma 2.4. Let B, m be positive integers and M a nonzero integer such that log |M | ≤
B
m . There is a probabilistic algorithm which, from the integer B and any positive integer

k, returns a prime p between B + 1 and 2B not dividing M . It performs O∼(k log2B)
bit operations and returns the correct result with probability at least(

1− logB

2k−1

)(
1− 2

m

)
.
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Proof. According to, e.g., [47, Theorem 18.8], there is a probabilistic algorithm which
computes a random prime p such that B < p ≤ 2B with O∼(k log2B) bit operations
and probability of success at least 1− logB/2k−1. On the other hand, if p is a random
prime with B < p ≤ 2B, then p does not divide M with probability at least 1 − 2/m.
Combining both assertions the lemma follows. �

3. On Noether normalizations

Let K be a perfect field and V ⊂ An an equidimensional K–variety of dimension
n − s ≥ 0 and degree δ. In this section we obtain a condition on the coefficients of
linear forms Y1, . . . , Yn−s+1 ∈ K[X1, . . . , Xn] which implies that Y1, . . . , Yn−s define a
Noether normalization of V and Yn−s+1 is a primitive element of the ring extension
K[Y1, . . . , Yn−s] ↪→ K[V ] (Proposition 3.4). As these conditions rely heavily on properties
of the Chow form of V , we also recall the notion of Chow form of an equidimensional
variety and some of its basic properties.

3.1. The Chow form of an equidimensional variety. Let Λh :=(Λij)1≤i≤n−s+1,0≤j≤n
be a matrix of indeterminates over K[V ], let Λh

i := (Λi0, . . . ,Λin) and Λi := (Λi1, . . . ,Λin)
for 1 ≤ i ≤ n− s+ 1. A Chow form of V is a square–free polynomial FV of K[Λh] such

that FV (λh) = 0 if and only if V ∩ {λi0 +
∑n

j=1 λijXj = 0 (1 ≤ i ≤ n − s + 1)} is

nonempty, where V ⊂ Pn is the projective closure of V with respect to the canonical
inclusion An ↪→ Pn (see [26, Chapter X, Section 6]). We observe that FV is multiho-
mogeneous of degree δ in each group of variables Λh

i for 1 ≤ i ≤ n − s + 1, and is
uniquely determined up to nonzero multiples in K. Let Λ := (Λij)1≤i≤n−s+1,1≤j≤n and
let Z1, . . . , Zn−s+1 be new indeterminates. Let PV ∈ K[Λ, Z1, . . . , Zn−s+1] be the unique
polynomial such that

PV (Λ,Λ1,0, . . . ,Λn−s+1,0) = FV (Λh
1 , . . . ,Λ

h
n−s+1).

By abuse of language we also call PV a Chow form of V .
Let ξ1, . . . , ξn be the coordinate functions of V induced by X1, . . . , Xn. Set ξ :=

(ξ1, . . . , ξn) and let Λi · ξ ∈ K[V ][Λ] be defined by

Λi · ξ :=

n∑
j=1

Λijξj (1 ≤ i ≤ n− s+ 1).

A fundamental property of the Chow form is that PV is uniquely determined, up to
multiplication by nonzero elements of K, by the following two conditions:

• if Λξ := (Λ1 · ξ, . . . ,Λn−s+1 · ξ), then the following identity holds in K[V ][Λ]:

(3.1) PV (Λ,Λξ) = 0.

Equivalently, let Λi · X :=
∑n

j=1 ΛijXj for 1 ≤ i ≤ n − s + 1 and ΛX :=

(Λ1 ·X, . . . ,Λn−s+1 ·X). Then the polynomial PV (Λ,ΛX) ∈ K[Λ,X] vanishes

on the variety A(n−s+1)n × V .
• If G ∈ K[Λ, Z1, . . . , Zn−s+1] is any polynomial such that G(Λ,Λξ) = 0, then PV

divides G in K[Λ, Z1, . . . , Zn−s+1].

Furthermore, FV has the following features (see [26, Chapter X, Sections 7 and 9]):

(1) FV is homogeneous of degree δ in the (n− s+ 1)× (n− s+ 1)–minors of Λh;
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(2) deg(Λ1,0,...,Λn−s+1,0) FV = degΛn−s+1,0
FV = δ;

(3) if V is an irreducible K–variety, then FV is an irreducible polynomial of K[Λh].
More generally, if V = C1 ∪ · · · ∪ CN is the decomposition of V into irreducible
K–components, and FCi is a Chow form of Ci for 1 ≤ i ≤ N , then

∏
1≤i≤s FCi is

a Chow form of V .

Remark 3.1. Let AV ∈ K[Λh
1 , . . . ,Λ

h
n−s] be the (nonzero) polynomial which arises

as the coefficient of the monomial Λδn−s+1,0 in FV , considering FV as an element of

K[Λ][Λ1,0, . . . ,Λn−s+1,0]. Then (2) implies that AV is independent of Λ1,0, . . . ,Λn−s 0,
that is, AV ∈ K[Λ1, . . . ,Λn−s]. In particular, AV is homogeneous of degree δ in the
(n− s)× (n− s)–minors of the (n− s)× n–matrix Λ∗ = (Λij)1≤i≤n−s,1≤j≤n.

Let ρV ∈ K[Λ, Z1, . . . , Zn−s] be the discriminant of PV with respect to Zn−s+1, namely

ρV := ResZn−s+1

(
PV ,

∂PV

∂Zn−s+1

)
.

Lemma 3.2. ρV and ∂PV /∂Zn−s+1 are both nonzero.

Proof. We have that A := K[Λ, Z1, . . . , Zn−s+1]/(PV ) is a reduced K–algebra. Since K
is perfect, by [34, Corollary, page 194] it follows that A is a separable K–algebra. Let K′
denote the algebraic closure of K(Λ, Z1, . . . , Zn−s). By [34, 27.G], we deduce that the
K′–algebra A⊗KK′ = K′[Zn−s+1]/(PV ) is reduced. Since K′ is a perfect field, this implies
that ∂PV /∂Zn−s+1 6= 0. Now, by (2) and (3) above, each irreducible factor of PV is a
Chow form of an irreducible component Ci of V , of positive degree deg Ci in Zn−s+1. Then
the previous argument shows that the partial derivative with respect to Zn−s+1 of each
irreducible factor of PV does not vanish, which in turn implies that PV and ∂PV /∂Zn−s+1

are relatively prime polynomials of K[Λ, Z1, . . . , Zn−s+1]. Since K[Λ, Z1, . . . , Zn−s] is a
factorial ring, this implies that the resultant ρV of these polynomials does not vanish. �

Further, ρV satisfies the following degree estimates:

deg(Z1,...,Zn−s) ρV ≤ (2δ − 1)δ, degΛi
ρV ≤ (2δ − 1)δ (1 ≤ i ≤ n− s+ 1).

In particular, for its total degree we have deg ρV ≤ (n− s+ 2)(2δ2 − δ).
Let Z := (Z1, . . . , Zn−s+1). Further, for any λ := (λij)1≤i≤n−s+1,1≤j≤n ∈ A(n−s+1)n,

we write λi := (λi1, . . . , λin) and λi · ξ :=
∑n

j=1 λijξj for 1 ≤ i ≤ n− s+ 1. We consider

K[V ][Λ] as a K[Λ,Z]–algebra through the ring homomorphism K[Λ,Z] → K[V ][Λ]
which maps any F ∈ K[Λ,Z] to F (Λ,Λξ). In these terms, we have the following result.

Lemma 3.3. ∂PV /∂Zn−s+1 is not a zero divisor of the K[Λ,Z]–algebra K[V ][Λ].

Proof. Let F ∈ K[Λ,X] be any polynomial such that

(3.2)
∂PV

∂Zn−s+1
(Λ,Λξ) · F (Λ, ξ) = 0

in K[V ][Λ]. We have ρV ∈ (PV , ∂PV /∂Zn−s+1)K[Λ,Z]. Since PV (Λ,Λξ) = 0, we deduce
that ρV (Λ,Λ1 ·ξ, . . . ,Λn−s ·ξ) is a multiple of ∂PV /∂Zn−s+1(Λ,Λξ) in the ring K[V ][Λ].
Combining this with (3.2), we deduce that

ρV (Λ,Λ1 · ξ, . . . ,Λn−s · ξ) · F (Λ, ξ) = 0



10 N. GIMÉNEZ AND G. MATERA

in K[V ][Λ]. Suppose that there exists an irreducible K–component C of V such that
F (Λ, ξ) 6= 0 in K[C][Λ]. Then

ρV (Λ,Λ1 · ξ, . . . ,Λn−s · ξ) · F (Λ, ξ) = 0

in K[C][Λ]. Since K[C][Λ] is an integral domain, we conclude that ρV (Λ,Λ1 ·ξ, . . . ,Λn−s ·
ξ) = 0 in K[C][Λ]. This implies that

(3.3) ρV (Λ,Λ1 · ξ, . . . ,Λn−s · ξ) = 0

in K[C][Λ], where K is the algebraic closure of K. On the other hand, by Lemma 3.2

the polynomial ρV is nonzero. Then, for a generic choice of λ ∈ A(n−s+1)n, the ring
extension K[λ1 · ξ, . . . ,λn−s · ξ] ↪→ K[V ] is integral and ρV (λ, Z1, . . . , Zn−s) is a nonzero
polynomial in K[Z1, . . . , Zn−s]. By (3.3) we deduce that ρV (λ,λ1 · ξ, . . . ,λn−s · ξ) = 0
in K[C], which shows that λ1 · ξ, . . . ,λn−s · ξ are algebraically dependent over K. Since
K[λ1 · ξ, . . . ,λn−s · ξ] ↪→ K[C] is also integral, it follows that dim C ≤ n− s− 1, which is
a contradiction. Therefore, F (Λ, ξ) = 0 in K[C][Λ] for every irreducible component C of
V . We conclude that F (Λ, ξ) = 0 in K[V ][Λ], which finishes the proof. �

3.2. A generic condition for a Noether normalization. In the sequel, for λ :=
(λij)1≤i≤n−s+1,1≤j≤n ∈ K(n−s+1)n we write λ∗ := (λij)1≤i≤n−s,1≤j≤n.

Proposition 3.4. With hypotheses and notations as before, let λ ∈ K(n−s+1)n be such
that AV (λ∗) 6= 0. Let Yi := λi · X for 1 ≤ i ≤ n − s + 1, R := K[Y1, . . . , Yn−s],
B := K[V ], R′ := K(Y1, . . . , Yn−s) and B′ := R′ ⊗K B. Then the mapping π : V → Ar
defined by Y1, . . . , Yn−s is a finite morphism. Further, if ρV (λ, Z1, . . . , Zn−s) 6= 0, then
Yn−s+1 induces a primitive element of the ring extension R ↪→ K[V ] and dimR′ B

′ ≤ δ.

Proof. Let Λ∗ = (Λij)1≤i≤n−s,1≤j≤n. Recall that AV is homogeneous of degree δ in the
(n − s) × (n − s)–minors of Λ∗. Since AV (λ∗) 6= 0, at least one of the minors of the
(n − s) × n matrix λ∗ is nonzero. We deduce that the linear forms Y1, . . . , Yn−s are
linearly independent. Thus there exist linear forms Yn−s+1, . . . , Yn ∈ K[X] such that
Y1, . . . , Yn−s, Yn−s+1, . . . , Yn are linearly independent. Let wk := (wk1, . . . , wkn) ∈ Kn be
such that Yn−s+k = wk ·X for 1 ≤ k ≤ s. Let Qk ∈ K[Z1, . . . , Zn−s+1] be the polynomial
obtained by replacing in PV the matrix Λ for (λ∗,wk). From (3.1) we deduce that

(3.4) Qk(Y1, . . . , Yn−s,wk · ξ) = 0

in the R–algebra B for 1 ≤ k ≤ s, where ξ := (ξ1, . . . , ξn) denotes the n–tuple of
coordinate functions in B induced by X1, . . . , Xn. Observe that degZn−s+1

Qk ≤ δ

and that AV (λ∗) is the coefficient of Zδn−s+1 in Qk. Since AV (λ∗) 6= 0, we have that
degZn−s+1

Qk = δ and (3.4) may be interpreted as a relation of integral dependence for

the image wk · ξ of Yn−s+k in B over R for 1 ≤ k ≤ s. Moreover, K[Y1, . . . , Yn] = K[X]
because the linear forms Y1, . . . , Yn are linearly independent. This implies that R → B
is an integral ring extension.

To prove that π is finite, let C be any irreducible K–component of V and let πC be the
restriction of π to C. It suffices to prove that πC is dominant or, equivalently, that its dual
ring homomorphism π∗C : K[An−s]→ K[C] is injective. Let ti denote the i–th coordinate
function of An−s for 1 ≤ i ≤ n − s. With a slight abuse of notation denote also by ξ
the n–tuple of coordinate functions of K[C] induced by X1, . . . , Xn. Then π∗C(ti) = λi · ξ
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for 1 ≤ i ≤ n − s. Since K[C] is integral over K[λ1 · ξ, . . . ,λn−s · ξ] and dim C = r, we
deduce that λ1 · ξ, . . . ,λn−s · ξ are algebraically independent over K. This implies the
injectivity of π∗C , which concludes the proof of the first assertion of the proposition.

Next, taking partial derivatives with respect to the variable Λn−s+1,k at both sides of
(3.1), we obtain the following identity in K[V ][Λ] for 1 ≤ k ≤ n:

(3.5)
∂PV

∂Zn−s+1
(Λ,Λξ) ξk +

∂PV

∂Λn−s+1,k
(Λ,Λξ) = 0.

From (3.1) and (3.5) we deduce that there exists Rk ∈ K[Λ,Z] such that

(3.6) ρV (Λ,Λ1 · ξ, . . . ,Λn−s · ξ) ξk = Rk(Λ,Λξ)

in K[V ][Λ] for 1 ≤ k ≤ n. By substituting λ for Λ in (3.6) we deduce that

ρV (λ, Y1, . . . , Yn−s)ξk = Rk(λ, Y1, . . . , Yn−s,λn−s+1 · ξ)

in K[V ] for 1 ≤ k ≤ n. By the choice of λ, the polynomial ρV (λ, Z1, . . . , Zn−s) is
nonzero. Since λ1 · ξ, . . . ,λn−s · ξ are algebraically independent over K, we deduce that
ρV (λ, Y1, . . . , Yn−s) is a nonzero element of R. Then the previous identities show that
the powers of λn−s+1 ·ξ generate the R′–vector space B′. In other words, Yn−s+1 induces
a primitive element of the ring extension R ↪→ K[V ].

Now, let Q ∈ R[Zn−s+1] be the polynomial obtained by substituting λ for Λ and
Y1, . . . , Yn−s for Z1, . . . , Zn−s in PV . From (3.1) we deduce that Q(λn−s+1 ·ξ) = 0 in B′.
Taking into account that degZn−s+1

Q = δ we conclude that dimR′ B
′ ≤ δ. �

4. Lifting points and lifting fibers

Assume as in Section 3 that K is perfect field. Let F1, . . . , Fs and G be polynomials
in K[X] such that the ideal I := (F1, . . . , Fs) : G∞ ⊂ K[X] is radical and the K-variety
V := V(I) ⊂ An is equidimensional of dimension n − s and degree δ. Assume further
that we are given linearly–independent linear forms Y1, . . . , Yn ∈ K[X] defining variables
in Noether position with respect to V . Let π : V → An−s be the finite morphism defined
by Y1, . . . , Yn−s and J ⊂ K[X] the ideal J := I + (F1, . . . , Fs, Y1, . . . , Yn−s). A point
p ∈ Kn−s is called a lifting point of π with respect to the system F1 = 0, . . . , Fs = 0, G 6=
0 if J is radical. We call the zero–dimensional variety π−1(p) the lifting fiber of p.

The notion of lifting fiber in this framework was first introduced in [18]. The concept
was isolated in [25], where it was shown how one can use a Kronecker representation of a
lifting fiber of a given equidimensional variety to tackle certain fundamental algorithmic
problems associated to it (see also [21], [43], [2], [40] and [28] for extensions, refinements
and algorithmic aspects related to lifting fibers). The notion is also important in nu-
merical algebraic geometry, where it is known under the name of witness set (see, e.g.,
[46]; see [45] for a dictionary between lifting fibers and witness sets).

As expressed in the introduction, the output of the main algorithm of this paper will
be a lifting fiber of the variety defined by the input system. For this reason, we devote
Section 4.1 to discuss a number of properties of lifting points and lifting fibers which
are important for the algorithm. Then in Section 4.2 we obtain a condition on the
coordinates of a point p ∈ Kn−s which implies that p is a lifting point of π (Theorem
4.9). Finally, in Section 4.3 we show that, taking partial derivatives and specializing a
Chow form of V at the coordinates of linear forms Y1, . . . , Yn−s+1 as above and a lifting
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point p of π, we obtain a Kronecker representation of the lifting fiber π−1(p) and a
related object, called a lifting curve (Propositions 4.13 and 4.14).

4.1. Properties of lifting points. In the sequel we denote R′ := K(Y1, . . . , Yn−s),
B′ := K(Y1, . . . , Yn−s)[X]/Ie and D := dimR′ B

′. The following proposition provides a
complete characterization of the notion of lifting point.

Proposition 4.1. For p := (p1, . . . , pn−s) ∈ Kn−s, we have:

• #π−1(p) ≤ D, with equality if and only if p is a lifting point of π.
• Assume that #π−1(p) = D. For 0 ≤ j ≤ n − s, the ideal Jj = I + (Y1 −
p1, . . . , Yj−pj) is radical and equidimensional of dimension n−s−j and the map-
ping V(Jj)→ An−s−j defined by Yj+1, . . . , Yn−s is a finite morphism. Further, if
J ej := JjK(Yj+1, . . . , Yn−s)[X], then the quotient ring K(Yj+1, . . . , Yn−s)[X]/J ej
is a K(Yj+1, . . . , Yn−s)-vector space of dimension D.

Proof. By [10, Corollary 2.5 ],
√
Jj is unmixed of dimension n− s− j and the extension

K[Yj+1, . . . , Yn−s] ⊆ K[X]/
√
Jj is integral. It follows that the radical of

√
Jj + (Yj+1−

pj+1) = Jj+1 is unmixed of dimension n−s−j−1 and K[Yj+2, . . . , Yn−s] ⊆ K[X]/(
√
Jj+

(Yj+1 − pj+1)) is an integral extension of rings. Further, for 0 ≤ j ≤ n − s let Fj :=
K(Yj+1, . . . , Yn−s) and denote√
Jj

e
:=
√
Jj Fj [X] and (

√
Jj + (Yj+1 − pj+1))e := (

√
Jj + (Yj+1 − pj+1))Fj+1[X].

We claim that

(4.1) dimFj+1 Fj+1[X]/(
√
Jj + (Yj+1 − pj+1))e = dimFj Fj [X]/(

√
Jj)e

for 0 ≤ j ≤ n − s − 1. Indeed, B := K[X]/
√
Jj is a torsion-free finitely generated

K[Yj+1, . . . , Yn−s]-module ([10, Proposition 1.22]). Set B̃ := Fj+1[X]/
√
Jj Fj+1[X].

Then B̃ is a torsion-free finitely generated Fj+1[Yj+1]-module which, by [31, Theorem

7.3], is a free Fj+1[Yj+1]-module of finite rank. Since a basis of B̃ induces a basis of

Fj [X]/
√
Jj

e
as Fj-vector space and a basis of Fj+1[X]/(

√
Jj + (Yj+1−pj+1))e as Fj+1-

vector space, the claim follows.
By (4.1) it follows that

dimFj+1 Fj+1[X]/(
√
Jj+1)e ≤ dimFj Fj [X]/(

√
Jj)e

for 0 ≤ j ≤ n− s− 1. This implies #π−1(p) = dimK[X]/
√
J ≤ D.

Next, suppose that #π−1(p) = D. Let LU := U1X1 + · · ·+ UnXn be a generic linear
form, where U := (U1, . . . , Un) is a tuple of new indeterminates over K(Y1, . . . , Yn−s).
Let QU ∈ K(U , Y1, . . . , Yn−s)[T ] be the minimal polinomial of LU in

B′U := K(U , Y1, . . . , Yn−s)[X]/IeU ,
where IeU := IK(U , Y1, . . . , Yn−s)[X]. By [10, Proposition 3.3], QU is a squarefree poly-
nomial of K[U , Y1, . . . , Yn−s][T ]. Let C′U := K(U)[X]/J eU , where J eU := JK(U)[X].
Let qU ∈ K(U)[T ] be the specialization of QU at Y1 = p1, . . . , Yn−s = pn−s. Note
that qU is monic with degT qU = D. By hypothesis dimKK[X]/

√
J = D. Then

dimK(U) K(U)[X]/
√
JU = D, where

√
JU :=

√
JK(U)[X]. Let pU be the minimal

polynomial of LU in K(U)[X]/
√
JU . By [10, Proposition 3.3], pU ∈ K[U ][T ] and
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degT pU = D. According to [10, Proposition 3.6 (a)], pU is the squarefree part of qU .
Since degT pU = degT qU = D, we deduce that qU is squarefree and [10, Proposition 3.6
(b)] proves that J is radical. Further, as qU is squarefree, every partial specialization of
QU at Y1 = p1, . . . , Yj = pj is squarefree. By [10, Proposition 3.6 (b)], we deduce that
Jj is radical for 1 ≤ j ≤ n− s.

Conversely, suppose that J is radical. As before, this implies that Jj is radical for
0 ≤ j ≤ n− s. Taking into account that Jj+1 = Jj + (Yj+1− pj+1), by (4.1) we see that

dimFj+1 Fj+1[X]/(Jj+1)e = dimFj Fj [X]/(Jj)e

for 0 ≤ j ≤ n− s− 1. We conclude that dimFj Fj [X]/(Jj)e = D for 0 ≤ j ≤ n− s and,

in particular, that #π−1(p) = dimKK[X]/
√
J = D, completing the proof. �

Let J ∈ K[X] be the Jacobian determinant of F1, . . . , Fs, Y1, . . . , Yn−s with respect
to X1, . . . , Xn. In the sequel we shall interpret Y1, . . . , Yn−s either as linear forms in
X1, . . . , Xn or as indeterminates over K, each interpretation being clear from the context.
For simplicity of notations, given F ∈ K[X1, . . . , Xn] we shall denote by F (Y1, . . . , Yn) or
F (Y ) the element of K[Y1, . . . ,Yn] obtained by rewriting F (X1, . . . , Xn) in the variables
Y1, . . . , Yn.

We shall need the following technical result.

Lemma 4.2. Let any p := (p1, . . . , pn−s) ∈ Kn−s. Fix i with 1 ≤ i ≤ s and let Ii :=
(F1, . . . , Fi) : G∞ ⊂ K[X], Vi := V(Ii) ⊂ An and Hi := Ii + (Y1 − p1, . . . , Yn−s − pn−s).
Denote by Hi ⊂ K[Yn−s+1, . . . , Yn] the image of Hi under the homomorphism

K[Y1, . . . ,Yn] → K[Yn−s+1, . . . , Yn],

F (Y ) 7→ F (p, Yn−s+1, . . . , Yn).

Assume that the following conditions hold:

• Vi is equidimensional of dimension n− i and the mapping πi : Vi → An−i defined
by Y1, . . . , Yn−i is a finite morphism;
• there exist pn−s+1, . . . , pn−i ∈ K such that pi := (p, pn−s+1, . . . , pn−i) ∈ Kn−i is

a lifting point of πi.

Then

• Hi and Hi are equidimensional radical ideals of dimension s− i and the varieties
V(Hi) ⊂ An and V(Hi) ⊂ As−i are isomorphic;
• if we further assume that π−1

i (pi) ⊂ {G 6= 0}, then the lifting fiber π−1
i (pi)

intersects each irreducible K-component of V(Hi). In particular, G does not
vanish identically on any irreducible K-component of V(Hi) and

Hi =
(
F1(p, Yn−s+1, . . . , Yn), . . . , Fi(p, Yn−s+1, . . . , Yn)

)
:G(p, Yn−s+1, . . . , Yn)∞.

Proof. It is easy to see that the mapping

K[Y1, . . . , Yn]/Hi → K[Yn−s+1, . . . , Yn]/Hi,
F (Y ) mod Hi 7→ F (p, Yn−s+1, . . . , Yn) mod Hi,

is an isomorphism of K–algebras.
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Proposition 4.1 shows that Hi and Hi are radical, equidimensional ideals of dimension
s − i. Therefore, we have an isomorphism between the coordinate rings of V(Hi) and
V(Hi), which proves that V(Hi) and V(Hi) are isomorphic varieties.

Further, by Proposition 4.1 the mapping π̃ : V(Hi)→ As−i defined by Yn−s+1, . . . , Yn−i
is a finite morphism. Let C1, . . . , Ch be the irreducible K-components of V(Hi). Let
π̃Cj be the restriction of π̃ to Cj for 1 ≤ j ≤ h. It follows that π̃Cj : Cj → As−i is

a finite morphism, and thus Cj ∩ π̃−1(pn−s+1, . . . , pn−i) 6= ∅ for 1 ≤ j ≤ h. Since

π̃−1(pn−s+1, . . . , pn−i) = π−1
i (pi) and π−1

i (pi) ⊂ {G 6= 0}, this shows G does not vanish
identically on any irreducible K-component of V(Hi).

Finally, we prove the assertion about the equality of ideals. We clearly have

Hi ⊂
(
F1(p, Yn−s+1, . . . , Yn), . . . , Fi(p, Yn−s+1, . . . , Yn)

)
:G(p, Yn−s+1, . . . , Yn)∞.

To prove the other inclusion, let F ∈ K[Y1, . . . , Yn] be such that F (p, Yn−s+1, . . . , Yn) be-
longs to

(
F1(p, Yn−s+1, . . . , Yn), . . . , Fi(p, Yn−s+1, . . . , Yn)

)
:G(p, Yn−s+1, . . . , Yn)∞. This

implies F ∈ (F1, . . . , Fi, Y − p1, . . . , Yn−s− pn−s) : G∞. The fact that G does not vanish
identically on any irreducible K-component of V(Hi) implies Hi = Hi : G∞. We deduce
that Hi = (F1, . . . , Fi, Y1 − p1, . . . , Yn−s − pn−s) : G∞. Thus F ∈ Hi. It follows that
F (p, Yn−s+1, . . . , Yn) ∈ Hi, which completes the proof of the last assertion. �

Let p := (p1, . . . , pn−s) ∈ Kn−s be a lifting point of π. By Proposition 4.1, the zero–
dimensional ideal J := I + (Y1 − p1, . . . , Yn−s − pn−s) ⊂ K[X] is radical and therefore
it is the vanishing ideal of the lifting fiber Vp := π−1(p). Now, for the main algorithm
of this paper we shall consider a curve associated to p and V , which we now introduce.
Let p∗ := (p1, . . . , pn−s−1) and let Wp∗ ⊂ An be the K–variety defined by the ideal

K := I + (Y1 − p1, . . . , Yn−s−1 − pn−s−1) ⊆ K[X].

According to Proposition 4.1, K is a radical, equidimensional ideal of dimension 1 and
the mapping π1 : Wp∗ → A1 defined by Yn−s is a finite morphism. We call Wp∗ the
lifting curve defined by p∗.

Let J ⊂ K[Yn−s+1, . . . , Yn] be the image of J under the homomorphism K[Y1, . . . , Yn]→
K[Yn−s+1, . . . , Yn], F (Y ) 7→ F (p, Yn−s+1, . . . , Yn). We shall identify Vp with the zero–

dimensional variety V(J ) ⊂ As. Further, if K ⊂ K[Yn−s, . . . , Yn] denotes the image of K
under the homomorphism K[Y1, . . . , Yn]→ K[Yn−s, . . . , Yn], F (Y ) 7→ F (p∗, Yn−s+1, . . . , Yn),
we shall identify Wp∗ with the curve V(K) ⊂ As+1. The next result justifies the correct-
ness of these identifications.

Corollary 4.3. With the previous hypotheses, the following assertions hold:

• J is a radical, zero–dimensional ideal of K[Yn−s+1, . . . , Yn], and the K–variety
V(J ) ⊂ As is isomorphic to Vp. Further, K[Yn−s+1, . . . , Yn]/J is a K–vector
space of dimension D;
• K is a radical, equidimensional ideal of K[Yn−s, . . . , Yn] of dimension 1, and

the K–variety V(K) ⊂ As+1 is isomorphic to Wp∗. Further, Yn−s, . . . , Yn are

in Noether position with respect to K and K(Yn−s)[Yn−s+1, . . . , Yn]/Ke, where
Ke := KK(Yn−s)[Yn−s+1, . . . , Yn], is a K(Yn−s)–vector space of dimension D;
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• if we further assume that Vp ⊂ {G 6= 0}, then Vp intersects each irreducible
K-component of Wp∗ and the following identities hold:

J = (F1(p, Yn−s+1, . . . , Yn), . . . , Fs(p, Yn−s+1, . . . , Yn)) :G(p, Yn−s+1, . . . , Yn)∞,

K = (F1(p∗, Yn−s, . . . , Yn), . . . , Fs(p
∗, Yn−s, . . . , Yn)) :G(p, Yn−s, . . . , Yn)∞.

Proof. The assertions on J , V(J ), K and V(K) follow from Proposition 4.1 and Lemma
4.2. Since Yj is integral over K[Yn−s] modulo K for n − s + 1 ≤ j ≤ n, it follows that

Yn−s, . . . , Yn are in Noether position with respect to K. �

A critical step in our main algorithm is to obtain a Kronecker representation of a
lifting curve Wp∗ from one of a lifting fiber Vp. This will be achieved by consider-
ing a symbolic version of the Newton method, which requires that the polynomials
F1(p, Yn−s+1, . . . , Yn), . . . , Fs(p, Yn−s+1, . . . , Yn) define the points of Vp by transversal
cuts. Further, in Section 6.2 we shall lift a Kronecker representation of the output
lifting fiber modulo a prime number p, which also requires such a transversality condi-
tion. As the next result shows, this is guaranteed if p is a lifting point of π outside the
hypersurface {G = 0}.

Lemma 4.4. With the previous hypotheses, the Jacobian determinant J of the polyno-
mials F1(p, Yn−s+1, . . . , Yn), . . . , Fs(p, Yn−s+1, . . . , Yn) with respect to Yn−s+1, . . . , Yn is
invertible in K[Yn−s+1, . . . , Yn]/J .

Proof. Let P1, . . . ,PN be the minimal prime ideals of J . Since J is radical, by Lemma
2.1 we deduce that J /∈ Pi for 1 ≤ i ≤ N . As J is of dimension zero, each Pi is a max-
imal ideal of K[Yn−s+1, . . . , Yn], which implies that J is a unit in K[Yn−s+1, . . . , Yn]/Pi
for 1 ≤ i ≤ N . By the Chinese remainder theorem we conclude that J is a unit in
K[Yn−s+1, . . . , Yn]/J , which finishes the proof of the lemma. �

Finally, assuming that F1, . . . , Fs form a regular sequence outside the hypersurface
{G = 0}, we shall need to see that this is preserved when specializing (Y1, . . . , Yn−s) at
a lifting point p. We have the following result.

Corollary 4.5. Assume that F1, . . . , Fs form a reduced regular sequence of K[X] outside
the hypersurface {G = 0} and the linear forms Y1, . . . , Yn are in Noether position with
respect to Vi := V

(
(F1, . . . , Fi) : G∞

)
for 1 ≤ i ≤ s. Further, assume that we are given

pn−s+1, . . . , pn−1 ∈ K such that pi := (p, pn−s+1, . . . , pn−i) ∈ Kn−i is a lifting point of
the finite morphism πi : Vi → An−i defined by Y1, . . . , Yn−i with π−1

i (pi) ⊂ {G 6= 0} for
1 ≤ i ≤ s. Then F1(p, Yn−s+1, . . . , Yn), . . . , Fs(p, Yn−s+1, . . . , Yn) form a reduced regular
sequence of K[Yn−s+1, . . . , Yn] outside the hypersurface {G(p, Yn−s+1, . . . , Yn) = 0} of
As.

Proof. With the notations of Lemma 4.2, it suffices to show that Hi is a radical ideal of
dimension s− i for 1 ≤ i ≤ s. Since by assumption pi is a lifting point of πi, this follows
from the second assertion of the aforesaid lemma. �

4.2. A condition for lifting points. In this section we obtain a condition for the
coordinates of a point p ∈ Kn−s which implies that it is a lifting point of π.
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Let Λ := (Λij)1≤i≤n−s+1,1≤j≤n, Z := (Z1, . . . , Zn−s+1) and let PV ∈ K[Λ,Z] be a
Chow form of V . Denote as before by AV ∈ K[Λ1, . . . ,Λn−s] the (nonzero) coefficient
of the monomial Zδn−s+1 in PV , and by ρV ∈ K[Λ, Z1, . . . , Zn−s] the discriminant of PV

with respect to Zn−s+1. Consider the quotient ring K[Λ,Z]/(PV ) as a K[Λ,Z]–algebra
by means of the canonical ring homomorphism K[Λ,Z] → K[Λ,Z]/(PV ). Further,
consider as before K[V ][Λ] as a K[Λ,Z]–algebra by means of the ring homomorphism
K[Λ,Z] → K[V ][Λ] which maps any F ∈ K[Λ,Z] to F (Λ,Λξ). By Lemma 3.2, the
polynomial ∂PV /∂Zn−s+1 is nonzero and hence

S :=
{

(∂PV /∂Zn−s+1)η : η ≥ 0
}

is a multiplicatively closed subset of K[Λ,Z]. We consider the localizations

K[Λ,Z]∂PV /∂Zn−s+1
:= S−1K[Λ,Z],(

K[Λ,Z]/(PV )
)
∂PV /∂Zn−s+1

:= S−1K[Λ,Z]/(PV ),

K[V ][Λ]∂PV /∂Zn−s+1
:= S−1K[V ][Λ].

Let K[Λ,Z]/(PV )→K[V ][Λ] be the K[Λ,Z]–algebra homomorphism that maps [Zi]modPV

to Λi·ξ for 1 ≤ i ≤ n−s+1 and consider the K[Λ,Z]∂PV /∂Zn−s+1
–algebra homomorphism

(4.2) Φ :
(
K[Λ,Z]/(PV )

)
∂PV /∂Zn−s+1

→ K[V ][Λ]∂PV /∂Zn−s+1
.

that extends this map. The next result asserts that Φ is an isomorphism.

Lemma 4.6. Φ is an isomorphism of K[Λ,Z]∂PV /∂Zn−s+1
–algebras.

Proof. By the minimality of PV the homomorphism K[Λ,Z]/(PV )→ K[V ][Λ] above is in-

jective, and thus so is Φ. To prove surjectivity, by (3.5) we have ξk= −∂PV/∂Λn−s+1,k(Λ,Λξ)
∂PV /∂Zn−s+1

in K[V ][Λ]∂PV /∂Zn−s+1
for 1 ≤ k ≤ n. It follows that

(4.3) ξk = Φ

(
−

[∂PV /∂Λn−s+1,k]modPV

∂PV /∂Zn−s+1

)
for 1 ≤ k ≤ n. Since ξ1, . . . , ξn generate K[V ][Λ]∂PV /∂Zn−s+1

as a K[Λ,Z]∂PV /∂Zn−s+1
–

algebra, the lemma follows. �

We shall also need the following technical result.

Lemma 4.7. For any F ∈ K[X], let FΛ ∈ K[Λ,Z] be any polynomial such that

(4.4) F

(
−∂PV /∂Λn−s+1,1

∂PV /∂Zn−s+1
, . . . ,−∂PV /∂Λn−s+1,n

∂PV /∂Zn−s+1

)
=

FΛ

(∂PV /∂Zn−s+1)η

for some η ∈ N. Then F vanishes on some irreducible component of V if and only if
ResZn−s+1(PV , FΛ) = 0. Moreover, F vanishes on V if and only if FΛ is a multiple of
PV . Further, for 1 ≤ i ≤ n− s+ 1, the following polynomial Hi ∈ Z[Λ,Z] is a multiple
of PV :

(4.5) Hi :=
∂PV

∂Zn−s+1
Zi +

n∑
j=1

Λij
∂PV

∂Λn−s+1,j
.
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Proof. Suppose that F vanishes on an irreducible component C of V . Considering (4.4)
modulo PV and applying Φ to both sides, by (4.3) we see that

F (ξ) =
FΛ(Λ,Λξ)

(∂PV /∂Zn−s+1)η

holds in K[V ][Λ] and then also in K[C][Λ]. Since F (ξ) = 0 in K[C] and ∂PV /∂Zn−s+1

is not a zero divisor of K[V ][Λ] (Lemma 3.3), we conclude that FΛ(Λ,Λξ) = 0 in
K[C][Λ]. It follows that the Chow form PC of C divides FΛ. Since PC is a factor of
PV of positive degree in Zn−s+1, we deduce that ResZn−s+1(PV , FΛ) = 0. Conversely, if
ResZn−s+1(PV , FΛ) = 0, then PV and FΛ have a common irreducible factor of positive
degree in Zn−s+1. Since this factor is the Chow form PC of an irreducible component
C of V , the first assertion of the lemma follows. The proof of the second assertion is
similar.

To prove the last assertion, we observe that

[Zi]modPV
= Φ−1(Λi · ξ) =

n∑
j=1

Λij Φ−1(ξj)(4.6)

for 1 ≤ i ≤ n− s+ 1. By this and (4.3) it follows that

[Zi]modPV
= −

n∑
j=1

Λij
[∂PV /∂Λn−s+1,j ]modPV

∂PV /∂Zn−s+1

for 1 ≤ i ≤ n− s+ 1, which readily implies the second assertion of the lemma. �

The next result, combined with Proposition 4.1, will yield the condition characterizing
lifting points we are looking for.

Proposition 4.8. Let λ ∈ K(n−s+1)n and p ∈ Kn−s be such that AV (λ∗)ρV (λ,p) 6= 0.
Let Yi := λi ·X for 1 ≤ i ≤ n−s and π : V → An−s the mapping defined by Y1, . . . , Yn−s.
Then #π−1(p) = δ.

Proof. By the choice of λ, the polynomial PV (λ,p, Zn−s+1) has degree δ. Since

ρV (λ,p) = ResZn−s+1

(
PV (λ,p, Zn−s+1),

∂PV

∂Zn−s+1
(λ,p, Zn−s+1)

)
and ρV (λ,p) 6= 0, the polynomial PV (λ,p, Zn−s+1) is separable. Let z1, . . . , zδ ∈ K be
the δ different roots of PV (λ,p, Zn−s+1) and set yk := (p, zk) for 1 ≤ k ≤ δ. We have
that ∂PV /∂Zn−s+1(λ,yk) 6= 0 for 1 ≤ k ≤ δ, and thus the point

xk :=

(
−∂PV /∂Λn−s+1,1(λ,yk)

∂PV /∂Zn−s+1(λ,yk)
, . . . ,−∂PV /∂Λn−s+1,n(λ,yk)

∂PV /∂Zn−s+1(λ,yk)

)
∈ An

is well defined for 1 ≤ k ≤ δ.
We claim that x1, . . . ,xδ are pairwise distinct and π−1(p) = {x1, . . . ,xδ}. Indeed,

let F ∈ K[X] be any polynomial vanishing on V and FΛ ∈ K[Λ,Z] a corresponding
polynomial according to (4.4). By Lemma 4.7 we have FΛ(λ,yk) = 0, and thus F (xk) =
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0, for 1 ≤ k ≤ δ. This proves that x1, . . . ,xδ belong to V . Further, Lemma 4.7 also
shows that

Hi(λ,y
k) =

∂PV

∂Zn−s+1
(λ,yk)yki +

n∑
j=1

λij
∂PV

∂Λn−s+1,j
(λ,yk) = 0

for 1 ≤ i ≤ n− s+ 1 and 1 ≤ k ≤ δ. By the definition of xk it follows that

(4.7) yki = λi · xk (1 ≤ i ≤ n− s+ 1).

Since yki = pi for 1 ≤ i ≤ n − s, (4.7) implies that π(xk) = p and zk = λn−s+1 · xk for
1 ≤ k ≤ δ. Since the zk are pairwise distinct, we deduce that so are the xk. This proves
that #π−1(p) ≥ δ. On the other hand, since π is a finite morphism (Proposition 3.4),
the fiber π−1(p) is finite, and by (2.1) we have

#π−1(p) = deg
(
V ∩ {Y1 − p1 = 0, . . . , Yn−s − pn−s = 0}

)
≤ deg V = δ,

which concludes the proof of the claim. In particular, #π−1(p) = δ. �

Now we are able to state the main result of this section.

Theorem 4.9. Let λ ∈ K(n−s+1)n and p ∈ Kn−s be such that AV (λ∗)ρV (λ,p) 6= 0. Let
Yi := λi ·X for 1 ≤ i ≤ n− s+ 1 and R := K[Y1, . . . , Yn−s]. Then:

• the mapping π : V → An−s defined by Y1, . . . , Yn−s is a finite morphism and
Yn−s+1 induces a primitive element of the ring extension R ↪→ K[V ];
• dimR′ B

′ = δ;
• p is a lifting point of π and Yn−s+1 induces a primitive element of π−1(p).

Proof. Proposition 3.4 proves the first assertion. Combining Propositions 3.4, 4.1 and
4.8 we deduce that δ = #π−1(p) ≤ dimR′ B

′ ≤ δ. It follows that #π−1(p) = δ and
p is a lifting point of π. Next, let p := (p1, . . . , pn−s). By substituting λ for Λ and
p1, . . . , pn−s for λ1 · ξ, . . . ,λn−s · ξ in (3.6), we deduce that

ρV (λ,p)ξk = Rk(λ,p,λn−s+1 · ξ)

in π−1(p) for 1 ≤ k ≤ n. Since ρV (λ,p) 6= 0, we conclude that K
[
π−1(p)

]
= K[λn−s+1·ξ],

which proves that Yn−s+1 induces a primitive element of π−1(p). �

Finally, we give a condition that implies that the lifting fiber π−1(p) lies outside the
hypersurface {G = 0}. Let GΛ ∈ Z[Λ,Z] be the polynomial defined by the identity

(4.8) G

(
−∂PV /∂Λn−s+1,1

∂PV /∂Zn−s+1
, . . . ,−∂PV /∂Λn−s+1,n

∂PV /∂Zn−s+1

)
=

GΛ

(∂PV /∂Zn−s+1)degG
.

Since G does not vanish identically on any irreducible component of V , by Lemma 4.7 we
see that GΛ and the resultant RGV := ResZn−s+1 (PV , GΛ) are both nonzero polynomials.

Lemma 4.10. With hypotheses and notations as in Proposition 4.8, assume further that
RGV (λ,p) 6= 0. Then π−1(p) ⊂ {G 6= 0}.

Proof. By hypothesis the resultant

RGV (λ,p) = ResZn−s+1

(
PV (λ,p, Zn−s+1), GΛ(λ,p, Zn−s+1)

)
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is nonzero. Since PV (λ,yk) = 0, it follows that GΛ(λ,yk) 6= 0 for 1 ≤ k ≤ δ. By
substituting (λ,yk) for (Λ,Z) in (4.8), we deduce that

G(xk) =
GΛ,p(λ,y

k)

(∂PV /∂Zn−s+1(λ,yk))degG

and conclude that G(xk) 6= 0 for 1 ≤ k ≤ δ, which completes the proof. �

4.3. Kronecker representations from specializations of the Chow form. Let be
given λ := (λij)1≤i≤n−s+1,1≤j≤n ∈ K(n−s+1)n and p := (p1, . . . , pn−s) ∈ Kn−s satisfying
the hypotheses of Theorem 4.9. Define Yi := λi · X for 1 ≤ i ≤ n − s + 1, and let
R := K[Y1, . . . , Yn−s], B := K[V ], R′ := K(Y1, . . . , Yn−s) and B′ := R′[X]/Ie, where
Ie := IR′[X]. Further assume that we are given linear forms Yn−s+2, . . . , Yn ∈ K[X]
such that Y1, . . . , Yn are linearly independent. Then

• Y1, . . . , Yn are in Noether position with respect to I;
• p is a lifting point of the finite morphism π : V → An−s defined by Y1, . . . , Yn−s;
• B′ is an R′-vector space of dimension equal to δ.

We shall show that Kronecker representations of the definining ideals of V , the lifting
fiber Vp and the lifting curve Wp∗ can be obtained by specializing any Chow form of V .
This will provide a criterion to check that the modular reductions considered during our
main algorithm behave properly.

Let PV ∈ K[Λ,Z] be a Chow form of V , and let AV ∈ K[Λ1, . . . ,Λn−s] and ρV ∈
K[Λ, Z1, . . . , Zn−s] be defined as in Section 4.2. By (3.1) and (3.5), we have

(4.9) PV (Λ,Λξ) = 0,
∂PV

∂Zn−s+1
(Λ,Λξ)ξk +

∂PV

∂Λn−s+1,k
(Λ,Λξ) = 0 (1 ≤ k ≤ n),

in K[V ][Λ]. Let T be a new indeterminate and define Q,Wn−s+2, . . . ,Wn ∈ R[T ] by

Q :=
PV (λ, Y1, . . . , Yn−s, T )

AV (λ∗)
, Wj := −

n∑
k=1

λjk
AV (λ∗)

∂PV

∂Λn−s+1,k
(λ, Y1, . . . , Yn−s, T )

for n− s+ 2 ≤ j ≤ n. Substituting λ for Λ in (4.9) we deduce that

(4.10) Q(Yn−s+1) ∈ I, Q′(Yn−s+1)Yj −Wj(Yn−s+1) ∈ I (n− s+ 2 ≤ j ≤ n),

where Q′ denotes the first derivative of Q with respect to T .
Note that Q is a monic polynomial of degree δ and degWj < δ for n − s + 2 ≤

j ≤ n. On the other hand, by the choice of λ, the discriminant of Q, which is
equal to ρV (λ, Y1, . . . , Yn−s)/AV (λ∗)2δ−1, is a nonzero element of R. Thus Q is square–
free and Q′ is invertible modulo Q. In particular, Q′(Yn−s+1) is invertible in B′ :=
R′[Yn−s+1, . . . , Yn]/Ie, and (4.10) shows that the homomorphism ofR′–algebrasR′[T ]/(Q)→
B′, which maps T mod Q to Yn−s+1 mod Ie, is surjective. This means that Yn−s+1 is
a primitive element for I. On the other hand, since dimR′ B

′ = δ, the above homomor-
phism is an isomorphism. We conclude that Q is the minimal polynomial of Yn−s+1 over
R′ modulo Ie, and we have the following identity of ideals in R′[Yn−s+1, . . . , Yn]:

Ie=
(
Q(Yn−s+1),Q′(Yn−s+1)Yn−s+2−Wn−s+2(Yn−s+1), . . . ,Q′(Yn−s+1)Yn−Wn(Yn−s+1)

)
.

Further, by construction degT Wj ≤ δ − 1 for n− s+ 2 ≤ j ≤ n. As a consequence, we
obtain the following result.
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Proposition 4.11. The polynomials Q,Wn−s+2, . . . ,Wn form the Kronecker represen-
tation of I with primitive element Yn−s+1.

Remark 4.12. Since deg(Z1,...,Zn−s+1)
PV = degZn−s+1

PV = δ (see Section 3.1), we have

deg(Y1,...,Yn−s,T )Q = δ and deg(Y1,...,Yn−s,T )Wj ≤ δ for n− s+ 2 ≤ j ≤ n.

Now, let J := I+(Y1−p1, . . . , Yn−s−pn−s). Denote as in Corollary 4.3 by J the image
of J in K[Yn−s+1, . . . , Yn] under the homomorphism F ∈ K[X] 7→ F (p, Yn−s+1, . . . , Yn).
Substituting p1, . . . , pn−s for Y1, . . . , Yn−s in (4.10) we obtain

Q(p, Yn−s+1) ∈ J , Q′(p, Yn−s+1)Yj −Wj(p, Yn−s+1) ∈ J (n− s+ 2 ≤ j ≤ n).(4.11)

The polynomial Q(p, T ) is monic of degree δ and degWj(p, T ) < δ for n−s+2 ≤ j ≤ n.

The discriminant of Q(p, T ) is ρV (λ,p)/AV (λ∗)2δ−1, and thus nonzero due to the choice
of λ and p. It follows that Q(p, T ) is square–free and Q′(p, T ) is invertible modulo
Q(p, T ). This implies that Q′(p, Yn−s+1) is invertible in K[Yn−s+1, . . . , Yn]/J , and (4.11)
shows that the homomorphism of K–algebras

K[T ]/
(
Q(p, T )

)
→ K[Yn−s+1, . . . , Yn]/J , T mod Q(p, T ) 7→ Yn−s+1 mod J ,

is surjective. This means that Yn−s+1 induces a primitive element for J . Further, since
K[Vp] ∼= K[Yn−s+1, . . . , Yn]/J is a K–vector space of dimension equal to dimR′ B

′, and
dimR′ B

′ = degQ(p, T ) = δ, it follows that the above homomorphism is an isomorphism.
We conclude that Q(p, T ) is the minimal polynomial of Yn−s+1 over K modulo J , and
that the following equality of ideals holds in K[Yn−s+1, . . . , Yn]:

J =
(
Q(p, Yn−s+1), Q′(p, Yn−s+1)Yj −Wj(p, Yn−s+1) : n− s+ 2 ≤ j ≤ n

)
.

Identifying J with its image in K[Yn−s+1, . . . , Yn], we obtain the following result.

Proposition 4.13. The polynomials Q(p, T ),Wn−s+2(p, T ), . . . ,Wn(p, T ) form the Kro-
necker representation of J with primitive element Yn−s+1.

Finally, we discuss a Kronecker representation of K := I + (Y1 − p1, . . . , Yn−s−1 −
pn−s−1). Let p∗ := (p1, . . . , pn−s−1) and let K be the image of K in K[Yn−s, . . . , Yn]
as in Corollary 4.3. Then Yn−s, . . . , Yn are in Noether position with respect to K and
K(Yn−s)[Yn−s+1, . . . , Yn]/Ke is a K(Yn−s)-vector space of dimension equal to dimR′ B

′.
Substituting p1, . . . , pn−s−1 for Y1, . . . , Yn−s−1 in (4.10), we deduce that

Q(p∗, Yn−s, Yn−s+1) ∈ K,(4.12)

Q′(p∗, Yn−s,Yn−s+1)Yj −Wj(p
∗, Yn−s,Yn−s+1) ∈ K (n− s+ 2 ≤ j ≤ n).

Observe that Q(p∗, Yn−s, T ) is monic of degree δ and degWj(p
∗, Yn−s, T ) < δ for n −

s + 2 ≤ j ≤ n. By the choice of λ, the discriminant ρV (λ,p∗, Yn−s)/AV (λ∗)2δ−1 of
Q(p∗, Yn−s, T ) is a nonzero element of K[Yn−s]. Therefore, Q(p∗, Yn−s, T ) is square–
free, Q′(p∗, Yn−s, T ) is invertible modulo Q(p∗, Yn−s, T ), and thus Q′(p∗, Yn−s, Yn−s+1)

is invertible in K(Yn−s)[Yn−s+1, . . . , Yn]/Ke. By (4.12) the homomorphism of K(Yn−s)–
algebras

K(Yn−s)[T ]/
(
Q(p∗, Yn−s, T )

)
→ K(Yn−s)[Yn−s+1, . . . , Yn]/Ke
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which maps T mod Q(p∗, Yn−s, T ) to Yn−s+1 mod Ke is surjective. In particular,
Yn−s+1 induces a primitive element forK. Since K(Yn−s)[Yn−s+1, . . . ,Yn]/Ke is a K(Yn−s)–
vector space of dimension equal to dimR′ B

′ = degQ(p∗, Yn−s, T ) = δ, this homomor-
phism is an isomorphism. We conclude that Q(p∗, Yn−s, T ) is the minimal polynomial of

Yn−s+1 modulo Ke, and the following equality of ideals holds in K(Yn−s)[Yn−s+1, . . . , Yn]:

Ke =
(
Q(p∗, Yn−s, Yn−s+1), Q′(p∗, Yn−s, Yn−s+1)Yn−s+2 −Wn−s+2(p∗, Yn−s, Yn−s+1),

. . . , Q′(p∗, Yn−s, Yn−s+1)Yn −Wn(p∗, Yn−s, Yn−s+1)
)
.

Identifying K with its image in K[Yn−s, . . . , Yn], we obtain the following result.

Proposition 4.14. Q(p∗, Yn−s, T ),Wn−s+2(p∗, Yn−s, T ), . . . ,Wn(p∗, Yn−s, T ) form the
Kronecker representation of K with primitive element Yn−s+1.

5. On the conditions for a good modular reduction

From now on we consider polynomials F1, . . . , Fr, G in Z[X] of degree at most d such
that F1, . . . , Fr define a reduced regular sequence in the open subset {G 6= 0} of An and

denote Is := (F1, . . . , Fs) : G∞, Vs := V(Is) = V(F1, . . . , Fs) \ V(G) and δs := degVs
for 1 ≤ s ≤ r. As explained in the introduction, our aim is to describe an algorithm
for solving the system F1 = 0, . . . , Fr = 0, G 6= 0 and analyze its bit complexity. This
algorithm outputs a Kronecker representation of a lifting fiber of Vr and relies on modular
methods. For this reason, a crucial point is the choice of a “lucky” prime number, namely
one which provides a good modular reduction, of “low” bit length. In this section we
exhibit a nonzero integer multiple N of all the “unlucky” primes. More precisely, we

show that, for a suitable choice of λ ∈ Zn2
and p ∈ Zn−1, there is a nonzero integer N

with the following property: if p is a prime number not dividing N, then all conditions in
Theorem 1.2 modulo p are satisfied. Further, our description of N is explicit enough as
to allow us to estimate its bit length (Theorem A.20). By this estimate and well–known
methods for finding small primes not dividing a given integer we shall be able to compute
in Section 6 a lucky prime of low bit length with high probability of success.

The determination of the integer N proceeds in several stages. In Section 5.1 we deal
with conditions (1)–(2) of Theorem 1.2, and the corresponding results are summarized
in Theorem 5.5. Then in Section 5.2 we discuss the fulfillment of the more involved
condition (3) of Theorem 1.2.

In the sequel, if p is a prime number and M any polynomial with integer coefficients,
we denote by Mp its reduction modulo p. Further, by Is,p ⊂ Fp[X] we denote the ideal

Is,p := (F1,p, . . . , Fs,p) : G∞p and by Vs,p ⊆ AmFp := Am(Fp) the variety Vs,p := V(Is,p) for
1 ≤ s ≤ r.

5.1. First conditions for a good modular reduction. Fix s with 1 ≤ s ≤ r and
λ ∈ Z(n−s+1)n such that the hypotheses of Proposition 3.4 are satisfied. In this section
we establish a condition on a prime number p which implies that the variety Vs,p is
equidimensional and reduced of dimension n − s and degree δs, and the linear forms
(Y1,p, . . . , Yn−s,p) := λpX are the free variables of a Noether normalization of Vs,p.

Throughout this section and the next one, Λ := (Λij)1≤i≤n−s+1,1≤j≤n and Z :=
(Z1, . . . , Zn−s+1) denote a matrix and a vector of indeterminates over Q[Vs]. We set
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Λi := (Λi1, . . . ,Λin) and Λi · X :=
∑n

j=1 ΛijXj for 1 ≤ i ≤ n − s + 1. Further,

we denote ΛX := (Λ1 · X, . . . ,Λn−s+1 · X), Λ∗ := (Λij)1≤i≤n−s,1≤j≤n and Λ∗X :=

(Λ1 ·X, . . . ,Λn−s ·X). Finally, given λ := (λij)1≤i≤n−s+1,1≤j≤n ∈ Z(n−s+1)n, we adopt
the notations λi · X (1 ≤ i ≤ n − s + 1), λX, λ∗ and λ∗X accordingly. Denote
by Ps ∈ Q[Λ,Z] a Chow form of Vs. Since Ps is uniquely determined up to nonzero
multiples in Q, we may assume that Ps is a primitive polynomial of Z[Λ,Z]. Let as

before As ∈ Z[Λ1, . . . ,Λn−s] be the coefficient of the monomial Zδsn−s+1 in Ps and ρs ∈
Z[Λ, Z1, . . . , Zn−s] the discriminant of Ps with respect to Zn−s+1, that is,

ρs := ResZn−s+1

(
Ps,

∂Ps
∂Zn−s+1

)
.

According to Lemma 3.2, the polynomials ∂Ps/∂Zn−s+1 and ρs are both nonzero. Fur-
ther, let GsΛ ∈ Z[Λ,Z] be the polynomial defined by the identity

(5.1) G

(
−∂Ps/∂Λn−s+1,1

∂Ps/∂Zn−s+1
, . . . ,−∂Ps/∂Λn−s+1,n

∂Ps/∂Zn−s+1

)
=

GsΛ
(∂Ps/∂Zn−s+1)degG

.

Since G does not vanish on any irreducible component of Vs, by Lemma 4.7 we see that
GsΛ and the resultant

RGs := ResZn−s+1 (Ps, G
s
Λ)

are both nonzero polynomials. Further we easily see that

(5.2) deg(GsΛ) ≤ (n− s+ 1)δs deg(G), deg(RGs ) ≤ (n− s+ 1)(n− s+ 2)δ2
s deg(G).

As a first step, we give a condition of consistency of the system F1,p = 0, . . . , Fs,p =
0, Gp 6= 0.

Lemma 5.1. Let p be a prime number such that

As,p(λ
∗
p)ρs,p(λp, Z1, . . . , Zn−s)R

G
s,p(λp, Z1, . . . , Zn−s) 6= 0.

Let Yi,p := λi,p ·X for 1 ≤ i ≤ n − s. If πs,p : Vs,p → An−sFp
is the mapping defined by

Y1,p, . . . , Yn−s,p, then any q ∈ An−sFp
with ρs,p(λp, q)RGs,p(λp, q) 6= 0 satisfies π−1

s,p(q) ⊂
V(F1,p, . . . , Fs,p) \ V(Gp) and #π−1

s,p(q) ≥ δs.

Proof. Note that Ps,p(λp, q, Zn−s+1) has degree δs, because As,p(λ
∗
p) 6= 0. It follows that

ρs,p(λp, q) = ResZn−s+1

(
Ps,p(λp, q, Zn−s+1),

∂Ps,p
∂Zn−s+1

(λp, q, Zn−s+1)

)
,

and thus the polynomial Ps,p(λp, q, Zn−s+1) is separable. Let z1, . . . , zδs ∈ Fp be the roots

of Ps,p(λp, q, Zn−s+1) and yk := (q, zk) for 1 ≤ k ≤ δs. As ∂Ps,p/∂Zn−s+1(λp,y
k) 6= 0

for 1 ≤ k ≤ δs, the point

xk :=

(
−∂Ps,p/∂Λn−s+1,1(λp,y

k)

∂Ps,p/∂Zn−s+1(λp,yk)
, . . . ,−∂Ps,p/∂Λn−s+1,n(λp,y

k)

∂Ps,p/∂Zn−s+1(λp,yk)

)
∈ AnFp

is well defined for 1 ≤ k ≤ δs.
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We claim that x1, . . . ,xδs are pairwise distinct points of V(F1,p, . . . , Fs,p) \V(Gp) and

{x1, . . . ,xδs} ⊂ π−1
s,p(q). Indeed, let FΛ,j ∈ Z[Λ,Z] be such that

(5.3) Fj

(
−∂Ps/∂Λn−s+1,1

∂Ps/∂Zn−s+1
, . . . ,−∂Ps/∂Λn−s+1,n

∂Ps/∂Zn−s+1

)
=

FΛ,j

(∂Ps/∂Zn−s+1)degFj

for 1 ≤ j ≤ s. Also let

Hi :=
∂Ps

∂Zn−s+1
Zi +

n∑
j=1

Λij
∂Ps

∂Λn−s+1,j
.

for 1 ≤ i ≤ n− s+ 1. Lemma 4.7 shows that FΛ,j (1 ≤ j ≤ s) and Hi (1 ≤ i ≤ n− s+ 1)
are multiples of Ps in Q[Λ,Z]. Further, since Ps is a primitive polynomial, we conclude
that they are multiples of Ps in Z[Λ,Z], and thus that FΛ,j,p (1 ≤ j ≤ s) and Hi,p

(1 ≤ i ≤ n − s + 1) are multiples of Ps,p. As Ps,p(λp,y
k) = 0 by construction, we

see that FΛ,j,p(λp,y
k) = 0 and Hi,p(λp,y

k) = 0 for 1 ≤ k ≤ δs, and reducing (5.3)

modulo p we deduce that Fj,p(x
k) = 0 for 1 ≤ k ≤ δs. Then following the proof

of Proposition 4.8 mutatis mutandis we conclude that x1, . . . ,xδs are pairwise distinct
points of V(F1,p, . . . , Fs,p) such that (Y1,p(x

k), . . . , Yn−k,p(x
k)) = q.

It remains to prove that Gp(x
k) 6= 0 for 1 ≤ k ≤ δs. To do this, note that the resultant

RGs,p(λp, q) = ResZn−s+1

(
Ps,p(λp, q, Zn−s+1), GsΛ,p(λp, q, Zn−s+1)

)
is not zero. Since Ps,p(λp,y

k) = 0, it follows that GsΛ,p(λp,y
k) 6= 0 for 1 ≤ k ≤ δs. By

reducing modulo p and substituting (λp,y
k) for (Λ,Z) in (5.1), we deduce that

Gp(x
k) =

GsΛ,p(λp,y
k)

(∂Ps/∂Zn−s+1(λp,yk))degG
6= 0

for 1 ≤ k ≤ δs, which completes the proof. �

We see that GPs(Λ,ΛX) ∈ Z[Λ,X] vanishes on the set A(n−s+1)n × V(F1, . . . , Fs)

of common zeros of F1, . . . , Fs in A(n−s+1)n × An. By the Nullstellensatz, there exist
αs ∈ Z \ {0} and µs ∈ N such that

(5.4) αs(GPs(Λ,ΛX))µs ∈ (F1, . . . , Fs)Z[Λ,X].

Our next result provides a condition which implies that the modular reduction preserves
dimension and a Noether normalization.

Proposition 5.2. Let p be a prime number such that

αs,pAs,p(λ
∗
p)ρs,p(λp, Z1, . . . , Zn−s)R

G
s,p(λp, Z1, . . . , Zn−s) 6= 0.

Let Yi := λi ·X for 1 ≤ i ≤ n− s. Then:

(1) Vs,p is equidimensional of dimension n− s;
(2) the mapping πs,p : Vs,p → An−sFp

defined by Y1,p, . . . , Yn−s,p is a finite morphism.

Proof. Recall that As is homogeneous of degree δs in the (n− s)× (n− s)–minors of Λ∗.
Since p - As(λ∗), at least one of the (n− s)× (n− s)–minors of λ∗ is nonzero modulo p.
We deduce that the linear forms Y1,p, . . . , Yn−s,p are linearly independent, and there exist
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linear forms Yn−s+1, . . . , Yn ∈ Z[X] such that Y1,p, . . . , Yn,p are linearly independent in
Fp[X]. Let wk ∈ Zn be such that Yn−s+k = wk ·X for 1 ≤ k ≤ s and

Qk := Ps(λ
∗,wk, Z1, . . . , Zn−s+1) ∈ Z[Z1, . . . , Zn−s+1].

From (5.4) we see that αs(GQk(Y1, . . . , Yn−s, Yn−s+k))
µs ∈ (F1, . . . , Fs)Z[X] and reduc-

ing modulo p we obtain

αs,p(GpQk,p(Y1,p, . . . , Yn−s,p, Yn−s+k,p))
µs ∈ (F1,p . . . , Fs,p)Fp[X]

for 1 ≤ k ≤ s. This implies that

(5.5) αs,p(Qk,p(Y1,p, . . . , Yn−s,p, Yn−s+k,p))
µs ∈ Is,p

for 1 ≤ k ≤ s. Observe that degZn−s+1
Qk = δs and As(λ

∗) is the coefficient of

Zδsn−s+1 in Qk. Since p - αsAs(λ∗), identity (5.5) may be interpreted as an integral

dependence relation for Yn−s+k,p over Fp[Y1,p, . . . , Yn−s,p] modulo Is,p. Further, since

Fp[Y1,p, . . . , Yn,p] = Fp[X], we conclude that Fp[Y1,p, . . . , Yn−s,p]→ Fp[Vs,p] is an integral
ring extension. In particular, we have dimVs,p ≤ n − s. Moreover, by the choice of
p and Lemma 5.1 the variety Vs,p = V(Is,p) is nonempty. Therefore, Is,p is a proper

ideal of Fp[X]. This implies that (F1,p . . . , Fs,p) is a proper ideal. By the Principal Ideal
Theorem (see, e.g., [11, Theorem 10.2]) every irreducible component of V(F1,p . . . , Fs,p)
has dimension at least n−s. Then every irreducible component of Vs,p has dimension at
least n−s. We conclude that Vs,p is equidimensional of dimension n−s. This shows the

first assertion. On the other hand, since the ring extension Fp[Y1,p, . . . , Yn−s,p]→ Fp[Vs,p]
is integral and dimVs,p = n− s, it follows that πs,p : Vs,p → An−sFp

is a finite morphism,

which finishes the proof. �

Next we show that the hypotheses of Proposition 5.2 also guarantee that the degree
is preserved under modular reduction, and the modular Chow form is obtained reducing
modulo p that of Vs.

Corollary 5.3. With notations and hypotheses as in Proposition 5.2, degVs,p = δs and
Ps,p is a Chow form of Vs,p.

Proof. Since p - αs, from (5.4) we see that (GpPs,p(Λ,ΛX))µs ∈ (F1,p, . . . , Fs,p)Fp[Λ,X].

This implies that Ps,p(Λ,ΛX) vanishes on A(n−s+1)n
Fp

× Vs,p. As a consequence, if Qs ∈
Fp[Λ,Z] is a Chow form of Vs,p, then Qs divides Ps,p in Fp[Λ,Z]. Since Ps,p is nonzero,
because Ps is primitive, we conclude that

degVs,p = degZn−s+1
Qs ≤ degZn−s+1

Ps,p ≤ δs.

On the other hand, Proposition 5.2 shows that πs,p is a finite morphism, and the (finite)
fiber π−1

s,p(pp) satisfies #π−1
s,p(pp) ≥ δs by Lemma 5.1. The Bézout inequality (2.1) implies

#π−1
s,p(pp) = deg

(
Vs,p ∩ {Y1,p − p1,p = 0, . . . , Yn−s,p − pn−s = 0}

)
≤ degVs,p.

This proves that degVs,p = δs. Since Qs is homogeneous of degree δs and Ps,p has degree
at most δs in each set of variables (Zi,Λi1, . . . ,Λin) for 1 ≤ i ≤ n−s+ 1, we deduce that
Ps,p = εQs for some ε ∈ Fp \ {0}, showing thus that Ps,p is a Chow form of Vs,p. �
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Finally, we obtain a condition which implies that the modular reduction preserves
generic smoothness. Let p := (p1, . . . , pn−s) ∈ Zn−s be such thatAs(λ

∗)ρs(λ,p)RGs (λ,p) 6=
0. By Theorem 4.9 and Lemma 4.10 it follows that p is a lifting point of the map-
ping πs : Vs → An−s defined by Y1, . . . , Yn−s such that π−1

s (p) ⊂ {G 6= 0}. Let
Js be the Jacobian determinant of F1, . . . , Fs, Y1 − p1, . . . , Yn−s − pn−s with respect
to X1, . . . , Xn. Lemma 4.4 then implies that G vanishes on the common zeros in An of
F1, . . . , Fs, Y1−p1, . . . , Yn−s−pn−s and Js. By the Nullstellensatz, there exist γs ∈ Z\{0},
νs ∈ N and G1, . . . , Gn+1 ∈ Z[X] such that

(5.6) γsG
νs = G1F1 + · · ·+GsFs +Gs+1(Y1 − p1) + · · ·+Gn(Yn−s − pn−s) +Gn+1Js.

The nonvanishing of γs modulo p provides the additional condition we are looking for.

Proposition 5.4. With the previous hypotheses and notations, let p be a prime number
such that p - αsγsAs(λ∗)ρs(λ,p)RGs (λ,p). Then Is,p is a radical ideal of Fp[X].

Proof. Since by hypothesis αs,pAs,p(λ
∗
p)ρs,p(λp, Z1, . . . , Zn−s) is nonzero, from Propo-

sition 5.2 it follows that Vs,p is equidimensional of dimension n − s and the mapping
πs,p : Vs,p → An−sFp

defined by Y1,p, . . . , Yn−s,p is a finite morphism. On the other hand,

reducing (5.6) modulo p we see that

γs,pG
νs
p = G1,pF1,p+· · ·+Gs,pFs,p+Gs+1,p(Y1,p−p1,p)+· · ·+Gn,p(Yn−s,p−pn−s,p)+Gn+1,pJs,p

holds in Fp[X]. Further, by Corollary 5.3 we have that Ps,p is the Chow form of Vs,p.
Then Lemma 5.1 shows that π−1

s,p(p) ⊂ V(F1,p, . . . , Fs,p) \ V(Gp). This and the previous

identity imply that Js,p(x) 6= 0 for any x ∈ π−1
s,p(p). Let C1, . . . , Ch be the irreducible

components of Vs,p and let πCi denote the restriction of πs,p to Ci for 1 ≤ i ≤ h. Since
Vs,p is equidimensional, πCi is a finite morphism. In particular, Ci ∩ π−1

s,p(pp) 6= ∅ for
1 ≤ i ≤ h. It follows that Js,p does not vanish identically on Ci, which implies that there
exists an (s× s)–minor Mi ∈ Fp[X] of the Jacobian matrix (∂Fi,p/∂Xj)1≤i≤s,1≤j≤n not

vanishing identically on Ci for 1 ≤ i ≤ h. Let J ⊂ Fp[X] be the ideal generated by Is,p
and the (s× s)–minors of the Jacobian matrix (∂Fi,p/∂Xj)1≤i≤s,1≤j≤n. If Pi ⊂ Fp[X] is
the vanishing ideal of Ci for 1 ≤ i ≤ h, then P1, . . . ,Ph are the minimal prime ideals of
Is,p. Since Mi 6∈ Pi, we have J * Pi for 1 ≤ i ≤ h, and Lemma 2.1 proves that Is,p is a
radical ideal. �

We summarize all the previous results in the following theorem.

Theorem 5.5. Let λ ∈ Z(n−s+1)n and p ∈ Zn−s be such that As(λ
∗)ρs(λ,p)RGs (λ,p) 6=

0 and let p be a prime number such that p - αsγsAs(λ∗)ρs(λ,p)RGs (λ,p), where αs and
γs are the integers of (5.4) and (5.6) respectively. Let Yi,p := λi,p ·X for 1 ≤ i ≤ n−s+1,

Rs,p := Fp[Y1,p, . . . , Yn−s,p], R
′
s,p := Fp(Y1,p, . . . , Yn−s,p) and B′s,p := R′s,p[X]/Ies,p, where

Ies,p := Is,pR′s,p[X]. Then the following conditions hold:

• Is,p is radical ideal of Fp[X] and defines an equidimensional variety Vs,p ⊂ An−sFp
of dimension n− s and degree δs;
• the mapping πs,p : Vs,p → An−sFp

defined by Y1,p, . . . , Yn−s,p is a finite morphism

and Yn−s+1,p induces a primitive element of the ring extension Rs,p ↪→ Fp[Vs,p];
• dimR′s,p B

′
s,p = δs;
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• any q ∈ An−sFp
with ρs,p(λp, q) 6= 0 is a lifting point of πs,p and Yn−s+1,p induces

a primitive element of π−1
s,p(q). For q := pp, we also have π−1

s,p(pp) ⊂ {Gp 6= 0}.

Proof. The first assertion follows by Proposition 5.2, Corollary 5.3 and Proposition 5.4.
Since Ps,p is a Chow form of Vs,p by Corollary 5.3, the last three assertions are conse-

quence of Theorem 4.9 and Lemma 4.10 applied to K = Fp. �

5.2. Lifting fibers not meeting a discriminant. Throughout this section we assume
that s ≤ r−1. Our main algorithm is recursive, and in its sth step computes a Kronecker
representation of the fiber π−1

s+1(p∗) from one of the lifting curve Wp∗ . As the Kronecker
representation of Wp∗ constitutes a “good” representation of Wp∗ outside the discrimi-

nant locus {ρs(λ, Y1, . . . , Yn−s) = 0}, it is critical that π−1
s+1(p∗) does not intersect this

hypersurface. In this section we show that for a generic choice of the coordinates of
λ and p this condition is satisfied and discuss when this is preserved under modular
reduction.

For this purpose, we use the following terminology: for two subvarieties V and W of
An, we say that W cuts V properly if W does not contain any irreducible Q–component
of V. We have the following result.

Lemma 5.6. There exists a polynomial Rs ∈ Q[Λ] \ {0} of degree at most 2(n − s +

2)δ2
sδs+1 with the following property: for every λ ∈ A(n−s+1)n with Rs(λ) 6= 0, the

hypersurface {ρs(λ,λ∗X) = 0} ⊂ An cuts Vs+1 properly.

Proof. Let C1, . . . , Ch be the irreducible Q–components of Vs+1, and let zi ∈ Ci be a
nonsingular point of Vs+1 for 1 ≤ i ≤ h. Define

Rs :=
h∏
i=1

ρs(Λ,Λ
∗zi).

We claim that Rs satisfies the conditions of the lemma. Indeed, fix 1 ≤ i ≤ h. Since zi is
a nonsingular point of Vs+1 and I(Vs+1) = I(Vs) + (Fs+1), then zi is also a nonsingular

point of Vs. Hence, for a generic choice of λ ∈ A(n−s+1)n, denoting by πs : Vs → An−s
the mapping πs(x) := λ∗x and p := πs(zi), the following conditions are satisfied:

• #π−1
s (p) = δs;

• the linear form λn−s+1 ·X separates the points of π−1
s (p);

• the discriminant of the polynomial Ps(λ,p, Zn−s+1) is ρs(λ,p).

Indeed, since zi is a nonsingular point of Vs, then Vs has multiplicity 1 at zi (see, e.g.,
[39, §5A, Corollary 5.15]). This means that a generic linear space of dimension s passing
through zi meets Vs in exactly δs − 1 points different from zi, which shows the first
condition. The remaining conditions are clearly satisfied.

Let x1, . . . ,xδs be the δs points of π−1
s (p). Since λn−s+1 ·X separates these points, the

polynomial Ps(λ,p, Zn−s+1) has δs different roots, namely λn−s+1 ·xi for 1 ≤ i ≤ δs. We
conclude that ρs(λ,p) 6= 0. It follows that ρs(Λ,Λ

∗zi) is a nonzero polynomial in Q[Λ]
for 1 ≤ i ≤ h and therefore Rs ∈ Q[Λ]\{0}. Since deg ρs(Λ,Λ

∗zi) ≤ (n−s+2)(2δs−1)δs
and h ≤ δs+1, the estimate for the degree Rs follows. Finally, let λ ∈ A(n−s+1)n be such
that Rs(λ) 6= 0. Then ρs(λ,λ

∗zi) 6= 0 for 1 ≤ i ≤ h, which shows that Ci is not contained
in the hypersurface {ρs(λ,λ∗X) = 0} of An for 1 ≤ i ≤ h. �
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Let λ ∈ Z(n−s+1)n \ {0} be such that Rs(λ) 6= 0 and let Wλs ⊂ An be the variety

(5.7) Wλs := Vs+1 ∩ {ρs(λ,λ∗X) = 0}.

By Lemma 5.6, Wλs is either empty or equidimensional of dimension n− s− 2.
Assume that Wλs = ∅ and let ρλs := ρs(λ,λ

∗X) ∈ Z[X]. Since G vanishes on
V(F1, . . . , Fs+1) ∩ {ρλs = 0}, by the Nullstellensatz there exists µλs ∈ Z \ {0} and
νλs ∈ N satisfying

(5.8) µλsGνλs ∈ (F1, . . . , Fs+1, ρλs)Z[X].

On the other hand, assume that Wλs 6= ∅ and let Yj := λj ·X for 1 ≤ j ≤ n − s − 1.
By [7, Theorem 3.1] there exists a nonzero polynomial Bλs ∈ Z[Z1, . . . , Zn−s−1] with
degBλs ≤ degWλs such that

(5.9) Bλs

(
Y1(x), . . . , Yn−s−1(x)

)
= 0

for every x ∈ Wλs . Since degWλs ≤ degVs+1 deg ρλs , we have

(5.10) degBλs ≤ 2(n− s+ 2)δ2
sδs+1.

As GBλs(Y1, . . . , Yn−s−1) vanishes on V(F1, . . . , Fs+1)∩{ρλs = 0}, by the Nullstellen-
satz there exist βλs ∈ Z \ {0} and `λs ∈ N such that

(5.11) βλs

(
GBλs(Y1, . . . , Yn−s−1)

)`λs ∈ (F1, . . . , Fs+1, ρλs)Z[X].

Next we deal with a technical condition which allows us to ensure that no points of
the lifting fibers at each step of the algorithm lies in the hypersurface {G = 0}. For this
purpose, consider the following morphism:

Φs : (A(n−s+1)n × Vs) ∩ {As 6= 0} → A(n−s+1)n × An−s ∩ {As 6= 0},(5.12)

(λ,x) 7→ (λ,λ∗x)

According to Proposition 3.4, the fiber Φ−1
s (y) is finite for y ∈ A(n−s+1)n × An−s ∩

{As 6= 0}. Further, since the hypersurface {G = 0} ⊂ An intersects properly each

irreducible component of Vs, the Q-variety (A(n−s+1)n×Vs)∩{G = 0} is equidimensional
of dimension (n−s+1)(n+1)−1. Thus, by the Theorem on the dimension of fibers (see,

e.g, [3, Satz 11.14]) it follows that the Zariski closure Φs({G = 0}) in A(n−s+1)n×An−s of

the image of (A(n−s+1)n×Vs)∩{G = 0, As 6= 0} is a hypersurface of A(n−s+1)n×An−s. Let

BG
s ∈ Z[Λ, Z1, . . . , Zn−s] be a primitive and squarefree polynomial defining Φs({G = 0}).

By [7, Theorem 3.24] we have the degree estimates

(5.13) degΛij
(BG

s ),degZk
(BG

s ) ≤ 2n−sδs deg(G)

for 1 ≤ i ≤ n− s+ 1, 1 ≤ j ≤ n and 1 ≤ k ≤ n− s.
Fix λ ∈ Z(n−s+1)n with As(λ

∗) 6= 0 and set Yi := λi · X for 1 ≤ i ≤ n − s. By
construction, the polynomial BG

s (λ, Y1, . . . , Yn−s) ∈ Z[X] vanishes on Vs ∩ {G = 0}.
Since Vs is equidimensional, by the Nullstellensatz [7, Theorem 0.2] there exist βGλs ∈
Z \ {0}, µGλs ∈ N and Hλs ∈ Z[X] such that

(5.14) βGλsBG
s (λ, Y1, . . . , Yn−s)

µGλs −HλsG = 0 on Vs.
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We deduce thatG
(
βGλsBG

s (λ, Y1, . . . , Yn−s)
µGλs−HλsG

)
vanishes on V(F1, . . . , Fs). Again,

by the Nullstellensatz, there exist γGλs ∈ Z \ {0} and νGλs ∈ N such that

(5.15) γGλs

(
G
(
βGλsBG

s (λ, Y1, . . . , Yn−s)
µGλs −HλsG

))νGλs ∈ (F1, . . . , Fs)Z[X].

Let B̂s := ResZn−s

(
BG
s , Ps+1

)
∈ Z[Λ, Z1, . . . , Zn−s−1].

Lemma 5.7. B̂s is nonzero of degree at most (n− s+ 1)2(n+ 1)2n−sδsδs+1 deg(G).

Proof. Let (λ,p) ∈ Z(n−s+1)(n+1) be such that (AsAs+1ρsρs+1)(λ,p) 6= 0. By Theorem
4.9 the following conditions hold:

• the mapping πs := (Y1, . . . , Yn−s) : Vs → An−s is a finite morphism, p :=
(p1, . . . , pn−s) is a lifting point of πs and Yn−s+1 is a primitive element of π−1

s (p);
• the mapping πs+1 := (Y1, . . . , Yn−s−1) : Vs+1 → An−s−1 is a finite morphism,
p∗ := (p1, . . . , pn−s−1) is a lifting point of πs+1 and Yn−s is a primitive element
of π−1

s+1(p∗).

Since πs : Vs → An−s is a finite morphism, Wp∗ := π−1
s ({p∗} ×A1) is of pure dimension

1 (and degree at most δs := degVs). Observe that π−1
s (p) = π−1

s ({p∗} × A1) ∩ {Yn−s =
pn−s} is a zero-dimensional linear section of π−1

s ({p∗}×A1). The fact that p ∈ Zn−s is a
lifting point of πs with π−1

s (p) ⊂ {G 6= 0} implies that π−1
s (p) intersects each irreducible

component of π−1
s ({p∗} × A1) (see Corollary 4.3). As π−1

s (p) ⊂ {G 6= 0}, we see that
π−1
s ({p∗}×A1)∩{G = 0} is of dimension at most 0. In particular, a generic linear form
Yn−s separates the points of π−1

s ({p∗} × A1) ∩ {G = 0} from those of π−1
s+1(p∗).

We claim that BG
s ∈ k[Λ, Z1, . . . , Zn−s] and the Chow form Ps+1 ∈ Z[Λ∗, Z1, . . . , Zn−s]

cannot have a nontrivial common factor in Z[Λ, Z1, . . . , Zn−s−1][Zn−s]. Indeed, as-
sume that Q ∈ Z[Λ, Z1, . . . , Zn−s−1]Zn−s] is such a factor. Clearly, a generic linear
form Yn−s separates the points of π−1

s+1(p∗). Let x1, . . . ,xδs+1 denote these points.
Then the roots of the univariate polynomial Ps+1(λ∗,p∗, Zn−s) are precisely the values
Yn−s(x1), . . . , Yn−s(xδs+1). It follows that Q(λ,p∗, Yn−s(xj)) = 0 for some 1 ≤ j ≤ δs+1.

Thus BG
s (λ,p∗, Yn−s(xj)) = 0. On the other hand, taking into account the defi-

nition of As it can be easily shown that Φs is a finite morphism and therefore a
closed map (see, e.g., [3, Satz 9.27]). In particular, Φs({G = 0}) is a closed subset

of (A(n−s+1)n × An−s) ∩ {As 6= 0}. Further, it is easy to see that

Φs({G = 0}) = Φs({G = 0}) ∩ {As 6= 0} = {BG
s = 0} ∩ {As 6= 0},

where Φs({G = 0}) denotes the Zariski closure of Φs({G = 0}) in A(n−s+1)n×An−s. Since
(λ,p∗, Yn−s(xj)) = Φs(λ,xj) ∈ {BG

s = 0} ∩ {As 6= 0}, we see that (λ,p∗, Yn−s(xj)) =

Φs(λ,y) for some (λ,y) ∈ (A(n−s+1)n × Vs) ∩ {As 6= 0} ∩ {G = 0}. Thus we have
y ∈ π−1

s ({p∗}×A1)∩{G = 0} with Yn−s(y) = Yn−s(xj). This contradicts the hypotheses
on Yn−s and proves the claim.

It follows that B̂s is nonzero. Since

deg(B̂s) ≤ degZn−s
(Ps+1) deg(BG

s ) + degZn−s
(BG

s ) deg(Ps+1),

the upper bound for the degree of the lemma readily follows from (5.13) and the upper
bound for the degree Ps+1. �
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Now we are able to establish our condition for a good modular reduction at the sth
step. Let Ms ∈ Z[Λ, Z1, . . . , Zn−s] \ {0} be the polynomial defined by

(5.16) Ms := αsγsAs(Λ
∗)ρs(Λ, Z1, . . . , Zn−s)R

G
s (Λ, Z1, . . . , Zn−s),

where αs and γs are the integers of (5.4) and (5.6) respectively. Taking into account
(5.2) we observe that

(5.17) degMs ≤ (n− s+ 2)2dδ2
s .

Further, let Cs ∈ Z[Λ] be a nonzero coefficient of MsMs+1 ∈ Z[Λ][Z1, . . . , Zn−s]. For

λ ∈ Z(n−s+1)n \ {0} with Cs(λ)Rs(λ) 6= 0, define Lλs ∈ Z[Z1, . . . , Zn−s] \ {0} as

(5.18) Lλs :=

{
µλs if Wλs = ∅,

βλsBλs if Wλs 6= ∅,

where µλs , Bλs and βλs are defined as in (5.8), (5.11) and (5.9). Further let BGλs ∈
Z[Z1, . . . , Zn−s−1] \ {0} be the polynomial

(5.19) BGλs := βGλsγGλsB̂s(λ
s, Z1, . . . , Zn−s−1),

where βGλs and γGλs are defined as in (5.15) and B̂s is the polynomial of Lemma 5.7.
Finally, define

Nλs := Ms(λ, Z1, . . . , Zn−s)Ms+1(λ∗, Z1, . . . , Zn−s−1)Lλs(Z1, . . . , Zn−s−1)BGλs(Z1, . . . , Zn−s−1).

Theorem 5.8. Let 1 ≤ s ≤ r− 1. Let λ ∈ Z(n−s+1)n and p := (p1, . . . , pn−s) ∈ Zn−s be
such that Cs(λ)Rs(λ) 6= 0 and Nλs(p) 6= 0, and let p be a prime number with p - Nλs(p).
If Yi := λi ·X for 1 ≤ i ≤ n− s+ 1, then the following conditions are satisfied:

(1) Is,p is a radical ideal of Fp[X] and defines an equidimensional variety Vs,p ⊂ AnFp
of dimension n− s and degree δs. The same holds for Is+1,p and Vs+1,p;

(2) the mapping πs,p : Vs,p → An−sFp
defined by Y1,p, . . . , Yn−s,p is a finite morphism,

pp ∈ Fn−sp is a lifting point of πs,p with π−1
s (p) ⊂ {Gp 6= 0} and Yn−s+1,p induces

a primitive element of π−1
s,p(pp);

(3) the mapping πs+1,p : Vs+1,p → An−s−1
Fp

defined by Y1,p, . . . , Yn−s−1,p is a finite

morphism. Furthermore, if p∗ := (p1, . . . , pn−s−1), then p∗p is a lifting point

of πs+1,p with π−1
s+1(p∗) ⊂ {Gp 6= 0} and Yn−s,p induces a primitive element of

π−1
s+1,p(p

∗
p);

(4) any q ∈ πs,p
(
π−1
s+1,p(p

∗
p)
)

satisfies ρs,p(λp, q) 6= 0. In particular, any such q is a

lifting point of πs,p and Yn−s+1,p induces a primitive element of π−1
s,p(q);

(5) no point of πs,p(Wp∗ ∩ {Gp = 0}) belongs to πs,p
(
π−1
s+1,p(p

∗
p)
)
.

Proof. Since p - Ms(λ,p)Ms+1(λ∗,p∗), the first three assertions follow by Theorem 5.5.
To prove assertion (4), let q ∈ πs,p

(
π−1
s+1,p(p

∗
p)
)
. Then there exists x ∈ π−1

s+1,p(p
∗
p) such

that q =
(
p∗p, Yn−s,p(x)

)
. Suppose that the variety Wλs of (5.7) is empty. Considering

(5.8) modulo p, and taking into account that p - µλs , we deduce that F1,p, . . . , Fs+1,p and

ρλs,p generate the ideal (Gp) of Fp[X]. As x ∈ π−1
s+1,p(p

∗
p) and π−1

s+1,p(p
∗
p) ⊂ {Gp 6= 0}, it

follows that ρs,p(λp, q) = ρλs,p(x) 6= 0. Since p - Ms(λ,p), by Theorem 5.5 we conclude
that q is a lifting point of πs,p and Yn−s+1,p induces a primitive element of π−1

s,p(q). On
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the other hand, if Wλs 6= ∅, then considering (5.11) modulo p and taking into account
that p - βλs we see that(

GpBλs,p(Y1,p, . . . , Yn−s−1,p)
)`λs ∈ (F1,p, . . . , Fs+1,p, ρλs,p)Fp[X].

This implies thatBλs,p vanishes on Vs+1,p∩{ρλs,p = 0}. Further, the fact that p - Bλs(p∗)
implies Bλs,p(x) = Bλs,p(p

∗
p) 6= 0, and then ρs,p(λp, q) = ρλs,p(x) 6= 0. Arguing as before

we deduce that q is a lifting point of πs,p and Yn−s+1,p induces a primitive element of
π−1
s,p(q).

Finally, to prove condition (5) we note that, since B̂s ∈ (BG
s , Ps+1)Z[Λ, Z1, . . . , Zn−s],

we have B̂s,p ∈ (BG
s,p, Ps+1,p)Fp[Λ, Z1, . . . , Zn−s]. Since B̂s,p(λp,p

∗
p) 6= 0, we deduce that

the polynomials BG
s,p(λp,p

∗
p, Zn−s) and Ps+1,p(λ

∗
p,p
∗
p, Zn−s) have no common roots in Fp.

Since Ps+1,p is a Chow form of Vs+1,p by Corollary 5.3, we have Ps+1,p(λ
∗
p, q) = 0 for any

q ∈ πs,p
(
π−1
s+1,p(p

∗
p)
)
. Thus, for any such point q we have BG

s,p(λp, q) 6= 0. Considering

(5.15) modulo p we have

γGλs,p

(
Gp
(
βGλs,pB

G
s,p(λp, Y1,p, . . . , Yn−s,p)

µGλs −Hλs,pGp
))νGλs ∈ (F1,p, . . . , Fs,p)Fp[X],

which implies

γGλs,p

(
βGλs,p

(
BG
s,p(λp, Y1,p, . . . , Yn−s,p)

)µGλs −Hλs,pGp

)νGλs ∈ Is,p.
This, together with BG

s,p(λp, q) 6= 0, readily implies that q /∈ πs,p
(
Wp∗p ∩ {Gp = 0}

)
. �

Remark 5.9. With hypotheses as in Theorem 5.8, let π−1
s+1,p(p

∗
p) = {x1, . . . ,xδs+1}.

Since Yn−s,p induces a primitive element of π−1
s+1,p(p

∗
p), it separates x1, . . . ,xδs+1. There-

fore, if q ∈ Fp[T ] is the minimal polynomial of Yn−s,p over π−1
s+1,p(p

∗
p), then its roots in

Fp are Yn−s,p(x
1), . . . , Yn−s,p(x

δs+1). Since

πs,p
(
π−1
s+1,p(p

∗
p)
)

=
{(
p∗p, Yn−s,p(x

1)
)
, . . . ,

(
p∗p, Yn−s,p(x

δs+1)
)}
,

we can rephrase item (4) of Theorem 5.8 in the following way: ρs,p
(
λp, (p

∗
p, a)

)
6= 0 for

every root a ∈ Fp of q. Thus, (p∗p, a) is a lifting point of πs,p and Yn−s+1,p induces a

primitive element of π−1
s,p(p∗p, a).

5.3. Simultaneous Noether normalization and lifting fibers. From now on, let
Λ := (Λij)1≤i≤n,1≤j≤n denote a set of n2 indeterminates over Q. For 1 ≤ s ≤ r, we

write Λs := (Λij)1≤i≤n,1≤j≤n−s+1. Further, for λ := (λij)1≤i≤n,1≤j≤n ∈ Zn2
, we denote

λs := (λij)1≤i≤n−s+1,1≤j≤n. Let R ∈ Q[Λ] \ {0} be the polynomial defined by

(5.20) R :=

r−1∏
s=1

CsRs.

Let λ ∈ Zn2 \ {0} be such that R(λ) 6= 0 and define Nλ ∈ Z[Z1, . . . , Zn−1] \ {0} as
(5.21)

Nλ := Mr(λ
r, Z1, . . . , Zn−r)

r−1∏
s=1

Ms(λ
s, Z1, . . . , Zn−s)Lλs(Z1, . . . , Zn−s−1)BGλs(Z1, . . . , Zn−s−1).
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Since deg(BGλs) ≤ deg(B̂s), taking into account Lemma 5.7 and (5.10) we deduce that

degNλ ≤
r∑
s=1

degMs +
r−1∑
s=1

(
deg(Lλs) + deg(B̂s)

)
≤ D := r(n+ 1)((n+ 1)dδ2 + 2δ3 + n22n−sdδ2).

Since degCs ≤ degMs + degMs+1, taking into account (5.17) and the estimate for the
degree of Rs of Lemma 5.6, we easily deduce that

(5.22) degR ≤ D.
Let p := (p1, . . . , pn−1) ∈ Zn−1 be such that Nλ(p) 6= 0 and denote ps := (p1, . . . , pn−s)
for 1 ≤ s ≤ r. With hypotheses as above we easily obtain the following result.

Theorem 5.10. Let λ ∈ Zn2 \ {0} and p ∈ Zn−1 be such that det(λ)R(λ) 6= 0 and
Nλ(p) 6= 0. Let N := det(λ)Nλ(p) and Yi := λi ·X for 1 ≤ i ≤ n. If p is a prime
number such that p - N, then Y1,p, . . . , Yn,p define a new set of variables for Fp[X] and
conditions (1)–(5) of Theorem 5.8 are satisfied for 1 ≤ s ≤ r − 1 with p := ps and
p∗ := ps+1. In particular, F1,p, . . . , Fr,p define a reduced regular sequence in {Gp 6= 0}.

In the sequel, a prime p as in Theorem 5.10 will be called “lucky” and a reduction
modulo such a prime p is called “good”.

We end this section by discussing Kronecker representations for a good modular re-

duction. Given λ := (λij)1≤i,j≤n ∈ Zn2
and p := (p1, . . . , pn−1) ∈ Zn−1 satisfying the hy-

potheses of Theorem 5.10, define Yi := λi ·X for 1 ≤ i ≤ n, and let Rs := Q[Y1, . . . , Yn−s]
and Bs := Q[Vs] for 1 ≤ s ≤ r. Since As(λ

s+1)ρs(λ
s,ps) 6= 0 for 1 ≤ s ≤ r, by Theorem

4.9 the following conditions are satisfied:

• Y1, . . . , Yn−s are in Noether position with respect to Is;
• ps is a lifting point of the finite morphism πs : Vs → An−s defined by Y1, . . . , Yn−s;
• Bs is a free Rs–module of rank equal to δs.

Let Is := (F1, . . . , Fs) : G∞ and Js := Is + (Y1 − p1, . . . , Yn−s − pn−s) for 1 ≤ s ≤ r and
Ks := Is + (Y1 − p1, . . . , Yn−s−1 − pn−s−1) for 1 ≤ s ≤ r − 1. According to Proposition
4.1, Js and Ks are the vanishing ideals of the lifting fiber Vps and the lifting curve Wps
respectively. Further, identifying Is with its image in Q[Yn−s+1, . . . , Yn] and Ks with its
image in Q[Yn−s, . . . , Yn] as in Corollary 4.3, the following conditions hold for 1 ≤ s ≤ r:

• Q[Yn−s+1, . . . , Yn]/Js is a Q–vector space of dimension δs;
• Yn−s, . . . , Yn are in Noether position with respect to Ks;
• Q[Yn−s, . . . , Yn]/Ks is a free Q[Yn−s]–module of rank equal to rankRsQ[Vs].

We can obtain Kronecker representations of Is, Js, and Ks as in Section 4.3, namely
let T be a new indeterminate and define Qs,W s

n−s+2, . . . ,W
s
n ∈ Rs[T ] by

(5.23)

Qs :=
Ps(λ

s, Y1, . . . , Yn−s, T )

As(λ
s+1)

, W s
j := −

n∑
k=1

λjk

As(λ
s+1)

∂Ps
∂Λn−s+1,k

(λs, Y1, . . . , Yn−s, T )

for n− s+ 2 ≤ j ≤ n, where Ps ∈ Z[Λs, Z1, . . . , Zn−s+1] is a primitive Chow form of Vs.
Propositions 4.11, 4.13 and 4.14 then read as follows.

Proposition 5.11. The following assertions hold:
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• the polynomials Qs,W s
n−s+2, . . . ,W

s
n form the Kronecker representation of Is

with primitive element Yn−s+1;
• the polynomials Qs(ps, T ),W s

n−s+2(ps, T ), . . . ,W s
n(ps, T ) form the Kronecker rep-

resentation of Js with primitive element Yn−s+1;
• the polynomials Qs(ps+1,Yn−s, T ),W s

n−s+2(ps+1,Yn−s, T ), . . . ,W s
n(ps+1,Yn−s, T )

form the Kronecker representation of Ks with primitive element Yn−s+1.

Now let p be a prime number as in Theorem 5.10. Let Is,p, Js,p andKs,p be the ideals of

Fp[X] defined by Is,p := (F1,p, . . . , Fs,p) : G∞p and Js,p := Is,p + (Y1,p− p1,p, . . . , Yn−s,p−
pn−s,p) for 1 ≤ s ≤ r, and Ks,p := Is,p + (Y1,p − p1,p, . . . , Yn−s−1,p − pn−s−1,p) for
1 ≤ s ≤ r − 1. By Theorem 5.10 the following conditions are satisfied for 1 ≤ s ≤ r:

• Is,p is a radical, equidimensional ideal of dimension n− s;
• the variables Y1,p, . . . , Yn,p are in Noether position with respect to Is,p;
• the mapping πs,p : Vs,p → An−sFp

defined by Y1,p, . . . , Yn−s,p is a finite morphism

and pp is a lifting point of πs,p;
• Ps,p is a Chow form of Vs,p.

It follows that Is,p, Js,p and Ks,p are the defining ideals of the variety Vs,p, the lifting

fiber Vpsp and the lifting curve Wps+1
p

respectively. Since p - As(λs+1), the polynomials

Qsp,W
s
1,p, . . . ,W

s
n,p ∈ Fp[T ] are well–defined, and we have the following result.

Proposition 5.12. The following assertions hold:

• Qsp,W s
n−s+2,p, . . . ,W

s
n,p form the Kronecker representation of Is,p with primitive

element Yn−s+1,p;
• Qsp(psp, T ),W s

n−s+2,p(p
s
p, T ), . . . ,W s

n,p(p
s
p, T ) form the Kronecker representation

of Js,p with primitive element Yn−s+1,p;
• Qsp(ps+1

p ,Yn−s,p, T ),W s
n−s+2,p(p

s+1
p , Yn−s,p, T ), . . . ,W s

n,p(p
s+1
p , Yn−s,p, T ) form the

Kronecker representation of Ks,p with primitive element Yn−s+1,p.

Proof. From (5.23) we deduce that

Qsp =
Ps,p

(
λsp, Y1,p, . . . , Yn−s,p, T

)
As,p(λ

s+1
p )

,

W s
j,p =−

n∑
k=1

λjk,p

As,p(λ
s+1
p )

∂Ps,p
∂Λn−s+1,k

(λsp, Y1,p, . . . , Yn−s,p, T ) (n− s+ 2 ≤ j ≤ n).

As Ps,p is a Chow form of Vs,p, the proposition follows taking into account the condition

p - As(λs+1)ρs(λ
s,ps) and arguing as in Propositions 4.11, 4.13 and 4.14. �

6. Computation of a Kronecker representation

Let F1, . . . , Fr, G ∈ Z[X] be, as in Section 5, polynomials defining a reduced regular
sequence. In this section we establish an upper bound on the bit complexity of computing
a Kronecker representation of a zero–dimensional Q-definable fiber π−1

r (pr) of Vr :=
V(Ir), where Ir := (F1, . . . , Fr) : G∞. For this purpose, following the approach of [21],
we perform this computation modulo a prime number p and apply p–adic lifting to
recover the integers coefficients of the polynomials defining a Kronecker representation
of π−1

r (pr). Assuming that a “lucky” prime p is given, the complexity of computing
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a Kronecker representation of a zero–dimensional fiber of V((F1,p, . . . , Fr,p) : G∞p ) was
analyzed in [5]. On the other hand, the complexity of the p–adic lifting step was analyzed
in [21]. Accordingly, in this section we analyze the cost of computing a “lucky” prime
(Proposition 6.2), and then obtain an upper bound on the bit complexity of computing
a Kronecker representation of π−1

r (pr) over Q (Theorem 6.9).

6.1. Computation of a Kronecker representation modulo p. Let S := {0, . . . , a}
and T := {0, . . . , b}, where a := b8Dc and b := b9Dc. Assume that we have randomly

chosen (λ,p) ∈ Sn
2 × Tn−1 such that R(λ) 6= 0 and Nλ(p) 6= 0. The following result

asserts that this can be done with a high probability of success.

Lemma 6.1. Let (λ,p) be a point chosen uniformly at random in Sn
2 × Tn−1. Then

the probability that R(λ) 6= 0 and Nλ(p) 6= 0 is greater than 7
9 .

Proof. Since degR ≤ D, by Lemma 2.3 we see that for a random choice of λ in Sn
2
, the

probability that R(λ) 6= 0 is greater than 7
8 . Similarly, as deg(Nλ) ≤ D, for a point p

chosen uniformly at random in Tn−1, the conditional probability that Nλ(p) 6= 0, given
that R(λ) 6= 0, is greater than 8

9 . This finishes the proof of the lemma. �

For such a choice of λ and p, let N be the integer of Theorem 5.10. According to
Theorem A.20, there exists an integer H such that

(6.1) h(N) ≤ H and logH ∈ O∼
(

log(dr2nh)
)
.

We shall further assume that H ≥ 5n2dδ4. Now we can estimate the complexity of
computing a “lucky” prime p of “low” bit length.

Proposition 6.2. There is a probabilistic algorithm which takes H as input and computes
a prime p with 12H+1 ≤ p ≤ 24H such that p - N. The algorithm uses O∼

(
log2(dr2nh)

)
bit operations and returns a correct result with probability at least 3

4 .

Proof. The proposition follows applying Lemma 2.4 with B = mH, M = N, m = 12,
and k = 5 + log log(12H), and taking into account (6.1). �

Assume that we have computed a “lucky” prime p as in Proposition 6.2. Further,
assume that we are given a straight–line program of length at most L which represents
the polynomials F1,p, . . . , Fr,p, Gp. Since H ≥ 5n2dδ4, we can assume that p > 60n2dδ4.
Thus we can use the algorithm of [5] to compute a Kronecker representation of the lifting
fiber Vprp .

The algorithm starts computing the Kronecker representation of the fiber Vp1p of the

hypersurface defined by the Zariski closure of {F1,p = 0} \ {Gp = 0}, with Yn,p as
primitive element. Observe that such a hypersurface is defined by the polynomial F ∗1,p :=

F1,p/ gcd(F1,p, Gp). According to Corollary 4.3, we have

Vp1p = V(J 1,p), J 1,p =
(
F1,p(p

1
p, Yn,p)

)
: Gp(p

1
p, Yn,p)

∞ =
(

F1,p(p1p,Yn,p)

gcd(F1,p(p1p,Yn,p),Gp(p1p,Yn,p)

)
.

It follows that F ∗1,p(p
1
p, T ) = F1,p(p

1
p, T )/ gcd(F1,p(p

1
p, T ), Gp(p

1
p, T )).

By Proposition 5.12, the Kronecker representation of Vp1p only consists of the minimal

polynomial Q1
(
p1, T

)
of Yn,p modulo J1,p. Since J 1,p =

(
F ∗1,p(p

1
p, Yn,p)

)
, we see that
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Fp[Vp1p ] = Fp[Yn,p]/
(
F ∗1,p(p

1
p, Yn,p)

)
. It follows that Q1

(
p1
p, T

)
equals the polynomial

F ∗1,p(p
1
p, T ) divided by its leading coefficient.

Then the algorithm proceeds in r−1 stages. For s ∈ {1, . . . , r−1}, the sth stage takes
as input a Kronecker representation Qs(psp, T ),W s

n−s+2(psp, T ), . . . ,W s
n(psp, T ) of Js,p and

outputs a Kronecker representation Qs+1(ps+1
p , T ),W s+1

n−s+1(ps+1
p , T ), . . . ,W s+1

n (ps+1
p , T )

of Js+1,p. This stage, whose cost is analyzed below, consists in two main tasks, which
are called the lifting step and the intersection step.

6.1.1. Lifting step. In the lifting step we compute the Kronecker representation
Qs(ps+1

p , Yn−s,p, T ),W s(ps+1
p , Yn−s,p, T ), . . . ,W s(ps+1

p , Yn−s,p, T ) of Ks,p with primitive
element Yn−s+1,p, from the univariate representation of Js,p with Yn−s+1,p as prim-
itive element. By Proposition 5.12, such a Kronecker representation is defined by
the specializations of Qsp,W

s
n−s+2,p, . . . ,W

s
n,p at Y1,p = p1,p, . . . , Yn−s−1,p = pn−s−1,p.

Let R̂s,p := Fp[[Y1,p − p1,p, . . . , Yn−s,p − pn−s,p]]. By Remark 4.12 we conclude that it
suffices to compute the approximation of Qsp,W

s
n−s+2,p, . . . ,W

s
n,p to precision (Y1,p −

p1,p, . . . , Yn−s,p − pn−s,p)δs+1 in R̂s,p[T ].
As the ideal Ks,p =

(
F1,p(p

s+1
p , Yn−s,p, . . . , Yn,p), . . . , Fs,p(p

s+1
p , Yn−s,p, . . . , Yn,p)

)
: G(p, Yn−s+1, . . . , Yn)∞ is radical and the polynomials F1,p(p

s+1
p , Yn−s,p, . . . , Yn,p), . . . ,

Fs,p(p
s+1
p , Yn−s,p, . . . , Yn,p) form a regular sequence of Fp[Yn−s,p, . . . , Yn,p] outside the hy-

persurface {G(p, Yn−s+1, . . . , Yn) = 0} by Corollary 4.5, applying the Global Newton
algorithm of [21, II.4] we have the following result.

Proposition 6.3. There exists a deterministic algorithm that takes as input:

• a straight–line program of length L which represents the polynomials F1,p, . . . ,Fs,p;
• the dense representation of the polynomials in Fp[T ] which form the univariate

representation of Js,p with primitive element Yn−s+1,p;

and outputs the dense representation of the polynomials in Fp[Yn−s,p, T ] which form the
Kronecker representation of Ks,p with primitive element Yn−s+1,p. The algorithm uses
O∼
(
(nL+ n5)δ2

s log p
)

bit operations.

6.1.2. Intersection step. The input of the intersection step is the output of the algorithm
underlying Proposition 6.3, namely the Kronecker representation of Ks,p with primitive
element Yn−s+1,p. LetQs(ps+1

p ,Yn−s,p, T ), V s
n−s+2(ps+1

p ,Yn−s,p, T ), . . . , V s
n (ps+1

p , Yn−s,p, T )
be the corresponding univariate representation. The output is the univariate representa-
tion Qs+1(ps+1

p , T ), V s
n−s+1(ps+1

p , T ), . . . , V s+1
n (ps+1

p , T ) of Js+1,p with primitive element
Yn−s,p.

For this purpose, for any F ∈ Fp[Y1,p, . . . , Yn,p] which is not a zero divisor modulo
Ks,p, define f ∈ Fp(Yn−s,p)[T ] by

f := F
(
ps+1
p , Yn−s,p, T, V

s
n−s+2(ps+1

p , T ), . . . , V s
n (ps+1

p , T )
)

mod Qs(ps+1
p , Yn−s,p, T ),

af := ResT
(
f(T ), Qs(ps+1

p , Yn−s,p, T )
)
.

We have the following result.

Lemma 6.4. af belongs to Fp[Yn−s,p]\{0} and equals, up to a sign, the constant term of

the characteristic polynomial of the homothety by F (ps+1
p , Yn−s,p, . . . , Yn,p) modulo Kes,p.
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Proof. Let Mf be the matrix of the homothety of multiplication by f in

Fp(Yn−s,p)[T ]/
(
Qs(ps+1

p , Yn−s,p, T )
)

with respect to the basis {1, T, . . . , T δs−1}. We have
(see, e.g., [12, Proposition 5.4]):

det(Mf ) = ResT
(
f(T ), Qs(ps+1

p , Yn−s,p, T )
)
.

Consider the isomorphism of Fp(Yn−s,p)–algebras

Φ : Fp(Yn−s,p)[Yn−s+1,p, . . . , Yn,p]/K
e
s,p → Fp(Yn−s,p)[T ]/

(
Qs(ps+1

p , Yn−s,p, T )
)
,

which maps Yn−s+1,p mod Kes,p to T mod
(
Qs(ps+1

p , Yn−s,p, T )
)
. Let S be a new in-

determinate and χF ∈ Fp[Yn−s,p][S] the characteristic polynomial of the homothety by

F (ps+1
p , Yn−s,p, . . . , Yn,p) modulo Kes,p. Let χ0 ∈ Fp[Yn−s,p] be the constant term of χF .

Since Φ maps F (ps+1
p , Yn−s,p, . . . , Yn,p) mod Kes,p to f mod

(
Qs(ps+1

p , Yn−s,p, T )
)
, χF

coincides with the characteristic polynomial of the homothety of multiplication by f
modulo

(
Qs(ps+1

p , Yn−s,p, T )
)
. Thus χ0 = (−1)δs det(Mf ).

It remains to prove that af 6= 0. Denote by µF ∈ Fp[Yn−s,p][S] the minimal polynomial

of the homothety by F (ps+1
p , Yn−s,p, . . . , Yn,p) modulo Kes,p. The constant term bf ∈

Fp[Yn−s,p] of µF is equal to zero if and only if af = 0. Suppose that bf = 0. Then we

have a factorization µF = S · µ̃ in Fp[Yn−s,p][S], and thus 0 = µF (F ) = F · µ̃(F ) in Ks,p.
Due to minimality of µF we must have µ̃(F ) 6= 0 in Ks,p, which implies that F is a zero
divisor in Ks,p, contradicting thus the hypothesis on F . �

Let

fs+1 :=Fs+1,p

(
ps+1
p ,Yn−s,p, T, V

s
n−s+2(ps+1

p ,T ), . . . , V s
n (ps+1

p ,T )
)

mod Qs(ps+1
p ,Yn−s,p, T ),

g :=Gp
(
ps+1
p , Yn−s,p, T, V

s
n−s+2(ps+1

p , T ), . . . , V s
n (ps+1

p , T )
)

mod Qs(ps+1
p , Yn−s,p, T ),

afs+1 := ResT
(
fs+1(T ), Qs(ps+1

p , Yn−s,p, T )
)
,

ag := ResT
(
g(T ), Qs(ps+1

p , Yn−s,p, T )
)
.

The following result provides an expression for Qs+1(ps+1
p , T ) which allows us to compute

it efficiently.

Proposition 6.5. We have

Qs+1(ps+1
p , Yn−s,p) = ε afs+1/ gcd(afs+1 , ag),

for some ε ∈ Fp \ {0}.

Proof. First we show that the expression in the right-hand side is well-defined, namely
both afs+1 and ag are nonzero. Indeed, the hypersurface {Fs+1,p(p

s+1
p , Yn−s,p, . . . , Yn,p) =

0} intersects the lifting curve Wps+1
p

in the finite fiber Vps+1
p

, while Lemma 4.2 proves

that {Gp(ps+1
p , Yn−s,p, . . . , Yn,p) = 0} does not vanish identically on any irreducible

Fp-component of Wps+1
p

. We conclude that neither Fs+1,p(p
s+1
p , Yn−s,p, . . . , Yn,p) nor

Gp(p
s+1
p , Yn−s,p, . . . , Yn,p) are zero divisors in Fp[Yn−s,p, . . . , Yn,p]/Ks,p. Therefore, the

assertion follows from Lemma 6.4.
Lemma 6.4 shows that afs+1 equals, up to a sign, the constant term of the characteris-

tic polynomial of the homothety by F (ps+1
p , Yn−s,p, . . . , Yn,p) modulo Kes,p. According to
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[10, Proposition 2.7] such a constant term coincides, up to multiples in Fp \{0}, with the

characteristic polynomial of Yn−s,p modulo Ks,p +
(
Fs+1,p(p

s+1
p , Yn−s,p, . . . , Yn,p)

)
. Simi-

larly, ag equals, up to multiples in Fp\{0}, the characteristic polynomial of Yn−s,p modulo

Ks,p +
(
Gp(p

s+1
p , Yn−s,p, . . . , Yn,p)

)
. Then condition (5) of Theorem 5.8 implies that no

root of ag in Fp annihilates Qs+1(ps+1
p , Yn−s,p). As a consequence, taking into account

that J s+1,p =
(
Ks,p +

(
Fs+1,p(p

s+1
p , Yn−s,p, . . . , Yn,p)

))
: Gp(p

s+1
p , Yn−s,p, . . . , Yn,p)

∞, we

see that the expression for Qs+1(ps+1
p , T ) of the statement of the proposition holds. �

Now we discuss the computation of the polynomials V s+1
n−s+1(ps+1

p ,T ), . . . ,V s+1
n (ps+1

p ,T ).

Let Qs+1(ps+1
p , T ) = q1 · · · q` be the irreducible factorization of Qs+1(ps+1

p , T ) in Fp[T ].

We describe below how to compute V s+1
j (ps+1

p , T ) mod qk for n − s + 1 ≤ j ≤ n and

1 ≤ k ≤ `. Then the V s+1
j (ps+1

p , T ) can be recovered by the Chinese remainder theorem.

For 1 ≤ k ≤ `, let a be the residue class of T in Fp[T ]/(qk). Set L = Fp[T ]/(qk). Thus

L := Fp[a] is a finite extension of Fp which contains the root a of Qs+1(ps+1
p , T ). Let L be

the algebraic closure of L. We have a field isomorphism L = Fp. By Remark 5.9 we know
that ρs

(
λsp, (p

s+1
p , a)

)
6= 0. Thus (ps+1

p , a) is a lifting point of πs,p and Yn−s+1,p induces a

primitive element of the lifting fiber π−1
s,p(ps+1

p , a). Moreover, Ks,p+(Yn−s−a) is a radical

ideal of Fp[X] by Lemma 4.2, and therefore it is the vanishing ideal of π−1
s,p(ps+1

p , a). Let
qa, wa,n−s+2, . . . , wa,n be the Kronecker representation of Ks,p+(Yn−s−a) with primitive
element Yn−s+1,p. Let Qsp,W

s
n−s+2,p, . . . ,W

s
n,p be the Kronecker representation of Is,p

with primitive element Yn−s+1,p. According to Proposition 4.13,

Qsp(p1,p, . . . , pn−s−1,p, a, T ) = qa, W
s
j,p(p1,p, . . . , pn−s−1,p, a, T ) = wa,j (n−s+2 ≤ j ≤ n).

It follows that qa, wa,n−s+2, . . . , wa,n are obtained by substituting a for Yn−s,p in the in-
put polynomials Qs(ps+1

p , Yn−s,p, T ), W s
n−s+2(ps+1

p , Yn−s,p, T ), . . . ,W s
n(ps+1

p , Yn−s,p, T ).
Then the corresponding univariate representation qa, va,n−s+2, . . . , va,n is computed us-
ing the identities va,j = (q′a)

−1wa,j mod qa for n− s+ 2 ≤ j ≤ n.
Let g(Yn−s+1,p) := Fs+1,p

(
ps+1
p , a, Yn−s+1,p, va,n−s+2(Yn−s+1,p), . . . , va,n(Yn−s+1,p)

)
. We

have the following identities (see, e.g., [10]):

Yn−s+1,p − V s+1
n−s+1(ps+1

p , a) = gcd
(
g(Yn−s+1,p), qa(Yn−s+1,p)

)
,

V s+1
j (ps+1

p , a) = va,j
(
V s+1
n−s+1(ps+1

p , a)
)

(n− s+ 2 ≤ j ≤ n).

These identities allows us to compute V s+1
j (ps+1

p , T ) mod qa for n − s + 1 ≤ j ≤ n.

Having done this for 1 ≤ k ≤ `, we recover V s+1
n−s+1(ps+1

p , T ), . . . , V s+1
n (ps+1

p , T ) by the
Chinese remainder theorem.

As it is shown in [5, Section 4], the previous computations can be rendered into an
efficient procedure from which we obtain the following result (see [5, Proposition 4.7]).

Proposition 6.6. There exists a probabilistic algorithm that takes as input

• a straight–line program of size at most L which represents Fs+1,p and Gp;
• the dense representation of the polynomials in Fp[Yn−s,p, T ] which form the Kro-

necker representation of Ks,p with primitive element Yn−s+1,p;

and outputs the dense representation of the polynomials in Fp[T ] which form the univari-
ate representation of Js+1,p with primitive element Yn−s,p. It uses an expected number
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of O∼
(
(L + n)δs(dδs + log p) log p

)
bit operations and returns the correct result with

probability at least 1− 1/60n.

Taking into account the complexity and probability estimates of Propositions 6.3 and
6.6 for 1 ≤ s ≤ r − 1, we easily deduce the following result.

Theorem 6.7. There exists a probabilistic algorithm that takes as input

• a “lucky” prime p as in Proposition 6.2;

• the points λp ∈ Fn2

p and pp ∈ Fn−1
p , which are the images of λ and p modulo p;

• a straight–line program of length at most L which represents the polynomials
F1,p, . . . , Fr,p, Gp;

and outputs the Kronecker representation of Jr,p with primitive element Yn−r+1,p. It
uses an expected number of O∼

(
r(nL+n5)δ(dδ+ log p) log p

)
bit operations and returns

the correct result with probability at least 1− 1/12.

6.2. Lifting the integers. Let s with 1 ≤ s ≤ r and let p be a “lucky” prime
as in Proposition 6.2. We have seen that the Kronecker representation Qs(psp, T ),
W s
n−s+2(psp, T ), . . . , wsn(psp, T ) ∈ Fp[T ] of Proposition 5.12 is obtained by reducing modulo

p the integers of the Kronecker representation Qs(ps, T ),W s
n−s+2(ps, T ), . . . , wsn(p(s), T )

of Proposition 5.11. Further, by Lemma 4.4 the Jacobian determinant of the polynomials
F1,p(p

s
p, Yn−s+1,p, . . . , Yn,p), . . . , Fs,p(p

s
p, Yn−s+1,p, . . . , Yn,p) with respect to the variables

Yn−s+1,p, . . . , Yn,p is invertible in Fp[Yn−s+1,p, . . . , Yn,p]/J s,p. With these conditions, the
following result holds (see [21, Theorem 2]).

Proposition 6.8. Assume that we are given:

• an upper bound ηs for the heights of Qs(ps, T ),W s
n−s+2(ps, T ), . . . ,W s

n(ps, T );
• a lucky prime number p as in Proposition 6.2;

• the polynomials Qs(psp, T ),W s
n−s+2(psp, T ), . . . ,W s

n(p
(s)
p , T ) ∈ Fp[T ].

Then Qs(ps, T ),W s
n−s+2(ps, T ), . . . ,W s

n(ps, T ) can be computed using O∼
(
(nL+n4)δsηs

)
bit operations.

6.3. Computation of a Kronecker representation over the rationals. Combining
the algorithm underlying Theorem 6.7 with the p–adic lifting procedure of Proposition
6.8 we obtain a probabilistic algorithm for computing a Kronecker representation of a
zero–dimensional fiber Vpr of the Zariski closure Vr of V(F1, . . . , Fr) \ V(G).

More precisely, assume that F1, . . . , Fr, G are given by a straight–line program β of
length at most L with integer parameters. We first choose at random a point (λ,p) ∈
Sn

2 × Tn−1 such that R(λ) 6= 0 and Nλ 6= 0. Then we compute a “lucky” prime p as
in Proposition 6.2. By reducing the parameters of β modulo p we obtain a straight–
line program βp of length at most L which represents the polynomials F1,p, . . . , Fr,p, Gp.
Then, by means of the algorithm underlying Theorem 6.7, we compute the Kronecker
representation Qrp,W

r
1,p, . . . ,W

r
n,p of the lifting fiber Vprp with primitive element Yn−r+1,p.

Finally, applying the algorithm underlying Proposition 6.8 we lift these polynomials
to the Kronecker representation Qr,W r

1 , . . . ,W
r
n of the lifting fiber Vpr with primitive

element Yn−r+1. We have the following result.
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Theorem 6.9. There exists a probabilistic algorithm that takes as input a straight–
line program β of length at most L which represents the polynomials F1, . . . , Fr, G, and
outputs a Kronecker representation of a zero–dimensional fiber of the Zariski closure of
V(F1, . . . , Fr)\V(G) with probability at least 77

144 . If h is an upper bound for the bit length
of the coefficients of F1, . . . , Fr, G and the parameters in β, then the expected number of
bit operations of the algorithm is in

O∼
(
(nL+ n5)δ(dδ + ndrh)

)
.

Proof. Let Cp denote the bit complexity of computing a “lucky” prime p and η an upper
bound for heights of the integers in the output. Combining the complexity estimates in
Theorem 6.7 and Proposition 6.8, the bit complexity of the algorithm above is in

O∼
(
r(nL+ n5)δ

(
(dδ + log p) log p+ η

))
+ Cp.

By Proposition A.7 we can take η ∈ O∼
(
ndr−1(h+ rd)

)
. Then, taking into account the

estimate for Cp in Proposition 6.2, we obtain the complexity estimate of the theorem.
Finally, taking into account Lemma 6.1 and the estimates for the probability of success

of Proposition 6.2 and Theorem 6.7, the theorem follows. �

We remark that the probability of success of the algorithm of Theorem 6.9 can be
increased by considering random choices of the required integers and the lucky prime p
with higher bit size. On the other hand, we do not know how our algorithm behaves in
case of unlucky choices.

Appendix A. Height estimates

In this appendix we obtain estimates for the height of the integer N of Theorem
5.10 and the integers occurring in the output of the algorithm underlying Theorem 6.9,
namely the polynomials in Proposition 5.11 which form the Kronecker representation of
Jr. For this purpose, we shall rely on the arithmetic Nullstellensätze of [29]. We start
recalling the notions of height of polynomials and varieties and basic facts about these,
and then proceed to obtain the estimates.

A.1. Height of polynomials and varieties. We define the height of a nonzero integer
a as h(a) := log |r|, where log stands for the logarithm to the base 2. Further, we define
h(0) := 0. It follows that the height of a bounds from above the bit length of a. The
height h(F ) of a polynomial F ∈ Z[X] is defined as the maximum of the heights of
its coefficients. More generally, if F ∈ Q[X] \ {0} and a ∈ N is a minimal common
denominator of all the coefficients of F , then we define h(F ) := max{h(aF ), h(a)}.

Let V ⊂ An(Q) be an equidimensional Q–variety of dimension n− s, with 1 ≤ s ≤ n,
and let h(V ) be the Faltings height of its projective closure V ⊂ Pn(Q) (see [13]). We
have the following identity:

(A.1) h(V ) = m(FV ;Sn−s+1
n+1 ) +

∑
p

log |FV |p + (n− s+ 1)

(
n∑
i=1

1

2i

)
deg V,

where FV is any Chow form of V , m(FV ;Sn−s+1
n+1 ) is the Sn−s+1

n+1 –Mahler measure of
FV and |FV |p is the p–adic absolute value over Q for all rational primes p (see, e.g.,
[29, Section 1.2.4]). Since FV is uniquely determined up to nonzero multiples in Q,
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we may assume that FV is a primitive polynomial in Z[Λh
1 , . . . ,Λ

h
n−s+1], in which case

log |FV |p = 0 for every prime p and the sum
∑

p log |FV |p in (A.1) disappears. On the

other hand, by [29, Lemma 1.1] we have

(A.2) |m(FV )− h(FV )| ≤ (n− s+ 1) log(n+ 2) deg V,

where m(FV ) denotes the Mahler measure of FV . The Mahler measure and the Sn−s+1
n+1 –

Mahler measure of FV are related by

(A.3) 0 ≤ m(FV )−m(FV ;Sn−s+1
n+1 ) ≤ (n− s+ 1) deg(V )

n∑
i=1

1

2i

(see, e.g., [29, (1.2)]). Combining (A.1), (A.2) and (A.3) gives

h(FV ) ≤ h(V ) + (n− s+ 1) log(n+ 2) deg V.

Further, the canonical height ĥ(V ) of V is defined by ĥ(V ) := ĥ(V ), where ĥ(V ) is the
canonical height of V ⊂ Pn(Q) defined as in [7]. The Faltings and the canonical height
of V are related by the inequality

|ĥ(V )− h(V )| ≤ 7

2
log(n+ 1) deg V

(see, e.g., [7, Proposition 2.39 (5)]). As a consequence, we have

(A.4) h(FV ) ≤ ĥ(V ) +
9

2
(n− s+ 1) log(n+ 2) deg V.

A.2. Estimates for Chow forms, discriminants and Kronecker representations.
From now on we return to the setting of Sections 5 and 6, namely we consider poly-
nomials F1, . . . , Fr, G ∈ Z[X] such that F1, . . . , Fr form a regular sequence outside the
hypersurface {G = 0}, denote by Vs the affine equidimensional subvariety of An defined
by Is := (F1, . . . , Fs) : G∞ and by δs its degree for 1 ≤ s ≤ r. Let dj := deg(Fj) and
hj := h(Fj) for 1 ≤ j ≤ r, and denote

δ := max
1≤s≤r

δs, d := max{d1, . . . , dr,deg(G)}, h := max{h1, . . . , hr, h(G)}.

Let ĥs := ĥ(Vs) for 1 ≤ s ≤ r and ĥ := max1≤s≤r ĥs.

Lemma A.1. We have ĥs+1 ≤ ds+1ĥs + δshs+1 + δsds+1 log(n+ 2) for 1 ≤ s ≤ r − 1.

Proof. Let Vs be the projective closure of Vs via the canonical inclusion An ↪→ Pn
and let F hs+1 be the homogeneization of Fs+1. Since by hypothesis Fs+1 is not a zero

divisor modulo Is, we have that V(Fs+1) cuts Vs properly and therefore V(F hs+1) cuts

Vs properly. By [7, Corollary 2.62 and Lemma 2.30(1)] we deduce that

ĥ
(
Vs ∩ V(F hs+1)

)
≤ deg(F hs+1)ĥ(Vs) + deg(Vs)h(F hs+1) + deg(Vs) deg(F hs+1) log(n+ 2).

As Vs ∩ V(F hs+1) is equidimensional and contains every irreducible Q-component of

Vs ∩ V(Fs+1), we see that ĥ
(
Vs ∩ V(Fs+1)

)
:= ĥ

(
Vs ∩ V(Fs+1)

)
≤ ĥ

(
Vs ∩ V(F hs+1)

)
.

Further, since Vs+1 = Vs ∩ V(Fs+1) \ V(G), we have that Vs+1 is the union of the
irreducible Q-components of Vs ∩ V(Fs+1) which V(G) cuts properly. This implies

ĥ(Vs+1) ≤ ĥ
(
Vs ∩ V(Fs+1)

)
. The lemma follows from the previous estimates by not-

ing that ĥs = ĥ(Vs), δs = deg(Vs), hs+1 = h(F hs+1) and ds+1 = deg(F hs+1). �
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Lemma A.2. We have δs ≤ ds and ĥs ≤ sds−1h + sds log(n + 2) for 1 ≤ s ≤ r. In

particular, ĥs ∈ O∼
(
nds−1(h+ d)

)
for 1 ≤ s ≤ r.

Proof. Since Vs+1 is the union of the irreducible Q-components of Vs ∩ V(Fs+1) not
contained in V(G), by the Bezóut inequality (2.1) we obtain

deg(Vs+1) ≤ deg
(
Vs ∩ V(Fs+1)

)
≤ deg(Vs) deg(Fs+1).

Thus δs+1 ≤ dδs for 1 ≤ s ≤ r− 1. Then the first inequality of the lemma easily follows.
To prove the second inequality, let Vs denote the projective closure of Vs via the

canonical inclusion An ↪→ Pn and let F h1 be the homogeneization of F1. We have ĥ1 =

ĥ(V1) = ĥ
(
V(F h1 )

)
= ĥ

(
Pn ∩ V(F h1 )

)
. Thus by [7, Corollary 2.62] we have

ĥ1 ≤ deg(F h1 )

(
ĥ(Pn) + deg(Pn)

h(F h1 ) + deg(F h1 ) log(n+ 2)

deg(F h1 )

)
.

As ĥ(Pn) = 0 and deg(Pn) = 1 we obtain ĥ1 ≤ h(F1) + deg(F1) log(n+ 2), which shows

the claimed inequality for s = 1. Assume inductively that ĥs ≤ sds−1h+ sds log(n+ 2).
Combining this inequality and δs ≤ ds with the inequality of the previous lemma, we

readily deduce that ĥs+1 ≤ (s+1)dsh+(s+1)ds+1 log(n+2), which completes the proof
of the lemma. �

Let µ and ε be fixed real numbers with 0 < µ, ε < 1. Let a := bD/(1− µ)c and b :=
bD/(1− ε)c, where D is defined in (5.22). Recall that D is an upper bound for the degree
of the polynomials R and Nλ of (5.20) and (5.21). Since D ∈ O(rnd3r + rn32n−sd2r+1)
and h(a), h(b) ∈ O(logD), we have the following remark.

Remark A.3. h(a), h(b) ∈ O∼(r log d+ n).

Set S := {0, . . . , a} and T := {0, . . . , b}. Further, let λ := (λij)1≤i≤n,1≤j≤n ∈ Sn
2

and
p := (p1, . . . , pn−1) ∈ Tn−1 be such that R(λ) 6= 0 and Nλ(p) 6= 0. By Lemma 2.3, for a
random choice of λ and p such a condition holds with probability at least µε.

Write λs := (λij)1≤i≤n−s+1,1≤j≤n and ps := (p1, . . . , pn−s) for 1 ≤ s ≤ r. Denote
h(λs) := max1≤i≤n−s+1,1≤j≤n h(λij) and h(ps) := max1≤i≤n−s h(pi). Finally, let λi :=
(λi1, . . . , λin) and Yi = λi ·X for 1 ≤ i ≤ n. In the sequel, assuming that n ≥ 2 and
d ≥ 2, we aim to estimate the height of the integer

(A.5) N := det(λ)Nλ(p) = det(λ)Mr(λ
r,pr)

r−1∏
s=1

Ms(λ
s,ps)Lλs(ps+1)BGλs(ps+1).

We start with an estimate for the degree and height of a primitive Chow form of Vs
and related polynomials.

Lemma A.4. For 1 ≤ s ≤ r, we have

h(Ps) ∈ O∼
(
nds−1(h+ d)

)
,(A.6)

degPs(Λ
s,ΛsX) ∈ O∼(nds), h

(
Ps(Λ

s,ΛsX)
)
∈ O∼

(
nds−1(h+ d)

)
.(A.7)

Proof. (A.4) and Lemma A.2, combined with the Bézout inequality (2.1), yield (A.6).
The degree estimate in (A.7) is clear. Next, observe that Ps is an element of Z[Λs,Z1, . . . ,Zn−s+1]
of degree (n− s+ 1)δs and Λij (1 ≤ i ≤ n− s+ 1, 1 ≤ j ≤ n), Λi ·X (1 ≤ i ≤ n− s+ 1)
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are elements of Z[Λs,X] of degree at most 2 and height equal to 0. Therefore, from [7,
Lemma 2.37(3)] we deduce that

h
(
Ps(Λ

s,ΛsX)
)
≤h(Ps)+(n−s+1)δs

(
log
(
(n−s+1)(n+1)+1

)
+2 log

(
(n−s+2)n+1

))
.

This, together with (A.6), readily implies the height estimate in (A.7). �

Next we estimate the degree and height of the discriminant ρs and the polynomial
ρλs of Section 5.2. For this purpose, we use the following result.

Lemma A.5. Let U1, . . . , Uk+1 be indeterminates over Z and F,G ∈ Z[U1, . . . , Uk+1]
nonzero polynomials with l := degUk+1

F and m := degUk+1
G. Then

h
(
ResUk+1

(F,G)
)
≤ mh(F )+ lh(G)+ log(k+1)

(
(m−1) degF + l degG

)
+log

(
(l+m)!

)
.

Proof. Write F =
∑l

i=0 FiU
i
k+1 and G =

∑m
j=0GjU

j
k+1, where Fi, Gj ∈ Z[U1, . . . , Uk].

The determinant ResUk+1
(F,G) is a sum of (l+m)! terms, each of which is a product of

the form ±Fi1 · · ·FimGj1 · · ·Gjl . By [7, Lemma 2.37(2)], each term has height at most
mh(F )+ lh(G)+log(k+1)

(
(m−1) degF + l degG

)
. Then [7, Lemma 2.37(1)] completes

the proof of the lemma. �

Now we are able to estimate the degree and height of ρs and ρλs .

Lemma A.6. For 1 ≤ s ≤ r, we have

deg ρs ∈ O(nd2s), h(ρs) ∈ O∼
(
nd2s−1(h+ d)

)
,

deg ρλs ∈ O(nd2s), h(ρλs) ∈ O∼
(
nd2s−1(h+ nd)

)
.

Proof. Since ρλs := ρs(λ
s,λs+1X), we have deg ρλs ≤ deg ρs ≤ (n − s + 2)δ2

s , which

proves the degree estimates. Next, as ρs := ResZn−s+1

(
Ps,

∂Ps
∂Zn−s+1

)
, Lemma A.5 implies

h(ρs) ≤ δs
(
2h(Ps) + log δs

)
+ 2δ2

s log
(
(n− s+ 1)(n+ 1)

)
+ log

(
(2δs)!

)
.

This and (A.6) prove the estimate for h(ρs). Further, since h(λs) ≤ h(a) for all s, from
[7, Lemma 2.37 (3)] we deduce that

h(ρλs) ≤ h(ρs) + deg ρs

(
h(a) + log

(
(n− s+ 1)(n+ 1)

)
+ log(n+ 1)

)
.

Combining this, Remark A.3 and the estimate for h(ρs) yields the one for h(ρλs). �

We end this section with an estimate of the height of the Kronecker representations
of the fibers of each recursive step of our main algorithm.

Proposition A.7. Let ηs be the maximum of the heights of the polynomials Qs(ps, T ),

W s
n−s+2(ps, T ), . . . ,W s

n(ps, T ) of Proposition 5.11. Then ηs ∈ O∼
(
ĥ(Vs)+n2 deg(Vs) log d

)
,

or ηs ∈ O∼
(
nds−1(h+ nd)

)
.

Proof. Note that

Qs(ps, T ) =
Ps(λ

s,ps, T )

As(λ1, . . . ,λn−s)
,(A.8)

W s
j (ps, T ) = −

n∑
k=1

λjk
As(λ1, . . . ,λn−s)

∂Ps(λ
s,ps, T )

∂Λn−s+1,k
(n− s+ 2 ≤ j ≤ n).(A.9)
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Since h(λs) ≤ h(a) and h(ps) ≤ h(b), by [7, Lemma 2.37 (3)] we deduce that

h
(
Ps(λ

s,ps, T )
)
≤ h(Ps)+(n− s+ 1)δs

(
max{h(a), h(b)}+log

(
(n− s+1)(n+1)+1

)
+1
)

≤ h(Ps) + (n− s+ 1)δs
(
max{h(a), h(b)}+ log(4n2)

)
.

Further, as h
(

∂Ps
∂Λn−s+1,k

)
≤ h(Ps) + log δs, a similar argument shows that

h

(
∂Ps (λs,ps, T )

∂Λn−s+1,k

)
≤ h(Ps) + log δs + (n− s+ 1)δs

(
max{h(a), h(b)}+ log(4n2)

)
.

Therefore, by [7, Lemma 2.37(1)] we obtain

h

(
n∑
k=1

λjk
∂Ps (λs,ps, T )

∂Λn−s+1,k

)
≤ h(Ps) + log δs + h(a) + log n(A.10)

+ (n− s+ 1)δs
(
max{h(a), h(b)}+ log(4n2)

)
for n− s+ 2 ≤ j ≤ n. Similarly we deduce that

h
(
As(λ1, . . . ,λn−s)

)
≤ h(Ps) + (n− s)δs

(
h(a) + log

(
(n− s+ 1)n+ 1

))
.

By (A.8), (A.9) and the previous estimates we see that ηs is bounded above by the
right–hand side of (A.10). The proposition then follows by (A.4), (A.6) and Remark
A.3. �

A.3. Estimates for unmixedness and generic smoothness. In this section we es-
timate the height of integers αs and γs as in (5.4) and (5.6), whose nonvanishing modulo
p implies that the corresponding modular reduction is unmixed and generically smooth,
and yields new variables in Noether position (Theorem 5.5).

We start with αs. Taking into account that ĥ
(
A(n−s+2)n

)
= 0 and deg

(
A(n−s+2)n

)
= 1,

from [7, Theorem 2] it follows that there exists αs ∈ Z \ {0} as in (5.4) with

h(αs) ≤ 3h
(
GPs(Λ,ΛX)

) s∏
j=1

dj + 2 deg
(
GPs(Λ

s,ΛsX)
) s∏
j=1

dj

(
h

s∑
`=1

1

d`
+ c(n)

)
,

where c(n) ∈ O∼(n). Combining this with (A.7) and recalling that deg(G) ≤ d and
h(G) ≤ h, we deduce the following result.

Lemma A.8. We have h(αs) ∈ O∼
(
nd2s−1(h+ nd)

)
.

Next we consider γs. Let Js be the Jacobian determinant of Y1, . . . , Yn−s, F1, . . . , Fs
with respect to the variables X1, . . . , Xn.

Lemma A.9. The following assertions hold:

• deg Js ≤ s(d− 1);
• h(Js) ≤ s(log d+ h) + (n− s)h(a) + s d log(n+ 1) + log(n!).

Proof. The assertion on the degree of Js is clear. To prove the second assertion, we ob-
serve that Js is a sum of n! terms of the form ±∂F1/∂Xj1 · · · ∂Fs/∂Xjsλ1,l1 · · ·λn−s,ln−s .
Since h(λij) ≤ h(a) and h(∂Fi/∂Xj) ≤ h(Fi)+ log(di), by [7, Lemma 2.37(2)] we deduce
that each term has height at most s(h+ log d) + (n− s)h(a) + log(n+ 1)

(
(s− 1)(d− 1)

)
.

The estimate for the height of Js follows by [7, Lemma 2.37(1)]. �
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Let dj :=1 and hj :=h(Yj−s−pj−s) for s+1 ≤ j ≤ n, dn+1 := deg Js and hn+1 := h(Js).

Let h̃ := max1≤j≤n+1 hj . By [7, Theorem 2], there exist γs ∈ Z \ {0}, νs ∈ N, and
G1, . . . , Gn+1 ∈ Z[X] as in (5.6) with

h(γs) ≤ 2 deg(G)

(
n+1∏
j=1

dj

)(
ĥ(An) + deg(An)

(
3h(G)

2 deg(G)
+

n+1∑
`=1

h̃

d`
+ e(n)

))

≤

(
s∏
j=1

dj

)
deg(Js)

(
3h(G) + 2 deg(G)

(
(n+ 1)h̃+ e(n)

))
,

with e(n) ∈ O∼(n). Since h(Y`) ≤ h(a) and h(p`) ≤ h(b) for all `, we obtain

h(γs) ≤ 3 deg(Js)d
sh+ deg(Js)d

s+1
(
(n+ 1) max{h, h(a), h(b), h(Js)}+ e(n)

)
.

Combining this with Remark A.3 and Lemma A.9, we deduce the following result.

Lemma A.10. We have h(γs) ∈ O∼
(
ds+2(h+ rn2d)

)
.

A.4. Estimates for smooth fibers. In this section we estimate the height of the
integers Ms(λ

s,ps), Lλs(ps+1) and BGλs(ps+1) considered in Section 5.2, where Ms is the

polynomial of (5.16), Lλs is the polynomial of (5.18) and BGλs is the polynomial of (5.19).
Combining these estimates we shall be able to estimate the height of the integer N of
(A.5), which comprises all the unlucky primes p.

We start with an estimate for the height of RGs .

Lemma A.11. Let U := (U1, . . . , Um) be a tuple of new indeterminates and let F ∈
Z[X1, . . . , Xn] and G1, . . . , Gn, H ∈ Z[U ]. Consider the polynomial FU ∈ Z[U ] defined
by

FU := Hdeg(F )F

(
G1

H
, . . . ,

Gn
H

)
.

Let d̃ := max{deg(G1), . . . ,deg(Gn),deg(H)} and h̃ := max{h(G1), . . . , h(Gn), h(H)}.
Then

deg(FU ) ≤ deg(F )d̃, h(FU ) ≤ h(F ) + deg(F )
(
h̃+ log(n+ 2) + d̃ log(m+ 1)

)
.

Proof. Let F h ∈ Z[X0, . . . , Xn] be the homogeneization of F with respect to a new
variable X0. We have that

F h = X
deg(F )
0 F

(
X1

X0
, . . . ,

Xn

X0

)
.

Substituting H,G1, . . . , Gn for X0, X1, . . . , Xn in this identity we deduce that FU =
F h(H,G1, . . . , Gn). From this we readily obtain the degree estimate of the lemma.
Further, since deg(F h) = deg(F ) and h(F h) = h(F ), the height estimate follows from
[7, Lemma 2.37 (3)]. �

Lemma A.12. We have deg(RGs ) ∈ O∼(nd2s+1) and h(RGs ) ∈ O∼
(
nd2s(h+ d)

)
.
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Proof. Observe that, for 1 ≤ i ≤ n, we have

deg

(
∂Ps

∂Λn−s+1,i

)
≤ (n− s+ 1)δs, deg

(
∂Ps

∂Zn−s+1

)
≤ (n− s+ 1)δs,

h

(
∂Ps

∂Λn−s+1,i

)
≤ h(Ps) + log(δs), h

(
∂Ps

∂Zn−s+1

)
≤ h(Ps) + log(δs).

As a consequence, from Lemma A.11 we deduce that

deg(GsΛ) ≤deg(G)(n− s+ 1)δs,

h(GsΛ) ≤h(G) + deg(G)
(
h(Ps)+

log(δs) + log(n+ 2) + (n− s+ 1)δs log
(
(n− s+ 1)(n+ 1) + 1

))
.

Combining these estimates with (A.6) and the fact that δs ≤ ds yields

(A.11) deg(GsΛ) ∈ O(nds+1), h(GsΛ) ∈ O∼
(
nds(h+ d)

)
.

Now, since RGs := ResZn−s+1(Ps, G
s
Λ), we see that

deg(RGs ) ≤ degZn−s+1
(GsΛ) deg(Ps) + degZn−s+1

(Ps) deg(GsΛ) ≤ 2n deg(G)δ2
s ,

which gives the upper bound for the degree of the lemma. Combining this estimate with
Lemma A.5 we obtain

h(RGs ) ≤ h(Ps) degZn−s+1
GsΛ + h(GsΛ) degZn−s+1

Ps

+ log
(
(n− s+ 1)(n+ 1) + 1

)(
2nδ2

s deg(G) + log
(
(degZn−s+1

GsΛ + degZn−s+1
Ps)!

))
.

From this upper bound and (A.11) we deduce the height estimate of the lemma. �

We now estimate the height of Ms(λ
s,ps).

Lemma A.13. For 1 ≤ s ≤ r, we have h
(
Ms(λ

s,ps)
)
∈ O∼

(
nd2s(h+ n2d)

)
.

Proof. By [7, Lemma 2.37 (3)], we have
(A.12)

h
(
Ms(λ

s,ps)
)
≤ h(Ms) + deg(Ms)

(
max{h(λs), h(ps)}+ log

(
(n− s+ 1)(n+ 1) + 1

))
.

Recall that Ms := αsγsAsρsR
G
s . Thus, from [7, Lemma 2.37 (2)] we deduce that

h(Ms) ≤h(αs) + h(γs) + h(As) + h(ρs) + h(RGs )

+ log
(
(n− s+ 1)(n+ 1) + 1

)(
deg(As) + deg(ρs) + deg(RGs )

)
.

By definition, degAs ≤ (n − s)δs and h(As) ≤ h(Ps). Combining this with (A.6) and
Lemmas A.6, A.8, A.10 and A.12 we obtain

h(Ms) ∈ O∼
(
nd2s(h+ n2d)

)
.

On the other hand, since h(λs) ≤ h(a) and h(ps) ≤ h(b) for all s, by Remark A.3 we
have max{h(λs), h(ps)} ∈ O∼(r log d+log n). Further, deg(Ms) ∈ O(n2d2s+1) by (5.17).
Combining all these estimates with (A.12), the lemma follows. �
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Next we estimate Lλs(ps+1). As this integer is expressed in terms of the integers µλs

of (5.8) and βλs of (5.11) and the polynomial Bλs ∈ Z[Z1, . . . , Zn−s−1] \ {0} of (5.9), we
start with an estimate for µλs and Bλs .

Proposition A.14. Let 1 ≤ s ≤ r − 1 and assume that Wλs = ∅. Then there exists
µλs ∈ Z \ {0} as in (5.8) with

(A.13) h(µλs) ∈ O∼
(
n2d5s+1(h+ nd)

)
.

On the other hand, if Wλs 6= ∅, then there exists Bλs ∈ Z[Z1, . . . , Zn−s−1] \ {0} as in
(5.9) with

(A.14) degBλs ∈ O(nd3s+1), h(Bλs) ∈ O∼
(
n2d3s(h+ d)

)
.

Proof. Assume thatWλs :=Vs+1∩{ρs(λs,λs+1X) = 0} = ∅ and let ρλs := ρs(λ
s,λs+1X).

Let dj := deg(Fj) and hj := h(Fj) for 1 ≤ j ≤ s + 1, and ds+2 := deg ρλs and hs+2 :=

h(ρλs). Further, denote D :=
∏s+2
j=1 dj and H := max1≤j≤s+2 hj . By [7, Theorem 2]

there exists µλs ∈ Z \ {0} as in (5.8) with

h(µλs) ≤ 2 deg(G)D

(
3h(G)

2 deg(G)
+

s+2∑
`=1

H

d`
+ f(n)

)
,

where f(n) ∈ O∼(n). By Lemma A.6 we have ds+2 ∈ O∼(nd2s) and hs+2 ∈ O∼
(
nd2s−1(h+

nd)
)
. Since D ≤ ds+1ds+2 and H = max{h, hs+2}, we deduce that D ∈ O∼(nd3s+1) and

H ∈ O∼
(
nd2s−1(h+ nd)

)
. The estimate for h(µλs) follows from the previous estimates.

On the other hand, assume that Wλs 6= ∅. By hypothesis Rs(λ
s) 6= 0, and hence

Lemma 5.6 proves that Wλs is equidimensional of dimension n− s− 2. By [7, Corollary
3.23] there exists a polynomial Bλs ∈ Z[Z1, . . . , Zn−s−1] \ {0} as in (5.9) with

deg(Bλs) ≤ degWλs ,(A.15)

h(Bλs) ≤ ĥ(Wλs) + degWλs

(
n−s−1∑
`=1

h(Y`) + (n− s) log(2n+ 8)

)
.(A.16)

Next we obtain estimates for degWλs and h(Wλs) in terms of the degrees and heights
of Vs and Vs+1. For this purpose, let Vs+1 and Wλs denote the projective closures
of Vs+1 and Wλs respectively, via the canonical inclusion An ↪→ Pn. Let ρhλs be the

homogenization of ρλs . Lemma 5.6 implies that {ρhλs = 0} of Pn cuts Vs+1 properly. By
[7, Corollary 2.62] we conclude that

ĥ
(
Vs+1 ∩ {ρhλs =0}

)
≤ deg ρλs ĥ

(
Vs+1

)
+ degVs+1 h(ρhλs) + degVs+1 deg ρhλs log(n+ 2).

Since Vs+1 ∩ {ρhλs = 0} is equidimensional of dimension n − s − 2 and contains every

component of Wλs , we see that ĥ
(
Wλs

)
≤ ĥ

(
Vs+1 ∩ {ρhλs = 0}

)
. Recalling that ĥs+1 :=

ĥ(Vs+1) = ĥ(Vs+1) and δs+1 := degVs+1 = degVs+1, and taking into account that
deg ρhλs = deg ρλs and h(ρhλs) = h(ρλs), we obtain

degWλs ≤ δs+1 deg ρλs ,

ĥ(Wλs) ≤ deg ρλs ĥs+1 + δs+1 h(ρλs) + δs+1 deg ρλs log(n+ 2).
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Lemma A.2 asserts that ĥs+1 ∈ O∼
(
nds(h+d)

)
. Therefore, by Lemma A.6 we conclude

that

degWλs ∈ O(nd3s+1), ĥ(Wλs) ∈ O∼
(
n2d3s(h+ d)

)
.

Combining these estimates with (A.15) and (A.16), and taking into account that h(Y`) ∈
O∼(r log d+ n) for all `, the second assertion of the proposition easily follows. �

Now we estimate the height of βλs .

Lemma A.15. Let 1 ≤ s ≤ r − 1 and assume that Wλs 6= ∅. Then there exists
βλs ∈ Z \ {0} as in (5.11) with h(βλs) ∈ O∼

(
n3d8s+1(h+ nd)

)
.

Proof. Let dj = degFj and hj := h(Fj) for 1 ≤ j ≤ s + 1, and ds+2 := deg ρλs

and hs+2 := h(ρλs). Further, define d0 := deg(GBλs(Y1, . . . , Yn−s−1)) and h0 :=

h(GBλs(Y1, . . . , Yn−s−1)). Finally, denote D :=
∏s+2
j=1 dj and H := max1≤j≤s+2 hj . By

[7, Theorem 2], taking into account that degAn = 1 and ĥ(An) = 0, it follows that there
exists βλs ∈ Z \ {0} as in (5.11) with

h(βλs) ≤ 2d0D

(
3h0

2d0
+

s+2∑
`=1

H

d`
+ g(n)

)
,

where g(n) ∈ O∼(n). By Lemma A.6 we have hs+2 ∈ O∼
(
nd2s−1(h + nd)

)
. Since

H = max{h, hs+2}, we deduce that H ∈ O∼
(
nd2s−1(h + nd)

)
. On the other hand,

d0 ≤ deg(G) + degBλs ∈ O∼(nd3s+1) by (A.14) and D ≤ ds+1ds+2 ∈ O∼(nd3s+1). This
implies

(A.17) d0D

(
s+2∑
`=1

H

d`
+ g(n)

)
∈ O∼

(
n3d8s+1(h+ nd)

)
.

Next, since h(λs) ≤ h(a) for all s, by [7, Lemma 2.37 (2) and (3)] we have

h0 ≤ h(G) + h(Bλs) + degBλs

(
h(a) + log(n− s) + log(n+ 1)

)
+ log(n+ 1) deg(G).

Combining this with (A.14) and Remark A.3 we deduce that h0 ∈ O∼
(
n2d3s(h + d)

)
.

Hence Dh0 ∈ O∼
(
n3d6s+1(h+ d)

)
which, together with (A.17), proves the lemma. �

Now we are able to estimate the height of Lλs(ps+1).

Corollary A.16. For 1 ≤ s ≤ r−1, it holds that h
(
Lλs(ps+1)

)
∈ O∼

(
n3d8s+1(h+nd)

)
.

Proof. Observe that h
(
Lλs(ps+1)

)
= h(µλs) for Wλs = ∅, and h

(
Lλs(ps+1)

)
= h(βλs) +

h
(
Bλs(ps+1)

)
for Wλs 6= ∅. Since h(ps+1) ≤ h(b), by [7, Lemma 2.37 (3)] we have

h
(
Bλs(ps+1)

)
≤ h(Bλs) + degBλs

(
h(b) + log(n− s)

)
.

This inequality, Remark A.3 and (A.14) imply h
(
Bλs(ps+1)

)
∈ O∼

(
n2d3s(h+d)

)
. Com-

paring this with (A.13) and Lemma A.15 yields the estimate of the lemma. �

Let BG
λs := BG

s (λs,λs+1 · X), where BG
s is a primitive and squarefree polynomial

defining the Zariski closure of the image of (A(n−s+1)n × Vs) ∩ {G = 0} under the
morphism Φs of (5.12).
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Lemma A.17. For 1 ≤ s ≤ r, we have

degBG
s , deg(BG

λs) ∈ O(n22n−sds+1), h(BG
s ), h(BG

λs) ∈ O∼
(
n32n−sds(h+ d)

)
.

Proof. Observe that Λij (1 ≤ i ≤ n − s + 1, 1 ≤ j ≤ n) are elements of Z[Λs,X] of
degree 1, Λi ·X (1 ≤ i ≤ n− s) ∈ Z[Λs,X] have degree equal to 2, and all of them have

coefficients equal to 1. By [7, Theorem 3.24], settingWG
s := (A(n−s+1)n×Vs)∩{G = 0},

we have

deg
(
BG
s

)
≤ (n− s+ 1)(n+ 1)2n−s deg

(
WG
s

)
,(A.18)

m
(
BG
s

)
≤ 2n−s

(
ĥ
(
WG
s

)
+ (n− s+ 1)(n+ 1) deg

(
WG
s

))
.(A.19)

Since the hypersurface of A(n−s+1)n×An defined by G cuts properly A(n−s+1)n×Vs, and

taking into account that ĥ
(
A(n−s+1)n × Vs

)
= ĥ(Vs) =: ĥs and deg

(
A(n−s+1)n × Vs

)
=

deg(Vs) =: δs ([7, Lemma 3.16]), from [7, Corollary 2.62] we deduce

deg
(
WG
s

)
≤ δs deg(G),

ĥ
(
WG
s

)
≤ deg(G)ĥs + δsh(G) + δs deg(G) log

(
(n− s+ 1)(n+ 1)

)
.

Thus Lemma A.2 implies deg
(
WG
s

)
∈ O(ds+1) and ĥ

(
WG
s

)
∈ O∼

(
nds(h + d)

)
. Since

deg(BG
λs) ≤ deg(BG

s ) the degree estimate of the lemma follows. We now consider the

height estimate. Taking into account (A.19) we obtain m
(
BG
s

)
∈ O∼

(
n22n−sds(h+ d)

)
.

As h
(
BG
s

)
≤ m

(
BG
s

)
+log

(
(n−s+1)(n+1)

)
deg

(
BG
s

)
([7, Lemma 2.32 (2)]), we obtain

h(BG
s ) ∈ O∼

(
n22n−sds(h + d)

)
. Further, since h(λs) ≤ h(a) for all s, from [7, Lemma

2.37 (3)], we deduce that

h(BG
λs) ≤ h(BG

s ) + deg(BG
s )
(
h(a) + log

(
(n− s+ 1)(n+ 1)

)
+ log(n+ 1)

)
.

From Remark A.3 the height estimate of the lemma follows. �

Proposition A.18. There exist βGλs as in (5.14) and γGλs as in (5.15) with

h(βGλs) ∈ O∼
(
n32n−sd2s+1(h+ d)

)
, h(γGλs) ∈ O∼

(
n32n−sd3s+1(h+ d)

)
.

Proof. Let BG
λs := BG

s (λs,λs+1 ·X) ∈ Z[X]. By [7, Theorem 2] there exist βGλs ∈ Z\{0},
µGλs ∈ N and Hλs ∈ Z[X] as in (5.14) with

• µGλs ≤ 2 deg(G)δs;

• deg(HλsG) ≤ 4 deg(BG
λs) deg(G) δs;

• h(βGλs), h(Hλs)+h(G) ≤ 2 deg(BG
λs) deg(G)

(
ĥs+δs

(
3h(BG

λs )

2 deg(BG
λs )

+ h(G)
deg(G) +f(n)

))
,

where f(n) ∈ O∼(n).

These estimates, together with Lemmas A.2 and A.17, yield

µGλs ∈ O(ds+1), deg(HλsG) ∈ O(n22n−sd2s+2),(A.20)

h(βGλs), h(Hλs) + h(G) ∈ O∼
(
n32n−sd2s+1(h+ d)

)
,

which proves the claimed estimate for the height of βGλs .
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Now, let P := G
(
βGλs(BG

λs)µ
G
λs −HλsG

)
. By [7, Theorem 2] there exist γGλs ∈ Z \ {0}

and νGλs ∈ N as in (5.15) with

h(γGλs) ≤ 2 deg(P )ds

(
ĥ(An) + deg(An)

(
3h(P )

2 deg(P )
+

s∑
`=1

h

d`
+ g(n)

))
,

where g(n) ∈ O∼(n). Since ĥ(An) = 0 and deg(An) = 1, we have

(A.21) h(γGλs) ≤ 3h(P )ds + 2 deg(P )ds−1hs+ 2 deg(P )dsg(n).

We estimate deg(P ) and h(P ). We have deg(P ) ≤ 4 deg(BG
λs) deg(G)δs + deg(G),

which together with Lemma A.17 gives

(A.22) deg(P ) ∈ O(n22n−sd2s+2).

By [7, Lemma 2.37 (1) and (2)] we have

h(P ) ≤ max
{
h
(
βGλs(BG

λs)µ
G
λs
)
, h(HλsG)

}
+ h(G) + log(n+ 1) deg(G) + 1.

Further, from [7, Lemma 2.37 (2)] we deduce that

h
(
βGλs(BG

λs)µ
G
λs
)
≤ h(βGλs) + µGλsh(BG

λs) + log(n+ 1)µGλs deg(BG
λs),

h(HλsG) ≤ h(Hλs) + h(G) + log(n+ 1) deg(G),

which, together with Lemma A.17, yields

(A.23) h(P ) ∈ O∼
(
n32n−sd2s+1(h+ d)

)
.

Finally, combining (A.21), (A.22) and (A.23) the lemma follows. �

Corollary A.19. We have h
(
BGλs(ps+1)

)
∈ O∼

(
n32n−sd3s+1(h+ d)

)
.

Proof. Recall that BGλs := βGλsγGλsB̂s(λ
s,Z1, . . . , Zn−s−1), where B̂s := ResZn−s(B

G
s , Ps+1).

Let ` := degZn−s
Ps+1 and m := degZn−s

BG
s . Then by Lemma A.5 we have

h(B̂s)≤`h(BG
s )+mh(Ps+1)+log

(
(n−s+1)(n+1)

)(
`deg(BG

s )+m degPs+1

)
+log

(
(`+m)!

)
.

By Lemma A.17 we conclude that h(B̂s) ∈ O∼
(
n32n−sd2s+1(h+d)

)
. Similarly we deduce

that deg(B̂s) ∈ O∼(n22n−sd2s+2). Then, by [7, Lemma 2.37 (3)], and taking into account

that h(λ`) ≤ h(a) and h(p`) ≤ h(b) for all `, we see that

h(B̂s
(
λs,ps+1)

)
≤ h(B̂s) + deg(B̂s)

(
max{h(a), h(b)}+ log

(
(n− s+ 1)(n+ 1)

))
.

The previous estimates combined with Remark A.3 yield

h
(
B̂s
(
λs,ps+1)

)
∈ O∼

(
n32n−sd2s+1(h+ d)

)
.

Since BGλs(ps+1) = βGλsγGλsB̂s
(
λs,ps+1), the lemma follows by combining the latter esti-

mate together with the ones of Proposition A.18. �

As a consequence of Lemma A.13 and Corollaries A.16 and A.19 we are able to
estimate the height of the multiple N of all the unlucky primes.

Theorem A.20. The integer N of (A.5) satisfies

h(N) ∈ O∼
(
n3d8r−7(h+ n2d) + n32n−r+1d3r−2(h+ d)

)
.
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Proof. Note that h(detλ) ≤ log(n!)+nh(a) ∈ O∼(rn). This, together with Lemma A.13
and Corollaries A.16 and A.19, readily implies the theorem. �
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polynomial system solving, Internat. J. Algebra Comput. 21 (2011), no. 5, 703–713.
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