ON THE BIT COMPLEXITY OF POLYNOMIAL SYSTEM SOLVING

NARDO GIMENEZ! AND GUILLERMO MATERA'?

ABSTRACT. We exhibit a probabilistic algorithm which solves a polynomial system
over the rationals defined by a reduced regular sequence outside a given hypersurface.
Its bit complexity is roughly quadratic in the Bézout number of the system and linear
in its bit size. Our algorithm solves the input system modulo a prime number p and
applies p—adic lifting. For this purpose, we establish a number of results on the bit
length of a “lucky” prime p, namely one for which the reduction of the input system
modulo p preserves certain fundamental geometric and algebraic properties of the
original system. These results rely on the analysis of Chow forms associated to the set
of solutions of the input system and effective arithmetic Nullstellensatze.

1. INTRODUCTION

Solving polynomial systems defined over QQ is a fundamental task of computational
algebraic geometry, which has been the subject of intensive work for at least 40 years.
Symbolic approaches to this problem include Grobner basis technology, triangular de-
composition, resultants, Macaulay matrices and Kronecker—like algorithms (see, e.g.,
[37] and [38] for an overview of the existing methods). The corresponding arithmetic
complexity, namely the number of arithmetic operations in QQ, has been analyzed in,
e.g., [32], [17], [9], [14], [18], [21], [33] and [10], among others. The complexity paradigm
arising from these works is that polynomial systems can be solved with a number of
arithmetic operations which is polynomial in the Bézout number of the system. This
conclusion nearly matches the lower bounds of [6], [16] and [1], under the assumption
that the corresponding algorithms are “geometrically robust”, namely they are universal
and allow the solution of certain “limit” problems.

On the other hand, less work has been done to analyze the bit complexity of these
algorithms. Concerning Grébner bases, the work [23] by Hashemi and Lazard shows that
zero—dimensional Grobner bases can be computed essentially in polynomial time in the
input size and D", where n is the number of unknowns and D is the mean value of the
degrees of the defining polynomials. The bit complexity of Kronecker—like algorithms
for complete intersections is analyzed in, e.g., [18] and [22], where it is shown that it
is polynomial in the input size and certain invariant called the “system degree” (which
is upper bounded by the Bézout number of the system). Further, the recent work by
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Schost and Safey El Din [41] considers the bit complexity of multi-homogeneous zero—
dimensional systems and proves that such systems can solved with quadratic complexity
in the multi-homogeneous Bézout number and a corresponding arithmetic analogue of
it. Finally, [18] provides a lower bound on the bit size of the output when “standard”
representations are used.

This paper is devoted to analyze the bit complexity of a family of Kronecker—like
algorithms originally due to [19] and [18]. We shall consider the improved version of
this algorithm due to [21] (see also [10]), which we now discuss. Let Fi,..., F,,G €
Z[X1,...,X,] be polynomials such that Fy,..., F, form a reduced regular sequence in
the open set {G # 0}, that is, the ideal Z; := (Fi,...,Fs) : G C Q[X1,...,X,] is
radical and the affine subvariety V, := V(Z;) C C™ defined by Z; is equidimensional of
dimension n — s for 1 < s < r. Denote by §, := degV, the degree of V; for 1 < s < r.
Let V :=V, and § := max;<s<, d;. The algorithm outputs a suitable “parametrization”
of a “lifting fiber” of V, that is, a Q-definable (zero-dimensional) fiber of maximal
cardinality of a general linear projection 7 : V — C"~" defined over Q (see Section 4 for
details). Such a parametrization is called a “Kronecker representation”. Several works
show that this constitutes a good representation of V, namely a “solution” of the system
F, =0,...,F, =0,G # 0, both from the numeric and the symbolic point of view (see,
e.g., [25], [43], [33], [5], [46]).

The computation of the Kronecker representation of such a lifting fiber proceeds in r
stages. In the sth stage we compute a Kronecker representation of a lifting fiber of Vs
from one of V,. Following a suggestion of [21], to keep the bit length of intermediate
results under control, these computations are performed modulo a prime number p,
followed by a step of p—adic lifting to recover the integers which define the Kronecker
representation of V. As a consequence, the determination of a prime number p with
“good” modular reduction is crucial to estimate the bit complexity of the procedure.

For our purposes, the modular reduction defined by a prime number p is “good”, and
the corresponding prime p is called “lucky”, if basic geometric and algebraic features
of the variety Vs and its defining ideal (F1,...,Fs) : G are preserved under modular
reduction for 1 < s < r. Among them, we may mention dimension, degree and generic
smoothness. Further, our algorithm also requires that the modular reduction of the lift-
ing fibers under consideration preserves dimension, degree and non-ramification. Partial
results in this direction have been obtained in [42] (see also [36]), on modular reduction
of smooth fibers of parametric families of zero—dimensional varieties, and [8], on modular
reduction of zero—dimensional varieties defined over Z. Unfortunately, these results are
not enough for our purposes (particularly for the analysis of Section 5.2; see the remarks
after Theorem 1.2).

For the analysis of the bit length of lucky primes, we establish conditions on the
coefficients of linear forms Y1,...,Y,_sy1 € Q[X1,...,X,] and the coordinates of a
point p € Q"* which imply that the projection 75 : Vs — C"® defined by Y7,...,Y,_;
is “general” in the sense above, p defines a lifting fiber and Y,,_411 separates the points
of m;1(p) (we say that Y;,_s,1 induces a primitive element of 7 (p)). Such a point p is
called a “lifting point”. As we need to analyze both conditions for projections and fibers
defined over Z, and their modular reductions, a natural framework for this analysis is
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that of an affine variety defined over a infinite perfect field K. Our main result is the
following (see Proposition 3.4 and Theorem 4.9).

Theorem 1.1. Let V C K" be an equidimensional variety defined over K of dimension
n — s and degree 65 > 0. Let Ajj (1 < i <n—-s+1,1<j<n)and Zi,..., 2,
be indeterminates over K[V]. Denote Z := (Z1,...,Zn—s), A = (ANij)1<i<n—s+1,1<j<n,
A* = (Aij)lgignfs,lgjgn and Az = (Aila e aAzn) fOT 1 é ) S n—s+4+ 1. There exist
polynomials Ay € K[A*] and py € K[A, Z] such that degy, Ay = 05 (1 < i <n—s),
degp, pv < 05(20s —1) (1 < i <n—s+1), deggpy < 05(26s — 1) and the following
properties hold: for any X € K=t and p € K" with Ay (A )py (X, p) # 0, if
(Y1,..., Y —s+1) := AX, then

(1) the mapping w:V — A" defined by Y := (Y1,...,Yn_s) is a finite morphism;

(2) rankgy K[V] = 0s;

(3) p is a lifting point of @ and Y, _s11 induces a primitive element of 7~ 1(p).

Our main technical tool is the analysis of the Chow form of V. A similar analysis is
obtained in [5] under stronger assumptions, namely that K is a finite field F, and V is
an absolutely—irreducible complete intersection.

Then we compare the conditions underlying Theorem 1.1 for K = Q and K = E,
where F, is a given prime field. This yields an integer multiple 91 of all primes p which
are not lucky in the sense above. We upper bound the bit length of this integer 9t using
estimates for heights of equidimensional varieties of [7], and then obtain a lucky prime
p with “low” bit length. The following statement summarizes our results on modular
reduction (see Theorems 5.10 and A.20).

Theorem 1.2. Let Fy,...,F.,G € Z[X1,...,Xy] be polynomials of degree at most d
with coefficients of bit length at most h. Assume that Fy, ..., F. form a reduced reqular
sequence in the open set {G # 0} and denote Iy := (F1,...,Fs) : G, Vs :=V(Z;) C C"
and ds = degVs for 1 < s < r. Let § := maxj<s<,ds. Let A € /i \ {0} and
p = (p1,...,pn_1) € Z" ' be randomly chosen elements with entries of bit length at
most c1 log(n?63), for a suitable c; > 0. Let (Y1,...,Yy,) := AX and p* := (p1,...,Pns)
for1<s<r.

Let p be a random prime number of bit length colog(nd"h), for a suitable ca > 0.
Denote by F1p, ..., Frp, Gp, Yip,...,Ynp and p, the corresponding reductions modulo
p. Then the following conditions are satisfied for 1 < s < r with probability at least 2/3:

(1) the ideal Ty := (Fip, ..., Fsp) : G° C Fp[X] is radical and the variety Vs =
V(Zsp) C F;: is equidimensional of dimension n — s and degree 0s;

(2) the mapping msp : Vs p — E:_S defined by Y1, ...,Y,—sp is a finite morphism,
pp € B is a lifting point of msp, and Yy —s+1p induces a primitive element of
mop (Pp);

(3) any q € wop(m Yy ,(Pp™
itive element of 7, (q).

)) is a lifting point of wsy, and Y, _s41,p induces a prim-

We observe that the analysis of lucky primes becomes much simpler if only conditions
(1) and (2) above are required. An analysis along these lines can be deduced from [42]
(compare with [36]). Nevertheless, condition (3), which is critical to prove the correctness
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of our algorithm for solving the system F; =0,..., F. = 0,G # 0, requires a significant
extension of these techniques.

Finally, we combine the algorithm of [5] with p-adic lifting, as in [21], to obtain an
algorithm for solving the system F} = 0,...,F, = 0,G # 0 with good bit complexity.
We prove the following result (see Theorem 6.9 for a precise statement).

Theorem 1.3. Let Fy,...,F,.,G be polynomials of Z[X1,...,X,] as in the statement
of Theorem 1.2. There exists a probabilistic algorithm that takes as input an algorithm
evaluating I, ..., F,., G with at most L arithmetic operations in Z and integer parameters
of bit size at most h, and outputs a parametrization of a lifting fiber of V(Z,) with
O~ ((nL 4 n®)8(dé + nd"h)) bit operations.

The paper is organized as follows. In Section 2 we recall the notions and results of alge-
braic geometry and commutative algebra we shall use, and discuss the representation of
multivariate polynomials by straight—line programs and algebraic varieties by Kronecker
representations. In Section 3 we recall the notion of Chow form of an equidimensional
variety, discuss its basic properties and obtain conditions (1)—(3) of Theorem 1.1. In
Section 4 we discuss the notion of lifting point and finish the proof of Theorem 1.1. In
Section 5 we prove Theorem 1.2. For sake of readability, all estimates on heights of vari-
eties underlying the proof of this result are postponed to Appendix A. Finally, in Section
6 we describe our algorithm for solving the input system F; =0,...,F, =0,G # 0 and
analyze its bit complexity, showing thus Theorem 1.3.

2. NOTIONS AND NOTATIONS

We use standard notions and notations of commutative algebra and algebraic geometry
as can be found in, e.g., [30], [11], [44].

Let K be a field and K its algebraic closure. Let K[X7,...,X,] denote the ring of
n—variate polynomials in indeterminates Xi,..., X, and coefficients in K. For F €
K[X1,...,X,] and S C {X1,...,X,}, degg F' denotes the degree of F' as an element of
the ring R[S] with R := K[{X1,...,X,,} \ S], while deg F' denotes its total degree.

Let A" := A"(K) be the affine n—dimensional space over K. A subset of A™ is called a
K-—definable affine subvariety of A™ (a K—variety for short) if it is the set of common zeros
in A" of a set of polynomials in K[X7,..., X,]. We will use the notations V(F1,..., Fy)
and {F} = 0,...,Fs; = 0} to denote the K—variety defined by F1,...,Fs. Further, if
7 is an ideal of K[X71,...,X,], then V(Z) denotes the K-variety of A™ defined by the
elements of Z. On the other hand, we shall denote by Z(V') the vanishing ideal of a K-
variety V' C A" in K[X7,..., X,;] and by K[V] its coordinate ring, namely the quotient
ring K[V] :=K[Xy,..., X,]/Z(V).

For polynomials Fi,..., F,.,G € K[Xy,...,X,], we write (F1,...,F,) : G :={F €
K[Xi,...,X,] : 3m > 0with G™F € (Fi,...,F,)} for the saturation of the ideal
(F1,...,F) C K[Xy,...,X,] with respect to G. We remark that, if Z C K[X1,...,X,]
denotes the saturation Z := (Fy,..., F;) : G*™, then V(Z) C A" is the Zariski closure of
the locally closed set V(F1, ..., F.) \ V(G).

Let V C A" be a K-—variety. We denote by dimV its dimension with respect to
the Zariski topology over K (which agrees with the Krull dimension of K[V]). More
generally, if R is a ring, then dim R denotes its Krull dimension. Suppose further that
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V' is irreducible with respect to the Zariski topology over K. We define its degree as the
maximum number of points lying in the intersection of V with an affine linear K-variety
L of A™ of codimension dim V' for which #(V N L) < co. Now, if V=C U---UCn
is the decomposition of V' into irreducible K—components, we define the degree of V' as
degV = S°N  degC; (cf. [24]). This definition of degree satisfies the following Bézout
inequality ([24]; see also [15]): if V and W are K-varieties of A", then

(2.1) deg(VNW) < degV deg W.

2.1. Notions and results of commutative algebra. A proper ideal Z of a Noetherian
ring R is unmized if the codimensions of its associated primes are all equal. We say
that the unmizedness theorem holds for R if any proper ideal Z of R of codimension
r generated by r elements is unmixed for any r > 0. A classical result asserts that
the unmixedness theorem holds for any localization S™K[X1,..., X,] (see, e.g., [35,
Theorems 17.6 and 17.7]).

Let T C K[X1,...,X,] be an ideal of dimension n — r. Then Z is unmixed and
defines an equidimensional K—variety V' C A". Let Yi,...,Y, € K[Xy,...,X,] be
linearly-independent linear forms such that the mapping 7 : V. — A"™" defined by
Yi,...,Y,_, is a finite morphism. The change of variables (Xi,...,X,) — (Y1,...,Ys)
is called a Noether normalization of V' (or Z) and we say that the variables Y7,...,Y,
are in Noether position with respect to V (or Z), the variables Yi,...,Y,_, being
free. Let R := K[Y1,...,Y,—,] and let R’ denote the field of fractions of R. De-
note B := K[Xy,...,X,]/Z and let B’ := R' @g B := R/[Yo—y+t1,...,Yn]/Z¢, where
Z¢ is the extension of Z to R'[Y,—y41,...,Ys]. We consider B as an R-module and
B’ as an R'-vector space respectively. Since B is finitely generated, B’ is a finite—
dimensional R'—vector space, whose dimension we denote by dimp/ B’. In particular, for
any F € K[Xq,...,X,] we may consider the characteristic polynomial x € R/[T] (re-
spectively the minimal polynomial u € R'[T]) of the homothety of multiplication by F' in
B’. In this situation we have that y and p belong to R[T] (see, e.g., [10, Theorem 1.27]).
We shall call x and p respectively the characteristic and the minimal polynomials of F'
modulo Z (with respect to the Noether normalization defined by Y7,...,Y},).

Now assume further that K is an infinite perfect field. Then B is a free R—module of
finite rank rankp B (see, e.g. [20, Lemma 3.3.1]). Since any basis of B as an R-module
induces a basis of B’ as an R'-vector space, we have rankg B = dimp B’. In this case,
we say that G € K[X,...,X,] induces a primitive element for T if the powers of the
image g of G in B’ generate the R'—vector space B’. We shall also say that G induces a
primitive element of the ring extension R — B.

The following criterion for deciding radicality of an ideal, probably well-known, is
stated and proved here for lack of a suitable reference.

Lemma 2.1. Let K be a perfect field and Fi,...,Fs,G € K[Xy,...,X,]| polynomials
such that the ideal T := (F1,...,Fs) C K[X1,...,X,] satisfies codim(Z : G*) = s. Let
J be the ideal of R :=K[X1,...,X,]/(Z : G™) generated by the (s x s)-minors of the

S0yl ) >

and only if codimp(J) > 1.

Proof. Let I = IK[X1, ..., X,]g and let K be the ideal of S := K[X1,..., X,]¢/Za
generated by the (s x s)-minors of the Jacobian matrix (0F;/0X;)i<i<s,1<j<n taken
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modulo Z¢g. Since codim(Zg) = codim(Z : G*°) = s, by [11, Proposition 18.3] we deduce
that S is a Cohen-Macaulay ring. Then we can apply [11, Theorem 18.15] and deduce
that Zg is radical if and only if codimg/C > 1. Since Z : G is radical if and only if Zg
is radical, and codimpg(7) > 1 if and only if codimgKC > 1, the lemma follows. O

2.2. Kronecker representations. Let V' C A" be an equidimensional K-variety of
dimension n — s, and let Z C K[Xy,...,X,] be its vanishing ideal. For a change of
variables (X1,...,X,) — (Y1,...,Y,), denote R := K[Y3,...,Y,—s], B := K[V] and
R = K(Y1,...,Y,—s). Consider B' := R'[Yy—s+1,-..,Yn|/Z¢ as an R’-vector space,
where Z°¢ is the extended ideal ZR[Y,,_s11,...,Yy], and let 6 := dimp B’.

Definition 2.2. A Kronecker representation of Z (or V') consists of the following items:

e a Noether normalization of T, defined by a linear change of variables (X1, ..., X,)
— (Y1,...,Yy) such that Yy,_s41 induces a primitive element for Z;
e the minimal (monic) polynomial @ € R[T] of Yi—s+1 modulo I;
e the (unique) polynomials Wy_sia, ..., Wy, € R'[T] of degree at most § — 1 such
that the following identity of ideals holds in R'[Yn—st1,...,Yn]:
(2.2)
I¢= (Q(Yn—s+1)7Q/(Yn—s+1)Yn—s+2_Wn—s+2(Yn—s+1)a SRR Q/(Yn—s+1)yn_wn(yn—s+1))a

where Q' denotes the first derivative of QQ with respect to T.

Considering instead polynomials Vy_s12a,..., V, of degree at most § — 1 such that
Ie = (Q(Ynferl)a Yn75+2 - ans+2 (Ynferl)» CIRIEIES Yn - Vn(Yn75+1>)a
we have a univariate representation of Z (or V).

Identity (2.2) may be interpreted in geometric terms as we now explain. Let /¢ :
A" — A" be the linear mapping defined by Yj,...,Y, and W := £(V). We interpret

Yi,...,Y, as new indeterminates and consider the mapping II : W — A" 5t! defined
by the projection on the first n — s + 1 coordinates. Considering () as an element of
K[Y1,...,Ynh_s41], it turns out that IT defines a birational isomorphism between W and

the hypersurface {Q = 0} of A"~*T! whose inverse is the rational mapping ® : {Q =
0} — W defined in the following way:

., Wnosp2(y)  Waly)
)= <y Q) Q) >

A univariate representation of Z as above has a simpler structure than a Kronecker
representation, and it can be easily obtained from the latter by inverting Q' modulo Q.
Nevertheless, since such an inversion typically implies a degree growth of the elements
of R involved, we shall be rather concerned with Kronecker representations.

2.3. Model of computation. In the sequel, log denotes logarithm to the base 2. Be-
sides the Big—Oh notation O, we also use the standard Soft—Oh notation O~ which does
not take into account logarithmic terms. More precisely, given two function f = f(n,d, h)
and g = g(n,d, h) in integer parameters n, d, h, we say that f is in O™~ (g) if there exists
s > 0 such that f is in O(glog®g). We remark that the cost of certain basic operations
(such as addition, multiplication, division, and gecd) with integers of bit length m is in
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O~(m). In particular, arithmetic operations in the prime finite field F, of p elements
can be performed with O~ (logp) bit operations.

Algorithms in computer algebra usually consider the standard dense (or sparse) rep-
resentation model, where multivariate polynomials are encoded by means of the vector
of all (or of all nonzero) coefficients. However, since a generic n—variate polynomial
of degree d has (”:d) = O(d") nonzero coefficients, its dense or sparse representation
requires an exponential size in d and n, and their manipulation usually requires an
exponential number of arithmetic operations with respect to d and n. To avoid this
phenomenon we will use an alternative representation for multivariate polynomials by
means of straight-line programs (cf. [4]). A (division—free) straight-line program [ in
K[X1,...,X,] which represents or evaluates polynomials Fi,..., Fs € K[Xy,...,X,] is
a sequence (Q1, ..., Q,) of elements of K[X1,. .., X,] satisfying the following conditions:

b {Flv"'7FS} - {Qla"'aQT};

e there exists a finite subset 7 C K, called the set of parameters of 3, such that
for every 1 < p < r, the polynomial @, either is an element of TU{X1,..., X},
or there exist 1 < p1, p2 < p such that Q, = Q,, o, Q,,, Where o, is one of the
arithmetic operations +, —, X.

The length of § is defined as the total number of arithmetic operations performed during
the evaluation process defined by (.

Our model of computation is based on the concept of straight—line programs. However,
a model of computation consisting only of straight—line programs is not expressive enough
for our purposes. Therefore we allow our model to include decisions and selections
(subject to previous decisions). For this reason we shall also consider computation trees,
which are straight—line programs with branchings. Length of a given computation tree
is defined similarly to the case of straight-line programs (see, e.g., [4] for more details
on the notion of computation trees).

Our algorithm is probabilistic, of Monte Carlo type (see, e.g., [47]). One of the
probabilistic aspects is related to random choices of points outside certain Zariski open
sets. A basic tool for estimating the corresponding probability of success is the following
well-known result (see, e.g., [47, Lemma 6.44]).

Lemma 2.3. Let R be an integral domain, Uy, ..., Uy indeterminates over R, S C R a
finite set with s :== #5S elements, and F' € R[U1,...,U] a nonzero polynomial of degree
at most d. Then F has at most ds*~1 zeros in S*.

We shall interpret Lemma 2.3 in terms of probabilities: for an element u chosen
uniformly at random in S¥, the probability that F'(u) # 0 is greater than 1 — d/s.

The second probabilistic aspect concerns the choice of a “lucky” prime number p. In
connection with this matter, we have the following result (see, e.g., [47, Section 18.4]).

Lemma 2.4. Let B, m be positive integers and M a nonzero integer such that log | M| <
%. There is a probabilistic algorithm which, from the integer B and any positive integer
k, returns a prime p between B + 1 and 2B not dividing M. It performs O~ (k log? B)
bit operations and returns the correct result with probability at least

(1-350) (-2




8 N. GIMENEZ AND G. MATERA

Proof. According to, e.g., [47, Theorem 18.8], there is a probabilistic algorithm which
computes a random prime p such that B < p < 2B with O~ (k log? B) bit operations
and probability of success at least 1 — log B/2¥~!. On the other hand, if p is a random
prime with B < p < 2B, then p does not divide M with probability at least 1 — 2/m.
Combining both assertions the lemma follows. O

3. ON NOETHER NORMALIZATIONS

Let K be a perfect field and V' C A™ an equidimensional K-variety of dimension
n —s > 0 and degree §. In this section we obtain a condition on the coefficients of
linear forms Y7,...,Y,_s41 € K[Xq,...,X,] which implies that Y7,...,Y,,_; define a
Noether normalization of V and Y,,_¢41 is a primitive element of the ring extension
K[Y1,...,Yn—s] = K[V] (Proposition 3.4). As these conditions rely heavily on properties
of the Chow form of V', we also recall the notion of Chow form of an equidimensional
variety and some of its basic properties.

3.1. The Chow form of an equidimensional variety. Let A":= (Aij)1<i<n—s+1,0<j<n
be a matrix of indeterminates over K[V], let A? = (Njo, .-, ANin) and A := (A1, ..., Ajn)
for 1 <i<n—s+4 1. A Chow form of V is a squarefree polynomial F,, of K[A"] such
that Fy,(A") = 0 if and only if V N {\o + DX =0 (L <i<n-—s+1)}is
nonempty, where V' C P" is the projective closure of V with respect to the canonical
inclusion A" < P" (see [26, Chapter X, Section 6]). We observe that F\ is multiho-
mogeneous of degree d in each group of variables Af-b for 1 <i<n-—s+1, and is
uniquely determined up to nonzero multiples in K. Let A := (Ajj)i<i<n—s+1,1<j<n and
let Z1,...,Zn—s+1 be new indeterminates. Let P, € K[A, Z1, ..., Z,_s+1] be the unique
polynomial such that

Py(A A1, .. Apsi10) = Fu (Al . AR ).

By abuse of language we also call P, a Chow form of V.
Let &1,...,&, be the coordinate functions of V' induced by Xi,...,X,. Set & :=
(&1,...,&,) and let A; - € € K[V][A] be defined by

Al&ZZAUgJ (1§z§n—s+1)
j=1
A fundamental property of the Chow form is that P, is uniquely determined, up to
multiplication by nonzero elements of K, by the following two conditions:
o if A& :=(A1-&,...,Ap_sy1 - &), then the following identity holds in K[V][A]:
(3.1) P, (A,AE) =0.
Equivalently, let A; - X = 7% AjjX; for 1 < i <n-—s+1and AX =
(A1-X,...,Ap_s11-X). Then the polynomial P, (A, AX) € K[A, X| vanishes
on the variety A(—stDn » .
o If G eK[A, Zy,...,Zy—s+1] is any polynomial such that G(A, A€) = 0, then Py,
divides G in K[A, Z1, ..., Zp_sy1].
Furthermore, Fy has the following features (see [26, Chapter X, Sections 7 and 9)):
(1) Fy is homogeneous of degree ¢ in the (n — s+ 1) x (n — s + 1)-minors of A",
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(2) deg(a, o, An_si10) Fv =dega,_ ..o Fv =6;

(3) if V is an irreducible K-variety, then Fy is an irreducible polynomial of K[A"].
More generally, if V = Cy U --- UCp is the decomposition of V into irreducible
K-components, and F¢, is a Chow form of C; for 1 <4 < N, then [[,,., Fe, is
a Chow form of V. -

Remark 3.1. Let A, € K[AF, ... A" ] be the (nonzero) polynomial which arises
as the coefficient of the monomial Afz—s+1,0 i Fy, considering Fy, as an element of
K[A][A1,0, ..., An—st1,0]. Then (2) implies that Ay is independent of A1, ..., An—s0,
that is, Ay € K[Aq,...,An_g]. In particular, Ay, is homogeneous of degree § in the

(n —s) x (n — s)-minors of the (n — s) x n—-matrizc A* = (Asj)1<i<n—s,1<j<n-

Let py € K[A, Z1, ..., Z,—s] be the discriminant of P, with respect to Z,,_s11, namely

oPy,
=R "z n)
pv €57 —st1 < Vo 6Zn8+1>

Lemma 3.2. p, and 0Py, /0Z,—s41 are both nonzero.

Proof. We have that A := K[A, Z1, ..., Zp—s11]/(Py) is a reduced K-algebra. Since K
is perfect, by [34, Corollary, page 194] it follows that A is a separable K—algebra. Let K’
denote the algebraic closure of K(A, Z1,...,Z,—s). By [34, 27.G], we deduce that the
K'—algebra A®@xK' = K'[Z,,—s+1]/(Py) is reduced. Since K’ is a perfect field, this implies
that 0Py, /0Z,—s+1 # 0. Now, by (2) and (3) above, each irreducible factor of Py, is a
Chow form of an irreducible component C; of V', of positive degree degC; in Z,,_s+1. Then
the previous argument shows that the partial derivative with respect to Z,,_s41 of each
irreducible factor of P, does not vanish, which in turn implies that P, and 0P, /0Z,,—s+1
are relatively prime polynomials of K[A, Z1,..., Z,_s41]. Since K[A, Z1,...,Z,_5] is a
factorial ring, this implies that the resultant p, of these polynomials does not vanish. [

Further, p, satisfies the following degree estimates:
deg(z,, .z, ) Pv < (26 —1)9, degp,py <(260—-1)0 (1<i<n-—s+1).
In particular, for its total degree we have deg p,, < (n — s+ 2)(262 — §).

Let Z := (Zl, .. '7ans+1)- Further, for any A := (Aij)lgignferl?lSan € A(n75+1)n’
we write A; := (Ai1, ..., Ain) and A; - & := Z?zl Nij€j for 1 <4 <n—s+1. We consider
K[V][A] as a K[A, Z]-algebra through the ring homomorphism K[A, Z] — K[V][A]
which maps any F' € K[A, Z] to F(A, A§). In these terms, we have the following result.
Lemma 3.3. 0P, /0Z,,—s41 is not a zero divisor of the K[A, Z]-algebra K[V][A].

Proof. Let F € K[A, X] be any polynomial such that
oPy,
8Zn—s—&—l
in K[V][A]. We have py € (Py,0Py/0Z,—s+1)K[A, Z]. Since Py, (A, A§) = 0, we deduce
that py (A, A1-€, ..., Ap—s-€) is a multiple of 0P, /0Z,,—s+1(A, AE) in the ring K[V][A].

Combining this with (3.2), we deduce that

pV(AuAl'Ev"‘aAn—S'E)'F(A’E):0
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in K[V][A]. Suppose that there exists an irreducible K-component C of V' such that
F(A€) # 0 in K[C][A]. Then

pV(AaAl 577Anfs£)F(Aa£) =0

in K[C][A]. Since K|[C][A] is an integral domain, we conclude that py (A, A1-&, ..., Ap_s-
&) = 0 in K[C][A]. This implies that

(33) pV(A7A1 & Aps 5) =0

in K[C][A], where K is the algebraic closure of K. On the other hand, by Lemma 3.2
the polynomial p, is nonzero. Then, for a generic choice of A € A=t the ring
extension K[A; - &, ..., Ay_s - €] = K[V] is integral and py (X, Z1, ..., Z,_s) is a nonzero
polynomial in K[Zy, ..., Z,_s]. By (3.3) we deduce that py(A,A1-&,..., Ap_s-&) =0
in K[C], which shows that A; - &,..., A,_s - & are algebraically dependent over K. Since
KA1-&, ..., A_s - €] = K][C] is also integral, it follows that dimC < n — s — 1, which is
a contradiction. Therefore, F'(A, &) = 0 in K[C][A] for every irreducible component C of
V. We conclude that F'(A, &) =0 in K[V][A], which finishes the proof. O

3.2. A generic condition for a Noether normalization. In the sequel, for A :=
(Nij)1<i<n—st1,1<j<n € K757 wwe write A* 1= (N\ij)1<i<n—s1<j<n-

Proposition 3.4. With hypotheses and notations as before, let X\ € K"t pe sych
that Ay (A*) # 0. LetY; := X+ X for1 < i <n-—s+1, R:=K[Y1,...,Y,4],
B :=K[V], R :=K(Y1,...,Y,—s) and B' := R' ®k B. Then the mapping 7 : V.— A"
defined by Y1,...,Y,_s is a finite morphism. Further, if py (X, Z1,..., Zn—s) # 0, then
Yh—st1 induces a primitive element of the ring extension R — K[V]| and dimp B’ <.

Proof. Let A* = (Ajj)i<i<n—s,1<j<n. Recall that A, is homogeneous of degree § in the
(n — s) x (n — s)-minors of A*. Since A, (A*) # 0, at least one of the minors of the

(n — s) x n matrix A* is nonzero. We deduce that the linear forms Yi,...,Y,_s are
linearly independent. Thus there exist linear forms Y;,_sy1,...,Y, € K[X] such that
Yi,.., Y s, Yn_st1,...,Y, are linearly independent. Let wy := (w1, ..., wk,) € K™ be

such that V;,_s1p = wy- X for 1 <k <s. Let Qx € K[Z1, ..., Z,_s+1] be the polynomial
obtained by replacing in Py the matrix A for (A", wy). From (3.1) we deduce that

(3.4) Qr(Vi,. .., Yors,wi-€) =0

in the R-algebra B for 1 < k < s, where & := (&1,...,&,) denotes the n—tuple of
coordinate functions in B induced by Xi,...,X,. Observe that degy . Qi < o

and that A, (X*) is the coefficient of ZJ_ ., in Q. Since A, (A*) # 0, we have that
degy, .., Qr =0 and (3.4) may be interpreted as a relation of integral dependence for
the image wy, - € of Y,,_s1x in B over R for 1 < k <'s. Moreover, K[Y7,...,Y,] = K[X]
because the linear forms Yi,...,Y, are linearly independent. This implies that R — B
is an integral ring extension.

To prove that 7 is finite, let C be any irreducible K—component of V' and let 7¢ be the
restriction of 7w to C. It suffices to prove that m¢ is dominant or, equivalently, that its dual
ring homomorphism n; : K[A"™*] — K]C] is injective. Let t; denote the i-th coordinate
function of A"™® for 1 < ¢ < n —s. With a slight abuse of notation denote also by &
the n—tuple of coordinate functions of K[C| induced by Xi,...,X,. Then 7j(t;) = A; - &
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for 1 <i <n—s. Since K[C] is integral over K[A; - §,..., An—s - €] and dimC = r, we
deduce that A1 - &,..., A—s - & are algebraically independent over K. This implies the
injectivity of 77, which concludes the proof of the first assertion of the proposition.

Next, taking partial derivatives with respect to the variable A,,_s 1 at both sides of
(3.1), we obtain the following identity in K[V][A] for 1 < k < n:

0P, 0Py,
3.5 —(AA —— (A, AE) = 0.
( ) 8Zn,s+1 ( ) 6) ék’ + aAn—s-{-l,k ( ) 6)
From (3.1) and (3.5) we deduce that there exists Ry € K[A, Z] such that
(36) pV(Av Al : £7 B 7An—8 : 5) é-k - Rk(A7 Aé)

in K[V][A] for 1 < k < n. By substituting A for A in (3.6) we deduce that
pV(Au Y17 s 7Y’I’L—S)€k = Rk‘(Aa Y17 s 7Y7’l—87 An—s-{—l : 5)

in K[V] for 1 < k < n. By the choice of A, the polynomial p, (X, Z1,...,Z,—s) is
nonzero. Since A1 -§, ..., A,_s - & are algebraically independent over K, we deduce that
pv( A, Y1,...,Y, ) is a nonzero element of R. Then the previous identities show that
the powers of A,_s11-& generate the R'—vector space B’. In other words, Y,,_s1 induces
a primitive element of the ring extension R — K[V].

Now, let Q@ € R[Z,—s+1] be the polynomial obtained by substituting A for A and
Yi,....Y,_sfor Zy,...,Zy_s in P,. From (3.1) we deduce that Q(A,—st1-&) =0in B’

Taking into account that degy . Q= we conclude that dimp/ B’ <. O

4. LIFTING POINTS AND LIFTING FIBERS

Assume as in Section 3 that K is perfect field. Let Fi,..., Fs and G be polynomials
in K[X] such that the ideal Z := (Fy,..., Fs) : G* C K[X] is radical and the K-variety
V :=V(Z) C A" is equidimensional of dimension n — s and degree §. Assume further
that we are given linearly—independent linear forms Y7, ...,Y,, € K[X] defining variables
in Noether position with respect to V. Let w : V' — A" % be the finite morphism defined
by Y1,...,Yn_s and J C K[X] the ideal J :=Z + (Fi,...,Fs,Y1,...,Y,—s). A point
p € K" % is called a lifting point of w with respect to the system I} =0,...,F, =0,G #
0 if J is radical. We call the zero-dimensional variety 7—1(p) the lifting fiber of p.

The notion of lifting fiber in this framework was first introduced in [18]. The concept
was isolated in [25], where it was shown how one can use a Kronecker representation of a
lifting fiber of a given equidimensional variety to tackle certain fundamental algorithmic
problems associated to it (see also [21], [43], [2], [40] and [28] for extensions, refinements
and algorithmic aspects related to lifting fibers). The notion is also important in nu-
merical algebraic geometry, where it is known under the name of witness set (see, e.g.,
[46]; see [45] for a dictionary between lifting fibers and witness sets).

As expressed in the introduction, the output of the main algorithm of this paper will
be a lifting fiber of the variety defined by the input system. For this reason, we devote
Section 4.1 to discuss a number of properties of lifting points and lifting fibers which
are important for the algorithm. Then in Section 4.2 we obtain a condition on the
coordinates of a point p € K"~* which implies that p is a lifting point of 7 (Theorem
4.9). Finally, in Section 4.3 we show that, taking partial derivatives and specializing a
Chow form of V' at the coordinates of linear forms Y7,...,Y,_s4+1 as above and a lifting
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point p of 7, we obtain a Kronecker representation of the lifting fiber 7=!(p) and a
related object, called a lifting curve (Propositions 4.13 and 4.14).

4.1. Properties of lifting points. In the sequel we denote R := K(Y7,...,Y,_s),
B :=K(Y1,...,Y,—s)[X]/Z¢ and D := dimp B’. The following proposition provides a
complete characterization of the notion of lifting point.

Proposition 4.1. For p := (p1,...,pn—s) € K", we have:
o #1Y(p) < D, with equality if and only if p is a lifting point of .
o Assume that #m~1(p) = D. For 0 < j < n —s, the ideal J; = T + (Y1 —
D1, ..., Yj—pj) is radical and equidimensional of dimension n—s—j and the map-
ping V(J;) — A"577 defined by Y41, ..., Yn_s is a finite morphism. Further, if
Ji = TiK(Yjs1, ..., Yoos)[X], then the quotient ring K(Yji1,...,Yn—s)[X]/Tf
is a K(Yjq1,. .., Yn—s)-vector space of dimension D.

Proof. By [10, Corollary 2.5 |, \/7] is unmixed of dimension n — s — j and the extension
K[Yji1,...,Yns] CK[X]//J; is integral. It follows that the radical of \/J; 4 (Yj41 —
Pj+1) = Jj+1 is unmixed of dimension n—s—j—1 and K[Yj1o,...,Y,—s] C K[X]/(\/J;+
(Yj41 — pj+1)) is an integral extension of rings. Further, for 0 < j < n — s let F; :=
K(Yjt+1,...,Yn—s) and denote

VI = VI EIX] and (VT + (Yisa = pi0))° = (V' T5 + Vier = pjn))Fya [ X,

We claim that

(4.1) dimp,,, Fjr1[X]/(/Tj + (Vi1 = pj1))® = dimg, F;[X]/(\/T)°

for 0 < j <n-—s—1. Indeed, B := K[X]/ \/7] is a torsion-free finitely generated
K[Yjt1,...,Y,—s]-module ([10, Proposition 1.22]). Set B = Fin[X])/\/T; Fjm[X].
Then B is a torsion-free finitely generated F;+1[Yj+1]-module which, by [31, Theorem
7.3], is a free F;1[Yj41]-module of finite rank. Since a basis of B induces a basis of
F; [X]/\/7Je as IFj-vector space and a basis of Fj1[X]/(\/T; + (Yj41 —pj41))¢ as Fjq-

vector space, the claim follows.
By (4.1) it follows that

dimg,,, Fj1[X]/(v/Tr1)° < dimg, F;[X]/(/T;)°

for 0 < j <n —s— 1. This implies #7 !(p) = dim K[X]/VJ < D.

Next, suppose that #7~1(p) = D. Let Ly := U1 Xq + - -- + U, X,, be a generic linear
form, where U := (Uy,...,U,) is a tuple of new indeterminates over K(Y1,...,Y,_s).
Let Qu € K(U,Y1,...,Y,—s)[T] be the minimal polinomial of Ly in

By = K(U, Yi..... Yo )X/ 5.
where Zf, :== IK(U, Y1, ..., Y,—,)[X]. By [10, Proposition 3.3], Qu is a squarefree poly-
nomial of K[U,Y1,...,Y,_|[T]. Let C, := K(U)[X]/J§, where J§G = JK(U)[X].
Let qu € K(U)[T] be the specialization of Qu at Y1 = p1,...,Ys_s = pn—s. Note
that gy is monic with degrqu = D. By hypothesis dimg K[X]/v/J = D. Then
dimg ) KU)[X]/VIu = D, where VJy = VJK(U)[X]. Let py be the minimal
polynomial of Ly in K(U)[X]/vVJy. By [10, Proposition 3.3], py € K[U][T] and
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degrpu = D. According to [10, Proposition 3.6 (a)], py is the squarefree part of qg.
Since degp puy = degr qu = D, we deduce that g7 is squarefree and [10, Proposition 3.6
(b)] proves that J is radical. Further, as qu is squarefree, every partial specialization of
Qu at Y1 = p1,...,Y; = p; is squarefree. By [10, Proposition 3.6 (b)], we deduce that
Jj is radical for 1 < j <n —s.

Conversely, suppose that J is radical. As before, this implies that J; is radical for
0 <j < n—s. Taking into account that Jj11 = Jj + (Yj+1 —pj+1), by (4.1) we see that

diijH Fj+1[X]/(u7j+1)e = dim]Fj F; [X]/('j])e

for 0 < j <n—s—1. We conclude that dimy, F;[X]/(J;)¢ = D for 0 < j <n—s and,
in particular, that #7~!(p) = dimg K[X]/v/J = D, completing the proof. O

Let J € K[X] be the Jacobian determinant of Fi,..., Fs, Y7,...,Y,_s with respect
to X1,...,X,. In the sequel we shall interpret Yi,...,Y,,_s either as linear forms in
X1,..., X, or as indeterminates over K, each interpretation being clear from the context.
For simplicity of notations, given F' € K[X1,..., X,,| we shall denote by F(Y1,...,Y,,) or
F(Y) the element of K[Y7,...,Y,] obtained by rewriting F'(Xy,...,X,) in the variables
Yi,...,Y,.

We shall need the following technical result.

Lemma 4.2. Let any p :== (p1,...,pn—s) € K" %. Fizi with 1 <i < s and let Z; :=
(Fl, .. ’FZL G™ C K[X], Vi = V(IZ) CA™ and H; .=T; + (Y1 o ST —pn_s).
Denote by H; C K[Yn—st1,...,Yn] the image of H; under the homomorphism
K[Yi,....Y,] — K[Va_si1,..., Y,
FY) —» F(@,Yost1,---,Yn).

Assume that the following conditions hold:
o V; is equidimensional of dimension n—i and the mapping m; : V; — A" defined
by Y1,...,Y,_; is a finite morphism; ' '
o there exist Pn—si1,---,Pn—i € K such that p* := (P, Pn—s+1,s---sPn—i) € K" is
a lifting point of ;.
Then
o H; and H; are equidimensiona? radical ideals of dimension s —1i and the varieties
V(H;) € A™ and V(H;) C A5~ are isomorphic;
e if we further assume that 7, *(p') C {G # 0}, then the lifting fiber 7, *(p")
intersects each irreducible K-component of V(H;). In particular, G does not
vanish identically on any irreducible K-component of V(H;) and

ﬂi = (Fl(pa Yn—s—‘rlv HE 7Yn)7 s 7E(p7 Yn—8+17 s >Yn)) :G(pa Yn—s—l—la s 7Yn)oo

Proof. 1t is easy to see that the mapping

KYi,....Yal/Hi — K[Yast1,...,Yn]/Hi,
F(Y) modH; — F(p,Yn_st+1,.-.,Y,) mod H;,

is an isomorphism of K—-algebras.
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Proposition 4.1 shows that H; and H; are radical, equidimensional ideals of dimension
s — i. Therefore, we have an isomorphism between the coordinate rings of V(H,;) and
V(H;), which proves that V(#;) and V(H;) are isomorphic varieties.

Further, by Proposition 4.1 the mapping 7@ : V(#H;) — A~ * defined by Y;,_s+1,..., Yn_;
is a finite morphism. Let Ci,...,C, be the irreducible K-components of V(#;). Let
ie; be the restriction of @ to C; for 1 < j < h. It follows that 7¢, : C; — A5 s
a finite morphism, and thus C; N T Pnst1,--yPni) # 0 for 1 < j < h. Since
T Y pn_sit, s Pni) = Wi_l(pi) and Wi_l(pi) C {G # 0}, this shows G does not vanish
identically on any irreducible K-component of V(H,).

Finally, we prove the assertion about the equality of ideals. We clearly have

ﬂi C (Fl(p7 Yn—s+17 o 7Yn)7 ceey Fl(pa Yn—s+17 cee 7Y7l)) :G(pu Yn—s+17 o 7Yn)oo-

To prove the other inclusion, let F' € K[Y7,...,Y,] be such that F(p,Y,—st1,-..,Yn) be-
longs to (F1(p, Yn—st+1:---,Yn), -, Fi(D, Yoost1, .-, Yn)) :G(D, Yn—st1, ..., Yn)*. This
implies F € (Fy,...,F;,,Y —p1,...,Yn_s — pn—s) : G=. The fact that G does not vanish
identically on any irreducible K-component of V(H;) implies H; = H; : G*°. We deduce
that H; = (F1,..., F;, Y1 —p1,.. ., Yos — pn—s) : G*°. Thus F € H;. It follows that
F(p,Yn—st1,--.,Yn) € H;, which completes the proof of the last assertion. O

Let p := (p1,...,pn—s) € K" % be a lifting point of 7. By Proposition 4.1, the zero—
dimensional ideal J :=Z + (Y1 — p1,...,Y—s — pn—s) C K[X] is radical and therefore
it is the vanishing ideal of the lifting fiber Vj, := 771 (p). Now, for the main algorithm
of this paper we shall consider a curve associated to p and V', which we now introduce.
Let p* := (p1,...,Pn—s—1) and let Wy« C A" be the K-variety defined by the ideal

K:=1I+ (Yi —Ply--s Ynos—1 _pn—s—l) c K[X]

According to Proposition 4.1, K is a radical, equidimensional ideal of dimension 1 and
the mapping 71 : Wy — Al defined by Y;,_; is a finite morphism. We call Wy« the
lifting curve defined by p*.

Let 7 C K[Y,,_st1,- .-, Y] be the image of 7 under the homomorphism K[Y7, ..., Y,] —
KYn—st1,-- -, Yo, F(Y) = F(p,Ypn—st1,...,Yn). We shall identify V}, with the zero-
dimensional variety V(J) C A®. Further, if £ C K[Y;,_s, ..., Y,] denotes the image of K
under the homomorphism K[Y7,..., Y, ] = K[Y,_s,..., Y], F(Y) — F(p*, Yn—s41,. .-, Yn),
we shall identify W+ with the curve V(K) C A*TL. The next result justifies the correct-
ness of these identifications.

Corollary 4.3. With the previous hypotheses, the following assertions hold:

e J is a radical, zero-dimensional ideal of K[Yy_si1,-..,Yn], and the K-variety
V(T) C A% is isomorphic to Vp. Further, K[Yn_st1,...,Yn]/T is a K-vector
space of dimension D;

e K is a radical, equidimensional ideal of K[Y,_s,...,Y,] of dimension 1, and
the K-variety V(K) C ASTl is isomorphic to Wy«. Further, Y, _s,...,Y, are
in Noether position with respect to K and K(Yp_s)[Yn_si1,. .- ,Yn]/fe, where
K= KK(Y—s)[Ynost1,---,Ynl, is a K(Y,_s)—vector space of dimension D;
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e if we further assume that Vp, C {G # 0}, then Vp intersects each irreducible
K-component of Wy« and the following identities hold:

7 = (Fl(p7 Yn—s+17 e 7Y7’l)7 e 7F8(p7 YR—S+17 s 7Y7’1)) :G(p7YTL—S+1?' . 'JYn)Ooﬂ

K= (Fl(p*7 Yis,... 7Yn)a cee Fs(p*yyn—& ceey Yn)) :G(pa Yis, .. 7Yn)oo‘

Proof. The assertions on 7, V(J), K and V(K) follow from Proposition 4.1 and Lemma
4.2. Since Yj is integral over K[Y,—s] modulo K for n — s+ 1 < j < n, it follows that
Y, —s,...,Y, are in Noether position with respect to K. O

A critical step in our main algorithm is to obtain a Kronecker representation of a
lifting curve Wp« from one of a lifting fiber V. This will be achieved by consider-
ing a symbolic version of the Newton method, which requires that the polynomials
Fi(p,Yo—st1,-- . Yn), ..., Fs(p,Yn—s4+1,...,Yy) define the points of V,, by transversal
cuts. Further, in Section 6.2 we shall lift a Kronecker representation of the output
lifting fiber modulo a prime number p, which also requires such a transversality condi-
tion. As the next result shows, this is guaranteed if p is a lifting point of 7 outside the
hypersurface {G = 0}.

Lemma 4.4. With the previous hypotheses, the Jacobian determinant J of the polyno-
mials Fi(p,Yn—st+1,-- -, Yn)s -y Fs(D, Yn—si+1,. .., Yn) with respect to Yy_si1,..., Yy is
invertible in K[Y,—st1,...,Yn]/J.

Proof. Let Py, ..., Px be the minimal prime ideals of 7. Since J is radical, by Lemma
2.1 we deduce that J ¢ P; for 1 <i < N. As J is of dimension zero, each P; is a max-
imal ideal of K[Y,,_sy1,...,Yy], which implies that J is a unit in K[Y,,_s11,. .., Yn]/P;
for 1 < i < N. By the Chinese remainder theorem we conclude that J is a unit in
K[Yn—st1,---,Yn]/T, which finishes the proof of the lemma. O

Finally, assuming that F},..., Fs form a regular sequence outside the hypersurface
{G = 0}, we shall need to see that this is preserved when specializing (Y7, ...,Y,_s) at
a lifting point p. We have the following result.

Corollary 4.5. Assume that F,. .., Fs form a reduced reqular sequence of K[ X] outside
the hypersurface {G = 0} and the linear forms Y1,...,Y, are in Noether position with
respect to V; 1= V((Fl, o Ey) G°°) for 1 < i <'s. Further, assume that we are given
Pr—sils--->Pn1 € K such that p' := (p,Pn_st1,---,Pni) € K" ¥ is a lifting point of
the finite morphism m; : V; — A" defined by Y1,...,Y,—; with 7; 1(p’) C {G # 0} for
1<i<s. Then Fi(p,Yn—st1s---sYn)s- s Fs(D, Yn—st1,...,Yn) form a reduced regular
sequence of K[Y,—st1,...,Yys]| outside the hypersurface {G(p,Yn—s4+1,-..,Yn) = 0} of
A%,

Proof. With the notations of Lemma 4.2, it suffices to show that H; is a radical ideal of
dimension s —¢ for 1 <14 < s. Since by assumption p° is a lifting point of 7;, this follows
from the second assertion of the aforesaid lemma. O

4.2. A condition for lifting points. In this section we obtain a condition for the
coordinates of a point p € K®™* which implies that it is a lifting point of =.
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Let A := (Aij)lgign—s—i-l,lgjgm Z = (Zl,.. 'aZn—s—i-l) and let P, € K[A,Z] be a
Chow form of V. Denote as before by A, € K[Aq,...,A,_4] the (nonzero) coefficient
of the monomial thsﬂ in Py, and by py, € K[A, Z1,..., Z,_s| the discriminant of P,
with respect to Z,,_sy1. Consider the quotient ring K[A, Z]/(Py) as a K[A, Z]-algebra
by means of the canonical ring homomorphism K[A, Z] — K[A, Z]/(Py). Further,
consider as before K[V][A] as a K[A, Z]-algebra by means of the ring homomorphism
K[A, Z] — K[V][A] which maps any F' € K[A, Z] to F(A,Af). By Lemma 3.2, the
polynomial 0Py /0Z,,—s+1 is nonzero and hence

S :={(0Py/0Zn—s41)" : n >0}
is a multiplicatively closed subset of K[A, Z]. We consider the localizations
KA, Zlop, 102, .n =S KA, Z],
(K[A, Z}/(Pv))apv/azn,s+1 = S"'K[A, Z]/(Py),
K[VI[Alop, joz, .. =S K[V]A].

Let K[A,Z]/(Py) = K[V][A] be the K[A, Z]-algebra homomorphism that maps [Z;]medp,
to A;-§ for 1 <i < n—s+1and consider the K[A, Z]p, /o7, ., —algebra homomorphism

(4:2) @ (KIAZ)/(P)) g o = KIVIAory joz, .

that extends this map. The next result asserts that ® is an isomorphism.

Lemma 4.6. ® is an isomorphism of KA, Z]sp, 07, ,, ~algebras.

Proof. By the minimality of P, the homomorphism K[A, Z]/(Py) — K[V][A] above is in-

8PV/8An—s+1,k(A7A£)
8IDV/aznfsJ»l

jective, and thus so is ®. To prove surjectivity, by (3.5) we have {, = —
in K[V][Alop, j02,_.., for 1 <k < n. It follows that

aF)V/8An75+1,k]mode
6F)V/aZn—s—s—l

for 1 <k < n. Since &1,...,&, generate K[V][Alop, /a2, .., as a K[A, Zlap, /02,1~
algebra, the lemma follows. O

(43) @:@(J

We shall also need the following technical result.
Lemma 4.7. For any F € K[X], let Fr € K[A, Z] be any polynomial such that
F <_8PV/aAns+1,1 _8PV/aAns+1,n> _ FA
8PV/aZn—s-I—l T 8PV/8Zn—s+1 (apv/azn—s+1)n

for some n € N. Then F wvanishes on some irreducible component of V if and only if
Resz, .., (Pv,Fy) = 0. Moreover, F' vanishes on V if and only if Fx is a multiple of
Py,. Further, for 1 <i<mn— s+ 1, the following polynomial H; € Z[A, Z] is a multiple
of Py:

(4.4)

n

aPV 8})V
4.5 Hy=—1"7+ Njj——.
( ) aans+1 ]Z; ! aAn*SJrl:j
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Proof. Suppose that F' vanishes on an irreducible component C of V. Considering (4.4)
modulo P, and applying ® to both sides, by (4.3) we see that

FA(Av Aﬁ)
(OPy 0 Zy—s1)"

holds in K[V][A] and then also in K[C][A]. Since F'(§) = 0 in K|[C] and 0Py /0Z,—s+1
is not a zero divisor of K[V][A] (Lemma 3.3), we conclude that FA(A,A€) = 0 in
K[C][A]. Tt follows that the Chow form P, of C divides Fy. Since P is a factor of
Py of positive degree in Z,_s;1, we deduce that Resz, ., (Py, Fa) = 0. Conversely, if
Resz, | +1(PV, F\) = 0, then P, and F) have a common irreducible factor of positive
degree in Z,_s4+1. Since this factor is the Chow form P, of an irreducible component
C of V, the first assertion of the lemma follows. The proof of the second assertion is
similar.
To prove the last assertion, we observe that

F(g) =

(4.6) [Zilmodpy = @1 (Ai - €) = ZAU (&)
=1

for 1 <i <mn—s+ 1. By this and (4.3) it follows that

[aPV/aAnferl j]modP
Zi mo = - Az : =
[ ] d Py ]gl J aPV/aZn—s—i-l

n

for 1 <i <n— s+ 1, which readily implies the second assertion of the lemma. ]

The next result, combined with Proposition 4.1, will yield the condition characterizing
lifting points we are looking for.

Proposition 4.8. Let A € K"t gnd p € K"~ be such that Ay (X*)py (X, p) # 0.
LetY; =X X forl <i<n—sandnw:V — A" % the mapping defined by Y1,..., Y _s.
Then #m~1(p) = 4.

Proof. By the choice of A, the polynomial Py, (X, p, Z,_s+1) has degree §. Since

0Py,

pv()‘ap) = ReSZn,SJFl PV(Aap7 ans+1)a a7
8ans+1

(A7p7 Zn8+1))

and py (X, p) # 0, the polynomial P, (\,p, Z,_s11) is separable. Let z1,...,25 € K be
the ¢ different roots of Py (X, p, Zn_s11) and set y* := (p, z) for 1 < k < §. We have
that P, /0Z,_s11(X,y*) # 0 for 1 < k < §, and thus the point

k - (_ 8I)V/aAnferl,l(Aa yk) _apv/aAnfs+1,n()‘a yk)> c An
' 8Pv/(92n,s+1()\, yk) Y aPV/Oanerl()‘, '!Jk)
is well defined for 1 < k < 6.
We claim that @!,..., 2% are pairwise distinct and ﬂ_l(p) = {a:l, .. .,m‘s}. Indeed,

let F € K[X] be any polynomial vanishing on V and F) € K[A, Z] a corresponding
polynomial according to (4.4). By Lemma 4.7 we have F) (X, y*) = 0, and thus F(x*) =
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0, for 1 < k < §. This proves that «!,..., 2% belong to V. Further, Lemma 4.7 also
shows that

GPV aPV

j=1

8Zn—s—l—l n—s+1,5

forl1<i<n-—s+1and1<k<J. By the definition of ¥ it follows that
(4.7) yr=x-2F 1<i<n-—s+1).

Since y¥ = p; for 1 < i < n — s, (4.7) implies that 7(x*) = p and z;, = A\p_s11 - =¥ for
1 < k < §. Since the zj, are pairwise distinct, we deduce that so are the . This proves
that #7~1(p) > §. On the other hand, since 7 is a finite morphism (Proposition 3.4),
the fiber 7~ (p) is finite, and by (2.1) we have

#rn71(p) = deg (V N{Y1—p1=0,....Y—s —Pn—s = 0})§ degV =4,
which concludes the proof of the claim. In particular, #7(p) = 4. O
Now we are able to state the main result of this section.
Theorem 4.9. Let X € K5tV and p € K"~ be such that Ay (X*)py (X, p) # 0. Let
Yii=XA-X for1<i<n—s+1and R:=K[Y1,...,Y,_s]. Then:

e the mapping @ : V. — A"% defined by Y1,...,Y,_s is a finite morphism and
Yi—st+1 induces a primitive element of the ring extension R — K[V];
° dimR/ B = (5,'
e p is a lifting point of ™ and Y,,_sy1 induces a primitive element of = (p).
Proof. Proposition 3.4 proves the first assertion. Combining Propositions 3.4, 4.1 and
4.8 we deduce that § = #71(p) < dimp B’ < 4. It follows that #71(p) = & and

p is a lifting point of w. Next, let p := (p1,...,pn—s). By substituting A for A and
Ply.vyPns for Ap - &, ..., A5 - € in (3.6), we deduce that

pv(AP)sk = Reg(A, p, An—s+1 - &)

in 7! (p) for 1 < k < n. Since py (X, p) # 0, we conclude that K[ (p)| = K[Ay—s31-€],
which proves that Y;,_s41 induces a primitive element of 7r_1(p). |

Finally, we give a condition that implies that the lifting fiber 7=!(p) lies outside the
hypersurface {G = 0}. Let Gp € Z[A, Z] be the polynomial defined by the identity

a-Pv/aAn—s—&-l,l 8P\//aAn—s—i-l,n . GA

(4.8) G| - ey — = el
a-PV/aan.H»l aPV/aanerl (apv/aznferl)deg

Since GG does not vanish identically on any irreducible component of V', by Lemma 4.7 we
see that Gy and the resultant RS := Resy, (Py,Gp) are both nonzero polynomials.

—s+1

Lemma 4.10. With hypotheses and notations as in Proposition 4.8, assume further that
RE(\,p) #0. Then 7~ Y(p) C {G # 0}.

Proof. By hypothesis the resultant
RS(Av p) = ReSZn_s+1 (PV(Avpa Zn—s-{—l)) GA(A, D, Zn—s—i—l))
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is nonzero. Since Py, (\,y*) = 0, it follows that Go(X\,y*) # 0 for 1 < k < §. By
substituting (X, y*) for (A, Z) in (4.8), we deduce that

G(:I)k) _ GAJ?()‘? yk)
(OPy /0 Zn—s11(X, yk))des &
and conclude that G(x*) # 0 for 1 < k < §, which completes the proof. O

4.3. Kronecker representations from specializations of the Chow form. Let be
given A= ()‘ij)lﬁiﬁ’n—s-‘rl,lﬁjﬁn S K(nferl)n and p = (pl, R ,pn—s) e Kn—s satisfying
the hypotheses of Theorem 4.9. Define YV; := A; - X for 1 < ¢ < n—s+1, and let
R := K[¥1,...,Y,—4], B := K[V], R := K(Y1,...,Y,—s) and B’ := R/[X]/Z¢, where
¢ := ZR/[X]. Further assume that we are given linear forms Y, _sio,...,Y, € K[X]
such that Y7,...,Y,, are linearly independent. Then
e Yq,...,Y, are in Noether position with respect to Z;
e p is a lifting point of the finite morphism 7 : V' — A™7% defined by Y7,...,Y,_s;
e B’ is an R'-vector space of dimension equal to 6.
We shall show that Kronecker representations of the definining ideals of V', the lifting
fiber V,, and the lifting curve Wy« can be obtained by specializing any Chow form of V.
This will provide a criterion to check that the modular reductions considered during our
main algorithm behave properly.
Let P, € K[A, Z] be a Chow form of V, and let A, € K[Aq,...,A,_4] and py €
K[A, Zy, ..., Z,—s] be defined as in Section 4.2. By (3.1) and (3.5), we have
0P,
8Zn s+1 8An s+1,k

in K[V][A]. Let T be a new indeterminate and define Q, W, _s12,...,W,, € R[T] by

Pv(A,Y]_,...7Yn_S,T) Z PV
Ay (W) AV N 3R, e

(4.9)  Py(A,A€) =0, (A, A&)G + (A, AE) =0 (1<k<n),

Q = (A7Y17"‘7Yn—87T)

for n — s + 2 < j < n. Substituting A for A in (4.9) we deduce that
(4.10) Q(Yn—s+1) €T, Q( n— s+1)Y W( n-st1) €L (n—s+2<j<n),

where Q' denotes the first derivative of @) with respect to T

Note that @) is a monic polynomial of degree § and degW; < § for n —s +2 <
7 < n. On the other hand, by the choice of A, the discriminant of ), which is
equal to py (X, Y1,..., Y, o)/ Ay (A*)?~1 is a nonzero element of R. Thus Q is square—
free and @’ is invertible modulo @. In particular, Q'(Y,—s4+1) is invertible in B’ :=
R'Yp—st1,...,Yy]/Z¢ and (4.10) shows that the homomorphism of R'—algebras R'[T]/(Q) —
B’, which maps T mod Q to Y,,_s11 mod Z¢, is surjective. This means that Y, 5.1 is
a primitive element for Z. On the other hand, since dimp B’ = §, the above homomor-
phism is an isomorphism. We conclude that @ is the minimal polynomial of Y;,_s1 over
R’ modulo Z¢, and we have the following identity of ideals in R'[Y,,_st1,..., Yn]:

Ie:(Q(Ynfs+1)’Q/(Ynfs+1)ynfs+2 Wh— s+2( n— s+1) 7@( n— s+1)Y W( n— s+1))

Further, by construction degr W; <6 — 1 for n — s+ 2 < j < n. As a consequence, we
obtain the following result.
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Proposition 4.11. The polynomials Q, Wy_sy2, ..., Wy form the Kronecker represen-
tation of T with primitive element Yy_sy1.

Remark 4.12. Since deg,, P, =deg, . Py =0 (see Section 3.1), we have

,,,,, Zn_sy1) LV

deg(yh'“’yn_&T) Q=9 and deg(Yl,...,Yn_s,T) W; <6 forn—s+2<j<n.

Now, let J := Z4+(Y1—p1, ..., Yn_s—Pn_s). Denote as in Corollary 4.3 by J the image
of J in K[Y,,—s41,...,Y,] under the homomorphism F € K[X] — F(p,Yo—st1,.-., Yn).
Substituting p1,...,pp—s for Y1,..., Y, in (4.10) we obtain

(4'11) Q(p, Yn—s-‘rl) € 77 Q/(p7 Yn—s—‘rl)Y} - Wj(p, Yn—s-‘rl) € 7 (TL —s5+2< ] < n)

The polynomial Q(p,T") is monic of degree § and deg W;(p,T) < d forn—s+2 < j <n.
The discriminant of Q(p, T) is pv (X, p)/ Ay (A*)? 71, and thus nonzero due to the choice
of XA and p. It follows that Q(p,T) is square—free and @'(p,T) is invertible modulo
Q(p,T). This implies that Q' (p, Y,,_s+1) is invertible in K[Y,,_s11, ..., ¥,]/T, and (4.11)
shows that the homomorphism of K-algebras

KT/ (Q(p.T)) = K[Yp—st1,....Yy]/T, T mod Q(p,T) + Y541 mod J,

is surjective. This means that Y,,_,,; induces a primitive element for 7. Further, since
K[Vp] 2 K[Ya—st1,...,Yn]/T is a K-vector space of dimension equal to dimp B, and
dimp B' = deg Q(p, T) = 4, it follows that the above homomorphism is an isomorphism.
We conclude that Q(p,T) is the minimal polynomial of Y,,_s;1 over K modulo 7, and
that the following equality of ideals holds in K[Y,,—sy1,..., Yy ]:

7 = (Q(pu Yn—s+1)7 Q/(p7 Yn—s—‘,—l)}/j - W](p7 Yn—s—i—l) n—Ss+ 2 S .] S n)
Identifying J with its image in K[Y,,—s41, ..., Y], we obtain the following result.

Proposition 4.13. The polynomials Q(p,T), Wp—s1+2(p,T), ..., Wy(p,T) form the Kro-
necker representation of J with primitive element Yy, _g11.

Finally, we discuss a Kronecker representation of K := Z + (Y7 — p1,..., Y51 —
Pn_s—1). Let p* := (p1,...,pn—s—1) and let K be the image of K in K[V, _s,...,Y,]
as in Corollary 4.3. Then Y,_,,...,Y, are in Noether position with respect to }C and
K(Yn—s)[Yn-st1s---, Yn]/f6 is a K(Y,,_s)-vector space of dimension equal to dimpg/ B’.
Substituting p1,...,pp—s—1 for Y7,...,Y,_s_1 in (4.10), we deduce that

(4.12) Q(P*, Yy s, Yn_s11) €K,
Q (P, YnesYn-s11)Y; = W;(p* Vs Yn_sp1) €KL (n—s+2<j<n).

Observe that Q(p*,Y,—s,T) is monic of degree ¢ and deg W;(p*,Y,—s,T) < d for n —
s+2 < j < n. By the choice of A, the discriminant py (X, p*, Yp—s)/Ay (A2~ of
Q(p*,Yn—s,T) is a nonzero element of K[Y,,_s]. Therefore, Q(p*,Y,—s,T) is square—
free, Q' (p*,Yn—s,T) is invertible modulo Q(p*,Y,—s,T), and thus Q' (p*, Yn—s, Yn-s+1)
is invertible in K(Yy,_s)[Yn_st1,-- -, Yn]/K . By (4.12) the homomorphism of K(Y;,_,)~

algebras
€

K(Yn_s)[T}/(Q(p*, Yos, T)) = K(Yn—s)[Yn—s+1, ..., Ya] /K
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which maps T mod Q(p*,Yy_s,T) to Yy_si1 mod K° is surjective. In particular,
Y, —s41 induces a primitive element for K. Since K(Y,,_s)[Yn—st1,- - - ,Yn]/fe isa K(Y,—s)—
vector space of dimension equal to dimg B’ = deg Q(p*, Yy—s,T) = ¢, this homomor-
phism is an isomorphism. We conclude that Q(p*,Y;,—s, T) is the minimal polynomial of
Y;,—s+1 modulo K°, and the following equality of ideals holds in K(Yn—s)[Yn—st1,---, Ypl:

Ke = (Q(p*7 Ynfsa Ynfs+1)a Ql(p*, Ynfsa Ynfs+1)Ynfs+2 - WTL*S+2 (P*, Ynfsa Ynferl),
D) Ql(p*a Yn—s; Yn—s+1)Yn - Wn(p*a Yn—s; Yn—s+1)) .
Identifying K with its image in K[Y,,—s, ..., Y,], we obtain the following result.

Proposition 4.14. Q(p*,Yn—s, 1), Wy—s12(Pp*, Yn-s, 1), ..., Wa(p*,Y,—s,T) form the
Kronecker representation of IC with primitive element Y, _s11.

5. ON THE CONDITIONS FOR A GOOD MODULAR REDUCTION

From now on we consider polynomials F1,..., F., G in Z[X] of degree at most d such
that Fy, ..., F, define a reduced regular sequence in the open subset {G # 0} of A™ and
denote Zg := (F1,...,Fg) : G, Vs := V(Is) = V(F,...,Fs) \ V(G) and 65 := deg Vs
for 1 < s < r. As explained in the introduction, our aim is to describe an algorithm
for solving the system F; = 0,...,F, = 0,G # 0 and analyze its bit complexity. This
algorithm outputs a Kronecker representation of a lifting fiber of V. and relies on modular
methods. For this reason, a crucial point is the choice of a “lucky” prime number, namely
one which provides a good modular reduction, of “low” bit length. In this section we
exhibit a nonzero integer multiple 91 of all the “unlucky” primes. More precisely, we
show that, for a suitable choice of A € Z"* and p € Z" !, there is a nonzero integer M
with the following property: if p is a prime number not dividing 9%, then all conditions in
Theorem 1.2 modulo p are satisfied. Further, our description of 91 is explicit enough as
to allow us to estimate its bit length (Theorem A.20). By this estimate and well-known
methods for finding small primes not dividing a given integer we shall be able to compute
in Section 6 a lucky prime of low bit length with high probability of success.

The determination of the integer 91 proceeds in several stages. In Section 5.1 we deal
with conditions (1)—(2) of Theorem 1.2, and the corresponding results are summarized
in Theorem 5.5. Then in Section 5.2 we discuss the fulfillment of the more involved
condition (3) of Theorem 1.2.

In the sequel, if p is a prime number and M any polynomial with integer coefficients,
we denote by M), its reduction modulo p. Further, by Z, , C Fp [X] we denote the ideal
fs,p = (Flp, ..., Fyp) : GpF and by Vs, C AP := A™(TF,) the variety Vs, := V(Zs,) for

<s<r.

5.1. First conditions for a good modular reduction. Fix s with 1 < s < r and
X € Z=s+tDn guch that the hypotheses of Proposition 3.4 are satisfied. In this section
we establish a condition on a prime number p which implies that the variety V, is
equidimensional and reduced of dimension n — s and degree d5, and the linear forms
(Yip,...,Yn_sp) := XX are the free variables of a Noether normalization of V.
Throughout this section and the next one, A = (Ajj)i<i<n—s+1,1<j<n and Z :=
(Z1,...,Zn—st1) denote a matrix and a vector of indeterminates over Q[Vs]. We set
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Ai = (A’LluvA’Ln) and Al - X = Z?:l Ainj for 1 < 7 <n-—s+ 1. Further,
we denote AX = (Al . X, . ,An,SJrl . X), A = (Aij)lgignfs,lgjgn and A*X =
(A1 X, A X) Finally, given X\ := ()\Z‘j)1§i§n_s+171§j§n € Z(n—s+1)n7 we adopt
the notations A; - X (1 < i < n—s+1), AX, A* and A*X accordingly. Denote
by Ps € Q[A, Z] a Chow form of V. Since Ps is uniquely determined up to nonzero
multiples in Q, we may assume that Py is a primitive polynomial of Z[A, Z]. Let as
before Ay € Z[A1,...,A,_s] be the coefficient of the monomial Zfiisﬂ in P; and ps €
ZIN, Z1, ..., Zy—g] the discriminant of Py with respect to Z,,_s41, that is,

OP,
=R P, ———|.
Ps Bln—shr < > aZn—s-{—l)

According to Lemma 3.2, the polynomials 0Ps/0Z,,—s4+1 and ps are both nonzero. Fur-
ther, let G} € Z[A, Z] be the polynomial defined by the identity

G 0P /0Ansi11 _OPJOMn st G}
aps/aZn—s—i-l Y 3PS/aZn_S+1 (8Ps/aZn—5+1)degG ’

(5.1)

Since G does not vanish on any irreducible component of Vg, by Lemma 4.7 we see that
A and the resultant

RS :=Resgz, ., (Ps,G3)

are both nonzero polynomials. Further we easily see that
(5.2) deg(G3) < (n— s+ 1)0,deg(G), deg(RY) < (n—s+1)(n— s+ 2)0%deg(Q).

As a first step, we give a condition of consistency of the system Fy ), =0,...,F,, =
0,Gp # 0.
Lemma 5.1. Let p be a prime number such that

AspN)pspAp, Z1, -, Zns) RS (Apy Z1, -, Zns) # .

Let Yip :=Xip- X for1 <i<n—s. Ifmgp: Vsp — A%_s is the mapping defined by
Yip,.-o, Yn_sp, then any q € Agp_s with psﬁp()\p,q)Rgp()\p,q) # 0 satisfies W;;(q) C
V(Flp, ..., Fop) \V(Gp) and #m,(q) > 0s.
Proof. Note that Ps (A, @, Zn—s41) has degree d, because As,/p()\;) # 0. Tt follows that

aps’p

Psp(Ap; @) = Resz, .., <Ps,p()‘pa a4, Zn—s+1), 527-5-1
n—s

(}‘pv q, Zn8+1)> 5

and thus the polynomial Ps (X, g, Zn—s+1) is separable. Let z1, ..., z5, € F, be the roots
of Psp(Ap,q, Zp—s+1) and y* = (q,z) for 1 <k < 6, As BPsyp/(?Zn,SH()\p,yk) #0
for 1 < k < §,, the point
k — (_ 8P)s,p/8An—s+1,1(>‘pv yk) - aps,p/aAn—s—‘rl,n(Ap? yk)> c AP
OPs )0 Zn—s11(Ap,y*) 7 OPsp)0Zp—s41(Np, Y") R

is well defined for 1 < k < 4.
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We claim that &, ..., 2% are pairwise distinct points of V(Fip,...,Fsp)\V(Gp) and
{x!, ... 2%} C 7, 5(q). Indeed, let F) ; € Z[A, Z] be such that

aPs/aAn—s-i-l,l 6Ps/aAn—s—‘,—Ln o FA,j
(5.3) Fj — ey — = doa .
8‘Ps/aZn—s—i—l 8P5/8Zn_5+1 (8Ps/8Zn—s+1) &1
for 1 < j <s. Also let

OP; . OP;
HZ o 6ans+1 Zl * ]z; Al] aAnfs+1,j '

for 1 <i<mn—s+1. Lemma 4.7 shows that Fiy ; (1 <j<s)and H; (1<i<n—s+1)
are multiples of Py in Q[A, Z]. Further, since P; is a primitive polynomial, we conclude
that they are multiples of Py in Z[A, Z], and thus that Fy ;, (1 < j < s) and H;,
(1 <i < n—s+1) are multiples of Ps;,. As Ps,(Xy,y*) = 0 by construction, we
see that Fj ;,(Ap,y*) = 0 and H; (A, y*) = 0 for 1 < k < §5, and reducing (5.3)
modulo p we deduce that Fj,(z¥) = 0 for 1 < k < §5. Then following the proof
of Proposition 4.8 mutatis mutandis we conclude that a', ..., x% are pairwise distinct
points of V(F p, ..., Fs,) such that (Y ,(z%),..., Yk, (z)) = q.

It remains to prove that Gp,(z¥) # 0 for 1 < k < §,. To do this, note that the resultant

Rsc:p(AIH q) = ReSZn,sﬂ (Ps,p()‘pv q; Zn—s41)s G}S\J)(}\pa q, ans+1))

is not zero. Since Ps,(Ap, y*) = 0, it follows that Gip()\p,yk) #0for 1 <k <ds. By
reducing modulo p and substituting (A, y*) for (A, Z) in (5.1), we deduce that

s (A k
Gy(at) = ey
(aPs/aznferl()‘pvy )) 8
for 1 < k < §,, which completes the proof. a
We see that GP,(A,AX) € Z[A, X] vanishes on the set A=st)n x V(Fy, ... F))
of common zeros of F,...,Fy in A®=st)n 5 A" By the Nullstellensatz, there exist
as € Z\ {0} and ps € N such that
(5.4) as(GPs(A,AX))Hs € (F1,...,Fs)ZIA, X].

Our next result provides a condition which implies that the modular reduction preserves
dimension and a Noether normalization.

Proposition 5.2. Let p be a prime number such that
s pAsp(N5)psp(Nps Z1, - -, Zn—s) RS ,(Apy Z1, .., Zyn—s) # 0.
Let Y :=X; - X for1<i<n-—s. Then:
(1) Vs, is equidimensional of dimension n — s;

2) the mapping 7sp : Vs, — AZ° defined by Y1, ..., Yn_sp is a finite morphism.
P P Fp P P

Proof. Recall that A is homogeneous of degree d5 in the (n—s) X (n — s)—minors of A*.
Since p 1 As(X*), at least one of the (n — s) X (n — s)—minors of A* is nonzero modulo p.
We deduce that the linear forms Y7 ,, ..., Y,_,, are linearly independent, and there exist
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linear forms Y, _sy1,...,Y, € Z[X] such that Y7 ,,...,Y),, are linearly independent in
F,[X]. Let wy € Z" be such that Y, s = wj - X for 1 <k <s and

Qk: = Ps()\*,wk, VAT , anerl) S Z[Zl, ey anerl]-

From (5.4) we see that as(GQr(Y1,...,Yn—s, Yo_sik))*s € (F1,..., Fs)Z[X] and reduc-
ing modulo p we obtain

s,p(GpQrp(Y1,ps - - s Yn—sps Yn—stkp)) € (Flp ..., Fsp)B[X]
for 1 < k < s. This implies that

(5.5) s p(Qrp(Yip, - -y Yoosp Ynsthp))' € Lsp

for 1 < k < s. Observe that degy, _  Qr = s and As(A") is the coefficient of
Ziis+1 in Q. Since p t asAs(A¥), identity (5.5) may be interpreted as an integral
dependence relation for Y,,_sik, over Fy[Yi ..., Y, sp] modulo Zs,. Further, since
FplYip,---, Yoyl = Fp[X], we conclude that Fp[Y1,,. .., Yn_sp] — Fp[Vs,) is an integral
ring extension. In particular, we have dimV,, < n —s. Moreover, by the choice of
p and Lemma 5.1 the variety Vs, = V(Z,,) is nonempty. Therefore, Z;, is a proper
ideal of F,[X]. This implies that (Fy ..., Fs,) is a proper ideal. By the Principal Ideal
Theorem (see, e.g., [11, Theorem 10.2]) every irreducible component of V(F} ..., Fyp)
has dimension at least n —s. Then every irreducible component of V; ;, has dimension at
least n —s. We conclude that Vs, is equidimensional of dimension n — s. This shows the

first assertion. On the other hand, since the ring extension Fy[Y1 p, ..., Ya_s ] = Fp[Vs ]
is integral and dim Vs, = n — s, it follows that ms ) : Vg, — Agp_s is a finite morphism,
which finishes the proof. O

Next we show that the hypotheses of Proposition 5.2 also guarantee that the degree
is preserved under modular reduction, and the modular Chow form is obtained reducing
modulo p that of V.

Corollary 5.3. With notations and hypotheses as in Proposition 5.2, deg Vs, = d5 and
P, is a Chow form of V.

Proof. Since p { as, from (5.4) we see that (G, Ps p(A, AX))Hs € (Fip,...,Fsp)E[A, X].
This implies that Ps,(A, AX) vanishes on Aé"fsﬂ)n X Vs p. As a consequence, if Q, €
E)[A, Z] is a Chow form of V ,, then @, divides Ps, in F,[A, Z]. Since P;, is nonzero,
because P is primitive, we conclude that

deg Vs7p == degzn75+1 QS S dean75+1 Psvp g 53'

On the other hand, Proposition 5.2 shows that 7, is a finite morphism, and the (finite)
fiber W;; (p,) satisfies #Tr;; (p,) > 05 by Lemma 5.1. The Bézout inequality (2.1) implies

#ﬂ';; (pp) = deg(Vs,p N {Yl,p —Pip = 07 B 7Yn—s,p — DPn—s = O}) < deg Vs,p-

This proves that deg Vs , = ds. Since Qs is homogeneous of degree d5 and Ps;, has degree
at most s in each set of variables (Z;, A1, ..., Aj) for 1 <i <n—s+1, we deduce that
P, = €Q, for some € € F, \ {0}, showing thus that P;, is a Chow form of V,,,. O
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Finally, we obtain a condition which implies that the modular reduction preserves
generic smoothness. Let p := (p1,...,pn—s) € Z"* be such that As(A*)ps(X, p) RS (X, p) #
0. By Theorem 4.9 and Lemma 4.10 it follows that p is a lifting point of the map-
ping 75 : Vs — A" defined by Yi,...,Y,_s such that 7;'(p) C {G # 0}. Let
Js be the Jacobian determinant of Fy,...,Fs, Y1 — p1,...,Yn_s — Pn_s with respect
to X1,...,X,. Lemma 4.4 then implies that G vanishes on the common zeros in A" of
Fi,....,F,Y1—p1,...,Yn_s—pn—s and J,5. By the Nullstellensatz, there exist 75 € Z\{0},
vs € Nand Gy,...,Gpq1 € Z[X] such that

(5'6) /VSGVS =GP+ + GsFs + Gerl(}/l *pl) +oot Gn(Ynfs - pnfs) + Gny1ds.
The nonvanishing of v modulo p provides the additional condition we are looking for.

Proposition 5.4. With the previous hypotheses and notations, let p be a prime number
such that p 1 asysAs(AN)ps(X, p) RS (X, p). Then I, is a radical ideal of F,[X].

Proof. Since by hypothesis s pAsp(A,)psp(Aps Z1, .+, Zn—s) is nonzero, from Propo-
sition 5.2 it follows that Vs, is equidimensional of dimension n — s and the mapping
Tsp : Vep — Agp_s defined by Y7 ,,...,Y,_sp is a finite morphism. On the other hand,
reducing (5.6) modulo p we see that

’Ys,pG;S = G1plpt  +GspFsptGo1p(Y1p—D1p)+  +Gnp(Yo—sp—Pn—sp)tGnt1,pJsp

holds in F,[X]. Further, by Corollary 5.3 we have that P, is the Chow form of V.
Then Lemma 5.1 shows that 7} (p) C V(Fip,..., Fsp) \ V(Gp). This and the previous
identity imply that J,,(x) # 0 for any x € W;;(p). Let Cq,...,Cy be the irreducible
components of V, ,, and let m¢, denote the restriction of 7, , to C; for 1 <+¢ < h. Since
Vsp is equidimensional, ¢, is a finite morphism. In particular, C; N7, ) (p,) # 0 for
1 <4 < h. It follows that J,, does not vanish identically on C;, which implies that there
exists an (s x s)-minor M; € F,[X] of the Jacobian matrix (0F;,/0X;)i<i<s1<j<n DOt
vanishing identically on C; for 1 < i < h. Let J C Fp [X] be the ideal generated by Lsp
and the (s x s)-minors of the Jacobian matrix (OF; ,/0X;)1<i<s1<j<n- If P; C Fp[X] is

the vanishing ideal of C; for 1 < ¢ < h, then Py,..., Py are the minimal prime ideals of
Zsp. Since M; € P;, we have J §Z P; for 1 <7 < h, and Lemma 2.1 proves that Z , is a
radical ideal. [l

We summarize all the previous results in the following theorem.

Theorem 5.5. Let A € Z"=5TU" and p € 7"~ be such that Ay(X*)ps(X, )RS (X, p) #
0 and let p be a prime number such that p { asys As(A*)ps(X, p) RS (X, p), where o and
7vs are the integers of (5.4) and (5.6) respectively. LetY; p, == Xj p-X forl <i<n—s+1,
Rsp i =Fp[Y1p, ..., Yaspl, By, = Fp(Yip, ..., Yaoosp) and By, := R, [ X]/I,, where
I¢, = Lsp RS [ X]. Then the following conditions hold:

o T, is radical ideal of F,[X] and defines an equidimensional variety Vs, C A%_S
of dimension n — s and degree d;

o the mapping msp : Vsp — A;™° defined by Y1p, ..., Yn_sp is a finite morphism
and Y,_s+1,p induces a primitive element of the ring extension R, — FP[VW];

. / _ .
° dlmR/s’p By, = ds;
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e any q € A%:s with psp(Ap, @) # 0 is a lifting point of ms ) and Yy, _s11, induces
a primitive element of w;;(q). For q := p,, we also have 71;; (p,) C{Gp # 0}.

Proof. The first assertion follows by Proposition 5.2, Corollary 5.3 and Proposition 5.4.
Since P;, is a Chow form of Vs ), by Corollary 5.3, the last three assertions are conse-
quence of Theorem 4.9 and Lemma 4.10 applied to K = E). O

5.2. Lifting fibers not meeting a discriminant. Throughout this section we assume
that s < r—1. Our main algorithm is recursive, and in its sth step computes a Kronecker
representation of the fiber 7Ts_+11 (p*) from one of the lifting curve Wp-. As the Kronecker
representation of Wy« constitutes a “good” representation of Wp« outside the discrimi-
nant locus {ps(A,Y1,...,Y,—5) = 0}, it is critical that 7rs_+11 (p*) does not intersect this
hypersurface. In this section we show that for a generic choice of the coordinates of
A and p this condition is satisfied and discuss when this is preserved under modular
reduction.

For this purpose, we use the following terminology: for two subvarieties ¥ and W of
A" we say that W cuts V properly if W does not contain any irreducible Q-component
of V. We have the following result.

Lemma 5.6. There exists a polynomial Ry € Q[A] \ {0} of degree at most 2(n — s +
2)628,41 with the following property: for every A € A5t with Ry(X) # 0, the
hypersurface {ps(A,X*X) =0} C A" cuts Vs11 properly.

Proof. Let Cyp,...,Cp, be the irreducible Q-components of V,.1, and let z; € C; be a
nonsingular point of Vs for 1 < ¢ < h. Define

h
R. =[] ps(A, A" 2)).
i=1
We claim that Ry satisfies the conditions of the lemma. Indeed, fix 1 < < h. Since z; is
a nonsingular point of Vs11 and Z(Vs41) = Z(Vs) 4+ (Fs41), then z; is also a nonsingular
point of V,. Hence, for a generic choice of A € A®=5+D7  denoting by m : Vs — A"™5
the mapping 7s(x) := X*x and p := 75(2;), the following conditions are satisfied:
o #7 () = ds;
e the linear form A, 4,1 - X separates the points of 7 *(p);
e the discriminant of the polynomial Ps(X,p, Zp—s+1) is ps(X, p).

Indeed, since z; is a nonsingular point of Vs, then V, has multiplicity 1 at z; (see, e.g.,
[39, §5A, Corollary 5.15]). This means that a generic linear space of dimension s passing
through z; meets Vs in exactly §; — 1 points different from z;, which shows the first
condition. The remaining conditions are clearly satisfied.

Let ', ..., 2% be the d, points of ;! (p). Since A,,_s;1-X separates these points, the
polynomial Ps(X, P, Z,_s+1) has d, different roots, namely A, _s;1-x° for 1 <i < §s. We
conclude that ps(X, p) # 0. It follows that ps(A, A*z;) is a nonzero polynomial in Q[A]
for 1 <4 < h and therefore Ry € Q[A]\{0}. Since deg ps(A, A*z;) < (n—s+2)(255—1)ds
and h < §541, the estimate for the degree R, follows. Finally, let A € A(=stDn he guch
that Rs(A) # 0. Then ps(A, A*z;) # 0 for 1 < i < h, which shows that C; is not contained
in the hypersurface {ps(A, A*X) =0} of A" for 1 <i < h. O



ON THE BIT COMPLEXITY OF POLYNOMIAL SYSTEM SOLVING 27

Let A € Z=5+Dn\ {0} be such that Ry(X\) # 0 and let Wys C A" be the variety
(5.7) Wae i= Vet N {ps(A, A*X) = 0}

By Lemma 5.6, Wys is either empty or equidimensional of dimension n — s — 2.

Assume that Wys = 0 and let pys = ps(A,A*X) € Z[X]. Since G vanishes on
V(F1,...,Fst1) N {pxs = 0}, by the Nullstellensatz there exists pys € Z \ {0} and
vys € N satisfying

(58) M)\SGVAS S (Fl,...,FSJrl,p)\S)Z[X].

On the other hand, assume that Wys # 0 and let Y := A;- X for 1 <j <n—s—1.
By [7, Theorem 3.1] there exists a nonzero polynomial Bys € Z[Z1,...,Zy_s—1] with
deg Bys < deg Whs such that

(59) B)\S (Yl(a:),...,Yn_S_l(:z:)) =0
for every & € Wys. Since deg Whs < deg Vs deg pas, we have
(5.10) deg Bxs < 2(n — 5+ 2)020541.

As GBys(Y1,...,Yn—s—1) vanishes on V(Fi,..., Fs11)N{pxrs = 0}, by the Nullstellen-
satz there exist Sys € Z \ {0} and £xs € N such that

(5.11) Bas (GBxs (Y1, ..., Yo s 1)) € (F1, ..., Foi1, pas)Z[X].

Next we deal with a technical condition which allows us to ensure that no points of
the lifting fibers at each step of the algorithm lies in the hypersurface {G = 0}. For this
purpose, consider the following morphism:

(5.12) Dy (AP Py N {A, £ 0} = ATsHIn S AP LA £ 0},
(A z) = (A, A'x)

According to Proposition 3.4, the fiber ®;'(y) is finite for y € A=stDn x An=s
{As; # 0}. Further, since the hypersurface {G = 0} C A" intersects properly each
irreducible component of Vs, the Q-variety (A5 x P )N {G = 0} is equidimensional
of dimension (n—s+1)(n+1)—1. Thus, by the Theorem on the dimension of fibers (see,
e.g, [3, Satz 11.14)) it follows that the Zariski closure ®,({G = 0}) in A(P=s+t1)n 5 An—s of
the image of (A =*+tD"xV)N{G = 0, A, # 0} is a hypersurface of A*—5FDn s An=5 Let
BS € Z[A, Zy, ..., Z,_4] be a primitive and squarefree polynomial defining ®,({G = 0}).
By [7, Theorem 3.24] we have the degree estimates

(5.13) degy, (BS), deg 5, (BY) < 273, deg(G)

forl1<i<n—s+1,1<j<nand1<k<n-—s.

Fix A € Z(=st)n with As(A*) #0and set V; ;= A - X for 1 < i < n-—s. By
construction, the polynomial B (X, Y1, ...,Y,_s) € Z[X] vanishes on Vs N {G = 0}.
Since Vg is equidimensional, by the Nullstellensatz [7, Theorem 0.2] there exist Bgfs €
Z\ {0}, u§s € N and Hys € Z[X] such that

(5.14) BSBE(A, Y1, ..., Yo o)'S* — HxsG =0 on V.
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We deduce that G(B%BSG()\, Yi,... ,Yn,s)”gs —HAsG) vanishes on V(F}, ..., Fs). Again,
by the Nullstellensatz, there exist 75 € Z \ {0} and v{: € N such that
(5.15) S (G(ﬁg’;Bf(A, Yi,..., Y g)FSe — HAsG))V% e (F,...,F)Z[X].
Let By := Resg, , (BS, Poy1) € ZIA, Z1,. .., Zn—s—1).
Lemma 5.7. B, is nonzero of degree at most (n — s + 1)2(n + 1)2"56,6,4+1 deg(G).

Proof. Let (X, p) € Z=s+tD(+1) he such that (AsAsy1pspsi1)(A, p) # 0. By Theorem
4.9 the following conditions hold:

e the mapping 7y := (Y1,...,Y,—s) : Vs — A" ® is a finite morphism, p :=

(p1,- .-, Pn_s) is a lifting point of 75 and Y;,_s,1 is a primitive element of 7 (p);
e the mapping mst1 == (Y1,...,Yn_s_1) : Vsi1 — A" is a finite morphism,
p* = (p1,...,Pn—s—1) is a lifting point of w441 and Y,,_s is a primitive element

of my (p").-

Since 75 : Vs — A"~ is a finite morphism, Wy := m;1({p*} x Al) is of pure dimension
1 (and degree at most &, := deg Vs). Observe that 771 (p) = ;1 ({p*} x AN {Y,_s =
Pn_s} is a zero-dimensional linear section of 75 ! ({p*} x Al). The fact that p € Z" % is a
lifting point of 75 with 771 (p) C {G # 0} implies that 77 !(p) intersects each irreducible
component of 7; }({p*} x A!) (see Corollary 4.3). As 7;'(p) C {G # 0}, we see that
7 ({p*} x A1)N{G = 0} is of dimension at most 0. In particular, a generic linear form
Y, separates the points of 7 1({p*} x AY) N {G = 0} from those of 7.} (p*).

We claim that BY € k[A, Z1, ..., Z,_] and the Chow form P, 1 € Z[A*, Z1, ..., Zn_s]

cannot have a nontrivial common factor in Z[A, Z,..., Zy—s—1|[Zn—s]. Indeed, as-
sume that Q € Z[A,Zy,...,Zp—s—1]Zn—s| is such a factor. Clearly, a generic linear
form Y, _, separates the points of W;ﬁl(p*). Let «1,..., x5, denote these points.

Then the roots of the univariate polynomial Psi1(X*, p*, Z,,_s) are precisely the values
Yos(x1),..., Yo_s(zs,,,). It follows that Q(X, p*, Yy—s(x;)) = 0 for some 1 < j < dg41.
Thus BSG()\,p*,Yn_s(:cj)) = 0. On the other hand, taking into account the defi-
nition of Ay it can be easily shown that @, is a finite morphism and therefore a
closed map (see, e.g., [3, Satz 9.27]). In particular, ®;({G = 0}) is a closed subset
of (A(=stDn 5 An=s) N { A, # 0}. Further, it is easy to see that
¢,({G = 0}) = &,({G' = 0}) N {4, # 0} = {BI =0} N {4, # 0},
where ®,({G = 0}) denotes the Zariski closure of ®,({G = 0}) in A»—s+Dnx A"=5_ Since
(A, D", Yo_s(x))) = ®5(A, ;) € {BY =0} N {As # 0}, we see that (X, p*, Vi,—s(z;)) =
D (A, y) for some (A, y) € (APt x P yn {4, # 0} N {G = 0}. Thus we have
y € 7, {({p*} x AN)N{G = 0} with V,,_s(y) = Y,—s(x;). This contradicts the hypotheses
on Y, _, and proves the claim.
It follows that ES is nonzero. Since

deg(B;) < degy, (Puy1)deg(BY) + degy  (BY)deg(Pay1),

the upper bound for the degree of the lemma readily follows from (5.13) and the upper
bound for the degree Psy. O
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Now we are able to establish our condition for a good modular reduction at the sth
step. Let Mg € Z[A, Z1, ..., Zy—s] \ {0} be the polynomial defined by
(5.16) My = asysAs(A%)ps(A, Z1, ..., Zn ) RE(A, Z1, ..., Zy_s),

where a and ~y, are the integers of (5.4) and (5.6) respectively. Taking into account
(5.2) we observe that

(5.17) deg M, < (n — s+ 2)2d62.
Further, let Cs € Z[A] be a nonzero coefficient of MM,y € Z[A][Z1,...,Zy—s]. For
A € Z=stn\ 10} with C4(A)Rs(A) # 0, define Lys € Z[Z1, ..., Zn_s] \ {0} as

__ pas if Was =10,
(5.18) Lye = { BasBxs  if Wxs # 0,

where s, Bxs and Bys are defined as in (5.8), (5.11) and (5.9). Further let Bf: €
Z|Zy,. .., Zpn—s—1] \ {0} be the polynomial

(5.19) BS: := BSAS BN, Z1, ..., Zns1),

where /Bgs and %C\;s are defined as in (5.15) and B, is the polynomial of Lemma 5.7.
Finally, define

Nac := Mg\, Z1, s Zne )Mot (N, 21y oo Znese)as (Z1s - Zns1)BS (21, - - Zs1).

Theorem 5.8. Let 1 < s <r—1. Let A € Z"5tU" and p := (p1,...,pn_s) € Z"* be
such that Cs(A)Rs(X) # 0 and Nxs(p) # 0, and let p be a prime number with p{ Nxs(p).
IfY; =X - X for 1 <i<n—s+1, then the following conditions are satisfied:
(1) Zs, is a radical ideal of Fy[X] and defines an equidimensional variety Vs, C Ay
of dimension n — s and degree d5. The same holds for Isy1, and Vsi1p;
(2) the mapping msp : Vsp — A%;_S defined by Y1y, ..., Yn—sp is a finite morphism,
p, € B'~% is a lifting point of my), with 7 (p) C {Gp # 0} and Yy_s41,p induces
a primitive element of W;; (p,);
(3) the mapping Tet1p @ Vsp1p — Agp_s_l defined by Y1, ..., Yn_s—1,p i a finite
morphism. Furthermore, if p* = (p1,...,Pn—s—1), then py is a lifting point

of Tst1,p with w1 (p*) C {Gyp # 0} and Y,_,, induces a primitive element of

~1
Trs—‘,—l,p(p;);
(4) any q € 75y (7r8_+117p(p;)) satisfies ps p(Ap,q) # 0. In particular, any such q is a
lifting point of ms, and Yn_s11,p induces a primitive element of 77;; (q);
(5) no point of ws p(Wpx N {Gp, = 0}) belongs to Ws,p(ngm(p;)).

Proof. Since p t Ms(A, p)Msi1(A*, p*), the first three assertions follow by Theorem 5.5.

To prove assertion (4), let g € 75, (7T;&17p(p;)). Then there exists x € ﬂg#’p(p;) such
that g = (p;‘,, Yn_s,p(a:)). Suppose that the variety Wys of (5.7) is empty. Considering
(5.8) modulo p, and taking into account that p t pys, we deduce that F' p,. .., Fsi1p and
pxsp generate the ideal (G),) of F)[X]. As x € 7r;+117p(p;‘,) and 7r;r117p(p;‘,) C{G, #0}, it
follows that psp,(Ap, @) = pas p(x) # 0. Since p f Mg(A, p), by Theorem 5.5 we conclude
that q is a lifting point of 7y, and Y;,_s11, induces a primitive element of w;;(q). On
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the other hand, if Wys # (), then considering (5.11) modulo p and taking into account
that p 1 Bas we see that

(GpBrp(Vips- s Yasm10)) Y € (Fipsoos Fart s pan p) By [ X .
This implies that Bys ,, vanishes on V1 ,N{pas , = 0}. Further, the fact that p { Bxs(p*)
implies Bxs () = Bas p(py) # 0, and then ps ,(Ap, q) = pas p(x) # 0. Arguing as before
we deduce that q is a lifting point of 7, and Y;,_s11, induces a primitive element of

Top(@)-

Finally, to prove condition (5) we note that, since B, € (BS, Po1)Z[A, Z4,. .., Zp_s],
we have Es,p € (Bsp,P +1p)B[A Z1, ..., Z,—s]. Since B\s,p(A]Np;) # 0, we deduce that
the polynomials B&p()\p, D}, Zn—s) and Py p(A5, P, Zyn—s) have no common roots in Fy,.
Since Ps41p is a Chow form of Vg1, by Corollary 5.3, we have Ps11 (X}, g) = 0 for any
q € sy (W;J:1,p(p;))~ Thus, for any such point q we have ng(Ap, q) # 0. Considering
(5.15) modulo p we have

G
el Vxs
7%717 (GP (ﬂfs,szG,p(Am Yip, ooy Yoosp)i>® — HAS,pG’D)) € (Fip, ..., Fsp)B[X],
which implies
G a G pSs VR
15 (5 (BEy s i+ Yamsp)) ™ = HaeyGy) €T
This, together with ng(/\p, q) # 0, readily implies that g ¢ WSVP(WP; N{G, = 0}) O

Remark 5.9. With hypotheses as in Theorem 5.8, let Wgﬁlyp(p;) = {x!,... xd+}.
Since Y, _sp induces a primitive element of 71'8__&17])(]);;), it separates x*, ..., xd%+1. There-
fore, if q € E[T] is the minimal polynomial of Y, _s, over 77;:17p(p;), then its roots in
F, are Yy,—sp(x), ..., Yy_sp(x®+1). Since

7rs7p( Mo p(pp)) {(pp, Y, 87p(331)), e (p;, Yn,syp(mésﬂ)) }’

we can rephrase item (4) of Theorem 5.8 in the following way: psp ()\p, (p;‘,,a)) # 0 for
every root a € F, of q. Thus, (p;,a) is a lifting point of s, and Yn_s41,p induces a
primitive element of p(pp, a).

5.3. Simultaneous Noether normalization and lifting fibers. From now on, let
A = (Aij)i<i<ni<j<n denote a set of n? indeterminates over Q. For 1 < s < r, we
write A% ;= (Aij)lgign,lgjgn—s—&-l- Further, for A := (/\ij)lgign,lgjgn S ZHQ, we denote
A% = ()\ij)lgign—s—i-l,lgjgn- Let R € @[A] \ {0} be the polynomial defined by

r—1
(5.20) R:=]]C.R..
s=1

Let A € Z" \ {0} be such that R(A) # 0 and define Ny € Z[Z1,..., Zn_1] \ {0} as

(5.21)
r—1

Nx =M. (N, Z1,. o Zn) [[MsON®, 20, Zn ) Une (20,0 B 1)BSE (20, Znsn).

s=1



ON THE BIT COMPLEXITY OF POLYNOMIAL SYSTEM SOLVING 31

Since deg(B$:) < deg(Es)7 taking into account Lemma 5.7 and (5.10) we deduce that

T r—1
degNy < Zdeg M, + Z (deg(Las) + deg(Es))

s=1 s=1
< D :=7r(n+1)((n+1)dé* + 26° + n?2"%ds?).

Since deg Cs < deg M; + deg M1, taking into account (5.17) and the estimate for the
degree of R; of Lemma 5.6, we easily deduce that

(5.22) degR < D.

Let p:= (p1,...,pn_1) € Z" ! be such that Nx(p) # 0 and denote p* := (p1,...,Pn_s)
for 1 < s < r. With hypotheses as above we easily obtain the following result.

Theorem 5.10. Let A € Z"° \ {0} and p € Z"' be such that det(\)R(X) # 0 and
Na(p) # 0. Let 9 := det(A)Na(p) and Y; := X - X for 1 < i < n. Ifp is a prime
number such that pt N, then Yi,,...,Yn, define a new set of variables for F,[X] and
conditions (1)—~(5) of Theorem 5.8 are satisfied for 1 < s < r — 1 with p := p* and
p* = p*tl. In particular, Fip, ..., F.p define a reduced reqular sequence in {Gp, # 0}.

In the sequel, a prime p as in Theorem 5.10 will be called “lucky” and a reduction
modulo such a prime p is called “good”.

We end this section by discussing Kronecker representations for a good modular re-
duction. Given X := (\jj)1<ij<n € 7" and p:=(p1,...,pn_1) € Z" ! satisfying the hy-
potheses of Theorem 5.10, define Y; := A;- X for 1 <i < n, and let Ry := Q[Y1,..., Y4
and By := Q[Vs] for 1 < s < r. Since A;(A*TH)pg(A%,p%) # 0 for 1 < s < r, by Theorem
4.9 the following conditions are satisfied:

e Y, ..., Y, , are in Noether position with respect to Z;

e p?isalifting point of the finite morphism 7 : Vs — A"~ defined by Y71,..., Y, _s;

e B is a free Rs—module of rank equal to ds.
Let Zg := (F1,..., Fs) : G® and Js :=Zs+ (Y1 —p1,..., Yn—s — pn—s) for 1 < s <r and
Ks=Zs+ (Y1 —p1,..., Yp—s—1 — Pn—s—1) for 1 < s <r —1. According to Proposition
4.1, Js and K, are the vanishing ideals of the lifting fiber V)s and the lifting curve Wps
respectively. Further, identifying Zy with its image in Q[Y,—s41,. .., Ys] and KCs with its
image in Q[Y,—s, ..., Y] as in Corollary 4.3, the following conditions hold for 1 < s < r:

e QY —st1,...,Ys]/Ts is a Q—vector space of dimension J;

o Y, ., ..., Y, are in Noether position with respect to KCg;

o QYy—s,...,Y3]/Ks is a free Q[Y,,—s]-module of rank equal to rankpr Q[V].

We can obtain Kronecker representations of Z, Js, and g as in Section 4.3, namely
let T' be a new indeterminate and define Q*, W, __,,..., W, € R [T] by
(5.23)

Ps(N5, Y1, .., Y, T) N Ak OPs
5= , S = — ALY, .Y, T
Q As(}\SJrl) / ; As(>\s+1) aAnfSJrl,k( ! )
forn—s+2<j<n,where P; € Z[A®, Z1,..., Zp_syt1] is a primitive Chow form of V.

Propositions 4.11, 4.13 and 4.14 then read as follows.
Proposition 5.11. The following assertions hold:
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e the polynomials Q°, Wy _ . o,..., Wy form the Kronecker representation of Zs
with primitive element Y, _sy1;

e the polynomials Q°(p®,T), W;__ . o(p®,T),... Wy (p®,T) form the Kronecker rep-
resentation of Js with primitive element Y, _sy1;

e the polynomials Q°(p*™'.Y, s, 1), Wi_ o(@* 1Y, s, T),..., Wi(p*T1Y, s, T)

form the Kronecker representation of Ks with primitive element Y, _s41.

Now let p be a prime number as in Theorem 5.10. Let Z, ,, J, , and K j, be the ideals of
Fp[X] defined by Z ), := (Fip, ..., Fsp) : G and Jsp = Lsp+ (Y1p —P1ps- s Yonsp—
Pn—sp) for 1 < s < r,and Ksp = Zsp + Yip — Pipr---s Ynos—1p — Pn—s—1,p) for
1 < s <r—1. By Theorem 5.10 the following conditions are satisfied for 1 < s < r:

e 7, is a radical, equidimensional ideal of dimension n — s;
e the variables Y7 ;,..., Y, , are in Noether position with respect to Z; ,;
e the mapping 75, : V) — A%_S defined by Y7 p,...,Y,_s,p is a finite morphism
and p, is a lifting point of 7 p;
e P, is a Chow form of V.
It follows that Z; ,, Jsp and K, are the defining ideals of the variety Vs, the lifting
fiber Vps and the lifting curve WPZ“ respectively. Since p t Ag( )\8+1), the polynomials

o Wip s Wy, € B[T] are well-defined, and we have the following result.
Proposition 5.12. The following assertions hold:
® Q. Wy _siop -, Wy, form the Kronecker representation of Zs, with primitive

element Yy _s11,p;
o Qy(pp, 1) Wy _gi0,(Pps T)s oo s Wi (Pp, T') form the Kronecker representation
of Jsp with primitive element Y, _sy1p;
* Q;(pz+l’yn_57p’ T)’ W’r’ifSJrQ’p(pZ—’—lJ YTL—S,p7 T)) ceey Wst’p(pIS)+17 Yn—s7p, T) fO?”m th,e
Kronecker representation of Ky, with primitive element Y,_si1,p.

Proof. From (5.23) we deduce that
Pop(A8, Vi Yoy, T)

Qs === ,
! Asp(NH)
n
Ak OP,
W? =— JZP 2P (N Y1 Vs, T) (n—s+2<j<n).
Jp ; AS,p(A;+1) aAn—s—l—l,k’( ps L1,p n—s,p ) ( J )
As P;,, is a Chow form of V;,,, the proposition follows taking into account the condition
Pt As(A°T)ps(A%, p*) and arguing as in Propositions 4.11, 4.13 and 4.14. O

6. COMPUTATION OF A KRONECKER REPRESENTATION

Let F1,...,F,,G € Z[X] be, as in Section 5, polynomials defining a reduced regular
sequence. In this section we establish an upper bound on the bit complexity of computing
a Kronecker representation of a zero-dimensional Q-definable fiber 7 (p") of V, :=
V(Z,), where Z, := (F1,...,F;) : G™. For this purpose, following the approach of [21],
we perform this computation modulo a prime number p and apply p—adic lifting to
recover the integers coefficients of the polynomials defining a Kronecker representation
of 7 1(p"). Assuming that a “lucky” prime p is given, the complexity of computing
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a Kronecker representation of a zero-dimensional fiber of V((Fip,...,Frp) 1 G}°) was
analyzed in [5]. On the other hand, the complexity of the p—adic lifting step was analyzed
n [21]. Accordingly, in this section we analyze the cost of computing a “lucky” prime
(Proposition 6.2), and then obtain an upper bound on the bit complexity of computing
a Kronecker representation of m, !(p") over Q (Theorem 6.9).

6.1. Computation of a Kronecker representation modulo p. Let S := {0,...,a}
and T := {0,...,b}, where a := [8D] and b := [9D]. Assume that we have randomly
chosen (X, p) € " x T ! such that R(A) # 0 and Nx(p) # 0. The following result
asserts that this can be done with a high probability of success.

Lemma 6.1. Let (A, p) be a point chosen uniformly at random in S"* x T*=1. Then
the probability that R(A) # 0 and Nx(p) # 0 is greater than %.

Proof. Since degR < D, by Lemma 2.3 we see that for a random choice of A in S”Q, the
probability that R(A) # 0 is greater than %. Similarly, as deg(Ny) < D, for a point p
chosen uniformly at random in T"~!, the conditional probability that Ny (p) # 0, given
that R(X) # 0, is greater than 5. This finishes the proof of the lemma. O

For such a choice of A and p, let 91 be the integer of Theorem 5.10. According to
Theorem A.20, there exists an integer §) such that

(6.1) h(M) <$H and log$H € O~ (log(d"2"h)).

We shall further assume that $ > 5n2dé%. Now we can estimate the complexity of
computing a “lucky” prime p of “low” bit length.

Proposition 6.2. There is a probabilistic algorithm which takes $ as input and computes
a prime p with 129+1 < p < 24$) such that ptN. The algorithm uses O~ ( log? (d’"2”h))
bit operations and returns a correct result with probability at least %.

Proof. The proposition follows applying Lemma 2.4 with B = m$), M = 9, m = 12,
and k =5 + loglog(129)), and taking into account (6.1). O

Assume that we have computed a “lucky” prime p as in Proposition 6.2. Further,
assume that we are given a straight—line program of length at most L which represents
the polynomials Fi ,,. .., Fy.p,, Gp. Since $ > 5n2dd?*, we can assume that p > 60n2dd?.
Thus we can use the algorithm of [5] to compute a Kronecker representation of the lifting
fiber Vp;.

The algorithm starts computing the Kronecker representation of the fiber Vp,l, of the
hypersurface defined by the Zariski closure of {Fy, = 0} \ {G, = 0}, with Y;,, as
primitive element. Observe that such a hypersurface is defined by the polynomial FYy ), :=
F1 p/ ged(F1 p, Gp). According to Corollary 4.3, we have

7 7 o) Fi, (P;lwyn, )
Vp117 - V(jl’p)7 ij - (Fl’p(p;7 Yn,p)) : Gp(p]lm Yn,p) - (ng(Fl,P(;zljyn,p)vGZ(pleYn,p)>‘

It follows that Fl*,p(pzl,,T) = F1,(py, T)/ ged(Fup(py, T), Gy(pp, T)).
By Proposition 5.12, the Kronecker representation of Vp}) only consists of the minimal

polynomial Q! (pl,T) of Y,,, modulo Ji . Since J1, = (Fl*’p(pzl,,Yn,p)), we see that
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F, [Vp}) | = FplYnyl/ (nyp(pzl,, Yop)). It follows that Q'(p,,T) equals the polynomial
Fl*’p(pll), T') divided by its leading coefficient.

Then the algorithm proceeds in r—1 stages. For s € {1,...,r—1}, the sth stage takes
as input a Kronecker representation Q°(py, 1), Wy _1o(pp, 1), - .., Wi (p;, T) of T and
outputs a Kronecker representation Qsﬂ(p;*l, T), W§+;+1(ps+1 T) ,W,f“(p;“, T)
of Js+1,p. This stage, whose cost is analyzed below, consists in two Inain tasks, which
are called the lifting step and the intersection step.

6.1.1. Lz'ftz'ng step. In the lifting step we compute the Kronecker representation
QD5 Yorsp, T), WSt Yoo p, 1), ... . WE (P35t Yosp, T') of Ky with primitive
element Yn s+1,p, from the univariate representatlon of Jsp with Y, 411, as prim-
itive element. By Proposition 5.12, such a Kronecker representation is defined by
the specializations of Qp, Wi_o1o ..., Wy o at Yip = p1p,... . Yoos1p = Pn—s—1p-

Let ﬁsm =E[Yip —pips- s Ynosp — Pn—sp]. By Remark 4.12 we conclude that it

suffices to compute the approximation of Qp, Wi _o.5,,..., Wy  to precision (Yip —
Plps-- s Ynosp — Pnosp)Tin Rs,p[T]-

As the ideal Kyp = (Fip@i™, Yacsps-- Yap)s- o Fop@t Yasp, - Yap))
: G(p,Yo—st1,...,Y,)™ is radical and the polynomials F; p(pzﬂ, Yo—spr-- s Ynp), -
Fsvp(pzﬂ, Yon—sps .-, Ynp) form a regular sequence of E,[Y, [ Yn—sp, -, Ynp) outside the hy-
persurface {G(p,Yn—s+1,...,Yn) = 0} by Corollary 4.5, applying the Global Newton

algorithm of [21, I1.4] we have the following result.

Proposition 6.3. There exists a deterministic algorithm that takes as input:

o a straight-line program of length L which represents the polynomials Fy p, ..., Fsp;
e the dense representation of the polynomials in F,[T| which form the univariate
representation of Jsp with primitive element Yy, _s11 p;

and outputs the dense representation of the polynomials in B,[Y, s, T which form the
Kronecker representation of Ks ) with primitive element Y, _s11,. The algorithm uses
O~ ((nL +n”)82 logp) bit operations.

6.1.2. Intersection step. The input of the intersection step is the output of the algorithm
underlying Proposition 6.3, namely the Kronecker representation of Ky p with primitive
element Y;,_s1,. Let Qs(pf?“,Yn,s,p, T), Vns_s_s_Q(pf7 Yo —sp 1), . VS( sy, spr 1)
be the corresponding univariate representation. The output is the unlvarlate representa-
tion Q! (pst!, 1), Ve (05t T), ..., Vit (pst, T) of Jiy1,p with primitive element
Yi—sp-

For this purpose, for any F' € E,[Y7,,...,Y, ;] which is not a zero divisor modulo
Ks p, define f € E,(Y,—sp)[T] by

[ o= (O Yarop T Vi agalBy . T), o Vi
af = ResT(f( ), Q°(p), sty 57p,T)).
We have the following result.

(py™,T)) mod Q°(py™, Yosp, T),

Lemma 6.4. as belongs to B,[Y,—s p]\ {0} and equals, up to a sign, the constant term of
the characteristic polynomial of the homothety by F(p, s+1 Yn—sps -y Ynp) modulo K;p
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Proof. Let M; be the matrix of the homothety of multiplication by f in
Fp(Yn—sp)[T1/(Q°(p5™, Ya—sp, T)) with respect to the basis {1, T, . ., T%~1}. We have
(see, e.g., [12, Proposmon 5.4]):

det(Mf) = Resp (f(T), Qs( st Yoo s,p) T))
Consider the isomorphism of F,(Y,,_s,)-algebras
b Fp(Yn—s,p)[Yn—s+1,p7 sy n,p]/’cip — Fp(Y;’L—s,p)[ ]/(QS( s+l Yn S,py T))7

which maps Y;,_s41, mod K;p to T mod (Qs(p;H,Yn_s,p,T)). Let S be a new in-
determinate and xp € F,[Y;_s,]|[S] the characteristic polynomial of the homothety by
F(pf,Jrl Yo—sps---, Ynp) modulo Ki’p. Let xo € E,[Ys—sp| be the constant term of xp.
Since ® maps F(p; St Y spy -y Yop) mod K, , to f mod (QS( S Yoesp, T)), XF
coincides with the characterlstlc polynomial of the homothety of multlphcatlon by f
modulo (Q*(p5™, Yu—sp, T)). Thus xo = (—1)% det(Mj).

It remains to prove that af # 0. Denote by pp € F,[Y,,—s,][S] the minimal polynomial
of the homothety by F( sty s,pr- > Ynp) modulo K;p. The constant term by €
Fp[Yn sp) of pp is equal to zero if and only if ay = 0. Suppose that by = 0. Then we
have a factorization pp =S - 11 in F,[Y;,—s p][S], and thus 0 = pp(F) = F - u(F) in Ky ).
Due to minimality of up we must have fi(F') # 0 in Ky, which implies that F' is a zero
divisor in K p, contradicting thus the hypothesis on F'. O

Let

fst1 1:Fs+1,p(Pfg+1Ynfs,p>T Vi s+2(p;+1’ )s - VS( S+1a )) mod Q*(p SHYnfs,va),
9 =GP} Yasp, T, Vi o(03™.,T), ... VS( St T)) mod Q(py™, Yaosp, T),
Afspq = ReST(ferl( ), QS( S—H Y- s,va))a
ag = ResT( (1), QS( 5“ Y, _ s’p,T)).

The following result provides an expression for Q*** (pZH, T') which allows us to compute
it efficiently.

Proposition 6.5. We have

Qs+1( stl Yn—&p) = eaf5+1/ng(afs+17a9)7
for some € € F, \ {0}.

Proof. First we show that the expression in the right-hand side is well-defined, namely
both ay, ., and a4 are nonzero. Indeed, the hypersurface {FS+17p(pf,+1, Yo—spsooos Ynp) =
0} intersects the lifting curve szﬂ in the finite fiber Vp;+1, while Lemma 4.2 proves
that {Gp(P5™, Yo sp,...,Ynp) = 0} does not vanish identically on any irreducible
E,- component of szﬂ. We conclude that neither F5+1,p(p§+1,Yn_s,p,...,Ymp) nor
Gp(pf,H,Yn_s,p, ..o, Yy ) are zero divisors in F,[Yy—sp, ..., Ynpl/Ksp. Therefore, the
assertion follows from Lemma 6.4.

Lemma 6.4 shows that ay,,, equals, up to a sign, the constant term of the characteris-

tic polynomial of the homothety by F (pZH, Yn—sps---, Ynp) modulo Kip' According to



36 N. GIMENEZ AND G. MATERA

[10, Proposition 2.7] such a constant term coincides, up to multiples in [, \ {0}, with the
characteristic polynomial of Y,,_, modulo K, + (FSJFLp(p;H, Yo—sps--e) Yn,p)). Simi-
larly, a4 equals, up to multiples in [, \ {0}, the characteristic polynomial of Y;,_ , modulo
Ksp+ (Gp(pfirl,Yn_syp, .., Yap)). Then condition (5) of Theorem 5.8 implies that no
root of ay in I, annihilates Qsﬂ(ps‘H Y,—sp). As a consequence, taking into account
that Js1p = (Ksp + (Fer1p(05" ,Yn,s,p,...,yn,p))) D Gp(PST  Yospy o Yop)™, we
see that the expression for QS“(pSJrl7 T') of the statement of the proposition holds. [

Now we discuss the computatlon of the polynomials V**! 11 (p5+1 T),...,Vstl (p;H,T).
Let Q"1 (p5*!,T) = q1-- - q¢ be the irreducible factorization of Q*1( f,“,T) in F,[T7].
We descrlbe below how to compute V‘(”Jrl(szrl T) mod g forn —s+1 < j <n and

1 <k < /. Then the VJSH( f,“, T') can be recovered by the Chinese remainder theorem.

For 1 < k </, let a be the residue class of T" in F,[T]/(qx). Set L = F,[T]/(qx). Thus
L :=F,|[a] is a finite extension of [, which contains the root a of QS‘H(pISJ*l, T). Let L be
the algebraic closure of .. We have a field isomorphism L = E,. By Remark 5.9 we know
that ps (AS (P} s+l )) # 0. Thus (p; st1 a) is a lifting point of 7, , and Y,—s41,, induces a

primitive element of the lifting ﬁber Top (pl"’;‘"1

,a). Moreover, K5 ,+(Y;,—s—a) is a radical
ideal of F,[X] by Lemma 4.2, and therefore it is the vanishing ideal of 7, (p5™, a). Let
da, Wa,n—s+2, - - -, Wa,n be the Kronecker representation of K5 4+ (Y, —s —a) with primitive
element Y, _s11p. Let Q. Wy_ 1o, ..., Wy, be the Kronecker representation of Z

with primitive element Y, _s41,. According to Proposition 4.13,

Q;(pl,pa ... 7pnfsfl,pa a, T) = {a, Wﬁp(pl,pa o 7pnfsfl,pa a, T) = wa,j (n_3+2 S j S n)

It follows that qq, Wan—s+2,- - -, Wa,n are obtained by substituting a for Y, _, , in the in-
put polynomials Q°(p ST Yo—sp, 1), Wﬁ,SJrg(Pf;H, Yosp, T)s oo s Wi(pp ST Yoesp, T).
Then the correspondlng univariate representation gq, Vg n—s+2,---;Van is computed us-
ing the identities vo; = (¢},) 'w,,; mod gq for n —s+2 < j <n.

Let g(Ynferl,p) s+1,p (p;+1, a, Ynfs+1,p, Ua,nfs+2(Ynfs+1,p), ey Ua,n(Ynferl,p))- We

have the following identities (see, e.g., [10]):

Yn—s-‘rl,p Vn 8+1(pz+1’ ) = ng( ( n— s—l—l,p) QQ(Yn—s—I—l,p)),
V8+1( s+1 a)—va](Vns S+1(ps+17a)) (n—s+2<j<n).

These identities allows us to compute VSH( ST T) mod g, forn —s+1 < j < n.

Having done this for 1 < k < £, we recover Vn St T, ., VET (pstL, T) by the
Chinese remainder theorem.

As it is shown in [5, Section 4], the previous computations can be rendered into an
efficient procedure from which we obtain the following result (see [5, Proposition 4.7]).

Proposition 6.6. There exists a probabilistic algorithm that takes as input

e a straight-line program of size at most L which represents Fsy1, and Gp;
e the dense representation of the polynomials in B,[Y,_s p, T| which form the Kro-
necker representation of KCs , with primitive element Yy, _si1 p;

and outputs the dense representation of the polynomials in E,[T] which form the univari-
ate representation of Jsi1,p with primitive element Y, _s . It uses an expected number
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of (’)N((L + n)ds(dds + logp) 10gp) bit operations and returns the correct result with
probability at least 1 — 1/60n.

Taking into account the complexity and probability estimates of Propositions 6.3 and
6.6 for 1 < s <r — 1, we easily deduce the following result.

Theorem 6.7. There exists a probabilistic algorithm that takes as input

e a “lucky” prime p as in Proposition 6.2;

e the points N, € IFp”2 and p, € Fpnfl, which are the images of A and p modulo p;

e a straight-line program of length at most L which represents the polynomials
Fl,p? ce >Fr,p> Gp,'

and outputs the Kronecker representation of J,p, with primitive element Y, _ry1,. It
uses an expected number of O~ (r(nL + n®)é(dd + log p) log p) bit operations and returns
the correct result with probability at least 1 —1/12.

6.2. Lifting the integers. Let s with 1 < s < r and let p be a “lucky” prime
as in Proposition 6.2. We have seen that the Kronecker representation QS(pZ,T),
Wi _si2(@p, 1), .., wy(py, T) € By[T] of Proposition 5.12 is obtained by reducing modulo

n

p the integers of the Kronecker representation Q*(p*,T), W3_, . »(p*,T), ..., w;, (p®),T)
of Proposition 5.11. Further, by Lemma 4.4 the Jacobian determinant of the polynomials
F1p(Dpy Yn—st1ps s Yap)s o Fsp(Pp, Yn—st1,ps - - -, Ynp) With respect to the variables
Yi—st1ps---» Ynp is invertible in B,[Y,—si1.p, - -+, Ynpl/Tsp- With these conditions, the

following result holds (see [21, Theorem 2)).

Proposition 6.8. Assume that we are given:

e an upper bound n, for the heights of Q°*(p®,T),W;_  o(p®,T),..., Wy (p®,T);
e a lucky prime number p as in Proposition 6.2;
e the polynomials Q*(py, T), W, o(p;,T), ..., W;f(pz(,s), T) € B,[T].

Then Q*(p*,T), W _,1o(p®,T),..., W3 (p°,T) can be computed using O~ ((nL+n4)(5sns)
bit operations.

6.3. Computation of a Kronecker representation over the rationals. Combining
the algorithm underlying Theorem 6.7 with the p—adic lifting procedure of Proposition
6.8 we obtain a probabilistic algorithm for computing a Kronecker representation of a
zero—dimensional fiber Vj» of the Zariski closure V, of V(F1,..., F.) \ V(G).

More precisely, assume that FY,..., F., G are given by a straight—line program g of
length at most L with integer parameters. We first choose at random a point (X, p) €
S"* x Tn~1 such that R(A) # 0 and Ny # 0. Then we compute a “lucky” prime p as
in Proposition 6.2. By reducing the parameters of  modulo p we obtain a straight—
line program 3, of length at most L which represents the polynomials Fy ,, ..., F;p, Gp.
Then, by means of the algorithm underlying Theorem 6.7, we compute the Kronecker
representation @, Wi s Wy of the lifting fiber Vp; with primitive element Y, _,1 .
Finally, applying the algorithm underlying Proposition 6.8 we lift these polynomials
to the Kronecker representation Q", W7, ..., W, of the lifting fiber V,,» with primitive
element Y,,_,1. We have the following result.
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Theorem 6.9. There exists a probabilistic algorithm that takes as input a straight—
line program B of length at most L which represents the polynomials F1, ..., F., G, and
outputs a Kronecker representation of a zero—dimensional fiber of the Zariski closure of
V(F1, ..., F.)\V(G) with probability at least 1. If h is an upper bound for the bit length
of the coefficients of Fy, ..., F.,G and the parameters in 3, then the expected number of
bit operations of the algorithm is in

O~ ((nL +n°)6(ds + nd"h)).

Proof. Let Cp, denote the bit complexity of computing a “lucky” prime p and n an upper
bound for heights of the integers in the output. Combining the complexity estimates in
Theorem 6.7 and Proposition 6.8, the bit complexity of the algorithm above is in

o~ (T(nL +n?)d((d6 + log p) logp + T’)> o

By Proposition A.7 we can take n € O~ (nd"~*(h + rd)). Then, taking into account the

estimate for C, in Proposition 6.2, we obtain the complexity estimate of the theorem.
Finally, taking into account Lemma 6.1 and the estimates for the probability of success

of Proposition 6.2 and Theorem 6.7, the theorem follows. U

We remark that the probability of success of the algorithm of Theorem 6.9 can be
increased by considering random choices of the required integers and the lucky prime p
with higher bit size. On the other hand, we do not know how our algorithm behaves in
case of unlucky choices.

APPENDIX A. HEIGHT ESTIMATES

In this appendix we obtain estimates for the height of the integer 91 of Theorem
5.10 and the integers occurring in the output of the algorithm underlying Theorem 6.9,
namely the polynomials in Proposition 5.11 which form the Kronecker representation of
Jr. For this purpose, we shall rely on the arithmetic Nullstellenséitze of [29]. We start
recalling the notions of height of polynomials and varieties and basic facts about these,
and then proceed to obtain the estimates.

A.1. Height of polynomials and varieties. We define the height of a nonzero integer
a as h(a) :=log |r|, where log stands for the logarithm to the base 2. Further, we define
h(0) := 0. It follows that the height of a bounds from above the bit length of a. The
height A(F) of a polynomial F' € Z[X] is defined as the maximum of the heights of
its coefficients. More generally, if F' € Q[X]\ {0} and @ € N is a minimal common
denominator of all the coefficients of F', then we define h(F) := max{h(aF"), h(a)}.

Let V C A™"(Q) be an equidimensional Q-variety of dimension n — s, with 1 < s < n,
and let h(V) be the Faltings height of its projective closure V' C P*(Q) (see [13]). We

have the following identity:

"1
. on—s+1
(A1) V) =m(Fy; Spi™) + gp log |Fy|p+ (n—s+1) ( E_l 22) degV,

where Fy is any Chow form of V, m(FV;S’Z;fH) is the SZ;foMahler measure of

Fy, and |Fy|p, is the p-adic absolute value over Q for all rational primes p (see, e.g.,
[29, Section 1.2.4]). Since Fy is uniquely determined up to nonzero multiples in Q,
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we may assume that F is a primitive polynomial in Z[A%,...,A?_ . ], in which case
log |[Fy|p = 0 for every prime p and the sum } log|Fy |, in (A.1) disappears. On the
other hand, by [29, Lemma 1.1] we have

(A.2) Im(Fy) — h(Fy)| < (n—s+1)log(n+2)degV,
Sn s+1

where m(Fy ) denotes the Mahler measure of Fy,. The Mahler measure and the Sy
Mahler measure of F}, are related by
1
(A.3) 0 <m(Fy)—m(Fy; SZ+f+1) <(n—s+1)deg(V) %
i=1
(see, e.g., [29, (1.2)]). Combining (A.1), (A.2) and (A.3) gives
h(Fy) <h(V)+ (n—s+1)log(n+2)degV.

Further, the canonical height R(V) of V is defined by h(V) := h(V), where h(V) is the
canonical height of V- C P™*(Q) defined as in [7]. The Faltings and the canonical height
of V are related by the inequality

~ 7
|h(V) —h(V)| < B log(n 4 1)deg V'
(see, e.g., [7, Proposition 2.39 (5)]). As a consequence, we have
~ 9
(A.4) h(Fy) < h(V)+ §(n —s+1)log(n+2)degV.

A.2. Estimates for Chow forms, discriminants and Kronecker representations.
From now on we return to the setting of Sections 5 and 6, namely we consider poly-
nomials Fy,..., F,,G € Z[X] such that Fi,..., F, form a regular sequence outside the
hypersurface {G = 0}, denote by Vs the affine equidimensional subvariety of A" defined
by Zs := (F1,...,Fs) : G* and by 65 its degree for 1 < s < r. Let d; := deg(F}) and
hj = h( ;) for 1 < j <r, and denote

d:= lmsaxr dsy, d:=max{dy,...,d,,deg(G)}, h:=max{hi,...,h, h(G)}.

~

Let hy := h(Vs) for 1 <s<randh:= maxi<s<r fs.
Lemma A.1. We have ﬁ5+1 < d5+1iALS + 0shsy1 + dsdsyilog(n+2) for1 <s<r—1.

Proof. Let V, be the projective closure of V, via the canonical inclusion A" — P7
and let F" w1 be the homogeneization of Fyy1. Since by hypothesis Fyy1 is not a zero

divisor modulo Z,, we have that V(Fs11) cuts Vs properly and therefore V(F?, ) cuts
Vs properly. By [7, Corollary 2.62 and Lemma 2.30(1)] we deduce that

RV NV(FR)) < deg(FLy )h(Vs) + deg(Vo)R(FL ) + deg(V,) deg(FL ;) log(n + 2).
As V, N V(F ) is equidimensional and contains every irreducible Q-component of
Vs N V(Fsy1), we see that h(V NV(Fer1)) = h(V NV(Fey1)) < h(V NYV(FML)).
Further, since Voy1 = Vs NV(Fs41) \ V(G), we have that Vsiq is the union of the
irreducible Q components of Vg N V(Fs11) which V(G) cuts properly. This implies
h(Vss1) < h(V NV(Fst1)). The lemma follows from the previous estimates by not-

ing that hy = h(V ), 0s = deg(Vs), hsy1 = h(FP ) and dyi1 = deg(F ;). O
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Lemma A.2. We have 6, < d° and ﬁs < sd*7'h + sd®log(n +2) for1 < s <r. In
particular, hg € O~ (ndsfl(h + d)) for1<s<r.

Proof. Since Vg1 is the union of the irreducible Q-components of Vs N V(Fsy1) not
contained in V(G), by the Bezéut inequality (2.1) we obtain

deg(Vsy1) < deg (Vs N V(FS+1)) < deg(Vs) deg(Fs+1).

Thus ds41 < dds for 1 < s <7 —1. Then the first inequality of the lemma easily follows.
To prove the second inequality, let V,; denote the projective closure of V, via the
canonical inclusion A™ <« P™ and let Flh be the homogeneization of F;. We have ﬁl =
h(V1) = E(V(Flh)) = ﬁ(]P’" NV(F})). Thus by [7, Corollary 2.62] we have
h(F]) 4 deg(F}) log(n + 2))
deg(F7) '
As h(P™) = 0 and deg(P") = 1 we obtain h; < h(F}) + deg(F1)log(n + 2), which shows
the claimed inequality for s = 1. Assume inductively that hs < sd*1h + sd® log(n + 2).
Combining this inequality and §s; < d° with the inequality of the previous lemma, we
readily deduce that hey1 < (54 1)dh+ (s+1)d*T log(n+2), which completes the proof
of the lemma. O

iy < deg(F) (W") T deg(")

Let ;1 and € be fixed real numbers with 0 < p,e < 1. Let a:= |D/(1 — p)| and b :=
|D/(1 —¢)]|, where D is defined in (5.22). Recall that D is an upper bound for the degree
of the polynomials R and Ny of (5.20) and (5.21). Since D € O(rnd®" + rn32"=5d%"+1)
and h(a), h(b) € O(log D), we have the following remark.

Remark A.3. h(a),h(b) € O~ (rlogd + n).

Set S .= {0, N ,a} and T := {0, ey b} Further, let A := ()\z’j)lgign,lgjgn S Sn2 and
p:=(p1,...,pn_1) € T" ! be such that R(A) # 0 and Nx(p) # 0. By Lemma 2.3, for a
random choice of A and p such a condition holds with probability at least ue.

Write A° 1= (Ajj)i<i<n—st+1,1<j<n and p® := (p1,...,pn—s) for 1 < s < r. Denote
h()\s) = MaX]<i<n—s+1,1<5<n h()\l]) and h(ps) = IMaXi1<i<n—s h(pz) Finally, let )\i =
(Nity -y Ain) and Y; = A; - X for 1 < ¢ < n. In the sequel, assuming that n > 2 and
d > 2, we aim to estimate the height of the integer

r—1
(A5) 9= det(MNA(P) = det(AM, (A", p") [ [ Ms (X%, p*)Las (p°T1)BS: (p°1).
s=1
We start with an estimate for the degree and height of a primitive Chow form of V;
and related polynomials.
Lemma A.4. For 1< s <r, we have
(A.6) h(P;) € O~ (nd* ' (h +d)),
(A7) deg Py(A®,A°X) € O~(nd®), h(Ps(A%,A*X)) € O~ (nd* ' (h+d)).

Proof. (A.4) and Lemma A.2, combined with the Bézout inequality (2.1), yield (A.6).
The degree estimate in (A.7) is clear. Next, observe that Ps is an element of Z[A%Z, ..., Z_s11]
of degree (n—s+1)dsand Ajj (1<i<n—s+1,1<j<n),Aj- X (1<i<n-s+1)
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are elements of Z[A®, X| of degree at most 2 and height equal to 0. Therefore, from [7,
Lemma 2.37(3)] we deduce that

h(Ps(A°, A*X)) <h(Ps)+(n—s+1)d, (log((n—s—l—l)(n—i—l)—i—l)—i—Qlog((n—3+2)n+1)>.
This, together with (A.6), readily implies the height estimate in (A.7). O

Next we estimate the degree and height of the discriminant ps and the polynomial
pas of Section 5.2. For this purpose, we use the following result.

Lemma A.5. Let Uy,...,Uis1 be indeterminates over Z and F,G € Z[Uy,...,Uk1]
nonzero polynomials with | := degUk+1 F and m := degUk+1 G. Then

h(Resy,,, (F,G)) < mh(F)+1h(G)+log(k+1)((m—1) deg F +1deg G) +log((l+m)!).

Proof. Write F = Zi:oFiUéH and G = 37 GjU,zH, where F;,G; € Z[Uy, ..., Uyl
The determinant Resy, ., (F, G) is a sum of (I +m)! terms, each of which is a product of
the form +F;, --- F; Gy, ---Gj,. By [7, Lemma 2.37(2)], each term has height at most
mh(F)+1h(G)+log(k+1)((m—1)deg F +1deg G). Then [7, Lemma 2.37(1)] completes
the proof of the lemma. O

Now we are able to estimate the degree and height of ps and pys.
Lemma A.6. For1 < s <r, we have
deg ps € O(nd*), h(ps) € O~ (nd* ! (h +d)),
deg pas € O(nd*), h(pxs) € O~ (nd** ! (h + nd)).
Proof. Since pxs = ps(A*, A1 X)), we have degprs < degps < (n — s + 2)d82, which
(7

proves the degree estimates. Next, as ps := Resz , Lemma A.5 implies

OPs
n—s+1 ? 8Z’nf.s«l»l
h(ps) < 65(2h(Ps) + logds) + 262 log((n — s + 1)(n + 1)) + log ((25,)!).
This and (A.6) prove the estimate for h(ps). Further, since h(A*) < h(a) for all s, from
[7, Lemma 2.37 (3)] we deduce that

h(pxas) < h(ps) + deg ps (h(a) +log((n — s+ 1)(n+1)) + log(n + 1))
Combining this, Remark A.3 and the estimate for h(ps) yields the one for h(pys). O

We end this section with an estimate of the height of the Kronecker representations
of the fibers of each recursive step of our main algorithm.

Proposition A.7. Let ns be the mazimum of the heights of the polynomials Q°(p*,T),
Wi _oio®@®,T),...,W;:(p®,T) of Proposition 5.11. Thenns € O~ (h(VS)+n2 deg(Vs) log d),

n

or ns € O~ (nd*~'(h + nd)).
Proof. Note that

(A8)  @(p°T) =

S S - A]k aPS(ASLI)S?T) .
. : = — — <9< n).
(A 9) W (p 7T) Z As()\la cee 7)\n—s) 8An—s+1,k (n ot 2 =7 = n)
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Since h(A®) < h(a) and h(p®) < h(b), by [7, Lemma 2.37 (3)] we deduce that

h(Po(XS,p°T)) < h(Py)+(n — s + 15, <max{h(a), h(b)}+log((n — s +1)(n +1)+1)+1)
< h(Py) + (n — s + 1)6,(max{h(a), h(b)} + log(4n?)).

Further, as h(%%) < h(Py) 4 log 0, a similar argument shows that

—s+1,k

h <3P§A(>"P’T)> < h(P,) +log b, + (n — s + 1)3, (max{h(a), h(b)} + log(4n?)).
n—s+1,k
Therefore, by [7, Lemma 2.37(1)] we obtain
- A%, p*,T)
Al A < h(P. logds + h 1
(A.10) (Z KT aAn o1k ) (Ps) +1logés + h(a) +logn

+ (n — s+ 1)ds (max{h(a), h(b)} + log(4n?))
for n — s+ 2 < j < n. Similarly we deduce that

h(As(Ars- - Ans)) < A(P) + (n — 5)6, (h(a) +log((n—s+1)n+ 1)).

By (A.8), (A.9) and the previous estimates we see that 7y is bounded above by the
right-hand side of (A.10). The proposition then follows by (A.4), (A.6) and Remark
A.3. O

A.3. Estimates for unmixedness and generic smoothness. In this section we es-
timate the height of integers a5 and 7, as in (5.4) and (5.6), whose nonvanishing modulo
p implies that the corresponding modular reduction is unmixed and generically smooth,
and yields new variables in Noether position (Theorem 5.5).

We start with a. Taking into account that E(A(”_s“)”) = 0 and deg(A("—5+2)) =1,
from [7, Theorem 2] it follows that there exists as € Z \ {0} as in (5.4) with

h(as) < 3h PAAX d; +2d Py(A%;A°X di| h
() < 30(GP.( jHl+eg(a H(zd+c)
where ¢(n) € O~(n). Combining this with (A.7) and recalling that deg(G) < d and
h(G) < h, we deduce the following result.

Lemma A.8. We have h(a) € O~ (nd*~(h + nd)).

Next we consider 5. Let Js be the Jacobian determinant of Y7,...,Y, g, FY,..., Fj
with respect to the variables X7, ..., X,.

Lemma A.9. The following assertions hold:
o degJs < s(d—1);
o h(Js) < s(logd+ h)+ (n—s)h(a) + sdlog(n + 1) + log(n!).

Proof. The assertion on the degree of J is clear. To prove the second assertion, we ob-
serve that J, is a sum of n! terms of the form +0F; /0X;, ---0Fs/0X; A1y - An—si_.-
Since h(X;j) < h(a) and h(0F;/0X;) < h(F;)+log(d;), by [7, Lemma 2.37(2)] we deduce
that each term has height at most s(h+logd) + (n — s)h(a) +log(n+1)((s — 1)(d — 1)).
The estimate for the height of Js follows by [7, Lemma 2.37(1)]. O
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Let dj:=1and hj:=h(Y;_s—p;_s) for s+1 < j <n, dp41 := deg Js and hyq1:= h(J;).
Let h := maxi<j<pt1 hj. By [7, Theorem 2], there exist vs € Z \ {0}, vs € N, and
G1,...,Gp1 € Z[X] as in (5.6) with

n+1 n+1
h(vs) < 2deg(G (Hd)( h(A™) + deg(A™) (2deg ng—l—e ))

(H d; ) deg(.J (3h(G) +2deg(G)((n + 1)h + e(n)))a

with e(n) € O~ (n). Since h(Yy) < h(a) and h(p;) < h(b) for all £, we obtain

h(vs) < 3deg(Js)d*h + deg(Js)d*™ ((n + 1) max{h, h(a), h(b), h(Js)} + e(n)).
Combining this with Remark A.3 and Lemma A.9, we deduce the following result.
Lemma A.10. We have h(vs) € O~ (d*T?(h 4+ rn’d)).

A.4. Estimates for smooth fibers. In this section we estimate the height of the
integers Ms(A®, p*), Lxs (p*T1) and B§. (p**!) considered in Section 5.2, where M is the
polynomial of (5.16), Lys is the polynomial of (5.18) and st is the polynomial of (5.19).
Combining these estimates we shall be able to estimate the height of the integer 91 of
(A.5), which comprises all the unlucky primes p.

We start with an estimate for the height of RS

Lemma A.11. Let U := (Uy,...,Uy) be a tuple of new indeterminates and let F €
Z[Xq,...,X,] and G1,...,Gp, H € Z[U]. Consider the polynomial Fyy € Z[U| defined
by

Gi G

Fy = Hdeg<F>F(
Let d := max{deg(G1),...,deg(Gn),deg(H)} and h := max{h(G1),...,h(Gy),h(H)}.
Then
deg(Fy) < deg(F)d, h(Fy) < h(F) + deg(F) (ﬁ +log(n + 2) + dlog(m + 1)).

Proof. Let F" € 7Z[Xy,...,X,] be the homogeneization of F with respect to a new

variable Xy. We have that
X X
ph=xles®p( 2L Zn)
0 X()’ 7XO
Substituting H,Gy,...,G, for Xo, X1,...,X,, in this identity we deduce that Fy =
FMH,Gy,...,G,). From this we readily obtain the degree estimate of the lemma.

Further, since deg(F") = deg(F) and h(F") = h(F), the height estimate follows from
[7, Lemma 2.37 (3)]. O

Lemma A.12. We have deg(RS) € O~ (nd***) and h(RS) € O~ (nd*(h + d)).
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Proof. Observe that, for 1 < i < n, we have

P, 0P,
' )< — — | < —
deg<51\ns+1,i> <(n—s+1)ds, deg<8Zns+1> < (n—s+1)ds,

0P, 0P,
R < _ < .
h(@ ns+1,i) < h(Ps) + log(ds), h<3Zns+1> < h(Ps) + log(ds)

As a consequence, from Lemma A.11 we deduce that
deg(G}) <deg(G)(n — s+ 1)ds,
B(GR) <h(G) + deg(G) (h(P)+
log(8s) + log(n +2) + (n — s + 1)dslog((n — s+ 1)(n+ 1) + 1))
Combining these estimates with (A.6) and the fact that 0, < d° yields
(A.11) deg(G3) € O(nd*™), h(G}) € O~ (nd*(h + d)).
Now, since RS := Resz, ., (Ps,G4), we see that

deg(RY) < degy, . (G3)deg(Ps) +degy, _ (Ps)deg(G3) < 2ndeg(G)d?,

n—s+1

which gives the upper bound for the degree of the lemma. Combining this estimate with
Lemma A.5 we obtain

W(RS) < h(Py)degg, __,, Gy +h(G})degz, ., Ps
+log((n — s+ 1)(n+ 1) + 1) (2ndZ deg(G) + log((degz, .., GA +degs, Ps)!)>.
From this upper bound and (A.11) we deduce the height estimate of the lemma. O
We now estimate the height of Ms(A?, p®).
Lemma A.13. For 1 < s <r, we have h(Ms(X°,p%)) € O~ (nd*(h + n?d)).

Proof. By [7, Lemma 2.37 (3)], we have
(A.12)

h(My(A,p%)) < h(M,) + deg(M,) (max{h(AS), h(p*)} +log((n — s+ 1)(n+ 1) + 1)).
Recall that My := agysAsps RS. Thus, from [7, Lemma 2.37 (2)] we deduce that
h(Ms) <h(as) + h(ys) + h(As) + h(ps) + h(RS)
+log((n—s+1)(n+1) + 1) (deg(As) + deg(ps) + deg(RS)).
By definition, deg A; < (n — s)ds and h(As) < h(Ps). Combining this with (A.6) and
Lemmas A.6, A.8, A.10 and A.12 we obtain
h(Ms) € O~ (nd* (h + n?d)).

On the other hand, since h(A®*) < h(a) and h(p®) < h(b) for all s, by Remark A.3 we
have max{h(\*), h(p*)} € O~ (rlogd+logn). Further, deg(M;) € O(n2d?*1) by (5.17).
Combining all these estimates with (A.12), the lemma follows. O
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Next we estimate Lys(p**!). As this integer is expressed in terms of the integers s
of (5.8) and Bxs of (5.11) and the polynomial Bxs € Z[Z1, ..., Zn—s—1] \ {0} of (5.9), we
start with an estimate for puys and Bjys.

Proposition A.14. Let 1 < s < r — 1 and assume that Wxs = (. Then there exists
wuxs € Z\ {0} as in (5.8) with

(A.13) h(pas) € O~ (n2d** T (h + nd)).

On the other hand, if Wxs # 0, then there exists Bys € Z[Z1,..., Zpn—s—1] \ {0} as in
(5.9) with

(A.14) deg Bys € O(nd**), h(Bys) € O~ (n*d**(h + d)).

Proof. Assume that Wys := Vs 11N {ps(ASATEX) = 0} = (and let pxs := ps (A5 AT X).
Let d; := deg(F}) and hj := h(Fj) for 1 < j < s+ 1, and ds42 := deg pxs and hsqo :=
h(pxs). Further, denote D := Hjﬁ d; and H := maxi<j<st2h;. By [7, Theorem 2]
there exists pxs € Z \ {0} as in (5.8) with

s+2
hljixe) < 2deg<G>D(m +ZZ+f<">)7
/=1

where f(n) € O~ (n). By Lemma A.6 we have ds o € O~ (nd**) and hyyo € O~ (nd?* ! (h+
nd)). Since D < d*™'d,y5 and H = max{h, hs12}, we deduce that D € O~ (nd**!) and
H € 0~ (nd**~!(h+nd)). The estimate for h(pxs) follows from the previous estimates.

On the other hand, assume that Wys # . By hypothesis Rg(A*) # 0, and hence
Lemma 5.6 proves that Wys is equidimensional of dimension n — s — 2. By [7, Corollary
3.23] there exists a polynomial Bys € Z[Z1, ..., Z,—s—1] \ {0} as in (5.9) with

(A.15) deg(Bxs) < deg Wi,
n—s—1
(A.16) h(Bxs) < h(Was) + deg Was < Z h(Yy) + (n — s)log(2n + 8)) .
(=1

Next we obtain estimates for deg Wys and h(W,s) in terms of the degrees and heights
of Vs and V1. For this purpose, let V ;1 and Wys denote the projective closures
of Vsy1 and Wys respectively, via the canonical inclusion A" — P". Let pé‘\s be the
homogenization of pys. Lemma 5.6 implies that {pgs =0} of P" cuts V441 properly. By
[7, Corollary 2.62] we conclude that

/ﬁ(VsH N {phs =0}) < degpxs E(Vsﬂ) + deg Vsi1 h(phs) + deg Vsi1 deg pis log(n + 2).
Since Vi1 N {,0})’\5 = 0} is equidimensional of dimension n — s — 2 and contains every
component of Wys, we see that h(Wks) < h(vs+1 N {p})‘\s = 0}) Recalling that hgyq :=
h(Vsy1) = h(Vsy1) and 6511 = degVsi1 = degVs,1, and taking into account that
deg phs = deg pxs and h(p}.) = h(pxs), we obtain

deg Wis < 0541 deg pas,

~

h(Was) < deg pxs hs1 + 0541 h(pxs) + dsr1 deg pxs log(n + 2).



46 N. GIMENEZ AND G. MATERA

Lemma A.2 asserts that hyq € O~ (nd*(h+d)). Therefore, by Lemma A.6 we conclude
that

deg Was € O(nd**1),  h(Wxs) € O~ (n2d* (h + d)).
Combining these estimates with (A.15) and (A.16), and taking into account that h(Y;) €
O~ (rlogd+ n) for all £, the second assertion of the proposition easily follows. O

Now we estimate the height of Bys.

Lemma A.15. Let 1 < s < r — 1 and assume that Wxs # 0. Then there exists
Bxs € Z\ {0} as in (5.11) with h(Bxs) € O~ (n*d**1(h + nd)).

Proof. Let d; = degF; and h; := h(Fj) for 1 < j < s+ 1, and dsqo = degpys
and hgyo = h(pxs). Further, define do = deg(GBAs(Yl,... Yin-s—1)) and hg :=
h(GB)\S(Yl, e 7Yn—s—1)>- Finally, denote D := Hj:% dj and H := maxlgjgs_i_g hj. By

[7, Theorem 2], taking into account that deg A™ = 1 and h(A™) = 0, it follows that there
exists fxs € Z '\ {0} as in (5.11) with

3h0 542
s) < 2dgD
h(Bxs) < 2do (2d0+zd5+g )

where g(n) € O~(n). By Lemma A.6 we have hyio € O (nd**~*(h + nd)). Since
H = max{h,hsi2}, we deduce that H € O~ (nd**~*(h + nd)). On the other hand,
do < deg(G) + deg Bys € O~ (nd>**1) by (A.14) and D < d*tldg 9 € O~ (nd®**1). This

implies
s+2
(A.17) doD <Z — +g(n ) € O~ (n*d*** ! (h + nd)).

Next, since h(A®) < h(a) for all s, by [7, Lemma 2.37 (2) and (3)] we have
ho < h(G) + h(Bxs) + deg Bxs (h(a) + log(n — s) + log(n + 1)) + log(n + 1) deg(G).

Combining this with (A.14) and Remark A.3 we deduce that hg € O~ (n?d*(h + d)).
Hence Dho € O~ (n3d%*1(h + d)) which, together with (A.17), proves the lemma. O

Now we are able to estimate the height of Lys(pt1).
Corollary A.16. For1 < s <r—1, it holds that h(Lxs(p*™')) € O~ (n3d* " (h+nd)).

Proof. Observe that h(Lxs(p**1)) = h(uxs) for Wxs =0, and h(Lxs(p*™1)) = h(Brs) +
h(Bxs(p*t1)) for Wxs # 0. Since h(p**t) < h(b), by [7, Lemma 2.37 (3)] we have
h(Bxs (p5+1)) < h(Bxs) + deg Bxs (h(b) + log(n — s)).
This inequality, Remark A.3 and (A.14) imply h(Bxs(p**!)) € O~ (n?d**(h+d)). Com-
paring this with (A.13) and Lemma A.15 yields the estimate of the lemma. O
Let BS. = BE(A*,A*"!. X)), where BY is a primitive and squarefree polynomial

defining the Zariski closure of the image of (A=stD" x V)N {G = 0} under the
morphism ®; of (5.12).
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Lemma A.17. For 1 < s <r, we have
deg BE, deg(BS.) € O(n?2"=*d*1),  h(BE), h(BS.) € O~ (n*2"~d*(h + d)).

Proof. Observe that A;; (1 <i <n—-s4+1,1 < j < n) are elements of Z[A®, X] of
degree 1, A;- X (1 <i<n-—s) € Z[A? X] have degree equal to 2, and all of them have
coefficients equal to 1. By [7, Theorem 3.24], setting WS := (A"~ s+1)n x Vs)N{G = 0},

we have

(A.18) deg (BY) < (n— s+ 1)(n+1)2"* deg (WE),
(A.19) m(BE) < 2n~ (h,(wf) t(n—s+1)(n+1)deg (wf)) .
Since the hypersurface of AM=s+17 5 A" defined by G cuts properly A(=stDn » ) and

taking into account that h(A(” st P, ) h(V ) = h and deg(A(” stn o P, )
deg(Vs) =: d5 ([7, Lemma 3.16]), from [7, Corollary 2.62] we deduce

deg (W) < 0, deg(G),
ﬁ(WsG) < deg(G)hs + 65h(G) + 65 deg(G) log (n—s+1)(n+1)).
Thus Lemma A.2 implies deg (WS) € O(d*+!) and h(WF) € O~ (nd*(h + d)). Since
deg(B§:) < deg(BY) the degree estimate of the lemma follows. We now consider the
height estimate. Taking into account (A.19) we obtain m(BS) € O~ (n?2"~%d*(h +d)).
As h(BY) <m(BY) +log ((n—s—+1)(n+1)) deg (BY) ([7, Lemma 2.32 (2)]), we obtain

h(BS) € O~ (n*2"=%d*(h + d)). Further, since h(A*) < h(a) for all s, from [7, Lemma
2.37 (3)], we deduce that

h(BS.) < h(BY) + deg(BY) (h(a) +log((n — s+ 1)(n+ 1)) + log(n + 1)).
From Remark A.3 the height estimate of the lemma follows. O
Proposition A.18. There exist 85 as in (5.14) and v§s as in (5.15) with
h(BS) € O (n3 2" d* T (h +d)), k() € O (P27 5d* T (h + d)).

Proof. Let BS: :== BY(X*, A*T1. X)) € Z[X]. By [7, Theorem 2] there exist 5§ € Z\ {0},
pSs € N and Hys € Z[X] as in (5.14) with

o 1§ < 2deg(G)ds;

o deg(Hx-G) < 4deg(BS:) deg(G) ds;

T 3h(BYs
o h(BS.), h(Hae)+h(G) < 2deg(BS.) deg(G) (hs + 0, (Secae + iy + f(n))> ,
where f(n) € O~(n).
These estimates, together with Lemmas A.2 and A.17, yield
(A.20) pSs € O@d*th),  deg(Hx:G) € O(n?2n3d*+?),
h(BS:), h(Hxs) + h(G) € O~ (n*2"*d** ™ (h + d)),

which proves the claimed estimate for the height of st.
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Now, let P := G(ﬁfs(st)“gs — HysG). By [7, Theorem 2] there exist 7§, € Z \ {0}
and v{ € N as in (5.15) with

G s | B(AT n 3h(P) - ﬁ n
h>) < 2deg(P)d (h(A )+ et 5y + 2 o >)> ,
where g(n) € O~(n). Since h(A™) = 0 and deg(A™) = 1, we have
(A.21) h(75s) < 3h(P)d® + 2deg(P)d* *hs 4 2deg(P)d*g(n).

We estimate deg(P) and h(P). We have deg(P) < 4deg(BS:) deg(G)ds + deg(G),
which together with Lemma A.17 gives

(A.22) deg(P) € O(n?2"5d%2).
By [7, Lemma 2.37 (1) and (2)] we have
h(P) < max {h(ﬁgi (B )HSH), h(HAsG)} + h(G) + log(n + 1) deg(G) + 1.
Further, from [7, Lemma 2.37 (2)] we deduce that
G
h(BSs (BS:)#3) < h(BSs) + pSsh(BSs) +log(n + 1)uSs deg(BS:),
h(HxsG) < h(Hxs) + h(G) + log(n + 1) deg(G),
which, together with Lemma A.17, yields
(A.23) h(P) € O~ (n*2"*d*** 1 (h + d)).
Finally, combining (A.21), (A.22) and (A.23) the lemma follows. O
Corollary A.19. We have h(B§.(p**!)) € O~ (n®27=5d*F1(h + d)).
Proof. Recall that st = stfyfsgs()\s,Zl, eevyZn—s—1), where és = Resznfs(BsG, Psi1).
Let £:=degy _Psy1 and m:=degy, B&. Then by Lemma A.5 we have
h(By) <th(BS)+mh(Pys.1)+log((n—s+1)(n+1)) (¢ deg(BE)+m deg Psy1)+log((¢4+m)!).

By Lemma A.17 we conclude that h(B;) € O™ (n32n=5d**1(h+d)). Similarly we deduce

that deg(B,) € O~ (n22"~5d25+2). Then, by [7, Lemma 2.37 (3)], and taking into account
that h(X") < h(a) and h(p®) < h(b) for all £, we see that

R(By(A*,p*™1)) < h(B,) + deg(B,) (max{h(a), h(b)} +log((n — 5 + 1)(n + 1)) ).
The previous estimates combined with Remark A.3 yield
h(Bs(A%,p*th) € O~ (n*2"=d* (b + d)).

Since Bg\;s (p*t1) = ﬁfsyfs ES ()\8, p*t1), the lemma follows by combining the latter esti-
mate together with the ones of Proposition A.18. O

As a consequence of Lemma A.13 and Corollaries A.16 and A.19 we are able to
estimate the height of the multiple 91 of all the unlucky primes.

Theorem A.20. The integer M of (A.5) satisfies
h(gﬂ) c O~ (n3d8r77(h + n2d) + n32nfr+1d3r72(h + d))
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Proof. Note that h(det A) < log(n!)+nh(a) € O~ (rn). This, together with Lemma A.13

and Corollaries A.16 and A.19, readily implies the theorem. O
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