
PHYSICAL REVIEW A 00, 002700 (2015)1
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4Departamento de Fı́sica, Universidad Nacional del Sur, 8000 Bahı́a Blanca, Buenos Aires, Argentina8

(Received 1 September 2015; published xxxxxx)9

We present ab initio calculations for the double ionization of helium by fast proton impact, using
the generalized-Sturmian-functions methodology and within a perturbative treatment of the projectile-target
interaction. The cross-section information is extracted from the asymptotic behavior of the numerical three-body
function that describes the emission process. Our goal is to provide benchmark first-order Born fully differential
cross sections with which one may investigate the suitability of transition matrices calculated using approximate
analytic-type solutions for the double continuum (the choice of effective charges or effective momenta to partially
account for the internal target interactions being, to some extent, arbitrary). We also provide fully differential cross
sections for the low-ejection-energy regime, which is beyond the suitable range of such perturbative methods.
We find, however, that the effective momentum approach allows one to get at least a rough characterization of
the most dominant physical process involved. We also compare our calculations with the only available relative
experimental set, showing an agreement in shape that can be well understood within the given momentum transfer
regime.
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I. INTRODUCTION23

The double ionization of helium by charged-particle impact24

constitutes an intricate four-body Coulomb problem, appre-25

ciably more complex than in the case of impact by photons.26

This is due to the, in principle, two-center interaction between27

the projectile and the target. If the projectile is positively28

charged, the collision can lead to the capture of one of the29

target electrons and the ionization of the other one. However,30

this process is several orders of magnitude less probable than31

ordinary single or double ionization (DI), particularly for pro-32

jectiles on the order of 1–10 MeV/amu [1]. In this contribution33

we focus on proton-impact ionization of helium within the34

high-incident-energy regime for which the capture process can35

be disregarded. The most basic mechanisms which produce36

DI, called shake-off (SO), two-step-1 (TS1) and two-step-237

(TS2) [2], were studied with approximate descriptions of both38

the helium ground state and the double continuum [3,4]. The39

TS1 process implies a collision between the projectile and40

one of the target electrons, which subsequently impacts the41

other one, and both end up being ejected to the continuum.42

In the TS2 mechanism, the projectile hits the two target43

electrons successively and kicks them out of their parent core.44

Another mechanism, called two-step-1-elastic (TS1EL) in45

Ref. [3], contemplates a further collision between the projectile46

and the electron ejected via the electron-electron interaction47

after the first impact. Processes TS2 and TS1EL require two48

projectile-target Born interactions.49

The majority of previous works, both theoretical and50

experimental, discussed integrated cross sections [5–10]. To51

a lesser extent, fully differential cross sections (FDCS),52

*Corresponding author: mj_ambrosio@iafe.uba.ar

which provide the most detailed information of the double- 53

ionization process, have also been investigated experimentally 54

and theoretically [3,4,11,12]. For the case of electron impact 55

several FDCS measurements under different emission energies 56

and momentum transfer regimes have been carried out by the 57

Orsay and Heidelberg groups (restricted to fast projectiles; see 58

Refs. [13–16]); many theoretical studies have been dedicated 59

to interpreting these data (a nonexhaustive list of references 60

is given in the introduction of our most recent publica- 61

tions [17,18] on the topic). In comparison, much less frequent 62

are differential cross-section measurements for proton impact. 63

The one reported by Fischer et al. [11] is the only experimental 64

data set that provides a fully differential cross section, while 65

previous works [5–8] have measured total cross sections and 66

double-to-single ionization ratios. In Ref. [11], the authors 67

report that one week was required to observe 200 000 double- 68

ionization events, enough to produce FDCS. A set of multiply, 69

but not fully, differential cross-section measurements, along 70

with their theoretical counterparts, was published in Ref. [3] 71

for double ionization of helium by very fast (6 MeV) protons, 72

in addition to a comparison of their calculations with one of 73

the kinematic configurations from Ref. [11]. 74

On the theoretical side, the collision of charged projectiles 75

with helium atoms constitutes a full four-body problem which 76

poses a formidable challenge. If the projectile is fast enough, 77

its interaction with the target can be considered a perturbation, 78

with the projectile experiencing a single deflection. While 79

the resulting three-body problem is still challenging enough, 80

there exists nowadays a variety of numerical schemes that 81

can solve it from first principles in a time-dependent [9,10] 82

or time-independent fashion [19–22]. Other approaches use 83

approximate analytical three-body functions, mostly based on 84

the 3C (also named C3 or BBK) wave function [23,24] which 85

is asymptotically correct when all three particles are far from 86

each other. Quite a number of variants of the 3C function have 87

1050-2947/2015/00(0)/002700(10) 002700-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.00.002700


AMBROSIO, MITNIK, ANCARANI, GASANEO, AND GAGGIOLI PHYSICAL REVIEW A 00, 002700 (2015)

been proposed in the literature; they all aim to improve the88

3C function by including extra physical information, thereby89

extending its range of validity. One way to achieve this is90

by introducing effective charges which, although with some91

restrictions, are largely arbitrary. Effective charges allow one to92

better account for intratarget interactions as well as projectile-93

target ones beyond the first Born approximation (FBA). The94

comparison of calculated cross sections, in particular FDCS,95

with either experimental or benchmark ab initio theoretical96

data then provides an instrument to point out which set is more97

physically sound for given kinematical conditions. While such98

approximate analytical three-body functions generally provide99

only qualitative descriptions, they are often good enough to100

analyze and identify the dominant collisional mechanisms.101

Fully numerical approaches, in turn, provide, in principle,102

exact solutions, but the interpretation of the resulting cross103

sections is less straightforward. One has to infer which104

mechanics come into play just by analyzing the cross sections.105

For the double ionization of helium by electron impact,106

thorough comparisons between theoretical and experimental107

FDCS, on the one hand, and between fully numerical and108

approximate analytical calculations, on the other hand, have109

been presented in the literature (see, e.g., the recent studies110

in Refs. [17,18] and references therein). In contrast, very little111

has been done for proton impact. This paper aims to contribute112

to filling that gap.113

We calculate FDCS with a Sturmian approach based on114

generalized Sturmian functions (GSF) [22,25]. The spectral115

method has been shown to deal successfully with three-body116

scattering problems, as illustrated recently through the study117

of the double ionization of helium by photons [26] or by118

fast electrons [17,18]. The GSF method can generate both119

the target bound state and its scattering function with, in120

principle, arbitrary numerical accuracy. Here, we apply it121

to study the fast proton-helium double-ionization process: in122

chosen kinematical conditions we provide, within the FBA,123

benchmark FDCS with three goals in mind. First, we want124

to compare our FDCS with those presented in the recent125

theoretical investigations based on perturbative methods using126

approximate analytical three-body wave functions [4,12].127

Second, we wish to identify the collisional processes and128

contrast them with those of the better-known electron-impact129

counterpart. Third, we want to find out if a fully numerical130

treatment within the FBA is able to reproduce the main features131

observed in the experiments reported in [11].132

López et al. [12] made a thorough investigation of fast133

proton-helium FDCS under a variety of kinematical con-134

ditions. They demonstrated a great degree of variation in135

the calculated cross sections when using different analytical136

final-state continuum functions (3C and variants including137

effective charges). They also showed that the target bound-state138

description affects the FDCS palpably. The same authors fur-139

ther tackled the problem with an approach involving effective140

momenta [4]. In this second study, the obtained cross sections141

present structures that vary slowly with the ejection angles, a142

trend, to some degree, analogous to that observed for electron143

impact [16,18,27]. By providing FDCS with our GSF method,144

we wish to evaluate the success of these perturbative schemes.145

Recall that the 3C continuum function is valid when the146

particles are moving away from each other quickly and/or147

are far apart. There is therefore a particular niche for which 148

the perturbative methods are not well suited: low emission 149

energies. To explore this regime, we have performed GSF 150

calculations considering a total excess energy of 6 eV, with the 151

equal-energy-sharing case, (3 + 3) eV, as well as the unequal 152

configuration, (1.5 + 4.5) eV. The purpose here is twofold. 153

First, we explore these kinematical conditions with a reliable 154

method to establish the physical processes that come into play 155

when the two electrons are emitted very slowly. Second, our 156

benchmark results can be used to test the quality of effective 157

charges intended to extend the validity of the 3C function 158

to the low-energy domain. By no means do we intend to 159

disqualify the perturbative approaches. On the contrary, we 160

regard them as complementary to ab initio methods, each 161

exploring adequately different kinematical ranges. 162

Since there is a lot of variation, even within the first-order 163

Born model, from one perturbative model to the next, we are 164

not considering in the present work any second-order Born 165

interactions of the projectile with the target atom. An interested 166

reader can find second-order studies in Refs. [3,28,29]. For 167

this contribution we consider it a priority to establish first 168

the first-order Born ground properly. To this order, valid 169

for fast projectiles, the phenomenon of electronic capture 170

is not incorporated in the calculations, either numerical or 171

perturbative. Thus, only the effects of the well-known two- 172

step-1 and shake-off mechanisms are expected to be observed 173

in the calculated FDCS. 174

The rest of the paper is arranged as follows. In Sec. II we 175

begin by outlining the theoretical framework on which our 176

calculations are based. Section III, dedicated to the results, 177

is divided in three subsections. The first one is devoted to a 178

comparison of the GSF results with those obtained with the 179

effective charges and effective momenta approaches [4,12]. 180

Section III B contains the studies performed in the low- 181

emission regimes (6 eV excess energy): we make a comparison 182

with a preexisting result [4] in equal energy sharing; we then 183

increase the momentum transfer to observe more prominent 184

nondipolar effects. In Sec. III C we contrast our numerical 185

calculations with the experimental data reported in [11]. 186

Finally, a brief summary is provided in Sec. IV. 187

Atomic units (� = e = me = 1) are used throughout the 188

article, unless otherwise stated. 189

II. FAST PROJECTILE FORMULATION AND GSF 190

APPROACH 191

Our treatment of the four–body scattering problem is based 192

on a perturbative series of the projectile-target interaction, kept 193

up to the first order. The resulting three-body problem is then 194

solved with the GSF method. 195

Let r1 denote the position of the projectile (mass mP ), ri 196

(i = 2,3) denote that of the two helium electrons with respect 197

to its nucleus (mass mT , charge Z = 2), and rij = |ri − rj| 198

denote the distance between particles i and j . The full four- 199

body Hamiltonian reads 200

H = − 1

2μT P

∇2
1 − 1

2μT

∇2
2 − 1

2μT

∇2
3 + Z

r1
− 1

r12

− 1

r13
− Z

r2
− Z

r3
+ 1

r23
, (1)
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with the reduced masses defined as μT P = mP mT

mP +mT
and μT =201

mT

mT +1 . Similar to Refs. [18,30], we write subsequently202

H0 = hp + hHe, (2)

where203

hHe =
(

− 1

2μT

∇2
2 − 1

2μT

∇2
3 − Z

r2
− Z

r3
+ 1

r23

)
(3)

is the three-body helium Hamiltonian and hp = − 1
2μT P

∇2
1 is204

the free-particle kinetic term associated with the projectile.205

The two Hamiltonians in (2) act separately on the subsystem206

(2,3) and (1). They are coupled through the perturbation207

W̄ = Z

r1
− 1

r12
− 1

r13
. (4)

The four-body Hamiltonian is then208

H = H0 + W̄ , (5)

and the Schrödinger equation with outgoing-type (+) behavior209

reads210

[H0 + W̄ − E]�+(r1,r2,r3) = 0, (6)

where E is the total energy.211

As shown in Ref. [30], the Schrödinger equation (6) can be212

transformed into a system of coupled differential equations if213

the solution is proposed as214

�+(r1,r2,r3) =
∑

n

�(n)+(r1,r2,r3), (7)

where each order retains n interactions W̄ between the215

projectile and the target. Allowing for only one interaction,216

we need the zeroth- and first-order expressions, which read217

[H0 − E]�(0)+(r1,r2,r3) = 0, (8a)

[H0 − E]�(1)+(r1,r2,r3) = −W̄�(0)+(r1,r2,r3). (8b)

The zeroth order corresponds to a separable solution,218

eiki ·r1�i(r2,r3), where �i(r2,r3) is the two-electron helium219

ground state and the fast incident projectile is described220

by a plane wave of momentum ki . The first-order solution,221

verifying Eq. (8b), is written as [30]222

�(1)+(r1,r2,r3) = 1

(2π )3/2

∫
dkeik·r1�+

sc(k,r2,r3), (9)

where the three-body scattering (labeled sc) function �+
sc223

characterizes the physics of the ejected electrons. Let Ea224

denote the energy of two electrons interacting with the225

nucleus in the final state and k2/2 be the energy associated226

with the projectile: the total energy of the system is then227

E = Ea + k2/(2μT P ). Let the projectile be scattered with228

momentum kf , and define the momentum transfer vector229

q = ki − kf . Inserting Eq. (9) into (8b), we obtain a driven230

equation for �+
sc(q,r2,r3) [30]:231

[hHe − Ea]�+
sc(q,r2,r3) = −4π

q2

1

(2π )3
(Z − eiq·r2 − eiq·r3 )

×�i(r2,r3), (10)

where we have made explicit the q dependence in the three-232

body scattering wave function.233

Formally, we can write the asymptotic behavior of 234

�+
sc(q,r2,r3) as [31] 235

�+
sc(q,r2,r3) −→

ρ→∞ (2πi)1/2κ
3
2 Tk̃2,k̃3

ei[κρ−λ0 ln(2κρ)−σ0]

ρ
5
2

, (11)

where ρ =
√

r2
2 + r2

3 is the hyperradius, κ = √
2Ea the hyper- 236

momentum, σ0 is a Coulomb phase, and λ0 is a hyperangle- 237

dependent asymptotic Sommerfeld parameter. The transition 238

matrix Tk̃2,k̃3
that is built into the scattering solution can 239

equivalently be defined as 240

Tk̃2,k̃3
= 4π

q2

1

(2π )3

× 〈
�−

k̃2,k̃3
(r2,r3)

∣∣ − Z + eiq·r2 + eiq·r3
∣∣�i(r2,r3)

〉
,

(12)

which provides the more familiar expression used in the FBA. 241

In our framework, the transition matrix is extracted from 242

�+
sc(q,r2,r3), not from Eq. (12). 243

For two electrons escaping with energies E2 and E3 in 244

the solid angles d	2 and d	3, the FDCS, within the FBA, is 245

defined as 246

d5σ

d	2d	3d	f dE2dE3
= (2π )4 kf k2k3

ki

∣∣Tk̃2,k̃3

∣∣2
, (13)

where the projectile, whose energy Ef = k2
f /(2μT P ) is deter- 247

mined by total-energy conservation, is scattered in the solid 248

angle d	f . This definition allows for a direct comparison with 249

experimental data. In order to compare our results with the 250

theoretical results presented in Ref. [4,12], on the other hand, 251

we shall also use the alternative, but equivalent, definition of 252

the cross section 253

dσ

dk2dk3dq⊥
= (2π )4

v2
p

∣∣Tk̃2,k̃3

∣∣2
, (14)

which is differential with respect to the ejected electrons’ 254

momenta and the transverse momentum transfer q⊥ (the 255

perpendicular component of q with respect to the beam axis); 256

vp is the velocity of the incident projectile. 257

We use the GSF method to solve the driven equation for a 258

given q. For convenience, as explained in [17,18], the helium 259

ground state is also constructed within the GSF formalism. 260

Negative energies of the GSF basis with negative energy 261

were shown to be very efficient in obtaining two-electron 262

bound states [22,32,33]. In order to calculate the scattering 263

function, we proceed as outlined in Ref. [18]: �+
sc(q,r2,r3) 264

is decomposed in total-angular-momentum partial waves and 265

subsequently expanded in a Sturmian basis [see Eq. (19) 266

of [18]]; this converts Eq. (10) into a linear system [similar 267

to Eq. (21) of [18]] which is solved with standard methods. In 268

all kinematical configurations considered below, convergence 269

with respect to the number of partial waves has been verified. 270

From |�+
sc(q,r2,r3)| at large enough ρ (50 a.u. for 20 eV excess 271

energy and 120 a.u. for the low-energy configurations, 6 eV 272

excess energy) we extract |Tk̃2,k̃3
| using Eq. (11) and, finally, 273

the FDCS through either expression (13) or (14). 274
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III. RESULTS275

We arrange the results in three subsections. First, we276

compare our cross sections with the dynamically screened277

3C (hereinafter DS3C) and effective momenta 3C (hereinafter278

EM3C) results presented by López and coworkers [4,12]. The279

objective is twofold: (i) to evaluate which of the two analytic280

proposals is more appropriate and (ii) to provide results that281

can be used for numerical reference to test further perturbative282

models. We then explore the double-ionization dynamics for283

slow emitted electrons for both equal and unequal energy284

sharing and compare the outcome with the EM3C results. In285

this energy range, perturbative approaches are not appropriate286

but ours is, and we expect to explore the dominant processes287

within it. In the last subsection we compare our theoretical288

FDCS with available experimental data of Fischer et al. [11].289

Only coplanar configurations are considered, and all angles290

are defined with respect to the incident-beam direction. The291

cross sections will be presented as contour plots in θ2 and θ3,292

with the intensity scale indicated on the right-hand side.293

A. Comparison: GSF, DS3C, and EM3C294

In order to compare our results with the work of López295

et al. [4,12], we consider here the double ionization of helium296

by protons impinging with an energy of 700 keV. Even in297

a first-order Born calculation, the use of effective charges298

allowed them to distinguish between positively and negatively299

charged projectiles. In our strictly FBA, no distinction can be300

made about the sign of the projectile. In Ref. [12], the authors301

presented, in a number of contour plots (and some selected302

cuts), the FDCS defined by Eq. (14). They showed that the303

results (shapes and magnitudes) are widely affected, on the304

one hand, by the representation of the initial target state and,305

on the other hand, by the effective charges chosen for the306

postcollisional dynamics.307

Concerning the helium ground state employed, the one308

used in [4,12] and ours differ significantly. The authors309

of [12] use two types of Bonham and Kohl bound-state310

functions: a simple, two-parameter (type-7) function (called311

GS1) and a more refined, modified-type-9 one, with five312

parameters (called GS2). These trial functions yield bound313

energies of −2.8756 and −2.9019 a.u., respectively. In our314

formulation, the helium ground state is obtained with the GSF315

method [32,33], with an energy of −2.9033 a.u., using 20316

Sturmians per coordinate per partial wave, with individual317

angular momenta up to 4. In this paper we shall compare our318

cross-section results only with those of [4,12] that employ the319

GS2 ground state.320

Since the main purpose of this contribution is to compare the321

descriptions of the continuum functions, in order to discard any322

initial-state-related issue, we have also considered a helium323

ground state of poorer quality, with an energy close to the324

GS2 counterpart (using as few as 5 Sturmians per partial325

wave per coordinate and keeping the same angular momentum326

values, we achieved a ground-state energy of −2.9024 a.u.).327

Both calculated FDCS presented no appreciable differences;328

therefore, we may consider that any discrepancy between the329

results of López et al. and ours is to be attributed essentially330

to the continuum functions.331

FIG. 1. Fully differential cross section for helium double ion-
ization by proton impinging at 700 keV. The two emitted electrons
each take 10 eV, and the proton transfers to the atomic system a
momentum q = 0.9 a.u., oriented at θq = 40.18◦. (top) Present GSF,
(middle) DS3C [12], and (bottom) EM3C [4].

We start with the case in which the two electrons are ejected 332

in the scattering plane in directions θ2 and θ3 with equal 333

energy: E2 = E3 = 10 eV. This corresponds to a momentum 334

transfer of modulus q = 0.9 a.u. oriented at θq = 40.18◦. A 335

comparison of results is presented by the contour plots in Fig. 1. 336

The structures we obtain with the GSF method (top panel) 337

differ substantially from the DS3C results [12] (middle panel). 338

The GSF results vary less rapidly with the ejection angles. 339

At the same time, the DS3C structures are more extended, 340

in the sense that there is no clear frontier between the recoil 341
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FIG. 2. (Color online) (a) Squared modulus of the momentum transferred to the helium nucleus K2
ion. Both electrons emerge equally sharing

the 20 eV excess energy, q = 0.9 and θq = 40.18◦ with respect to the incident direction. (b) GSF FDCS for these kinematical conditions, with
the K2

ion contours superimposed [in green (gray)].

and the binary peaks. Less profound are the differences found342

between the GSF and the EM3C [4] results (bottom panel).343

They both present a smoother angular dependence but differ in344

key features such as the recoil-structure shape and the relative345

heights of each peak.346

We should add here that, in the case of electron impact,347

in contrast to the 3C counterpart, ab initio calculations348

such as the convergent close coupling (CCC) [27] showed349

a more prominent binary peak. In the present proton case, the350

comparison between our numerical results and those of the 3C351

variants reveals a similar feature.352

There is also a subtle difference between the GSF result353

and the 3C-based cross sections. As can be observed when354

visually comparing Fig. 1 (top panel) with Fig. 2, the binary355

peak location in the GSF case coincides exactly with a356

configuration of minimum momentum transfer to the He++
357

core, Kion = q − k2 − k3. The peak is slightly displaced in the358

DS3C and EM3C cross sections. Moreover, the DS3C model359

binary peak occurs when the electrons are emitted at exactly360

right angles. In our GSF calculation the binary peak appears361

for electrons emitted at mutual angles that are wider than 90◦,362

a feature readily explained by the interelectronic repulsion363

forcing the fragments farther apart in coplanar geometry (the364

same was also observed in other fully numerical results [16,27] 365

for double ionization by electron impact). 366

As a second comparison, consider now the same projectile 367

energy (700 keV), the same momentum transfer (q = 0.9 a.u.), 368

and the same excess energy (20 eV) but unequal energy 369

sharing: E2 = 5 eV and E3 = 15 eV. Our GSF and the DS3C 370

results of [12] are compared in Fig. 3. The binary peaks 371

are the most dominant features present in the GSF FDCS 372

for the unequal-energy example [see Fig. 3(a)]. The DS3C 373

scheme, in turn, appears to underestimate them (relative to 374

the binary and back-to-back structures), as shown in Fig. 3(b). 375

The DS3C approach presents back-to-back emission with the 376

faster electron ejected in the directions parallel or antiparallel 377

to the momentum transfer. Both situations are depicted as 378

equally likely in the DS3C FDCS. This is not the case in the 379

GSF result: only the emission of the faster electron in the 380

direction opposite to the momentum transfer is important [see 381

Fig. 3(a)]. 382

The first likely candidate responsible for the back-to-back 383

structures, particularly with the fast electron emitted parallel 384

to q, would be the shake-off mechanism. However, Dorn 385

et al. [34] ruled it out as a viable option to produce this emis- 386

sion. They stated that the fast electron would have to be ejected 387

FIG. 3. Fully differential cross section for helium double ionization by protons impinging at 700 keV and transferring to the atomic system
a momentum q = 0.9 a.u., oriented at θq = 40.18◦. The two electrons are ejected with unequal energy sharing: E2 = 5 eV, E3 = 15 eV. (a)
Present GSF and (b) DS3C [12].
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FIG. 4. (Color online) (a) Squared modulus of the momentum transferred to the nucleus K2
ion. (b) Same as Fig. 3(a), but superimposing the

contours in (a) [in green (gray)].

with a higher velocity so that the effective charge change felt388

by the slow electron can be nonadiabatic. Therefore, for the389

energy sharing considered in this contribution, the mechanism390

can be disregarded. To explain the back-to-back peaks we are391

left with more abrupt mechanisms, involving pure collisions,392

and not soft relaxations to the continuum.393

We now are going to briefly justify that the back-to-back394

emission, in our first-order Born context, should be dominant395

only when the fast electron leaves in the −q direction and396

weaker when it goes along q. The occurrence is partly397

explained by Fig. 4. In Fig. 4(b) we show the GSF cross398

section superimposed with the contour plot of the squared399

modulus of the momentum transferred to the residual core400

[Fig. 4(a)]. After one of the electrons acquires the momentum401

provided by the projectile, the final back-to-back configuration402

requires at least one interaction with the nucleus; if that were403

not the case, there would be no electron (either of them) in404

the −q direction (indeed, a head-on collision of two bodies405

with equal mass would imply that they simply swap their406

respective momenta). The interaction with the core should407

transfer some momentum to the nucleus, with a magnitude408

of the order of the momentum of the electrons (i.e., on the409

order of 1). However, the final configuration with the fast410

electron parallel to q gives nearly no momentum transfer to411

the nucleus and therefore is an unlikely process. The exactly412

opposite scenario does incorporate an appreciable amount of 413

momentum transferred to the core, denoting further intratarget 414

interactions, and therefore cannot be ruled out. The above does 415

not agree with the CCC (theoretical) FDCS presented in the 416

work by Dorn et al. [34]. 417

In contrast to the recoil and back-to-back structures, the 418

binary ones do not require significant participation of the 419

nucleus and therefore can exist in the (θ2,θ3) directions which 420

imply almost no momentum acquired by the parent core [see 421

Fig. 4(b)]. 422

A second argument at play in the back-to-back phenomenon 423

in Fig. 3 comes from the analysis of the driven term in Eq. (10). 424

Retaining the dipolar term in the exponentials, we have 425

(Z − eiq·r2 − eiq·r3 ) ≈ −i(q · r2 + q · r3)

= −i
ρ

κ
q · (k̃2 + k̃3), (15)

where in the second approximation we used the position- 426

dependent momenta k̃j = κ
ρ

rj (j = 2,3), defined originally 427

in [35] and more explicitly in [31]. In our formulation, it 428

is the driven term that dictates how a particular geometrical 429

configuration is enhanced or suppressed (see [18]). We thus 430

plot in Figs. 5(a) and 5(b) the magnitude |q̂ · (k̃2 + k̃3)| and a 431

superimposition with the FDCS, respectively. This comparison 432

is in line with the electron-impact analysis presented by 433

FIG. 5. (Color online) (a) |q̂ · (k̃2 + k̃3)|. (b) Same as Fig. 3(a), but superimposing the contours in (a) [in green (gray)].
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FIG. 6. Fully differential cross section for helium double ionization by protons impinging at 700 keV and transferring to the atomic system
a momentum q = 0.9 a.u., oriented at θq = 40.18◦. The two ejected electrons both have 3 eV. (a) Present GSF and (b) EM3C [4].

Lahmam-Bennani et al. [14], who related the dips in the FDCS434

considering the conditions that nullify Eq. (15).435

The introduction of effective charges into the 3C function436

is a means to account for the interactions between the target437

components as well as the projectile with the target subsystem.438

The charges affect very strongly the shapes and magnitudes439

of the corresponding FDCS, as can be seen in the systematic440

3C versus DS3C comparison in [12]. The dynamical screening441

corrects the 3C overestimation of the back-to-back emission442

but introduces rapidly varying structures that cannot be443

reproduced in our ab initio calculation. Thus, we infer that the444

use of such approximate analytical three-body functions leads445

to results that are not without shortcomings. We should add that446

there exists a large variety of effective-charge proposals, and447

there is not a clear way to choose which one is the appropriate.448

So it is difficult to be certain about the correctness of the449

obtained results.450

B. Low-ejected-energy regime451

We now consider the regime of two electrons ejected at452

lower energies. The application of distorted-wave methods453

to this emission regime can be seen as an overreach, but454

nonetheless, we will see that the EM3C approach can manage455

to describe some key FDCS features. In Ref. [4] the authors456

evaluated the double ionization of helium by proton (and457

antiproton) impact, ejecting the electrons at slow velocities.458

Their equal emission energies are 3 eV, with q = 0.9 a.u.459

oriented at θq = 40.18◦ and an incident energy of 700 keV460

for the protonic projectiles. Our exact treatment of the two-461

electron continuum enables us to explore confidently this low-462

energy situation and provides insight that is complementary to463

that performed by López and coworkers using distorted-wave464

methods. In Fig. 6 we compare our GSF result with the465

EM3C one [4]. Both approaches indicate a recoil peak more466

relevant than the binary one. This can be understood since467

the electrons acquire small velocities after the collision and468

they may interact one further time with the core. The classical469

picture corresponds to an orbit around the nucleus before the470

electron is finally released.471

While the EM3C results suggest a disappearance of the472

binary peak, the same is not observed in our GSF FDCS, which473

presents a diminished but still present binary peak. Although 474

not exactly matching our ab initio results, the EM3C manages 475

to give a qualitative agreement that reflects the most significant 476

cross-section structure, namely, the recoil peak. This is a strong 477

hint that the effective momentum approach makes possible the 478

application of distorted-wave approximations within energy 479

ranges that would normally be regarded as inappropriate. 480

Still within the low-ejected-energy regime, another kine- 481

matical condition was considered: a momentum transfer above 482

unity to allow for more nondipolar effects: q = 1.25 a.u., 483

oriented at θq = 61.82◦, with a projectile energy maintained 484

at 700 keV with an excess energy of 6 eV. Equal- and unequal- 485

energy-sharing conditions are studied, with both electrons 486

emitted with 3 eV or (1.5 + 4.5) eV. The amount of momentum 487

transfer to the target would indicate some expected back-to- 488

back emission. This is indeed confirmed by observing both 489

equal- and unequal-energy-sharing configurations in Fig. 7, 490

with the effect being more dominant in the latter. 491

For the equal-energy-sharing scenario [Fig. 7(a)] we have 492

again recoil structures which are higher than the binary ones. 493

In comparison to Fig. 6, the main differences that emerge are 494

the slightly more pronounced back-to-back emission and a 495

stronger binary peak. 496

The unequal-energy case, as in Sec. III A, shows back-to- 497

back emission when the fast electron goes against the direction 498

of the momentum transfer. The slower electron is pushed 499

preferentially in the q direction, with their mutual repulsion 500

serving as a guide. Under this particular kinematical condition, 501

there is a large amount of momentum transferred to the target, 502

yet the electrons leave with slow velocities. Therefore, the core 503

has to absorb a portion of that transferred momentum in most 504

emission geometries. Regarding the back-to-back ejection, we 505

observe the same result as in the previous section: it is more 506

likely to have the fast electron sent in the −q direction. Both 507

arguments apply, but in the present case the dipolar terms of the 508

exponential yield a near-zero value that is nearly replicated in 509

the FDCS; Fig. 8 shows a comparison similar to that in Fig. 5. 510

As can be expected, recoil and binary peaks imply ejections 511

at narrower mutual angles when the energy is shared evenly. 512

This configuration maximizes the velocity magnitude sum and 513

roughly implies that the electrons have less interaction time to 514

push each other apart. 515
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FIG. 7. GSF fully differential cross section for helium double ionization by protons impinging at 700 keV and transferring to the atomic
system a momentum q = 1.25 a.u., oriented at θq = 61.82◦. The excess energy Ea is 6 eV. (a) Equal energy sharing E2 = E3 = 3 eV. (b)
Unequal energy sharing, E2 = 1.5 eV, E3 = 4.5 eV.

C. Comparison with experimental data516

So far, we have looked at several physical aspects, compar-517

ing our GSF results with those of López and collaborators.518

In this section we compare our calculations with the data519

set (relative scale) measured by Fischer et al. [11]. In their520

experiment, the incident proton has an energy of 6 MeV,521

considerably faster than those studied in the previous sections.522

Due to the low experimental counting rate, the measurements523

were made with the collection of electrons with E2 = E3 <524

25 eV and momentum transfers ranging in magnitude q from525

1.4 to 2.0 a.u and in angle θq from 75◦ to 85◦. This range of526

variation for the quantities E2,E3,q implies that the label fully527

differential applies loosely for the measured cross sections.528

The most critical variable is the variation of q since the FDCS529

inherits an explicit factor 1/q4. Therefore, we considered an530

average q value using the following expression:531

〈q〉 =
[

1

qmax − qmin

∫ qmax

qmin

1

q4
dq

]−1/4

, (16)

which for qmin = 1.4 a.u. and qmax = 2.0 a.u. yields 〈q〉 =532

1.656 a.u. For the direction of the momentum transfer, we took533

the intermediate value θq = 80◦. The total emission energy534

considered in our calculation was also chosen in the middle of535

the measured range: 10 eV per electron.536

The cross sections, as defined by Eq. (13), are presented in 537

Fig. 9. Our GSF calculation (contour plots, top panel) are com- 538

pared with experimental data (middle panel). To appreciate the 539

qualitative agreement between them, we present in the bottom 540

panel a superposition of both results. In the small-q regime, 541

the back-to-back configuration is not favored like the dipolar 542

behavior observed with electron-impact collisions [14]. As 543

the momentum transfer is increased, nondipolar terms become 544

relevant: indeed, we observe in the calculated FDCS an 545

important amount of back-to-back emission, and the binary 546

and recoil peaks have very different shapes. The results show 547

a strong, localized, binary peak; the recoil peak, in contrast, 548

merges with the back-to-back one, forming a wall that has a dip 549

in height precisely where the first-order Born symmetry axis 550

crosses it. Unfortunately, the experimental detector range [11] 551

precludes a comparison in the region where the recoil and 552

back-to-back wall gains height. 553

An aspect that emerges from Fig. 9(b) is the small number 554

of counts in the experiment. It does still allow for the visual- 555

ization of some structures, but they are less clearly delimited 556

than in previous electron-impact experiments from the same 557

group [16,34,36]. This small number of counts, sadly, does 558

not allow us to make a more detailed comparison. A higher 559

impact count could result in more reliable and descriptive 560

experimental cross sections, which in turn would call for a 561

FIG. 8. (Color online) (a) |q̂ · (k̃2 + k̃3)|. (b) Same as Fig. 7(a), but superimposing the contours in (a) [in green (gray)].
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FIG. 9. Fully differential cross section for helium double ion-
ization by protons impinging at 6 MeV, with two electrons ejected
with the same energy. (top) Present GSF with momentum transfer
q = 1.65, oriented at θq = 80◦ and E2 = E3 = 10 eV. (middle)
Relative experimental data [11] with a momentum transfer in the
range q = 1.4−2.0 a.u., oriented in between θq = 75◦ and 85◦ and
E2 = E3 < 25 eV. (bottom) Superposition of the theoretical and
experimental cross sections.

more sophisticated calculation with an actual integration on562

the energies and transferred momenta ranges, be it analytical563

or entirely numerical. This said, we may state that there is fair564

theory-experiment agreement in the cross-section shapes.565

IV. SUMMARY566

In the present contribution we have investigated FDCS for567

the double ionization of helium by protonic impact in different568

kinematical configurations. We tackled the problem within a 569

first Born approximation frame regarding the projectile-target 570

interaction and employing the generalized-Sturmian-function 571

method to solve in a numerically exact way the resulting three- 572

body continuum problem. 573

Our ab initio results allowed us to test the validity of 574

approximate analytical double-continuum wave functions with 575

effective charges or effective momenta. With the comparison 576

in the explored kinematical conditions, we can state that 577

(i) none of these schemes can provide an exact agreement with 578

our calculations and (ii) of the two, the effective momentum 579

approach can be deemed more physically plausible since it 580

yielded FDCS which vary less abruptly with the ejection 581

angles, similar to what was observed in our numerical results. 582

The EM3C approach has also been applied within a 583

low-emission-energy regime [4]. Being slowly ejected, the 584

electrons have time to interact with each other and with 585

the core many times, corresponding to high orders in a 586

multiple-scattering series [2]. These interactions are solved 587

to every order by our ab initio GSF methodology. Although 588

perturbative methods are normally considered not well suited 589

to describe the dynamics of slowly ejected electrons, the EM3C 590

model surprisingly managed to characterize the most dominant 591

cross-section feature, namely, the recoil peak. While it still 592

missed the binary and back-to-back contributions that show 593

up in our GSF calculation in the (3 + 3) eV regime, the study 594

indicates that the EM3C provided an interesting step forwards 595

for perturbative approaches. 596

The final results section was devoted to a theory-experiment 597

FDCS comparison. We calculated GSF cross sections, at- 598

tempting to replicate the relative experimental data of Fischer 599

et al. [11], who registered low counting rates. Globally, we 600

observed fair qualitative agreement, in particular with respect 601

to two key features: the location of the maximum corre- 602

sponding to the binary peak and the presence of a dip where 603

the recoil peak was expected. There is also an experimental 604

hint of a local peak in the cross section, corresponding to 605

our theoretical back-to-back peak, but this falls outside of 606

the detection angles for the cold-target recoil-ion momentum 607

spectroscopy apparatus [11]. 608

New fully differential experimental data, with fast incident 609

protons, would be very welcome in order to validate the 610

benchmark cross sections presented here. Furthermore, as 611

was done with electron-impact ionization [13,15,16,37], the 612

incidence energy could be lowered to quantify the appearance 613

of second-order Born effects. We hope that our contribution 614

will help with further theoretical developments in improving 615

perturbation schemes. 616
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