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ABSTRACT
In this work, we approach the blind separation of dependent
sources based only on a set of their linear mixtures. We prove
that, when the sources have a pairwise dependence charac-
terized by the linear conditional expectation (LCE) law, i.e.
E[Si|S j] = ρi jS j for i �= j, with ρi j = E[SiS j] (correlation co-
efficient), we are able to separate them by maximizing or
minimizing a Generic Order Moment (GOM) of their mix-
ture defined by µp = E[|α1S1+α2S2|p]. This general mea-
sure includes the higher order as well as the fractional mo-
ment cases. Our results, not only confirm some of the ex-
isting results for the independent sources case but also they
allow us to explore new objective functions for Dependent
Component Analysis. A set of examples illustrating the con-
sequences of our theory is presented. Also, a comparison
of our GOM based algorithm, the classical FASTICA and a
very recently proposed algorithm for dependent sources, the
Bounded Component Analysis (BCA) algorithm, is shown.

1. INTRODUCTION

We approach the problem of separating n sources from a set
of m linear instantaneous mixtures without using any infor-
mation about the mixing coefficients. Written in a matrix
form we have the following model:

x(τ) = As(τ), (1)

where x(τ) ∈Rm is a column vector containing the mixtures
(measurements), s(τ) ∈Rn is a column vector containing the
source signals (sources) and A ∈Rm×n is the mixing matrix
containing the mixing coefficients. The parameter τ is an in-
dex that can be related to the position in time or space (pixel
index) depending on the application. Then the objective is to
estimate the source vector s(τ) using only the observations
x(τ).

Blind Source Separation (BSS) algorithms have been de-
veloped during the last two decades based on different kinds
of assumptions on the sources (see [9] for an up to date
review of BSS algorithms). When sources are statistically
independent, the problem can be solved in the sense that
sources can be identified up to scale and permutation inde-
terminacies. This result allowed the development of a sort of
Independent Component Analysis (ICA) algorithms which
were successfully and widely used in engineering problems.

Unlike in the ICA case, the separation of dependent
sources or Dependent Component Analysis (DCA) has not

been fully studied in the past and showed more difficulties
[1, 4, 6, 5, 3, 16, 19]. Our previously published experimental
results revealed that some types of dependent sources, such
as the ones found in hyperspectral imaging applications, can
be successfully separated by maximizing different measures
of non-Gaussianity [6, 5]. However, the theoretical explana-
tion was recently elucidated in [7].

1.1 Notation
We use capital letters to denote scalar random variables and
lower case letters for their realizations, for example, S1, S2,...,
Sn are the random variables associated to the sources which
have a joint probability density funcion (pdf) denoted by
fS1S2...Sn(s1,s2, ...,sn). Obviously, when sources are indepen-
dent, the joint pdf factorizes, i.e.

fS1S2...Sn(s1,s2, ...,sn) = fS1(s1) fS2(s2)... fSn(sn), (2)

where fSi(si) is called the marginal pdf of variable Si. In
this work we are particularly interested in the case of hav-
ing dependent sources where such a factorization of the joint
pdf does not exist. We also define the conditional pdf of a
random variable S1 given that S2 = x as follows:

fS1|S2(s1|x) = fS1,S2(s1,x)/ fS2(x). (3)

Accordingly, the first and second order conditional expecta-
tions are defined as follows:

E[S1|x] =
∫
s1 fS1|S2(s1|x)ds1, (4)

E[S21|x] =
∫
s21 fS1|S2(s1|x)ds1. (5)

Since equations (4) and (5) are functions of x, we use the
following notation to express the derivative with respect to x,
for example:

E ′[S1|x] = d
dx
E[S1|x]. (6)

Additionally, in order to avoid conflicts we assume that first
and second order derivative of marginal pdf f ′Si(x) and f

′′
Si(x)

always exist for every x ∈ (−∞,+∞).

2. GENERAL STRATEGY FOR DCA

When the matrix A is full-column rank (equal number or
more sensors than sources), we are able to exactly esti-



mate each of the sources by using linear combinations of the
mixtures upon permutation and scaling indeterminacies [9].
Therefore, a reasonable strategy used in the ICA context is
to search in the space of coefficients, for the points for which
each one of the sources is separated. In other words, we need
to analyze the behavior of the mixture random variable X
defined as:

X = α1S1+α2S2+ ...+αnSn. (7)

Then, we say that variable Si is separated from the mixture
when all coefficients are zero except α i, i.e. αi = 1 and α j =
0 for every j �= i.

In order to discriminate between a single source com-
pared to any linear combination of two or more sources
(keeping the variance fixed), many objective functions have
been proposed in the context of ICA. For example, it is
known that we can search for the local minima of the Shan-
non entropy keeping the variance constant because of a clas-
sic result from Information Theory: the entropy of a sum of
independent variables is larger than the entropy of individ-
ual variables [15, 11, 13, 18]. Other objective functions have
been proposed for ICA as the case of higher order cumulants
for which 4th order cumulant or kurtosis is a particular case
[8, 15, 14, 20], the convex perimeter for bounded sources
[10], L2-distance non-Gaussianity measure [4], least abso-
lute end-point (LAE) [17], and others. Recently, based on
the BCA criterion of [10], a Bounded Component Analysis
(BCA) algorithm was proposed in [12] by Erdogan which
showed to successfully separate a class of highly correlated
dependent sources.

3. GENERIC ORDERMOMENTS

The family of objective functions commonly used for ICA
includes higher order moments [8] and, more recently, frac-
tional lower order moments [21, 2]. All these measures can
be treated by defining the Generic Order Moment (GOM) of
order p:

µp ≡ E[|X |p] =
∫ +∞

−∞
|x|p fX (x)dx. (8)

Let us consider now the case of having only two depen-
dent sources i.e. n = 2 which are normalized (E[S i] = 0
and E[S2i ] = 1). Since we need to preserve the variance of
the mixture, here the constraint is: α 2

1 +α2
2 + 2ρα1α2 = 1,

with ρ = E[S1S2] being the correlation coefficient between
sources. Then we can parametrize the coefficients by using
only one parameter t:

α1(t) = t, (9)

α2(t) = −tρ+
√
t2(ρ2− 1)+ 1. (10)

Thus, the GOM associated to the mixture variable X(t) =
α1(t)S1+α2(t)S2 depends explicitly on the parameter t, i.e.

µp(t) = E[|X(t)] = E[|α1(t)S1+α2(t)S2|p]. (11)

If the GOM is locally maximum or minimum at t = 0, it
means that we can separate source S2 by detecting the point
where the derivative of GOM of any linear combination
sources is zero (stationary points). The following theorem
proves that the GOM is a valid objective function because it

has stationary points at t = 0.

Theorem 1. Stationarity of the GOM measure: Given two
zero-mean and unit-norm source variables S1 and S2, the
GOM of order p, µp(t) = E[|X(t)|p], has a stationary point
at t = 0 if the Linear Conditional Expectation (LCE) law,
defined by E[S1|S2] = ρS2, is held where ρ = E[S1S2] is the
correlation coefficient between sources.

Proof. We need to prove that the derivative of µ p(t) is zero
at t = 0. By using the chain rule of the derivative, we obtain:

µ ′
p(t) =

∂µp
∂α1

α ′
1(t)+

∂µp
∂α2

α ′
2(t). (12)

Now, using the fact that ∂µp
∂αi

=
∫ |x|p ∂ fX (x)∂αi

dx (i=1,2), taking
into account that α ′

1(0) = 1, α ′
2(0) = −ρ and by inserting

the partial derivatives fX (x)
∂αi

(i= 1,2) as obtained in Appendix
A.1 into eq. (12), we finally obtain:

µ ′
p(0) =

∫ +∞

−∞
|x|p

[
−(

fS2(x)E[S1|x]
)′
+ρ (x fS2(x))

′]
︸ ︷︷ ︸

=0 if E[S1|x]=ρx (LCE hypothesis)

dx,

(13)
which demonstrates that GOM has a stationary point at t =
0.

In order to determine if the separation of sources is at-
tained at a maximum or a minimum of the objective function,
we need to evaluate the second order derivative as follows.
Using the fact that the second order derivative of the pdf of
the mixture variable is (see Appendix A.2):

d2 fX (x)
dt2

∣∣∣∣
(t=0)

=
(
fS2(x)E[S

2
1|x]

)′′
+(1−3ρ2) fS2(x)

+ x(1−5ρ2) f ′S2(x)−ρ2x2 f ′′S2(x), (14)

and taking into account the following results:
∫ (

f (x)E[S21|x]
)′′ |x|pdx= p(p−1)

∫
f (x)E[S21|x]|x|p−2dx,∫

x|x|p f ′(x)dx=−(p+1)µp,∫
x2|x|p f ′′(x)dx= (p+2)(p+1)µp,

we finally arrive at:

µ ′′
p(0) = p(p−1)

∫
|x|p−2 fS1(x)E[S21|x]dx

− pµp
(
1+ρ2(p−2)

)
, (15)

Thus, by evaluating equation (15) we are able to deter-
mine if the separation is attained at a maximum or a mini-
mum of the GOM. We note that it depends on the distribu-
tion of sources and on the second order conditional expec-
tation E[S21|x] function. It is noted that having independent
sources is a particular case where the LCE law also holds
since E[S1|S2] = E[S1] = 0 and E[S1S2] = E[S1][S2] = 0.



4. THREE SIMPLE DATA SET EXAMPLES

In order to illustrate our results we consider here three simple
examples of dependent sources whose scatter plots are shown
in Fig. 1:
1. Data set A: Uncorrelated but dependent sources: We

consider here two sources S1 and S2 generated as follows:

S1 = N1N2, (16)
S2 = N2, (17)

where N1 and N2 are independent non-Gaussian random
variables with E[N1] =E[N2] = 0 andE[N2

1 ] =E[N
2
2 ] = 1.

We see that S1 and S2 are highly dependent but are uncor-
related because ρ = E[S1S2] = E[N1N2

2 ] = E[N1]E[N2
2 ] =

0. The first order conditional expectation is zero, i.e.
E[S1|S2] = E[N1]S2 = 0. We also compute the sec-
ond order conditional expectation which is E[S 21|S2] =
E[N2

1N2
2 |N2] = S22E[N2

1 ] = S22.
Then, equation (15) is reduced to:

µ ′′
p(0) = p(p− 2)µp, (18)

and we conclude that we have a minimum at the sepa-
ration point (µ ′′

p(0) > 0) for every p > 2 and we have a
maximum (µ ′′

p(0)< 0) for every p< 2 (p �= 0).
2. Data set B: Constrained sources (dependent): Motivated

by the type of signals observed in the Spectral Unmixing
Application of BSS (see [6]), here we generate a special
type of sources which are dependent, correlated and con-
strained to have their sum constant. More specifically,
we generate our signals S1 and S2 as follows: First, we
generate Q independent, nonnegative random variables
Nq (q= 1,2, ...,Q) then, we define the following random
variables: Uq = Nq/∑Qk=1Nk. We note that these signals
meet the constraint ∑Qq=1Uq = 1 which is exactly what is
observed in the Spectral Unmixing application because
sources are associated to abundances (percentages of a
particular material). Now, we define our sources by nor-
malizing two of these constrained sources, i.e.:

S1 = (U1− µU1)/σU1 , (19)
S2 = (U2− µU2)/σU2 . (20)

It is not hard to prove that these sources meet the LCE law
since E[S1S2] = ρ = −1/(Q− 1) and E[S1|S2] = ρS2 =
−S2/(Q−1).

3. Data set C: Highly correlated sources: Here, the sources
were constructed using rows of pixels of a one-megapixel
digital photo of a man (shown in Fig. 1). We construct
the source S1 by concatenating all the rows of this image
starting at the first row and, the source S2 by using the
same concatenation but starting at row number thirty. As
the scatter plot shows in Figure 1, these signals are highly
dependent (and correlated) because of the high correla-
tion of neighbor pixels in real-world images.

5. SOURCE SEPARATION EVALUATION AND
COMPARISONWITH OTHER ALGORITHMS

We consider here the simplest case of having two source sig-
nals and two mixtures which correspond to the linear model

DATA SET A DATA SET B

DATA SET C(256 x 256) - digital image

Figure 1: Scatter plots (S1 versus S2) of dependent sources data sets.

of equation (1) with a square mixing matrix A ∈ R 2×2. We
developed a simple algorithm for source separation by max-
imizing (or minimizing) the GOM µ p. As usual, in order
to simplify the search of the maximum (or minimum), we
first apply a whitening filter, i.e. y(τ) = Tx(τ) where y(τ) is
the whitened data (E[yyT ] = I) and the filter matrix is given
by T = Λ− 1

2UT with Λ and U being the diagonal matrix of
singular values and the matrix of singular vectors of the co-
variance matrix Cxx = E[xxT ] respectively.

After data is whitened, we can estimate sources by using
the following parameterization which maintain the variance
fixed:

ŝ(τ ,θ ) = cos(θ )y1(τ)+ sin(θ )y2(τ). (21)
We can quickly estimate the GOM by using the average over
a set of Ts samples, i.e,

µp(θ )≈
Ts
∑
τ=1

|ŝ(τ ,θ )|p, (22)

which gives a linear complexity (O(Ts)) in terms of the num-
ber of samples. The search of a maximum (minimum) can be
efficiently done by using a Newton type iteration as follows:

θk+1 = θk±
µ ′
p(θk)

|µ ′′
p(θk)|

, (23)

where µ ′
p(θk) and µ ′′

p(θk) are the first and second order
derivative respectively, which can be also computed very fast
with linear complexity (O(Ts)).

5.1 Experiments

We applied our algorithm based on GOM with p =
1.5,2.5,10 to randomlymixed signals generated according to
the models of Data set A, Data set B (with parameter Q= 4)
and Data set C. In all the cases we considered signals length



Ts= 65536. In Fig. 2, typical plots of generic order moments
with β = 1.5,2.5,10 computed on whitened data for the two
sources case, with a randommatrix A for Data set B and Data
set C in the whole range of the parameter θ . It is noted that,
for Data set B we need to search for maxima when p = 1.5
or p = 10 and minima when p = 2.5. On the other hand,
for Data set C, we need to search for maxima when p= 1.5
and minima when p = 2.5 or p = 10. It is also noted that
for Data set C the local extrema are very smooth which in-
dicate that their associated positions are harder to determine
compared to Data set B. It is important to note that only real
sources, and their inverted versions (shifted by π), produce
local maxima (minima).

In Table 1, the results of our experiments are shown
and compared to the results obtained by applying the FAS-
TICA algorithm [14] and the BCA algorithm developed by
Erdogan [12]. We used the implementation of FASTICA
available at http://research.ics.tkk.fi/ica/fastica/ and applied
it by using the two most popular nonlinearities: cubic (u 3)
and hyperbolic tangent (tanh(u)). To measure the perfor-
mance we use the standard Signal to Interference Ratio (SIR)
which is defined as SIRi = −10log10(Var(ŝi− si)) and the
results were averaged over fifty Monte Carlo simulations.
It is important to highlight that, for Data set A and B, the
best performances were obtained with our algorithm using
p= 1.5 (SIR=49.67dB) and p= 10 (SIR=59.18dB), respec-
tively. For Data set C, the best result was obtained by using
the BCA algorithm (SIR=56.62dB) while the results of us-
ing our algorithm are also acceptable (SIRs are higher than
23dB). It is interesting to note that the performance of FAS-
TICA (u3) on Data set A was not bad (SIR=29.94) and this is
because in this data set the sources are uncorrelated. On the
other hand, when sources are correlated the performance of
FASTICA deteriorates significantly and the BCA algorithm
was not capable to separate sources in the Data set A and B
because they do not meet with the support of sources hypoth-
esis assumed in [12].

6. CONCLUSIONS

We have introduced GOM as a valid objective function for
ICA and DCA. These measures are very attractive since they
are easily computed based on ergodic averaging with lin-
ear complexity (O(Ts)) which makes them useful compared
to more sophisticated information theoretic measures such
as Renyi or Shannon Entropy which usually requires higher
complexity cost. For example, Renyi or Shannon measures
computed by using kernel methods have quadratic complex-
ity (O(T 2s )) [13]. Besides, our theoretical framework opens
the possibility to approach new separation problems where
sources are allowed to be dependent. Although we have the-
oretically analyzed the two sources case only, our criteria can
be extended also to the general case of having more than two
sources but the mathematical treatment would become intri-
cate. Another potential extension of our theory is to general-
ize it the case of complex signals.

We have provided enough simulation results to vali-
date our theoretical results. Additionally we have com-
pared the performance of our DCA algorithm based on GOM
against the classical FASTICA algorithm and and a very re-
cently proposed algorithm , the Bounded Component Analy-
sis (BCA) algorithm. It is noted that, in BCA, the separation
is granted when the convex hull of the sources domain can

p
p

p
p

p
p

(a) Data set B (a) Data set C

Figure 2: GOM µp versus the parameter θ for p = 1.5 (top), p = 2.5
(middle) and p = 10 (bottom) computed for Dataset B (left) and Dataset C
(right).

Table 1: Separation performance by using GOM (with p =
1.5,2.5,10), FASTICA [14] and BCA algorithm [12].

Mean SIR (dB)
Dataset A Dataset B Dataset C

FASTICA (u3) 29.94 15.77 7.34
FASTICA (tanh(u)) 4.74 11.91 7.34
BCA 6.76 18.35 56.62
GOM (p= 1.5) 49.67 44.72 37.12
GOM (p= 2.5) 41.23 28.37 33.47
GOM (p= 10) 17.14 59.18 23.25

be written as the cartesian product of the convex hulls of the
individual source supports [10] which is a very restrictive as-
sumption. It was experimentally verified that the quality of
reconstruction of FASTICA algorithm is deteriorated when
sources have some degree of dependence.

Appendix A.1

Taking into account that the pdf of the mixture variable X is
(for α2 > 0):

fX (x;α) =
1
α2

∫
fS1S2

(
s1,
x−α1s1

α2

)
ds1, (24)

and taking the partial derivatives of the pdf evaluated at
(α1,α2) = (0,1) we obtain:

∂ fX (x)
∂α1

=−( fS2(x)E[S1|x])′ ,
∂ 2 fX (x)
∂α2

1
=
(
fS2(x)E[S

2
1|x]

)′′
,

∂ fX (x)
∂α2

=−(x fS2(x))
′ ,

∂ 2 fX (x)
∂α2

2
= 2 fS2(x)+4x f ′S2(x)+ x

2 fS2(x),

∂ 2 fX (x)
∂α1α2

= 2( fS2(x)E[S1|x])′+ x( fS2(x)E[S1|x])′′ .



Appendix A.2

Using the chain rule of derivatives we have that

d2 fX (x; t)
dt2

=
∂ 2 f
∂α2

1

(
α ′
1(t)

)2
+ 2

∂ 2 f
∂α1∂α2

α ′
1(t)α ′

2(t)

+
∂ 2 f
∂α2

2

(
α ′
2(t)

)2
+

∂ f
∂α1

α ′′
1 +

∂ f
∂α2

α ′′
2 . (25)

Using the results of Appendix A.1 and the fact that

α ′
1(0) = 1, α ′′

1 (0) = 0, α ′
2(0) =−ρ , α ′′

2 (0) = ρ2−1; (26)

we obtain the desired result of equation (14).
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