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Abstract
Predicting extreme temperature events can be very useful for different sectors that are strongly affected by their variability. The
goal of this study is to analyze the influence of the main atmospheric, oceanic, and soil moisture forcing on the occurrence of
summer warm days and to predict extreme temperatures in Argentina northern of 40°S by fitting a statistical model. In a
preliminary analysis, we studied trends and periodicities. Significant positive trends, fundamentally in western Argentina, and
two main periodicities of summer warm days were detected: 2–4 years and approximately 8 years. Lagged correlations allowed
us to identify the key predictors: El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Standardized
Precipitation Indices (SPI). We also noticed that the frequency of warm days in spring acts as a good predictor of summer warm
days. Due to the collinearity among many predictors, principal component regression was used to simulate summer warm days.
We obtained negative biases (i.e., the model tends to underestimate the frequency of summer warm days), but the observed and
simulated values of summer warm days were significantly correlated, except in northwest Argentina. Finally, we analyzed the
predictability of the summer warm days under ENSO neutral conditions, and we found new predictors: the geopotential height
gradient in 850 hPa (between the Atlantic Anticyclone and the Chaco Low) and the Atlantic Multidecadal Oscillation (AMO),
while the PDO and SPI lost some relevance.

1 Introduction

Extreme events have a higher impact than mean climate in
sectors more closely linked, such as agriculture, human health,
and water resources, among others. As highlighted in the
Special Report on Managing the Risks of Extreme Events of
the Intergovernmental Panel on Climate Change (IPCC 2012),
extreme climate events and their changes are especially rele-
vant to society and ecosystem due to their potentially danger-
ous impacts. The ability to predict these extremes would allow

the undertaking of precautionary measures to avoid or reduce
their impacts (Mueller and Seneviratne 2012). In particular,
we focused in the summer because hot extremes have the
highest impacts on human health and the environment during
this time of year (Rusticucci et al. 2016).

In the summer season, the basic South America low-level
atmospheric circulation features (Fig. 1) consist of the sub-
tropical South Pacific anticyclone (SPA), the subtropical
South Atlantic anticyclone (SAA), the “Chaco” continental
orographic–dynamic–thermal low (CHL; Seluchi et al.
2003), the easterlies over tropical–equatorial Atlantic and
Amazonia, and the mid-latitude westerlies. The easterlies are
naturally deflected by the Andes orography towards the south-
east and south into subtropical latitudes producing a north–
south low-level jet (Agosta and Compagnucci 2008). During
the Chaco low-level jet events, there are a large moisture flux
and convergence at low and mid levels which are responsible
for a significant fraction of the summer precipitation (Salio
et al. 2002). The mean maximum temperature shows the
highest values in Paraguay and northern Argentina, due to
the incursion of air masses of tropical origin into midlatitudes,
and it is frequently related to the Chaco and northwestern
Argentine depression (Schwerdtfeger 1976).
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Predictability is defined as the measure to which the future
states of a system can be predicted based on knowledge of the
current and past state of the system. Research on predictability
and their sources is a central part of creating new and im-
proved forecasts. Advances in this area depend critically on
observations and models. Typically, the predictability analysis
of a phenomenon begins with theoretical considerations or
empirical analysis based on observations (for example, an
analysis of the lagged correlation between two or more vari-
ables). From this perspective, it is essential to have long re-
cords of multivariate observations for both predictors and po-
tential predictors (National Academies of Sciences,
Engineering, and Medicine 2016).

In terms of seasonal prediction, the predictability of the
system resides mainly in the ocean because the ocean presents
adjustment times slower than the atmosphere (Slingo and
Palmer 2011) and in the soil moisture, since the lack of soil
moisture strongly reduced latent cooling and thereby ampli-
fied the surface temperature anomalies (Fischer et al. 2007b).
Many previous studies have found that sea surface tempera-
ture (SST) anomalies in the equatorial Pacific associated with
the El Niño-Southern Oscillation (ENSO) are responsible for
most interannual variability in the Southern Hemisphere (Vera
et al. 2004; Garreaud et al. 2009, among others). A positive
relationship between temperature anomalies and ENSO
phases was found over a large part of South America, i.e., El
Niño is associated with temperatures above normal while La
Niña is associated with cold anomalies. More recently,
Rusticucci et al. (2017) showed that the impact of El Niño
events on extreme temperatures in Argentina presents month-
ly differences, favoring warming during the austral winter
(more nights and warm days) and colder conditions in austral
summer (fewer warm and more frequency of cold days). The
opposite pattern occurs during La Niña: December, January,
and February exhibited more frequency of warm days

compared to its climatology, while December and February
showed fewer cold days. However, on the climate of South
America, the SST of the South Atlantic Ocean is also
important. Rusticucci et al. (2003) showed that extreme tem-
perature events in Argentina presented a greater seasonal cor-
relation with the Atlantic than the Pacific, reflecting the im-
portance of the “orographic barrier” of the Andes in the atmo-
spheric circulation. The only exception refers to warm events
in spring, for which the warming of the equatorial Pacific (the
ENSO pattern) appears as the dominant mode.

Soil moisture is a key variable in the climate system due
to its impacts on water and energy balances (Jaeger and
Seneviratne 2011). Therefore, the relationship between soil
moisture and mean and extreme temperature has been ex-
tensively studied using both observations and climate
models (Whan et al. 2015 and references cited therein).
Seneviratne et al. (2010) described the positive feedback
between soil moisture-temperature: a decrease in soil mois-
ture leads to a decrease in evapotranspiration (ET), this
decrease in ET leads to an increase in sensible heat flux
and then produces an increase in temperature, the increase
in temperature leads to a higher-demand for evaporation
and, therefore, to a potential increase in ET despite the
dry conditions which possibly lead to a greater decrease
in soil moisture. Several studies affirm that the soil
moisture–temperature interaction increases the variability
of summer temperatures: dry soils cause hot extreme fre-
quencies increment (Oglesby and Erickson III 1989; Atlas
et al. 1993; Seneviratne et al. 2006; Fischer et al. 2007a,
2007b; Lorenz et al. 2010; Hirschi et al. 2011; Mueller and
Seneviratne 2012). Moreover, Jaeger and Seneviratne
(2011) showed that the effect of soil moisture on tempera-
ture is asymmetric with greater impact on maximum tem-
perature. Globally, Mueller and Seneviratne (2012) have
found a strong relationship between the deficit of

Fig. 1 Basic low-level atmospheric circulation features in the austral
summer season (left): the summermeanmaximum temperature is shaded,
the contours are the seasonally averaged 850-hPa geopotential height, and
the arrows are the 850-hPa vector wind, from the ERA-Interim.

Climatology 1981–2010. SPA: subtropical South Pacific anticyclone.
SAA: subtropical South Atlantic anticyclone. CHL: “Chaco” continental
low. Standard deviation of summer warm days at the weather stations in
Argentina north of 40°S (right)
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precipitation and the subsequent occurrence of warm ex-
tremes of maximum temperature in several places in the
world, such as large areas of North America, South
America, Europe, Australia, and parts from China. They
suggested that the prediction of warm days can be improved
in these regions by incorporating soil moisture as a predic-
tor. In particular for central and northern Argentina, these
authors found significant negative correlations between the
number of warm days in the warmest month of the year and
the Standardized Precipitation Index (SPI) of 3, 6, and
9 months of the previous month.

The objective identification of temperature predictors to-
gether with their probabilities of occurrence is useful for the
short- and medium-term forecasting as well as for future cli-
mate projections. However, seeking of temperature extreme
predictors to incorporate them as independent variables in
statistical models is a little-explored area in the world and
particularly in Argentina. A study that explored a seasonal
forecast in Argentina can be found at Solman and Núñez
(1999). In that work, the authors estimated satisfactorily the
mean values of winter and summer maximum and minimum
temperature in the central region of Argentina using stepwise
multiple regressions. Nevertheless, these authors conducted a
forecast of mean minimum and maximum temperatures, and
they did not perform a forecast of extreme temperature fre-
quencies. Another useful statistical technique to predict time
series when there are a large number of variables is to use
principal component analysis followed by multiple linear re-
gression (Çelik 2018). This combination is called principal
component regression (PCR). This method reduces the com-
plexity of the multidimensional system by maximizing the
variance of component loadings and by eliminating the invalid
components (Zhang et al. 2013). PCR has been employed to
predict monthly precipitation in cost regions of Equator (de
Guenni et al. 2016), seasonal rainfall in Southeast South
America (Zamboni et al. 2010), heavy rainfall in Paraguay
(Doss-Gollin et al. 2018), and rainfall variations in the
Pacific Islands (Yu et al. 1997). Moreover, PCR has been
widely used to predict rainfall over India during the monsoon
season (Rajeevan et al. 2000; Nair et al. 2013), in the winter
season (Nageswararao et al. 2016), and to predict the post-
monsoon tropical cyclone activity (Biswas and Kundu
2018). Furthermore, it was used in air quality studies
(Statheropoulos et al. 1998; Abdul-Wahab et al. 2005; Rajab
et al. 2013; Tong et al. 2018) and to reconstruct different
ENSO indices (Srivastava and Sinha Ray 2000; Barrett et al.
2018). However, this technique was not used to seasonal fore-
cast extreme temperature in Argentina. Moreover, at present,
Argentine Weather Service only provides a seasonal forecast
for mean temperatures.

This study has two main objectives: first, to identify pre-
dictors of summer warm days by using lagged correlation
analysis, and second, to fit a statistical model in order to

predict frequencies of summer warm days in Argentina north-
ern of 40°S. The lagged correlation is an important tool to
study the relationship between two variables because one var-
iable may have a delayed response to the other variable and, in
that case, it can be used as a predictor of the other. Among all
predictors analyzed, the persistence of warm days was espe-
cially considered by correlating summer warm days with
those observed in the previous season (spring). We fitted a
statistical model using PCR to the observed frequencies of
summer warm days, and we evaluated the performance of
the model over a test sub-sample. Furthermore, we explore
potential predictors under ENSO neutral conditions which
allowed us to have a more complete analysis for those years
in which one of the main sources of predictability is not active.

2 Data and methodology

2.1 Extreme temperature index

Daily maximum temperatures of December, January, and
February (DJF) were used in this work. These data were pro-
vided by the National Institute of Agricultural Technology
(INTA, http://siga2.inta.gov.ar/#/data) and the Argentine
National Meteorological Service (SMN, https://www.smn.
gob.ar/) from 83 conventional weather stations located north
of 40°S in Argentina in the 1970–2015 period. All the stations
have less than 10% of missing data in the period analyzed.

The freely available R-Climdex software was used (at
http://etccdi.pacificclimate.org/software.shtml, accessed in
May 2015) in order to perform a quality control check of
each station. Quality control is vital when working with
extreme events, since an outlier may be due to errors in the
measurement or transcription of the data or be truly an
extreme value, so a detailed study of each one was carried
out. In all cases, we verified that the maximum temperature
was higher than the minimum temperature. Data with values
far above or below the expected values were also checked.
These aspects were analyzed individually, considering the
information from nearby stations and temperature evolution
on previous and subsequent days.

After analyzing the outliers, one extreme temperature index
was calculated: warm days (TX90), defined as the percentage
of days with maximum temperature above the 1981–2010
90th percentile, following the guidelines established by inter-
national literature on the subject based on recommendations
by the WMO Joint Commission for Climatology (CCL)
/CLIVAR/JCOMM Expert Team on Climate Change
Detection and Indices (ETCCDI). The index was estimated
on a monthly basis, and from them, seasonal values
(December–February) were obtained. From now on, we will
refer to these indices as DJF TX90. According to the defini-
tion of the index, the summer warm days present a mean value
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of 10% in the climatological period (1981–2010). The inter-
annual variability, measured by the standard deviations, range
from 4.5 to 13% depending on the station, although most of
the largest standard deviations are located in the center and
northeastern Argentina (Fig. 1).

Since we employed data from 83 meteorological sta-
tions in Argentina north of 40°S, to display the results here,
we grouped the meteorological stations in climatological
homogeneous regions and selected one station of each
group. To do this, we used the methodology Partitioning
Around Medoids proposed by Kaufman and Rousseeuw
(1990), or also known as K-medoids for its similarity with
K-means. We considered eight different regions, according
to the number of regions which are considered by the SMN
to their seasonal forecast of mean temperature. The
resulting groups are shown in Fig. 2.

2.2 Predictors data

The predictors’ data were obtained from different data
sources. Monthly atmospheric and oceanic indices were ac-
quired from the website of the National Oceanic &
Atmospheric Administration (NOAA) (http://www.esrl.noaa.
gov/psd/data/climateindices/list/, accessed June 2016). The
indices considered were Niño 1 + 2, Niño 3, Niño 3.4, Niño
4, Niño Modoki and Oceanic Niño Index (ONI), the Southern
Oscillation Index (SOI), Tropical Southern Atlantic Index
(TSA), Atlantic Multidecadal Oscillation (AMO), and
Pacific Decadal Oscillation (PDO).

To represent other modes of atmospheric variability, differ-
ent indices previously constructed by other authors were used.
The Southern Annular Mode (SAM) index was defined as
Marshall (2003), which considers a zonal average of sea-

level pressure at 40°S and 65°S based on six stations close
to each latitude (http://www.nerc-bas.ac.uk/icd/gjma/sam.
html, consulted on 5/10/2016). In the Indian Ocean, the
dipole mode index (IOD, °C) was defined by Saji et al.
(1999) using the SST anomalies in the northwest (NW) re-
gions (50–70°E, 10°S–10°N) and the southeast region (SE)
(90–110°E, 10°S–0°N) of the equatorial Indian Ocean. The
IOD index values were obtained from the website of the
International Research Institute for Climate and Society
(IRI) (http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.
NCDC/.ERSST/.version4/.IOD /.C1961–2015/, accessed 06/
21/2016).

In order to characterize the position and intensity of the
subtropical jet, we considered the following indices: the zonal
wind at 250 hPa (U250) averaged over 25–35°S and 50–
70°W, zonal wind at 200 hPa averaged over 20–30°S and
45–65°W (U1), and over 30–40°S and 45–65°W (U2) and
the quotient between both (U1/U2) defined by Rusticucci
et al. (2017) and Barros et al. (2002). For the construction of
all indices, reanalysis data from the National Centers for
Atmospheric Prediction (NCEP) and the National Center for
Atmospheric Research (NCAR) Reanalysis 1 (Kalnay et al.
1996) was used because it covers the entire studied period
(1970–2015) and it was previously employed in several stud-
ies in the region.

Data from the NCEP/NCAR Reanalysis 1 were also
employed to evaluate the influence of the atmospheric
blocking and the South Atlantic and Pacific anticyclones on
the extremes of temperature indices. The presence of atmo-
spheric blocking over the Pacific Ocean was represented by
three indices which use the monthly zonal wind as the main
variable: blocking index (IB) at 120°W (Rutllant and
Aceituno 1991; Rutllant 2004), blocking index at 70°W

Fig. 2 Stations employed and clustering of them in eight regions (left): 1—northeastern, 2—northwestern, 3—cuyo, 4—south Litoral, 5—central, 6—
northeastern Buenos Aires, 7—southeastern Buenos Aires, 8—central-south. Stations selected of each region (right)
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(B70) and blocking index at 100°W (B100) defined by
Alessandro (2014). Using geopotential height at 1000 hPa,
we estimated six indices to characterize the intensity and po-
sition of the anticyclonic center (González et al. 2015):
AAINT, AALAT, AALON for the SAA and APINT,
APLAT, and APLON for the SPA. In addition, we esti-
mated another index in the western region of the SAA
(25–35°S, 30–45°W) by spatially averaging the monthly
anomalies of geopotential height at 1000 hPa, identified
from now by the initials ANOM (Rusticucci et al.
2017). The anomalies were estimated with respect to
the base period 1981–2010. More details of these indi-
ces can be found in Table 1.

Warm air advection produced by the north wind is another
important mechanism that affects surface temperature. The
advection over northern and central Argentina was represent-
ed by the Z3-Z1 and V925 indices which reflect geopotential
height differences at 850 hPa and meridional wind at 925 hPa,
respectively (Table 1).

To represent soil moisture conditions, the SPI index was
used as a proxy (Mueller and Seneviratne 2012). The SPI
(McKee et al. 1993, 1995) is a powerful and flexible index
that is simple to calculate. In fact, precipitation is the only
required input parameter. The SPI was designed to quantify
the precipitation deficit for multiple timescales. It quan-
tifies observed precipitation as a standardized departure
from a selected probability distribution function that
models the raw precipitation data. The raw precipitation
data are typically fitted to a gamma distribution and then
transformed to a normal distribution. The SPI values can
be interpreted as the number of standard deviations by
which the observed anomaly deviates from the long-term
mean. The SPI can be created for differing periods of 1-to-
36 months, using monthly input data. Positive SPI values
indicate greater than median precipitation, and negative
values indicate less than median precipitation. Because
the SPI is normalized, wetter and drier climates can be
represented in the same way; thus, wet periods can also
be monitored using the SPI. Employing monthly accumu-
lated precipitation data from the same stations as those
used to calculate DJF TX90, we estimated 1-, 3-, 6-, 9-,
and 12-month SPI indices by using the software available
on the website (http://drought.unl.edu/MonitoringTools/
DownloadableSPIProgram.aspx). For those months that
presented more than 10% of missing data, they were
assigned a missing data code to the monthly accumulated
precipitation. On short timescales, the SPI is closely related
to soil moisture, while at longer timescales, the SPI can be
related to groundwater and reservoir storage. Moreover, we
calculated the first principal component of the SPI (PC1
SPI) in order to obtain a single monthly time series for each
of the SPI indices which allow us to capture some
characteristics of the spatial pattern of these variables.

In order to evaluate the influence of Atlantic SST on ex-
treme temperature, we considered four indices. One of them
represents the dipole of the Atlantic Ocean on the coasts of
Brazil, the South Atlantic Subtropical Dipole index (SASD,
Wainer et al. 2014), and three indices based in Barrucand et al.
(2008): SST30, SST36, and SST46 which involve spatial av-
erages of SST near the coast of Southern South America at
30°S, 36°S and 46°S.

Finally, to evaluate the effect of the South American mon-
soon, two monthly indices were considered based on the out-
going longwave radiation (OLR). OLR is a measure of the
amount of energy emitted to space by earth’s surface, oceans,
and atmosphere. The OLR values are often used as a proxy for
convection in tropical and subtropical regions since cloud top
temperatures are indicative of cloud height (higher clouds
producing lower values of OLR). In particular, OLR values
below 240 Wm−2 are representative of convection (Kousky
1988). The first index used to represent the monsoon was the
OLRI index (Wm−2), which consists of the OLR anomaly in
the area of the Amazon forest covered by (0–15°S; 45–75°W)
(González et al. 2016). The second index was the South
Atlantic Convergence Zone (SACZ) index defined as the spa-
tial average of the OLR anomalies between 30 and 17°S and
45–20°W (Cerne and Vera 2010). Positive values of this index
represent inhibited SACZ conditions while negative values
indicate the presence of an active SACZ. The reference period
for calculating the OLR anomalies for both indices was 1981–
2010. The OLR dataset source was the NCEP/NCAR
Reanalysis 1. These indices, as well as the other indices con-
sidered in this work, are summarized in Table 1.

2.3 Preliminary analysis: trends and wavelet
transform

The best-fit linear trend is often used to describe the change in
a climatological series (Vincent et al. 2005). Linear trends of
DJF TX90 were calculated for the 1970–2015 period. Then,
these trends were statistically tested by using the non-
parametric Mann-Kendall test in R (McLeod 2011) at 5% of
significance level. The purpose of the Mann-Kendall test
(Mann 1945; Kendall 1975; Gilbert 1987) is to statistically
assess if there is a monotonic upward or downward trend of
the variable of interest over time.

It is known that in the climate series may appear “jumps,”
periodic or quasi-periodic events, which do not necessarily
remain in time but appear for a few years, and then disappear,
or remain as weak signals in the system (Barrucand et al.
2008). Wavelet transform of a function is the improved ver-
sion of Fourier transform. Fourier transform is a powerful tool
for analyzing the components of a stationary signal, but it
failed for analyzing the non-stationary signal (Sifuzzaman
et al. 2009). The traditional Fourier transform uses sine and
cosine base functions that have an infinite span and are
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globally uniform in time (Pasquini et al. 2006). Wavelet trans-
form is a method designed to optimize both time and frequen-
cy resolution by choosing the best window width for a partic-
ular frequency band (Kestin et al. 1998).

The global wavelet spectrum of a signal can be computed
by averaging the local spectra over the temporal variable and
allows determining the dominant periods of time series. Such
plots may be compared with the spectrum derived from the
Fourier transform since the Fourier spectrum and global wave-
let transform represent the power over the entire signal (Kirby
and Swain 2013). However, the comparison between the glob-
al wavelet power spectrum and the classical Fourier spectrum
made by Perrier et al. (1995) shows that, at small scale, if the
Fourier spectrum is too steep, the wavelet spectrum is strongly
biased by the specific wavelet used in the analysis. At other
scales, Percival (1995) shows that the global wavelet spectrum
provides an unbiased and consistent estimation of the true
power spectrum of a time series.

The wavelet transform is a very appropriate analysis tool
for the study of non-stationary processes that involve multiple
scales of variability. It has been used in many fields, such as
image processing (Ren et al. 2017), optics (Buraga-Lefebvre
et al. 2000), quantum mechanics (Frantziskonis and Deymier
2003), biometrics (Doghmane Doghmane et al. 2018), and
geophysical series (Wei et al. 2018), among other fields. The
wavelet transform was also widely applied in the meteorolog-
i ca l f i e ld , some examples a re fo r a tmosphe r i c
macrocirculation indices, such as ENSO (Kestin et al. 1998)
or North Atlantic Oscillation (Pozo-Vázquez et al. 2001); for
boundary layer height (Pal et al. 2016); and for surface air
temperature in South America (Kayano and Sansígolo 2009;
Naumann and Vargas 2012). The presence of signals that ap-
pear for a few years and then disappear can hinder the forecast.
This method allowed us to detect different periodicities in the
DJF TX90 series and associated physical processes.

To apply the wavelet transformation to the DJF TX90 se-
ries, we used the WaveletComp package for R (Roesch and
Schmidbauer 2014). This package calculates the wavelet pow-
er spectrum by applying theMorlet wavelet. The choice of the
mother wave will depend on the type of study to be carried
out, and the need to obtain a better temporal or frequency
discrimination. In the case of geophysical series, it is widely
accepted in the literature that the most suitable mother wave is
the “Morlet” wave, a flat wave, modulated by a Gaussian
(Foufoula-Georgiou and Kumar 1995; and the references
therein). It is well known in signal processing that the
Morlet mother wavelet gives the best time-frequency locali-
zation (Le 2017). Baliunas et al. (1997) have employed both
Mexican hat and Morlet wavelets in a study of temperature
data taken over three centuries in central England. The better
temporal resolution of theMexican hat is put to use in filtering
trends in the time domain, whereas the superior frequency
resolution of the Morlet wavelet is used for spectral studiesT
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of the data. Considering that we were interested in having
better frequency discrimination in order to assess the
dominant periodicities of the series rather than a temporal
localization, the Morlet wavelet was selected. In particular,
the Morlet wave was employed by Barrucand et al. (2008)
to analyze the main variability modes of extreme temperature
indices, Elsanabary and Gan (2014) to study seasonal rainfall
variability of the Upper Blue Nile Basin and sea surface
temperatures, Zitto et al. (2016) to analyze temperatures and
ice core oxygen isotope series at high latitudes of Southern
Hemisphere, Zhou and Liu (2017) to study meteorological
droughts, and Barrucand et al. (2018) to analyze climate indi-
ces, among many other studies.

Since time series have a finite length, errors will occur at
the beginning and end of the wavelet power spectrum. The
cone of influence is the region of the wavelet spectrum in
which edge effects become important. More details could be
found in Torrence and Compo (1998). Moreover, using this
package, the trend of the series was filtered with the LOESS
function.

To test the null hypothesis that a period is irrelevant in a
given time, the package offers the option of performing sim-
ulations incorporating white noise into the data. Statistical
significance tests for wavelet power spectra consist of deriving
theoretical wavelet spectra for white noise processes and using
these to establish significance levels and confidence intervals.
In our case, we made 100 simulations. In case of missing data,
they were replaced with the climatological values.

2.4 Predictability of time series

In order to find predictors of DJF TX90, we calculated 1-
month lagged Spearman correlations for each meteorological
station and all the indices mentioned in Sect. 2.2, i.e., DJF
TX90 was correlated with the November predictors proposed
in this study.We use only 1-month lag because several climate
services consider 1-month lag to elaborate their seasonal fore-
cast of precipitation and temperature, such as the International
Research Institute or the Argentina National Meteorological
Service. Nevertheless, some indices which describe processes
over a longer timescale were included, such as SPI at different
scales or the ONI index. Spearman correlation coefficient is a
measure of non-parametric association between two continu-
ous random variables that do not follow a normal distribution.
The statistical significance of the correlation coefficient was
tested using AS 89 algorithm considering a significance level
of 10% (Best and Roberts 1975). The null hypothesis states
that there is no monotonic association between the two vari-
ables in the population, against the alternative that there is a
monotonic correlation present. The critical value of
Spearman’s rank correlation coefficient for 45 observations
and a significance level of 10% for a two-tailed test is 0.248,
according to Zar (1984) Table B.19. It is important to note that

some stations have missing data; hence, this critical value
could be a little different.

In the particular case of ONI, the index of September–
November (SON) was correlated with DJF TX90. Moreover,
to study the persistence of the series, we also calculated and
tested the correlation of DJF TX90 with November TX90 and
TX90 in the previous season, i.e., SON TX90. Seasonal linear
trends are removed from the DJF TX90 time series to avoid a
spurious empirical relationship.

For main predictors found, the mean value of DJF TX90
was estimated for those years in which each predictor regis-
tered an above-normal value (greater than the second tercile)
and for those years in which the value of the index did not
exceed the first tercile (below normal). Then, the difference
between both means was calculated. The statistical signifi-
cance was tested using a student t test for the mean of two
samples with a confidence level of 95% and the non-
parametricWilcoxon rank sum test (Wilcoxon 1945). This test
is equivalent to the Mann-Whitney U test, which evaluates the
differences between frequency distributions. Similar results
were obtained with student t and Wilcoxon test. In general,
significant differences present absolute values above 4% of
days. In addition, the spatial patterns of the significant corre-
lations and those obtained for the DJF TX90 differences were
also similar.

Another aspect to be considered is the multicollinearity
between predictors. Multicollinearity exists whenever an in-
dependent variable is highly correlated with one or more of
the other independent variables in a multiple regression equa-
tion (Allen 1997). This fact can be a problem for some statis-
tical models—such as multiple linear regression—because it
can increase the variance of the estimated coefficients and
make the estimation very sensitive to minor changes in the
model. The result is that the coefficients are unstable and
difficult to interpret. Therefore, to detect collinearity, we ana-
lyzed the simultaneously Spearman correlations between pre-
dictors, having previously filtered the trends, and their signif-
icance was tested using AS 89 algorithm (Best and Roberts
1975). The correlations with absolute values above 0.3 were
significant at 5%.

Finally, we studied the predictability of DJF TX90 under
ENSO neutral conditions. As wementioned before, the ENSO
is one of the predominant sources of interannual climate var-
iability in the world (Trenberth and Caron 2000). The extreme
phases of the ENSO, El Niño and La Niña, modulate the mean
temperature and precipitation, as well as the frequency of
occurrence of extremes of these variables. In this sense,
Osman and Vera (2016) found that the predictability of tem-
perature, precipitation, and mean circulation over South
America increases slightly in ENSO years. Therefore, under
ENSO neutral conditions, one of the main drivers of the at-
mospheric circulation is inactive, which makes the seasonal
prediction more complicated. In order to find predictors of
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DJF TX90 under ENSO neutral conditions, the indices and
temperature extreme indices were correlated but considering
only neutral years. To determine the neutral conditions, we
considered the NOAA classification of the ENSO phases
based on the ONI index. Seventeen neutral years occurred
during the study period; hence, the critical value of
Spearman correlation with a significance level of 10% is 0.41.

2.4.1 Modeling of DJF TX90 using PCR

If we have a large number of correlated variables, we could try
to create a new set of explanatory variables which are linear
combinations of the original set and which are orthogonal to
each other (Butler and McNertney 1991). Principal compo-
nents (PCs) are based on this idea. The PCR is similar to the
standard multiple linear regression, but instead of using the
predictors directly, the PCs of the predictors are used as inde-
pendent variables. One of the main uses of PCR is to over-
come the problem of multicollinearity that arises when two or
more of the explanatory variables are close to being collinear.
However, if one of the objectives is to identify a smaller set of
predictors, PCR cannot be used for this purpose since PCs are,
by definition, linear combinations of all the original predictors
(Bunea et al. 2011). Because PCs depend on the scale of the
variables, they were standardized.

By definition, predicting the future leads us into uncharted
territory. The simplest way for us to quantify the ability of a
predictive model to perform future data is to try to simulate
this eventuality. Although we cannot, literally, gain access to
the future before it happens, we can reserve some of our cur-
rently available data and treat it as if it were future data
(Steinberg 2014). Therefore, to estimate how well the model
can predict new values, it is required to separate a dataset that
was not previously used to build the model. For this reason,
DJF TX90 was divided into a training sub-sample, or also
called a calibration sub-sample and a test sub-sample. After
having fitted the PCR in the training data subset, the model
can be evaluated in the test dataset to obtain a final objective
idea of how the models might work in the not seen data
(Brownlee 2016). We calculated bias, root mean square error
(RMSE), mean absolute error (MAE), and Spearman correla-
tion coefficient between observation in the test sample and the
modeled values (Al-Lami et al. 2017). Bias can convey useful
information but should be interpreted cautiously because pos-
itive and negative errors will cancel out. The RMSE andMAE
solve this problem: RMSE represents the sample standard
deviation of the differences between predicted values and ob-
served values, while MAE is a linear score which means that
all the individual differences are weighted equally in the av-
erage. So, RMSE penalizes the higher difference more than
MAE. On the other hand, the correlation coefficient is a mea-
sure of the strength of the association between the observed
and predicted values.

The 1970–1999 period was considered for the training
sub-sample and the 2000–2015 period for the test sub-
sample. It is desirable that the calibration period be longer
than the test period to increase the reliability of the statis-
tical analysis and allow a range of natural variability, as-
suming that the expected changes in the average climate
would be within the range of natural variability (von
Storch et al. 1993). The PCs were generated using all
the indices in Table 1. In particular the PC1 SPI indices
reflect spatial characteristics of soil moisture over the
whole studied area. In PCR, the number of principal com-
ponents is typically chosen by cross-validation in the cal-
ibration sub-sample (James et al. 2013). We compute ten-
fold cross-validation error for each possible value of the
number of principal components used, and then we chose
the number of principal components associated with the
lowest adjusted RMSE.

In the validation period, we estimate the bootstrapping pre-
diction intervals at 90% confidence level. A prediction inter-
val is a quantification of the uncertainty on a prediction. The
uncertainty comes from the errors in the model itself and noise
in the input data. If we only produce deterministic forecasts,
there is no way of telling how accurate the forecasts are.
However, if we also produce prediction intervals, then it is
clear how much uncertainty is associated with each forecast.
Following Hastie et al. (2010) and Kumar and Srivastava
(2012), we performed the steps mentioned below:

1. Randomly resample the training dataset with replacement,
each sample with the same size as the original training set.

2. Fit the PCR model to the resample data in the training
period

3. Select the model with the number of principal compo-
nents which produce the lowest cross-validation error.

4. Resample the residuals obtained for the selected model in
step 3.

5. Predict DJF TX90 in the testing period using the model
obtained in step 3.

6. Add the resample residuals to the predicted values.
7. Repeat all the previous steps 500 times in order to obtain

many possible predictions.
8. Compute prediction intervals by calculating percentiles 5

and 95 to the forecast series obtained in step 7.

3 Results

3.1 Preliminary analysis of DJF TX90 series: trends
and wavelet analysis

First, we analyzed the trends of DJF TX90 in the 1970–
2015 period and their statistical significance (Fig. 3). We
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found a predominance of positive trends, in accordance
with global warming. The significant positive trends are
located mainly in western Argentina. Only in the center
of the country, some negative tendencies were observed,
although they were not significant. The trends were filtered
for the subsequent analysis.

In order to detect non-stationary periodicities, we applied
wavelet transform to the series. Figure 4 shows the wavelet
power spectrum for one station of each region shown in Fig. 2.
Fourier periods are shown on the vertical axis and the years on
the horizontal axis. The white contours indicate the significant
periods at 10% and the black lines the local maximums of the
wavelet transform that provides an estimate of instantaneous
periods. To the right of the power spectrum, we show the
global wavelet power spectrum for each period: on the vertical
axis, the Fourier periods are shown and, on the horizontal axis,
the averages are presented. The points indicate those averages
that were significant at 5% contrasting with the spectrum that
would be obtained for the white noise.

At the eight stations, we appreciate a periodicity of 2–
4 years, probably associated with the influence of ENSO over
extreme temperature. This assumptionwill be deeply analyzed
in the following section. Low-frequency modes are present,
but these modes are discontinued in time. For example, in
Famailla, San Luis, and General Pico, a 6–8-year periodicity
was found in the 1980–1995 period approximately. In con-
trast, in Posadas and Tandil, an 8-year periodicity is presented
in the first years of the period. These particularities might be a
problem at the moment of modeling these series. Finally, in
San Luis and Junin, a weak periodicity of 16 years was de-
tected in the first half of the period. This wavelet analysis was
useful to notice that processes with a decadal variability could

also be a predictor of extreme temperature. Note that the re-
sults outside the cone of influence were not taken into account
in the analysis since errors will occur at the beginning and
ends of the spectrum because of the limited time series.

3.2 Predictors of DJF TX90

3.2.1 TX90 as predictor

First, in order to evaluate the persistence, we studied the cor-
relation between November TX90 and DJF TX90, and the
correlation between SON TX90 and DJF TX90. The results
are presented in Fig. 5. Reflecting persistence, both maps
show significant positive correlations in a large number of
stations. A positive correlation implies that the current state
of the index endures for the next season, i.e., if SON TX90
presents a low value, DJF TX90 will also show a low value.

Therefore, the previous values of TX90 are relevant for
predicting the summer occurrence of warm days, and it could
be considered a predictor of this variable. However, we found
differences between the two correlation maps. The correlation
between SON TX90 and DJF TX90 shows a higher (lower)
number of stations with significant correlations in the north
(central) Argentina in comparison with the correlation be-
tween November TX90 and DJF TX90.

3.2.2 Modes of climate variability

The main modes of climate variability that affect the circula-
tion of South America through teleconnections were correlat-
ed with DJF TX90. Figure 6a presents the percentage of sta-
tions with significant correlations at 10%. The results showed
that the ENSO and PDO in November presented a strong
association with DJF TX90 at several stations. Among
ENSO indices, Niño 4 had the best performance with 64%
of stations significantly correlated.

Figures 7a and b show the difference between mean DJF
TX90 for years when November Niño 4 exceeded the second
tercile and mean DJF TX90 for years when the indices were
lower than the first tercile, and the same for PDO. Both fields
present negative values in the entire domain, except in north-
western Argentina. For Niño 4, the significant negative differ-
ences are located mainly in the center and southeastern of the
region, while PDO shows the maximum absolute values in
northeastern Argentina. According to these results, El Niño
condition in November is associated with fewer warm days
in summer, and the opposite occurs under La Niña events. The
link between the ENSO and the extreme temperature is prob-
ably due to the changes generated by the ENSO on circulation
and precipitation in Argentina. Finally, other modes, such as
SAM or IOD, would not have an influence on DJF TX90
while November TSA was significantly correlated with DJF
TX90 only at a few stations. These results are in agreement

Fig. 3 Trends of DJF TX90 in the 1970–2015 period [%/year].
Significant positive trends are represented with solid up triangles, non-
significant positive trends with small up triangles, and non-significant
negative trends with down triangles. The range of significant positive
trends at 5% is 0.12–0.48%of days/year
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Fig. 4 Wavelet of DJF TX90 power spectra (shaded, units: % of days2).
Wavelet power spectrum: Fourier periods (in years) are shown on the
vertical axis and the calendar years on the horizontal axis. White
contours indicate the significant periods at 10%, and the black lines the
local maximums of the wavelet transform that provides an estimate of
instantaneous periods. Global wavelet spectrum: on the vertical axis the
Fourier periods (in years) are shown and on the horizontal axis, the

averages of the wavelet power are presented (right, units: % of days2).
The points indicate those averages that were significant at 5% contrasting
with the spectrum that would be obtained for the white noise. a Posadas
Aero (Group 1). b Familla (Group 2). c San Luis Aero (Group 3). d Pilar
Obs. (Group 4). e Parana Aero (Group 5). f Junin Aero (Group 6). g
Tandil Aero (Group 7). h General Pico Aero (Group 8)
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with previous work that found that the influence of SAM
and IOD is particularly strong during the spring. In par-
ticular, the positive phase of the SAM is associated with
an intensification of an anticyclonic anomaly of high
levels, a weakening of the convergence of humidity and
a decrease in precipitation over southeastern South

America (SESA) and warmer conditions in Patagonia
(Silvestri and Vera 2003; Gillett et al. 2006). Regarding
the IOD, Saji et al. (2005) found significant partial cor-
relations between IOD and mean temperature during
SON in northern Argentina, Uruguay, Paraguay, Bolivia,
and Brazil.

Fig. 6 Percentage of stations significantly correlated at 10%. The
correlations were calculated between the different candidates to
predictors in each November and subsequent DJF TX90 in the 1970–

2015 period. a Climate indices. b Regional atmospheric circulation. c
Standardized precipitation indices. d Sea surface temperature and outgo-
ing longwave radiation

Fig. 5 Correlation between DJF TX90 and November TX90 (left) and SON TX90 (right). Significant positive correlations (big dots), non-significant
correlations (small dots). Significant level 5%; the general lower limit of significance correlation at each station is 0.3
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3.2.3 Regional atmospheric circulation

In general, the regional atmospheric circulation indices of
November appear to have little and located influence in

summer warm days (Fig. 6b). Some selected indices were
analyzed: U250 (representative of the subtropical jet),
AAINT (associated with SAA), and B70 (related to atmo-
spheric blocking). We observed that an above-normal

Fig. 7 Difference fields between DJF TX90 for years when the predictors exceeded the second tercile and the same for years when the index was lower
than the first tercile [% of days] for a El Niño 4, b PDO, c U250, d AAINT, e B70, f SPI1, g PC1 SPI12 and h SST30. Significant level 5%
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intensity of the subtropical jet in November is associated with
a lower (higher) occurrence of warm days in northeastern
(northwestern) Argentina (Fig. 7c). Consistently, Barros
et al. (2002) found similar results for mean temperature in
northeastern Argentina since they observed that an intense
jet is associated with more passages of cold fronts which pro-
duce a decrease of temperature.

In southern and southeastern parts of the studied re-
gion, AAINT might be a good predictor of warm days:
this index is positively correlated with DJF TX90 (Fig.
7d). This relationship is probably due to the fact that an
intense SAA favors an increase of warm advection from
the north (Fig. S1). While in the central region, the occur-
rence of atmospheric blockings in November (high values
of B70) is associated with below-normal occurrence of
summer warm days; hence, B70 could be considered a
predictor of DJF TX90 in that region (Fig. 7e).

3.2.4 Atlantic SST and South American monsoon

The Atlantic SST and convection associated with South
American monsoon do not seem to be suitable predictors
of DJF TX90. The most relevant predictor is SST30 which
is significantly correlated with DJF TX90 in 30% of the
weather stations analyzed (Fig. 6d). Significant negative
differences were found in southeastern of the domain
(Fig. 7h). Therefore, above-normal SST on the coast of
southern Brazil in November is associated with a reduction
of the number of warm days in summer. Awarmer Atlantic
on the coasts of Brazil generates more humidity available
in the atmosphere that is advected to Argentina by the
northern winds on the western flank of SAA and produces
an increase of cloudiness and precipitation in eastern
Argentina (González et al. 2016). Figure S2 endorses this
hypothesis by showing a positive simultaneous correlation
between SST30 and precipi ta t ion of the Global
Precipitation Climatology Project (GPCP) in November.
The link between previous rainfall and the extreme temper-
ature is through soil moisture–atmosphere feedback: wet
soils tend to inhibit extreme warm events because of evap-
orative cooling.

We did not find significant correlations between November
SACZ and DJF TX90 at 5% significance level (critical value
of significant correlations is 0.294), and only 16% of stations
were significantly correlated at 10%. These few significant
correlations may be due to the fact that convection in tropical
regions operates more on intra-seasonal scales than on a sea-
sonal scale (Cerne and Vera 2010; Alvarez et al. 2016).

3.2.5 Soil moisture conditions

The SPI was used as a proxy of soil moisture. For each mete-
orological station, we calculated the correlations between DJF

TX90 and November SPI. We considered here the SPI com-
puted for 1–3-, 6-, 9-, and 12-month accumulation periods.
These correlations were statistically tested at a 10% signifi-
cance level. The DJF TX90 index shows a strong correlation
(between − 0.25 and − 0.6) with SPI in almost half of the
locations (Fig. 6c). In addition, the correlations between DJF
TX90 and the first principal component (PC1) of SPI indices
were also significant at many stations. When considering the
PC1 of SPI indices, the percentage of stations significantly
correlated only improves considerably for SPI12.

As we mentioned before, one reason for the increase of
summer warm days is the precipitation deficits that occur in
the preceding months. The SPI allows us to represent the lack
of rainfall during a prolonged period. Moreover, these precip-
itation deficits are usually the results of several climate drivers
some of which were taken into account individually in this
work (e.g., La Niña events produce a reduction of precipita-
tion in southeastern South America) but only with 1-month
lag. Consequently, the SPI can integrate the effect of several
processes which influence the precipitation rate at multiple
timescales and have a more complete analysis.

Figure 7f illustrates this relationship: when dry condi-
tions (negative SPI1) are present in November, warm con-
ditions in summer will probably be favored. Two sectors
showed significant differences of DJF TX90 between op-
posite phases of soil moisture (wet and dry conditions):
one located in the north and the other in central-south of
the domain. This finding is consistent with Mueller and
Seneviratne (2012) since they found a significant relation-
ship between the SPI indices and the number of warm
days in Argentina during the summer.

Furthermore, Fig. 7g indicates a negative correlation be-
tween November PC1 of SPI12 and DJF TX90, being signif-
icant in all central and northern regions. Therefore, soil mois-
ture not only influences locally but a general dry condition
benefits the occurrence of summer warm days.

3.3 Collinearity of predictors

The collinearity between the indices was analyzed in the
1970–2015 period through Spearman’s simultaneous cor-
relations, having filtered the trends previously (Fig. 8). As
it was expected, the variables which represent the same
phenomenon are significantly correlated, such as the
ENSO indices, the first principal component of the SPI,
the wind indices at upper levels, or the blocking indices.
However, not only the predictors associated with the same
phenomenon are correlated with each other. For example,
ENSO indices are significantly correlated at 5% with IOD
(0.57–0.65), subtropical jet (0.29–0.56), PDO (0.4–0.65),
the first principal component of SPI of 1, 3, and 6 months
(0.39–0.61), among others, which emphasized how rele-
vant is ENSO for seasonal predictability of extreme
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temperature in Argentina. In brackets, we display the
range of the absolute values of the significant correlations.

In particular, analyzing only the predictors in Fig. 7, we
found that El Niño4 index is significantly correlated at 5%
with PDO (0.46) and SST30 (0.50), and the U250 index is
associated with B70 (0.46). Correlation values are in brackets.
Then, we fitted a multiple regression model to each station in
the training period by using only these eight predictors and
calculated the variance inflation factor (VIF) to measure the
multicollinearity (see more details in the supporting informa-
tion). The VIFs take values between 1.9 and 4 which indicate
some multicollinearity, but not extremely severe. However,
we decided to choose a model which was capable of dealing
with this problem in order to obtain better results, since
multicollinearity makes the estimation very sensitive to minor
changes in the model. Potential solutions include remove
some highly correlated predictors or use partial least squares
regression (PLS) or principal components regression methods
that cut the number of predictors to a smaller set of uncorre-
lated components (Jackson 1991).

3.4 Modeling DJF TX90

To solve the collinearity problem of predictors, we fitted a
PCR to all DJF TX90 series on the training sub-samples and
then we applied this model to the test sub-samples in the
2000–2015 period. Figure 9 shows the observed and modeled

DJF TX90 for eight representative stations, one from each
region. In addition, Table 2 presents statistical scores to eval-
uate the performance of the simulation using PCR. The corre-
lations between the observed and modeled DJF TX90 were
significant at 5%, except in Famailla. The critical value of
Spearman’s rank correlation coefficient for 15 values and a
significance level of 5% for a two-tailed test is 0.52 according
to Zar (1984) Table B.19. The prediction interval gives an
interval within which we expect DJF TX90 to lie with a spec-
ified probability, in this case, 90%. Figure 9 shows that the
prediction intervals usually contain the observed values with
only a few exceptions.

Considering all statistical scores, Famailla station in
northwestern Argentina (group 2) showed the worst re-
sults of the model, with a RMSE of 11.0% and MAE of
8.4%, while in other regions, the RMSE and MAE were
approximate of 7.0% and 5.0% respectively. At the eight
stations, the RMSE of predictions were of the order of
one standard deviation of DJF TX90 obtained in the cli-
matological period. These poor results for the stations in
northwestern Argentina were possibly related to that we
found few predictors for DJF TX90: only PC1 SPI12 and
ENSO showed significant correlations at several stations
(Fig. S3). On the other hand, Paraná Aero in group 5 was
one of the best according to the scores: it had the lowest
RMSE and MAE, a bias of only − 0.6% and a correlation
of 0.70.

Fig. 8 Simultaneous correlations
between the indices in November.
Negative values are presented
with stripes. Significant
correlations at 5% present values
above 0.3
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In the eight locations analyzed, we found negative biases of
the model, i.e., the model underestimated the DJF TX90. In
particular, the year 2013 was clearly underestimated by the

model at the eight stations; even more, the observed value
exceeded the upper limit of the prediction interval. Many re-
gions of the country had their warmest December on record in

Fig. 9 Observed (solid line) and modeled (dashed line) DJF TX90 using PCR in the test sub-sample for eight stations, one from each region. The
prediction intervals at 90% of confidence level is shown in gray
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2013 due to the most significant heat wave in Argentina since
February 1987 (NOAA 2014). Probably, the occurrence of
this unusual extreme heat wave made it difficult for the model
to represent it properly. The analysis of the atmospheric dy-
namics shows that the high temperatures during December
2013 were primarily associated with an intensification of the
SACZ, which jointly caused simultaneous extreme rainfall
events in Southeastern Brazil, and the presence of an anticy-
clonic circulation anomaly over central Argentina (Hannart
et al. 2015).

3.5 Predictors of DJF TX90 under ENSO neutral
conditions

We showed that ENSO is an important source of predictability
for DJF TX90. In addition, we noticed that the year 2013, in
which the model had problems to simulate the high values of
DJF TX90, was a neutral year. These reasons motivated to
study what happens when the strong signal of the ENSO is
off and if the predictors under ENSO neutral conditions are
different from those found in Sect. 3.2.

Under ENSO neutral conditions, we observed that the sig-
nificant correlations of DJF TX90 with almost all the indices
are reduced (Fig. 10). Both PDO and SPI lose relevance as
predictors of DJF TX90, while B70 does not show big chang-
es in the percentage of stations with significant correlations.
This behavior is probably due to the fact that ENSO is strongly
correlated with PDO and SPI, while B70 is independent of
ENSO conditions (Fig. 8). Among the predictors that become
more relevant in neutral conditions can be mentioned AMO,
Z3-Z1, U1, and IOD.

In northeastern Argentina, PDO and SPI indices are still the
main predictors, but a new predictor is added: AALON, which
presents significant positive correlation at several stations of
the region (Fig. S4a). Therefore, a shift to the east of the SAA
favors an increase of DJF TX90 under ENSO neutral condi-
tions. In northwestern Argentina, AMO and Z3-Z1 become
predictors of DJF TX90 at some stations, while SPI indices
continued to be prominent predictors (Fig. S4b). In the Cuyo
region, the main predictors are U1, Z3-Z1, and PC1 SPI12
(Fig. S4c). In the central region, PDO is no longer a useful

predictor under neutral conditions, but PC1 SPI12 remains as
a predictor at a few stations and Z3-Z1 is incorporated as a
new one (Fig. S4d). In region 5, the PC1 SPI of 1, 9, and
12 months are useful predictors of DJF TX90 at almost all
stations. Other predictors are PDO, U250, and Z3-Z1 (Fig.
S4e). In region 6, there are few significant correlations, and
the predictors present a great variability among stations (Fig.
S4f). In the southeast of the domain, AAINT is an important
predictor under all phases of ENSO, while SPI is only impor-
tant at one station (Fig. S4g). Finally, in region 8, the main
predictors are U1, U1/U2, APINT, and SPI12 (Fig. S4h).

Therefore, we noticed that the geopotential height gradient
at 850 hPa (Z3-Z1) becomes a relevant predictor of DJF TX90
in several regions under ENSO neutral conditions. Both var-
iables are negatively correlated, so a strong gradient inhibit the
occurrence of summer warm days in neutral phases probably
because it favors the entrance of humid air from the north that
increases the rainfall in the region. The zonal wind in the
northern flank (U1) is positively correlated with DJF TX90
in the Cuyo and south regions. In this regard, Zamboni et al.
(2010) have shown evidence of a simultaneous linear relation-
ship at interannual time scales between precipitation anoma-
lies over southeastern South America and the interannual var-
iability of upper-level wind during spring, summer, and fall.
Therefore, stronger winds at upper levels are associated with
rainfalls in northeastern Argentina, and clear skies in the south
and western region which could explain the increase in sum-
mer warm days.

4 Summary and discussion

In the present work, we made a detailed study about the sea-
sonal predictability of extremely warm daily summer temper-
atures (DJF TX90) in Argentina north of 40°S, using data in
the 1970–2015 period. The predictability of an event is de-
rived from many processes and mechanisms that exhibit a
wide range of time scales. Therefore, we analyzed a large
number of predictors: global climate indices, regional circula-
tion indices, standard precipitation indices, and SST in the
nearby ocean.

Table 2 Statistical scores (bias,
RMSE, MAE, correlation
coefficient) calculated between
observed and modeled DJF TX90
using PCR in the test sub-sample

Bias [% of days] RMSE [% of days] MAE [% of days] Correlation

Posadas—Group1 − 3.2 7.7 6.4 0.53

Famailla—Group 2 − 7.7 11.0 8.4 0.26

San Luis—Group 3 − 4.8 7.3 5.0 0.63

Pilar Obs—Group 4 − 4.6 8.2 5.9 0.66

Paraná Aero—Group 5 − 0.6 6.0 4.7 0.70

Junín—Group 6 − 5.6 6.9 5.7 0.74

Tandil—Group 7 − 3.7 6.5 4.8 0.60

General Pico—Group 8 − 2.8 8.0 6.7 0.56

S. Collazo et al.



We detected significant positive trends in DJF TX90 series,
mainly in the western part of the domain, which was filtered
for the rest of the analysis. Wavelet transform allows us to
distinguish the main periodicities and their persistence over
time.We found periodicities of 2–4 years, probably associated
with ENSO, and low-frequency signals (approximately
8 years) that were not present during the entire study period.

Using Spearman lagged correlations, we looked for predic-
tors of summer warm days. The TX90 index in the previous
month and season are predictors of summer warm days which
indicates persistence in the series. Other main predictors are
ENSOwhich is reinforced by PDO, SPI in different terms, and
atmospheric blocking at 70°W (B70). The occurrence of El
Niño events is associated with a reduction of the summer
warm days, mainly because El Niño produced an increase in
precipitation in southeastern South America and a reduction in
northwestern Argentina. By teleconnection processes, there
are significant impacts on seasonal and monthly precipitation
amounts in several regions of South America during the dif-
ferent phases of the ENSO (e.g., Ropelewski and Halpert
1987, 1989; Aceituno 1988; Rao and Hada 1990; Grimm
et al. 1998, 2000; Vargas et al. 1999; Grimm 2003, 2004).
This increase in the rainfall is associated with an increment
of cloudiness, and a reduction of sensible heat flux joined with
an increase of the latent heat flux, which could explain the

reduction of summer warm days during El Niño. PDO is gen-
erally associated with an influence on climate similar to that
produced by the ENSO in South America, but with much less
influence (Garreaud et al. 2009). In this sense, Kayano and
Andreoli (2007) indicated that the ENSO and the PDO act
constructively on the precipitation of South America when
both are in the same phase. For extreme temperature, we also
found that ENSO and PDO act constructively on summer
warm days, a positive phase of PDO in November is associ-
ated with lower values of DJF TX90 just like El Niño.

Due to the robustness of their thermohydrodynamical
structure, blocking episodes tend to prevent the normal pro-
gression of transient systems (e.g., cold fronts and
extratropical cyclones), favoring adverse and persistent mete-
orological conditions over the nearby regions (Mendes et al.
2008). The negative correlations found between DJF TX90
and B70 were consistent with Alessandro (2014) who found
negative anomalies of mean temperature and an increase of
precipitation northern of 38°S in summer.

Both short-term and long-term soil memory appear to be
important predictors of summer warm days: a low value of
SPI indicates dry conditions which benefit warmer conditions
due to soil moisture–atmosphere feedback. This relationship
between the precipitation deficit and the subsequent occur-
rence of hot extremes is due to the fact that in dry soils, the

Fig. 10 Difference of the percentage of stations correlated significantly (at 10%) with the indices when only the ENSO neutral conditions are considered
with respect to the previously observed in Fig. 6
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evaporation cooling is reduced, and the sensible heat flow is
increased (Seneviratne et al. 2010; Hirschi et al. 2011; Mueller
and Seneviratne 2012). Therefore, moist soils act over tem-
perature through feedbacks by reducing the occurrence of
warm extremes of maximum temperature. We found that SPI
indices are also relevant predictors of DJF TX90.

We decided to fit the principal component regression to the
DJF TX90, with all the predictors we had studied, in order to
obtain a statistical model to predict extreme warm tempera-
tures on a seasonal scale in summer. We employed this model
because is capable of dealing with the collinearity of predic-
tors. The performance of the PCR model applied in this work
is reasonably good for the test period: the statistical scores
showed significant correlations between the observed and
modeled data at the eight stations analyzed with the exception
of Famailla located in northwestern Argentina. The model
presented negative bias at the eight locations, varying from
− 0.6% in Paraná to − 7.7% in northwestern Argentina. In
particular, we also noticed that at all the stations, the year
2013 was the most difficult to predict due to the unusual ex-
treme heat wave that occurred in December, under an ENSO
neutral phase.

Considering the relevance of ENSO as a source of pre-
dictability of DJF TX90, we decided to look for predictors
under ENSO neutral conditions. We found more dispersed
results between stations. The influence of SPI, principally
for a 12-month accumulation period, is still important as
predictor due to dry soils benefitting the occurrence of
summer hot days, but new predictors appear, mainly asso-
ciated with SAA intensity and position, the north advec-
tion, IOD and AMO. As the ENSO, the IOD modifies the
general circulation via anomalous convection that pro-
duces Rossby waves (Saji and Yamagata 2003) and influ-
ences the climate in several regions around the world.
Regarding the AMO, the atmospheric patterns associated
with the positive phase include cyclonic anomalies over
the Atlantic between 20°S and 50°N, wind speed reduction
over the tropical Atlantic and increase in precipitation in
the eastern tropical Atlantic, with opposite conditions dur-
ing the negative phase of the AMO. Moreover, the corre-
lation between the AMO and temperature anomalies is pos-
itive over a large part of the globe between 40°S and 50°N
(Alexander et al. 2014). On the other hand, when the low-
level jet (associated with high values of Z3-Z1 index) is
strong, the moisture flux is strongest towards southeast
South America increasing precipitation in this region, and
when the low-level jet is weak, the moisture flux inten-
sifies towards southeast Brazil increasing precipitation in
the SACZ region (Doyle and Barros 2002; Liebmann et al.
2004; Marengo et al. 2004).

This article presents a statistical model approach to predict
an extreme temperature index on a seasonal scale that can be
useful to reduce the impacts of these extreme events on

different sectors such as agriculture, health, and energy. The
fitted PCR model is one of the first attempts to construct a
seasonal forecast of an extreme temperature index in
Argentina based on empirical methods. The satisfactory re-
sults obtained in this work encourage us to continue working
to develop an operational probabilistic seasonal forecast based
on this statistical model along with others that may be gener-
ated in the future.
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