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ABSTRACT: The scientific community is working against the
clock to arrive at therapeutic interventions to treat patients with
COVID-19. Among the strategies for drug discovery, virtual
screening approaches have the capacity to search potential hits
within millions of chemical structures in days, with the appropriate
computing infrastructure. In this article, we first analyzed the
published research targeting the inhibition of the main protease
(Mpro), one of the most studied targets of SARS-CoV-2, by
docking-based methods. An alarming finding was the lack of an
adequate validation of the docking protocols (i.e., pose prediction
and virtual screening accuracy) before applying them in virtual screening campaigns. The performance of the docking protocols was
tested at some level in 57.7% of the 168 investigations analyzed. However, we found only three examples of a complete retrospective
analysis of the scoring functions to quantify the virtual screening accuracy of the methods. Moreover, only two publications reported
some experimental evaluation of the proposed hits until preparing this manuscript. All of these findings led us to carry out a
retrospective performance validation of three different docking protocols, through the analysis of their pose prediction and screening
accuracy. Surprisingly, we found that even though all tested docking protocols have a good pose prediction, their screening accuracy
is quite limited as they fail to correctly rank a test set of compounds. These results highlight the importance of conducting an
adequate validation of the docking protocols before carrying out virtual screening campaigns, and to experimentally confirm the
predictions made by the models before drawing bold conclusions. Finally, successful structure-based drug discovery investigations
published during the redaction of this manuscript allow us to propose the inclusion of target flexibility and consensus scoring as
alternatives to improve the accuracy of the methods.

■ INTRODUCTION

By the end of 2019, a new type of coronavirus, the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), was
detected in humans for the first time, and it was identified as
being responsible for the disease known as COVID-19.1

Nowadays, the virus has spread all over the world. The
scientific community has joined forces to arrive at therapeutic
interventions, which include tools for immunization (such as
vaccines or hyperimmune globulin), the repositioning of
known drugs (such as Hydroxychloroquine, Chloroquine,
Remdesivir, and Oseltamivir), and the development of novel
antiviral compounds.2,3 For the last two strategies, in silico drug
discovery tools have become an interesting option, particularly
if we consider the current capacity of the computers to analyze
millions of structures in short periods of time, even days when
the necessary computing power is available. In addition to the
advantage of speeding up the search process, the use of
computational approaches allows the researchers to continue
working at home (at least partially) with remote access to their
computational facilities. This fact is opportune considering
that, in many parts of the globe, total or partial isolation

continues to be one of the government’s main measures to
prevent the spread of the virus.
Molecular docking (or just “docking”) consists of simulating

the interaction between two partners, usually a small molecule
(such as a drug candidate) and a biological target.4,5 The
docking software combines a search algorithm to explore
different conformations and orientations of the ligand into a
predefined binding site, using a scoring function to estimate
the binding energy associated with each generated pose.5 As a
result, the program yields a ranking of the best solutions, that
is, the poses with the lowest binding energy.
Docking calculations can be applied to chemical databases of

small molecules, in order to rank them according to the
predicted binding energy. This strategy is known as target- or
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structure-based virtual screening and can be helpful in selecting
the best candidates to be synthesized, acquired, or evaluated in
wet experiments. Moreover, it provides initial hypotheses
about the binding mode of the compounds, which can be a
useful starting point for hit optimization.
One of the main limitations of the method relates to how it

models the conformational changes in the protein triggered
upon binding of a small molecule. The inclusion of full
flexibility would imply searching into the whole protein−ligand
complex’s conformational landscape, which requires significant
computational resources and thus limits the application of
highly flexible docking protocols for virtual screening purposes.
However, strategies to allow protein flexibility at some level
can be incorporated, such as considering a few residue side
chains as flexible during the simulation, or docking each ligand
on several 3D structures of the target (ensemble docking).4−8

Moreover, postprocessing approaches such as flexible mini-
mization of the complexes or even more sophisticated
simulations like molecular dynamics can be applied to model
protein flexibility.5,9 Additionally, the performance of docking
software is highly dependent on the biological system under
study. Miscalculations could originate from the lack of
information about the experimental 3D structure of the target
(or about the location of the active site), or from a deficiency
of the search algorithms to adequately explore the conforma-
tional space of the ligands. Other concerns are the limitations
of the scoring functions to assign the lowest score to the
binding conformation among all the poses explored or to rank
the most active compounds at the top positions in a virtual
screening campaign. The latter often results in a high false
positive rate.10−13 To gain confidence about the capacities of
the docking programs and protocols to analyze the specific
molecular system under study, docking performances can be
measured and compared. Two different types of test are usually
applied: one to evaluate the ability of the software to find the
correct binding pose (which is known as pose prediction or
docking power), and the other one to analyze its ability to
identify the active compounds by its docking score (which is
known as virtual screening accuracy or screening power).14−17

To test the pose prediction, experimental information about
the binding mode of a ligand into the target is essential. The
compound is first removed from the experimental complex and
then docked into the macromolecule to regenerate the system
(redocking). Additionally, the ligand can be removed from the
complex and then docked into another 3D structure of the
target, if available (cross-docking). The root mean squared
deviation (RMSD) of the position of the ligand’s atoms is a
commonly used metric to assess the agreement between
predicted and experimental binding poses.17

The screening accuracy is used to measure the aptitude of
the scoring function to retrieve active structures among a set of
compounds. A test set with known binders among a pool of
nonbinders (inactive compounds, decoys, or random struc-
tures) is necessary for this purpose, and enrichment metrics,
like the area under the receiver operating characteristic curves
(AUCROC), can be used to analyze the capacity of the
software to discriminate binders from nonbinders.17,18

The confidence in docking predictions is increased by using
in silico validation protocols prior to submitting emerging hits
to experimental confirmation. Throughout the following
sections, we will first analyze the published research in the
field of drug discovery of active compounds to treat COVID-
19 by means of docking-based methods. We will focus on the

publications available online that involve the search for
inhibitors of the SARS-CoV-2 main protease (Mpro, also
called 3CLpro), one of the most studied targets of SARS-CoV-
2 and other coronaviruses. Second, based on the alarming
findings during the literature analysis, we will carry out an
evaluation of the performance of three different docking
protocols for the Mpro-inhibitors system, through the analysis
of their pose predictions and virtual screening accuracies under
different conditions.

Main Protease and Its Inhibitors. SARS-CoV-2 Mpro is
a cysteine protease with a crucial role in the viral life cycle. It
catalyzes the cleavage of the polyproteins translated from the
viral RNA in the replication process of the virus.19,20

Furthermore, the enzyme recognizes the cleavage sites into
the polypeptide after a Gln residue. At most sites, the sequence
is Leu−Gln−(Ser, Ala, Gly), which is not observed in human
proteases.20 So, inhibiting its activity would block the viral
replication, and the inhibitors are unexpected to be toxic for
the host (at least at the target level), making it a very promising
target.
The enzyme is catalytically active as a homodimer, and each

subunit has 306 residues constituting three domains (Figure
1).20 Domains I and II share the antiparallel six-stranded β-

barrel structure, whereas domain III consists of five α-helices
arranged into a largely antiparallel globular cluster and
connected with domain II by a loop of 13 amino acids
(residues from 185 to 198). The binding site involves the
Cys145−His41 catalytic dyad and is placed at a cleft between
domains I and II (Figure 1). As is usual in proteases, there are

Figure 1. Crystal structure of Mpro taken from the Protein Data Bank
(PDB ID: 6LU7). (A) The three different domains for each monomer
are shown (I−III/I*−III*). The catalytic dyad is depicted as blue
(His41) and yellow (Cys145) spheres. (B) The covalent inhibitor N3
into SARS-CoV-2 Mpro binding site. N3 is depicted as cyan sticks,
whereas catalytic His41 and Cys145 are colored in blue and yellow,
respectively.
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other important binding subsites near the cleavage region of
the substrate named S5 to S1 and S1′, corresponding to the
positions of its P5 to P1 and P1′ residues, respectively (the
cleavage point of the substrate is the bond between amino
acids P1 and P1′).20
Regarding the discovery of inhibitors, some structure-based

strategies targeting the dimer interface were explored to find
dimerization inhibitors,21 but most approaches involved the
search of small molecules that interact with the previously
described substrate-binding regions. Many structures of Mpro
in its apo (no ligand-bound) or holo conformations (bound
with inhibitors or molecular fragments) have been deposited in
the Protein Data Bank (PDB), giving valuable experimental
support for the discovery of novel modulators. Most of them
were solved by X-ray diffraction, but there was one valuable
exception elucidated by Kovalevsky et al. (PDB ID: 7JUN) by
means of neutron difraction.22 This is a powerful technique for
unraveling the protonation states of amino acids, information
that is lacking in standard X-ray experiments.23−26 Further-
more, the diffraction data were collected at room temperature,
so these protonation states were determined closer to
physiological conditions than in the case of X-ray cryo-
crystallographic measurements.22

Literature Analysis of Virtual Screening Campaigns.
Considering the increasing amount of structural information
available for Mpro, a widely chosen strategy to discover novel
inhibitors is to perform docking-based virtual screening
campaigns targeting this viral protease. During the year 2020,
computational researchers around the globe carried out
numerous investigations in this regard, which were translated
into published articles. We analyzed their research by means of
a literature survey, focused on original articles indexed in the
PubMed and Scopus databases27,28 until August 30th, 2020.
We used the following keywords as search criteria (occurrence
in the title/abstract of the publications): (docking OR in silico
OR virtual screening) AND (Mpro OR main protease OR
3CLpro) AND (COVID OR COVID-19 OR SARS-CoV-2).
After manual curation of the 194 resulting original articles, we
retained 168 for further analysis, as they actually reported the
use of a docking-based virtual screen to find potential
inhibitors of Mpro of SARS-CoV-2. The list of articles is
provided as Supporting Information (Table S1). Figure 2
shows the main information compiled after our survey.

Mpro Structures. We found that most docking protocols
(96.4%) used experimental structures of SARS-CoV-2 Mpro as
targets (instead of homology models), thanks to the early
availability of crystallographic data. The coordinates were

Figure 2. (A) PDB IDs of the Mpro crystal structures, sorted by the frequency of use in the analyzed investigations. (B) Percentage distribution of
the docking programs used. Autodock Vina includes QuickVina, Smina, and YASARA. (C) Percentage distribution of the validated and
nonvalidated screening reports.
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taken from PDB entries (Figure 2A), and the main structure
used was the one elucidated by Yang et al. (PDB ID: 6LU7).29

It was the first 3D structure of the enzyme published, and it
includes a peptide-like inhibitor (N3) in its binding site,
covalently bound to Cys145 (Figure 1). It is worth mentioning
that some in silico screens were conducted on previously
elucidated structures of SARS-CoV (PDB IDs: 2GTB, 1Q2W,
5N5O, and 4MDS), which have a high sequence identity
(96%) with the SARS-CoV-2 protease.30

Docking Software and Performance Evaluation. Regard-
ing docking software, the most popular was Autodock Vina,
used in 44.6% of the articles (including QuickVina, Smina, and
YASARA; Figure 2B). Autodock Vina is a widely known
docking program, and it is freely available for noncommercial
use.31 Software like the Schrödinger package (Glide; 23.2%),
Autodock4 (15.5%), and the Molecular Operating Environ-
ment platform (MOE; 7.1%) were also chosen in several
campaigns.32−36

The performance of the programs on the Mpro system was
examined prior to virtual screening in 57.7% of the analyzed
investigations (Figure 2C). Among them, 29.9% tested both
the pose prediction and the virtual screening accuracy, while
the rest verified only one of them (28.9% pose prediction and
41.2% virtual screening accuracy). It is worth noting here that
the existence of a virtual screening accuracy analysis was
counted not only in the investigations where a test set was built
but also in those where the comparison of the score values was
carried out in some way. The literature analysis reveals that
among the cases with virtual screening accuracy calculations, in
95.6% of the investigations the authors use the score of a
known active compound (or a small set of active structures) as
a reference value to select the hits from the virtual screening.
And surprisingly, only the remaining 4.4% of the cases used
test sets (with active and inactive/decoy/random compounds)
to evaluate the performance in a retrospective screen (based on
ROC curves or another related metric), prior to the
prospective campaign.37−39

A model with adequate pose prediction provides higher
confidence about the predicted binding mode of the hits,
which can be helpful to discard false positives by visual
inspection, as well as to aid the potency optimization of the
hits after confirming their biological activity. On the other
hand, good virtual screening accuracy supports the selection of
top-ranked compounds as potential hits to be experimentally
evaluated. Both types of evaluations can aid in the selection of
the software and docking conditions to find true hits in virtual
screening campaigns and should be indispensable when
applying these kinds of methodologies for drug discovery.
Prior benchmarking studies on the performance of docking
programs across a diversity of modeled systems show that,
while the ligand binding poses that reproduce the experimental
conformations can be identified in most cases, the ranks of the
binding affinities are usually not well represented by the rank
of scores, which vary substantially across protein families.40−42

This reaffirms the utter importance of validating not only the
pose prediction but also the virtual screening accuracy if
molecular docking is applied as a part of a virtual screening
workflow, when possible.
Chemical Databases. In addition to examining what

software and conditions the researchers used to find active
compounds, we analyzed what universe of structures they
considered for this task. The 41.1% of the screens were
performed on data sets of approved drugs, like ZINC-FDA,

superDRUG2, or DrugBank databases (in some cases drugs in
clinical trials were also included).43−46 The strategy of finding
new medical uses for existing drugs is known as drug
repurposing and offers advantages in terms of cost and speed
of the drug development pipeline.47 Repurposed drugs have
proven safety in the context of their original indication, so they
are less likely to fail in the initial stages of the clinical trials (for
the new therapy) than de novo drugs.48 These advantages
explain why the repurposing approach has been extensively
applied in COVID-19-related projects, given the urgent need
for therapeutic solutions.3 So far, Remdesivir is the only
example of a repositioned drug approved to treat COVID-19,
though other drugs, including repurposed ones, have been
approved for emergency use.3,49,50

Natural products are another commonly explored source of
COVID-19 drug candidates, as observed in 39.9% of the
investigations. Researchers looked for hits in focused libraries
of molecules occurring in specific extracts, as well as in larger
sets of natural products, such as the Traditional Chinese
Medicine data set; the Indian Medicinal Plants, Phytochem-
istry And Therapeutics (IMPPAT) database; the Marine
Natural Products database; the Selleck Natural Products
library; or the Natural Products Atlas database.51−55 The
search of active compounds of natural origin provides access to
diverse and complex scaffolds, which are sometimes challeng-
ing for scaling up to massive production. However, once a hit is
confirmed, simpler related structures can be proposed to
maintain (or increase) the biological activity. One suitable
example of the simplification strategy is chloroquine (a drug
primarily used to treat malaria), which resulted from the
structural analysis of the quinine molecule isolated from the
extracts of the Cinchona tree.56

According to our literature analysis, known drugs and
natural products are the most frequent chemical space explored
to find inhibitors of Mpro. We have grouped the remaining
screened data sets under the term “General,” which includes
large libraries with commercially available chemical com-
pounds such as ZINC, PubChem, ChEMBL, and Molport, as
well as in-house compiled libraries.43,57−59 It is worth
mentioning that in several investigations additional criteria
were applied before the docking simulations, such as
ADMETox filters, similarity searches, and other ligand-based
methodologies.60−66 By doing so, the computational cost to
perform a target-based virtual screening can be drastically
reduced, either by filtering out compounds that are not
expected to display an adequate pharmacokinetic profile or by
exclusively docking structures that are more likely to be active
according to independent (and cost-efficient) models.

Molecular Dynamics Simulations and Rescoring Func-
tions. Molecular dynamics (MD) is a computational tool used
to simulate the behavior of a system as a function of time.67−69

In the context of drug discovery, it provides information about
the protein−ligand interactions at the atomic level and
includes flexibility features for the whole system, which are
closely connected to the current models of the binding event
(such as the induced fit and conformational selection
theories).5 MD can be used in conjunction with docking
simulations as sampling engines, giving access to multiple
conformations of the target.9,70

In addition to the representation of protein flexibility, one of
the major limitations of docking-based methodologies
continues to be the scoring function.9,70 The docking scores
assigned to each compound are particularly important in
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virtual screening campaigns, since it is the numerical variable
used to distinguish binders from nonbinders in the screened
library. The quantification of solvent-mediated effects and
entropic contributions by the scoring functions are two of the
current challenges in docking simulations. MD-based binding
free energy calculations can greatly improve the accuracy of the
predictions, since these methods can partially account for
entropy and solvation effects in the calculations.9 Another
possible strategy is to apply machine learning-based methods
and/or entropy corrections, which can enhance hit recovery in
structure-based virtual screening.71−74

Back to SARS-CoV-2 Mpro virtual screening, we observed
that about half of the analyzed investigations invested efforts in
MD simulations to generate different conformations of the
target, to understand the binding modes of the candidates or to
refine the binding energy initially predicted by docking
protocols. It is worth mentioning that in 20.2% of the cases,
the authors reported the use of more than one scoring function
to select the candidates in an attempt to improve the accuracy
in virtual screening. In this regard, the most popular software
suite was the Schrödinger package, which allows the carrying
out a sequential screening based on scoring functions and
search algorithms, gaining precision in each round of hit
selection: HTVS (high-throughput virtual screening) mode for
millions of compounds, SP (standard precision) mode for tens
to hundreds of thousands ligands, and XP (extra precision)
mode for extensive sampling and scoring of a small set of
structures.32−34

During the redaction of this paper, an interesting study was
published, which incorporated target flexibility in docking-
based virtual screening on SARS-CoV-2 targets.75 Acharya and
co-workers applied an ensemble docking protocol for the
virtual screening campaigns and docked the compounds on
multiple receptor conformations as a way to incorporate target
flexibility. They employed temperature replica-exchange
molecular dynamics (T-REMD) to generate the conforma-
tions. In this method, multiple copies of the target at different
temperatures are simulated, with periodic exchanging of the
coordinates between the copies. Even though the authors
expressed that this is a preliminary publication, they already
noted that the T-REMD method was able to generate a diverse
ensemble of conformations (especially in the loop regions) for
the 24 systems tested (where Mpro was included in different
protonation states and in its monomereric or dimeric form).
Additionally, their docking experiments with Vina, MOE, and
Autodock-GPU on Mpro retrieved known active compounds
with enrichment rates ranging from 7% to 14%, which are
higher than the rates obtained experimentally (5.7%).75

Undoubtedly, valuable conclusions would emerge in future
papers of these authors with the complete analysis of the data
collected. Another approach in this regard is DINC−COVID,
a user-friendly docking interface developed by Hall-Swan et al.
published as a preprint in January 2021.76 This computational
tool allows ensemble docking with three SARS-CoV-2
proteins, including the Mpro. Three distinct ensembles for
each SARS-CoV-2 protein are available, including data from
crystal structures or from MD simulations with different force
fields (CHARMM or GROMOS). Moreover, all generated
binding modes are rescored and ranked using three scoring
functions (i.e., Vina, Vinardo, and AutoDock4).

■ CONSENSUS SCORING

Our literature survey also yielded investigations with
approaches that jointly apply more than one scoring function
to rank the compounds and/or include energy minimization
stages of the docking complexes to improve binding energy
estimation.37,77 The combination of multiple scoring functions
for binding affinity estimation or hit selection in virtual
screening campaigns is known as consensus scoring.78,79

Classical consensus approaches select compounds in the
intersection of the set of best scores for each docking program;
even more complex combinations of screening scores are also
popular.80,81 Many studies support the idea that combining
results from different docking programs to get a final rank or
score for each molecule leads to a higher success rate in virtual
screening campaigns,82−86 and this concept was explored by
the authors for the Mpro target, even though no comparison
was reported between the performance of single docking scores
and the combination of multiple protocols.37,77

Experimental Confirmation. Undoubtedly, the biochem-
ical and biological evaluation of the hits represents a
fundamental stage in the virtual screening process. In addition
to the obvious outcome of finding active compounds, it
provides valuable feedback to improve the docking models by
including more data. Surprisingly, most of the hits proposed in
the revised investigations are yet to be confirmed exper-
imentally. Only two (1.2%) publications mentioned results of
biological tests, and in one of them the experimental results
were not disclosed (the authors refer to them as unpublished
data).87 The other investigation was conducted by Vatansever
et al., who focused the virtual search of Mpro inhibitors on a
selected group of FDA/EMA-approved small molecules.88

They found six known drugs with IC50 values below 100 μM
against the protease, and one of them, Bepridil, showed a
complete inhibition of the cytopathogenic effects in Vero E6
cells induced by the SARS-CoV-2 virus.71 As mentioned
before, finding hits is the main purpose of the screening.
However, a proper validation of the methods requires a
statistical analysis to estimate the minimum sample size
required for a given effect size, significance level, and statistical
power, before drawing any conclusion.

Docking Protocols Performance Evaluation. The analysis
of the published data reveals that it is not yet possible to know
the capabilities of target-based virtual screening in the Mpro
system due to the absence of experimental confirmation about
the predicted inhibitory activity of the hits in most of the
investigations. Therefore, we conducted a retrospective
analysis of three docking protocols using the available
structural information (for the determination of the pose
prediction) and the reported biological data on Mpro
inhibition assays (for the assessment of the virtual screening
accuracy). These validations allowed us to gain more
information about the strengths and weaknesses of the
protocols on this particular system.

Methodology. All structures of SARS-CoV-2 Mpro
released until October 2020 were analyzed and manually
curated. The data were retrieved from https://covid-19.
bioreproducibility.org/, a database of carefully validated
COVID-19 related structures.89 When the experimental
structure had been partially or fully refined, we used the
corrected structure; otherwise the original one was down-
loaded from the RCSB PDB database. Experimental complexes
with inhibitors covalently bound to the catalytic Cys145 were
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not included as the docking protocols tested were constructed
based on noncovalent interactions. Structures with missing
segments, mutations, or modified residues were also discarded.
After splitting multimeric complexes into individual chains, we
obtained 52 curated structures: 23 in the apo and 29 in the
holo form. Only those complexes with ligands bound to the
catalytic site were considered.
Missing atoms were repaired with Modeller,90 and hydro-

gens were added with Reduce software in the presence of water
molecules and ligands, allowing rotations and flips for NQH
residues.91 All structures were superimposed using Modeller’s
salign function and converted to pdbqt format using the
prepare_receptor4 script distributed in AutodockTools.35,90

Ligand preparation included protonation at pH 7.4 using
OpenBabel, conversion to pdbqt with the prepare_ligand4
script, and coordinates randomization before docking simu-
lations.92

Three different docking protocols were evaluated, based on
two docking programs: Quick Vina 2 (QVina2), a faster
version of the classical Autodock Vina employing the same
scoring function,93 and Autodock4-GPU (AD4-GPU), the
GPU accelerated version of Autodock4 software.94 For
Autodock4, a modified protocol was also tested, in which
discrete displaceable waters are placed around the ligand
before docking simulations, aiming to predict the position of
waters mediating the ligand interactions with the target, i.e.,
hydrated docking (AD4-Hyd).95

In all protocols, the docking site was defined as a cubic box
of 20 × 20 × 20 Å enclosing all crystallized ligands. For
QVina2, the exhaustiveness parameter was set to 32, and three
poses per ligand were generated. Regarding AD4-GPU, affinity
maps were calculated over the same box using Autogrid with
the default spacing of 0.375 Å. The number of energy
evaluations and the local-search algorithm was set on-the-fly
for each ligand based on a built-in heuristic, and the automatic
stop criterion based on energy convergence was turned on. A
total of 200 docking runs for each ligand were carried out. All
other parameters were set to default values.
As a postprocessing approach, complexes generated with

QVina2 were rescored with three different scoring functions
implemented in Smina software.96 The rescoring was preceded
by a minimization stage considering residue side chains within
3 Å of the docked ligand as flexible. We have previously used
this postprocessing strategy to improve the virtual screening
accuracy of docking models, with only a small increase in
computational cost.97

For the pose prediction assessment, the symmetry-corrected
RMSD (Å) between predicted and experimental poses was
calculated with RDKit.98 For the virtual screening accuracy, a
data set of compounds evaluated against the SARS-CoV-2
Mpro was compiled from the literature. Compounds with IC50
> 10 μM were classified as active, while those with IC50 > 20
μM, or %INH (20 μM) < 80%, or %INH (10 μM) < 50% were
considered inactive. Covalent inhibitors were not included. A
total of 816 compounds (53 active and 763 inactive, Table S2)
were retrieved. Because docking this whole data set on every
Mpro crystal, under each docking protocol and protonation
scheme, would imply a huge computational cost, we created a
smaller core data set including only those compounds
published in peer-reviewed articles and excluding preprints.
The refined data set comprises nine active and 52 inactive
compounds (Table S3). The virtual screening accuracy
evaluation first involved docking the core data set on every
protein structure, with all protonation schemes using the three
docking protocols described before. Then, the best performing
combinations were re-evaluated using the whole data set to
better estimate the screening performance. The AUCROC was
used to measure the performance of the models as binary
classifiers.

Pose Predictions. The results of redocking and cross-
docking experiments are shown in Figure 3, and the data
plotted are provided as Supporting Information. After docking
all crystallized ligands on all protein structures, the RMSD to
the experimental binding mode was calculated and grouped by
structure and by docking protocol. In most combinations, the
RMSD values are lower than 2 Å, which provides confidence
about the ability of docking programs to reproduce the
experimental binding conformation. Regarding the docking
programs, we calculated the mean RMSD for each docking
protocol, considering the whole set of crystal structures, and
we found that AD4_GPU (0.955 ± 0.658 Å) and AD4_hyd
(0.970 ± 0.655 Å) outperform QVina2 (1.575 ± 1.203 Å) in
terms of pose prediction.
It is worth mentioning that among docked ligands there are

some small fragments with few rotatable bonds, so the
identification of the correct binding mode becomes less
demanding for the search algorithms than for inhibitors with
more degrees of conformational freedom. Additionally, these
X-ray diffraction data sets were all phased with the deposited
structure of Mpro with the N3 inhibitor (PDB ID: 6LU7),
which fixes the final conformation of the protein in the
complexes with the fragments and, therefore, influences the

Figure 3. Pose prediction evaluation. Cumulative distribution plots of RMSD values obtained from redocking and cross-docking experiments for
both protonation schemes, grouped by docking program.
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cross-docking simulation results.99 The protonation state of
titratable residues is a critical choice to make before

performing any kind of biomolecular simulation. As mentioned
before, the low electron density of hydrogen in X-ray

Figure 4. Comparison between the protonation scheme of His and Cys residues in the neutron diffraction structure 7JUN (green) and the X-ray
structure 6LU7 protonated with Reduce software (cyan). The latter is the most frequently chosen structure for docking simulations according to
our literature survey. All His and Cys residues in the structure are listed in the bottom table, and those diverging between the structures are
highlighted as sticks in the superimposed structures. CYS refers to a standard protonated cysteine residue, while CYM refers to the deprotonated
anionic form. For histidines, HID refers to a delta-protonated imidazole ring, HIE is the epsilon-protonated, and HIP indicates a fully protonated
positively charged histidine. Only polar hydrogens are shown.

Figure 5. ROC curves obtained after docking the core data set on all Mpro structures, grouped by docking protocol. Each curve was drawn from a
different structure, and the 95% confidence interval obtained by bootstrapping is shown as a light shade. (A) Structures protonated by Reduce with
default parameters. (B) Structures reprotonated according to the neutron diffraction crystal structure 7JUN.
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crystallography experiments hampers the direct determination
of protonation states. The recently solved neutron diffraction
structure of Mpro (PDB ID: 7JUN) brings valuable
information in this regard, such as the protonation state of
histidine and cysteine residues.100 However, these protonation
states are quite particular and may differ from those
automatically assigned by standard bioinformatic software.100

As shown in Figure 4, most of these differences lie in the
vicinity of the catalytic site. For example, the program Reduce
protonated the sulfur atom of Cys145 and showed His41 as
HID, whereas in the experimental structure 7JUN the thiol
function is deprotonated and His41 is shown in the HIP form
(fully protonated). Hence, in order to investigate the effect of
different His and Cys protomers on docking performance, we
changed the protonation state of these residues in all structures
to match those in the experimental neutron diffraction model.
Figure 3 shows the results obtained with the standard

protonation assigned by Reduce software and the reprotonated
structures according to the neutron diffraction crystal structure
7JUN. The results showed a similar good performance in both
systems, possibly because, as they are noncovalent inhibitors,
the most relevant interactions occur in the region of the active
site but not necessarily with the catalytic dyad.
The protonation states of the catalytic dyad of SARS-CoV-2

Mpro as well other important His residues in its close
proximity (such as His163, His164, and His172) have been
studied due to their influence on the conformational stability
of the apo and inhibitor-bound proteins. Pavlova and co-
workers used MD simulations to analyze the stability of 12
viable protonation states of the protein in the apo and holo
forms (the last one with two different inhibitors). They
underlined the complexity of the system and concluded that
the most structurally stable protonation states vary in a ligand-
dependent manner.100 During the preparation of this manu-
script, Kneller and co-workers solved another neutron
diffraction structure of Mpro in complex with the α-ketoamide
inhibitor telaprevir.101 By direct comparison with the
previously solved unliganded structure 7JUN, they found
that inhibitor binding to the Mpro induced changes in the
protonation states of key histidine residues in the active site
(His41, His163, and His164).
Virtual Screening Accuracy. To test the screening

accuracy of the programs, the compounds of the core data
set were docked into every Mpro experimental structure. Then,
they were ranked by the docking score and the AUCROCs
were calculated to evaluate the classification power of the
models. A value equal to 1 represents an ideal performance
while an AUCROC of 0.5 means that, on average, the ranked
compounds do not differ from a randomly ordered list.
As shown in Figure 5, all tested structures and docking

protocols showed a poor capacity to correctly rank the
compounds in the core data set according to its predicted
affinity. In practice, this means that top-ranked compounds
from a virtual screening campaign may not have higher chances
to be true hits than randomly selected molecules.
Both protonation schemes perform similarly as evidenced by

the ROC curves obtained. However, even though it seems to
have a small impact on docking performance under the
docking protocols and conditions tested, the protonation state
of titratable residues will heavily impact the results of further
MD simulations.100 Regarding the postprocessing of the
complex by flexible side-chain minimization and rescoring,

we found no clear improvement in the screening performance
compared to the original docking results.
For each docking protocol and protonation scheme, the best

performing combination in terms of screening accuracy was re-
evaluated using the whole data set of 816 compounds, in order
to confirm the results with a bigger and more diverse set of
structures. However, the results were equally disappointing,
with AUCROC values even lower than before. These results
confirm the trend observed with the core data set, discarding
the possibility that the bad performance observed before was
due to the small size of the test set. A remarkable limitation of
the available data is that the inhibitory mechanism of the
reported inhibitors is seldomly characterized. Typically,
literature reports inform the activity of a given compound at
a given concentration (or, at best, the IC50), but the type of
inhibition (e.g., competitive, noncompetitive, uncompetitive,
etc.) has been rarely investigated at the time of the report,
which limits the accuracy of any retrospective screen based on
such data owing to the uncertainty on the actual binding site.
The screening accuracy results for all docking protocols and
data sets are provided as Supporting Information, including
virtual screening specific metrics such as BEDROC (alpha =
20), RIE (alpha = 20), and EF1%.
In order to evaluate the consensus between the ranks

generated by different docking protocols, we counted the
number of coincidences found in the top 20% of the ranking.
For each docking protocol, the best performing Mpro structure
in terms of AUCROC was chosen, considering the standard
protonation scheme assigned by Reduce software. Ten
compounds were ranked in the top 20% by at least two
programs, and among them, only four could be found in all
three rankings. Unsurprisingly, we found very few active
molecules in this zone, as reflected by the poor enrichment
metrics obtained.

■ FUTURE DIRECTIONS
It is important to note that while we processed the results of
our literature search and wrote this paper, successful docking-
based investigations including experimental evaluations were
published albeit without in silico validation. For example,
Ghahremanpour and co-workers ran independent virtual
screening campaigns with four docking protocols to minimize
the bias of the scoring functions (constructed to reproduce a
finite set of experimental ligand-binding affinities) in a library
of 2000 approved oral drugs.102 Then, they focused on the
structures that ranked among the top 10% percent in at least
three out of the four runs. After visual inspection, 17
compounds were tested against Mpro, and four of them
showed IC50 values below 20 μM (Manidipine, Boceprevir,
Lercanidipine, and Bedaquiline). Perampanel was also
identified as a weak Mpro inhibitor in this investigation, but
only a rough IC50 of 100−250 μM was estimated due to
interferences in the fluorescence experiment. However, this
structure caught the author’s attention for the design of
noncovalent and nonpeptidic Mpro inhibitors. Starting from
the docking poses of Perampanel, they proposed structural
modifications to optimize the interactions with the target,
using free-energy perturbation (FEP) calculations to guide the
optimization process.103 The computational analyses in
conjunction with the experimental elucidation of multiple
crystal structures of the complexes led to optimized inhibitors
of Mpro with nanomolar potency. Another example is the work
of Gupta and co-workers, who found three candidates for hit
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optimization: Cobicistat, Cangrelor, and Denufosol (IC50 of
∼6.7 μM, 0.9 mM, and 1.3 mM, respectively).104 These results
were obtained from docking-based virtual screens of three
databases (DrugBank, ZINC-FDA, and Spec database).104,105

The authors used the Glide module of Schrodinger as the main
docking software, but other programs were also considered for
the comparison of the poses. Moreover, they ran MD
simulations to better estimate the binding energies.
The aforementioned examples show the successful applica-

tion of target-based protocols for the identification of Mpro
inhibitors, particularly if more than one docking program is
used and protein flexibility is taken into account. Furthermore,
we propose that the inclusion of validation tests as a selection
criterion for the protocols would save time and increase the
chances of success in the screening campaigns, since less
accurate protocols would be discarded early.

■ CONCLUSIONS
A major challenge in docking simulations is to find the
combination of search algorithms and scoring functions that
accurately predicts the binding mode of a protein−ligand
complex and correctly quantifies its binding affinity. Although
it is possible to make inferences about the characteristics of
different programs by analyzing how they were built and what
algorithms they use, the most direct way to test their capacities
is to confront them with the specific system under study. In the
context of virtual screening, the virtual screening accuracy and
the pose predictions are critical tests: they evaluate the capacity
of the software to identify potential hits (by the docking score)
and to propose explanations about the binding interactions, as
well as to guide further structure optimization efforts (by the
binding pose).
One of the most promising targets under study to tackle the

SARS-CoV-2 virus is Mpro, an essential protease for the virus
with structural characteristics not observed in human isoforms.
The analysis of 168 publications associated with the search for
Mpro inhibitors through docking-based virtual screening, and
the evaluation of the docking performance shown here, allowed
us to assess the strengths and weaknesses of the methodology
in this particular system.
In most of the analyzed investigations, the authors assumed

a direct relationship between top-ranked molecules by docking
simulations and in vitro inhibitory potency. However, the
retrospective validation of docking methodologies applied to
the SARS-CoV-2 Mpro system shown here reveals that these
assumptions should be, at least, revised.
In order to improve the predictive power of a model, it is

necessary to have well-established protocols and robust metrics
to measure it. There are many factors that can influence the
performance of a docking model, and many alternatives which
can be explored to overcome its limitations. Some of them
were explored in this article, like considering alternative
protonation states for critical residues, the flexible side-chain
minimization, consensus scoring, rescoring of the docking
complexes with different scoring functions, or the inclusion of
solvation effects through specific protocols like Autodock
hydrated.
Complementary approaches, like MD simulations, can be

explored in order to refine the results from docking simulations
and discard potential false positives. Moreover, MD provides
valuable information about ligand−receptor interactions
explicitly considering solvent-mediated effects, which can be
exploited during the potency optimization of a hit.

The good pose prediction of all docking protocols tested
supports its application in virtual screening campaigns, to
generate initial hypotheses about the binding mode of the
screened compounds. However, the binding affinity predicted
for each pose may not be reliable, as suggested by the poor
screening accuracy obtained, so additional criteria should be
considered for the final selection of the hits. Finally, the
experimental evaluation of the candidates must be included in
the investigations as a final selection criterion, to advance in
the definition of the optimal requirements for the activity at
the molecular level and to improve the computational models
with reliable information.
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