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ABSTRACT
In recent years, the application of remote sensing techniques is 
gaining a growing interest and importance in agriculture. 
Researchers often combine data from near-infrared and red spectral 
bands according to their specific objectives. These types of combi
nations present the disadvantage of lack of sensitivity due to using 
a single or limited group of bands. In this work on-farm canopy 
spectral reflectance (CSR) data, composing of ten spectral bands 
(SBs) plus four spectral vegetation indices (SVIs), is considered in a 
joint manner to set up a methodology capable to identify genotype 
by environment interaction (GxE) in wheat. Spectral data are ana
lysed over five wheat genotypes grown in five different environ
ments. Historically breeders have recognized the potentially 
negative implications of GxE in selection and cultivar deployment 
and have focused on developing tools and resources to quantify it. 
We propose to perform a statistical batch processing, applying two- 
way analysis of variance to multiple spectral data, with genotype 
and environment as fixed factors. Results prove that this methodol
ogy performs well in both directions, capturing differences 
between genotypes within a single environment, and between 
environments for a single genotype, representing a step forward 
to converting spectral data into knowledge for the subject of GxE.
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1. Introduction

In recent years, the application of remote sensing techniques is gaining a growing interest 
and importance in agriculture. Spectrometers can acquire detailed information regarding 
the electromagnetic spectrum in a short time, without causing damage and requiring 
relatively low effort.

Applications of spectral reflectance data for classification p urposes are based on the 
assumption that different spectral responses reproduce differences in biochemical, phy
siological and structural properties of crops. Such differences are a consequence mainly of 
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genetics and growing conditions (Cozzolino 2016). Historically breeders have recognized 
the potentially negative implications of genotype by environment interaction (GxE) in 
selection and cultivar deployment and have focused on developing tools and resources to 
quantify it (Cooper et al. 2014; Sadras and Richards 2014). When these interactions exist, 
they lead to differences and rank changes among genotypes and prevent higher levels of 
productivity and quality from being achieved. Therefore, the concept of GxE leads to 
measure the agronomic stability of the genotype over a number of environments. Vargas 
et al. (2014) point out the importance for researchers of analysing data from experiments 
to answer questions related to what kind of interaction is there between environments 
and whether or not there are specific levels of environment effects causing interactions. 
They considered different treatments, different locations, and different wheat lines. And 
are particularly interested in strategies for dissecting the interactions, emphasizing that all 
meaningful interactions that are statistically significant should be reported. Given the 
mechanistic uncertainty of spectroscopic techniques, more research is needed to develop 
an efficient methodology to identify GxE.

Wheat is one of the most important cereal species in the human diet worldwide. Due to 
the population growth, demand for wheat by 2050 is predicted to increase by 70% from 
today’s levels (CIMMYT 2017). Canopy spectral reflectance data (CSR) may provide an 
objective basis for the macro and micro agricultural management towards a sustainable 
increase of wheat production. Although CSR is mainly used to correlate with several 
agronomic traits (Christenson et al. 2014; Ajayi et al. 2016; Garriga et al. 2017; Frels et al. 
2017; El-hendawy et al. 2017; Thorp et al. 2017; He et al. 2018; Meacham-Hensold et al. 
2019), its capabilities to capture the footprint of different environments on wheat geno
types has not been evaluated. The ability to capture variations in GxE is essential to 
address cross-cutting issues related to a sustainable wheat production.

The quantitative interpretation of remote-sensing information from vegetation is a 
complex task. Researchers often combine data from near-infrared and red bands accord
ing to their specific objectives. These types of combinations present the disadvantage of 
lack of sensitivity due to using a single or limited group of bands, particularly evident on 
heterogeneous canopies (Xue and Su 2017).

Different environments have their variable and complex characteristics, which need to 
be accounted for when considering CSR information. Different wavebands or spectral 
vegetation indices (SVIs) have specific suitability and limiting factors. Therefore, for 
practical applications the choice of spectral data needs to be comprehensive and to 
combine a set of wavebands and SVIs that span environment diversity.

Thus far, evaluation of CSR in crops and particularly in wheat is done mainly through 
the analysis of a collection of SVIs, comparing their performance to select a single SVI that 
better represents a certain trait researchers are interested in (Bort et al. 2005; Gutierrez, 
Reynolds, and Klatt 2015; Ballester et al. 2017; Zhou et al. 2017; Frels et al. 2017; 
Maimaitijiang et al. 2020). The potential of analysing spectral bands (SBs) plus SVIs 
altogether in a batch processing mode had not previously been explored.

The objective of this research is to assess the capabilities of on-farm CSR to identify GxE 
effects. Ground-based reflectance data were obtained from the wheat canopy of five 
genotypes grown over five different environments. A statistical batch processing is 
performed, applying two-way analysis of variance (ANOVA) to multiple spectral data, 
with genotype and environment as fixed factors. The proposed methodology consists 
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of a joint analysis of SBs plus SVIs data sets, assessing the commonalities and differences 
between SBs and SVIs as a whole, capturing differences between genotypes within a 
single environment, and between environments for a single genotype. The underlying 
assumption in performing this joint data analysis is that the outcome is more informative 
than any result obtained by the analysis of each single SB or SVI.

2. Materials and methods

2.1. Study area

Field experiments were conducted in 2017 at two sites: i) Experimental Station of the 
National Institute of Agricultural Technology (INTA) (33°57ʹ46”S 60°34ʹ25”W) and ii) 
Experimental plots of the Bioceres Company (33°51ʹ38”S 60°32ʹ21”W), both located in 
Pergamino, province of Buenos Aires, Argentina. Weather conditions of each site during 
the growing season of the crops along with soil characteristics are shown in Table 1.

2.2. Plant material and growing conditions

Five wheat (Triticum aestivum L.) genotypes (Table 2) were evaluated under different 
environmental conditions (Table 3). Complementary sprinkler irrigation was used in 
environments E1 and E3, to prevent water deficit mainly during stem elongation and 
grain filling. Drought conditions in environments E4 and E5 were obtained by covering 
the plots with rainout shelters when precipitation events occurred since mid of tillering, 
reaching the plots only 42 mm rain during the growth cycle.

Table 1. Soil characteristics and weather conditions during the growing season.

Variable INTA Bioceres

Mean temperature (°C) 14.6 15.0

Mean maximum temperature (°C) 20.0 20.6
Mean minimum temperature (°C) 9.2 9.5

Precipitation (mm) 309.0 326.5
Relative humidity (%) 77.6 76.9
Global solar radiation (Mj m� 2) 3025.0 2923.0

Soil type Typic Argiudoll Typic Argiudoll
Soil texture Silty clay loam Silty clay loam

Nitrogen content (kgN ha� 1) 63.0 ND

Table 2. Wheat genotypes used in the present study.

Name Acronym Year of release Origin Cycle

Buck Pucará BP 1980 Argentina Long
Klein Cacique KC 1991 Argentina Long
Klein Pegaso KP 1997 Argentina Long

Baguette Premium 11 BP11 2004 Argentina Long intermediate
Baguette 601 B601 2011 Argentina Intermediate
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The experimental design was a randomized complete block with three replications. 
The genotypes were sown on 1 June at INTA and 26 June at Bioceres in plots of 1.4 m �
5.0 m (7.0 m2) at a density of 280 plants m� 2.

2.3. Spectral reflectance measurements

CSR was measured using a compact shortwave NIR spectrometer (Ocean Insight). The 
instrument is sensitive to 1024 wavelengths in the range from 632 nm to 1125 nm with an 
optical resolution at full width half maximum of 3 nm. All measurements were performed 
between 10:00 and 14:00 hours ART time (UTC � 03:00), with the instrument positioned 
at a nadir view 50 cm above the surface, thus the diameter of the measured footprint was 
approximately 26 cm. The upwelling light reflected from a 50 cm � 50 cm white 
reference material (WRM) with 99% reflectance, was recorded before each canopy mea
surement allowing data acquisition during variable sky conditions. The dark current was 
measured through the occlusion of the spectrometer’s entrance slot and then subtracted 
from WRM and canopy measurements. The integration time was adjusted to avoid 
saturation of the WRM signal and each measurement was the average of five successive 
scans.

Ten CSRs per plot were measured in the first block at INTA (E1, E3, E4 and E5) and the 
second block at Bioceres (E2). The measurements were homogeneously distributed over 
the plot in order to reduce border effects. Plants were measured at different develop
mental stages for each genotype. Measurements were collected during the three follow
ing dates: on 15 September 2017, during the main stem elongation – first node + (14 � 9) 
days – ; on 3 November 2017, during grain set/beginning of grain filling – anthesis + (17 
� 8) days – ; and on 9 November 2017, during grain filling/beginning of maturity – 

anthesis + (24 � 9) days – . A typical outlier control based on standard deviation was 
implemented on each CSR raw data.

2.4. Spectral features

To reduce the volume of data and identify influential spectral regions, 10 SBs were defined 
from the hyperspectral profile. Moreover, selected SVIs were chosen from the literature 
based on previous work that identified useful applications of these indices for the type of 

Table 3. Crop husbandry of each evaluated environment.

Nitrogen fertilization Irrigation

Environment Acronym
Rate 

(kgN ha−1)
Moments of 
application Application form

Water 
(mm)

Moments of 
Application

Fertilized – Irrigation E1 (INTA) 137 DC2.1 and DC3.1 Solid (urea) to the 
soil

60 DC3.1 to DC9.0

Fertilized – Rainfed E2 (Bioceres) 200 DC0 Solid (urea + MAP) 
to the soil

0 –

Unfertilized – Irrigation E3 (INTA) 0 – – 60 DC3.1 to DC9.0
Fertilized – Drought E4 (INTA) 137 DC2.1 and DC3.1 Solid (urea) to the 

soil
0 –

Unfertilized – Drought E5 (INTA) 0 – – 0 –
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environments considered in this work. Since the genotype population in this study is 
morphologically and phenologically diverse – characteristics known to influence the 
spectral data – we reckon that the strategy of grouping together SBs and SVIs contributes 
to grasp the interrelationships of crop traits expressing GxE, improving the ability for 
spectral differentiation.

The SBs are built on combined data from different waveband windows of the 
spectrum (SB1 to SB10 in Table 4). Combined bands contain less variation from 
sample to sample than single-band measurements (Lin, Yang, and Kuo 2012). SB1 

to SB7 were obtained computing waveband region means, while SB8 to SB10 were 
computed as the average gradient of the spectral reflectance curve in a defined 
window. The selected environment-specific SVIs are: Normalized Difference 
Vegetation Index (NDVI), Normalized Difference Red Edge (NDRE), Canopy 
Chlorophyll Content Index (CCCI), and Water Band Index (WBI). The formulas used 
to evaluate the SBs and the SVIs can be seen in Table 4.

SB1 and SB5 are based in 655 nm and 865 nm, respectively, and are necessary to 
quantitatively evaluate NDVI (Rouse et al. 1974). SB2 and SB4 were chosen for being 
related to the Normalized Difference Red Edge (NDRE), this vegetation index is 
affected by crop nitrogen status (Herrmann et al. 2010). NDRE is defined based on 
720 and 790 nm. SB1, SB2, SB4 and SB5 are 30 nm wide windows. SB3 was chosen as 
a narrowband (3 nm wide, centred in 760 nm) to measure the O2, a band which is 
related to Sun-Induced Chlorophyll Fluorescence (SIF). SIF has been applied in 
different studies to measure vegetation stress (Campbell et al. 2007; Julitta et al. 
2016; Mohammed et al. 2019). Since we are interested in wheat nitrogen content in 
rainfed environments, we included the CCCI (Cammarano et al. 2011) index that is 
evaluated through SB1, SB2, and SB5. SB6 and SB7 were chosen based on the Water 
Band Index (WBI) (Claudio et al. 2006), centred in 900 nm and 970 nm, respectively, 
both with a 30 nm wide window. The red-edge region of the spectrum, 680 to 
755 nm, is evaluated through its first-order derivative. This interval is divided into 
three distinct zones to evaluate the average gradient of the curve, resulting in SB8 

(680 to 721 nm), SB9 (721 to 740 nm) and SB10 (740 to 755 nm). All the spectral data 
described in this section are summarized in Table 4.

Table 4. Description of the spectral features analysed in this work.
Spectral feature Wavelength range (nm) Formula

SB1 640 to 670 SBi ¼
1

nþ1

Pnþ1
j¼1 RðλjÞ ,  

where λ is the wavelength value and n is the number of 
subdivisions of the i spectral wavelength range.

SB2 705 to 735
SB3 759 to 761
SB4 775 to 805
SB5 850 to 880
SB6 885 to 915
SB7 955 to 985
SB8 680 to 721 SBi ¼

1
n

Pn
j¼1

Rðλjþ1 Þ
� Rðλj Þ

λjþ1 � λj
SB9 721 to 740
SB10 740 to 755
NDVI NDVI ¼ ðR865 � R655Þ=ðR865 þ R655Þ

NDRE NDRE ¼ ðR790 � R720Þ=ðR790 þ R720Þ

2*CCCI CCCI ¼ ðR865 � R720ÞðR865þR655Þ

ðR865þR720ÞðR865 � R655Þ

WBI WBI ¼ R900=R970
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2.5. Statistical analysis

In this work we performed a statistical batch processing, applying two-way ANOVA to 
multiple spectral reflectance data, i.e. the SBs and SVIs listed in Table 4 (‘batches’ of 
spectra). Genotype and environment were considered as fixed factors. The ten CSR 
measurements per plot were considered as replications. Data analysis was conducted in 
R R18. ANOVA was carried out using the aov-function. The significance of differences was 
separated using Tukey test at a 5% probability level, using the agricolae-package (de 
Mendiburu 2020).

3. Results

3.1. Dynamic changes of canopy spectral data

The purpose of this section is to show the variation of the canopy spectral data by 
genotype for each environment and measurement date. In Figure 1 the red region of 
the spectrum (SB1) is analysed, in Figure 2 the NIR region (SB2) is considered. A subplot 
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Figure 1. Average reflectance values in percentage at the red region (SB1) for each genotype and 
environment at the three measurements days, (a) 15 September 2017, (b) 3 November 2017 and (c) 9 
November 2017. B601: Baguette 601( )BP11: Baguette Premium 11( ), KP: Klein Pegaso( ), KC: Klein 
Cacique( )and BP: Buck Pucará( ). (E1: fertilized-irrigation, E2: fertilized-rainfed, E3: unfertilized- 
irrigation, E4: fertilized-drought and E5: unfertilized-drought).
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Figure 2. Average reflectance values in percentage at the NIR region (SB5) for each genotype and 
environment at the three measurements days, (a) 15 September 2017, (b) 3 November 2017 and (c) 9 
November 2017. B601: Baguette 601( )BP11: Baguette Premium 11( ), KP: Klein Pegaso( ), KC: Klein 
Cacique( )and BP: Buck Pucará( ). (E1: fertilized-irrigation, E2: fertilized-rainfed, E3: unfertilized- 
irrigation, E4: fertilized-drought and E5: unfertilized-drought).
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per measurement day is shown. The axis of the subplots displays the average spectral 
reflectance value for each environment. Different genotypes have been allocated differ
ent colours, different axis values per genotype denote the environmental effects. Changes 
in shape allow us to identify variability between genotypes. To observe the spectral 
signatures of different genotypes in different environments, graphs by environment 
and measurement date are provided in the supplemental material (see Figure 1 of the 
supplemental_material.pdf).

3.2. Environment and genotype performance for reflectance data

To enhance GxE understanding, we propose a joint analysis of SBs plus SVIs. To do this, we 
perform 48 two-way ANOVA tests (16 spectral features � 3 measurement days). The 16 
spectral features include 10 SBs, 2 SBs ratios (SB10/SB8 and SB10/SB9), and 4 SVIs (see 
Table 4). These ratios are relations between the spectral bands in the red edge region of 
the spectrum that we have described and evaluated in previous work (Rigalli et al. 2018). 
Raw results of the statistical analysis (ANOVA plus Tukey’s Honestly Significant Difference) 
are provided in the supplemental_material_ANOVA.ods file.

As a way to provide a notion of the robustness of the dataset analysed in this work, we 
estimate the percentage of spectral features that shows significant GxE at three signifi
cance levels (α = 0.050, 0.010 and 0.001). In Figure 3 these results are plotted for the three 
measurement days. A bar reaching the value 100% means that the 16 spectral features 
present significant GxE. Consequently, a higher percentage value implies more spectral 
features will provide information for the analysis, and therefore a more robust inference 
will be reached. We can observe in Figure 3 the percentage of features showing significant 
GxE increases as the crop advances in its cycle. For a significance level of α = 0.050, all the 
spectral features show significant GxE for the second and third measurement day, while 
the first date reaches 62.5% (10 out of 16 features with p < 0.050). For α = 0.010, for 3 
November 2017 and 9 November 2017, 94% and 100% are respectively reached, while for 
α = 0.001, 81% and 88% are respectively attained. These results meet the requirements of 

(a) (b) (c)

Figure 3. Percentage of spectral features that shows significant GxE (α = 0.050, 0.010 and 0.001) for 
the three measurement days, (a) 15 September 2017, (b) 3 November 2017 and (c) 9 November 2017.
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dataset robustness and ensure accuracy and consistency of environment and genotype 
differentiation presented in the following sections.

Once GxE effects were analysed, we will briefly report the statistical behaviour of the 
independent variables. In Figure 4 F-statistic and p-value for environment and genotype 
are plotted for the three measurement days. In the top row of subplots, we can observe 
that F-values for environment are higher than those for genotype, showing that it is more 
relevant to the variation between environments than between genotypes. We can estab
lish confidence in these differences since the corresponding p-values for both factors are 
significant, with p < 0.050 for the 16 spectral features, and the three dates, with the only 
two exceptions of SB2 and SB10/SB9 for genotype in the second measurement day (see the 
bottom row of subplots in Figure 4, where α = 0.050 is represented by a horizontal line; 
and cells F615 and F1119 in supplemental_material_ANOVA.ods for raw data).

3.3. Environment differentiation

Based on the 48 Tukey’s tests, we obtained 25 results per spectral feature and per day. 
From these 25 results, made up by the 5 considered genotypes, data were re-arranged per 
genotype, obtaining blocks like those shown in Table 5. The operational procedure that 

(a) (b) (c)

Figure 4. F-statistic and p-value for environment and genotype factors from each spectral feature’s 
ANOVA test in the three measurement days, (a) 15 September 2017, (b) 3 November 2017 and (c) 9 
November 2017.

Table 5. Results of the Tukey’s test, SB1, 9 November 2017. (BP11: Baguette Premium 11. E1: fertilized- 
irrigation, E2: fertilized-rainfed, E3: unfertilized-irrigation, E4: fertilized-drought and E5: unfertilized- 
drought.).

Genotype Environment Mean Standard Deviation Group

BP11 E3 0.1083 0.0121 a
BP11 E5 0.0950 0.0154 ab
BP11 E4 0.0789 0.0218 bc
BP11 E1 0.0577 0.0155 cdef
BP11 E2 0.0363 0.0051 efg
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leads to the identification of the pairs of environments is detailed in the supplemental_
material.pdf. In this section we analyse 16 tables (analogous to Table 5), per genotype and 
measurement day; a total of 240 tables (16 � 5 � 3). From each table, we identify 
environment pairs that showed significant differences. For instance, in Table 5 each row 
corresponds to one environment, to which letters have been assigned as Tukey’s results 
(a, ab, bc, cdef and efg in descending order of mean reflectance values). Therefore, the 
following environment-pairs can be built: (E1-E5/cdef-ab), (E2-E5/efg-ab) and (E1-E3/cdef- 
a). Each pair of environments was identified by a number, these codes are detailed in the 
caption of Table 6 (i.e. 1: E1-E5, 2: E2-E5, 4: E1-E3).

We also identified groups of environments where more than two showed significant 
differences (three-wise differentiation). Groups of more than two environments were 
coded by a roman number. In Table 5 fertilized-rainfed (E2, efg), unfertilized-irrigation 
(E3, a) and fertilized-drought (E4, bc) environments show significant differences (i.e. iv: E2- 
E3-E4).

This pair-wise/three-wise differentiation of the whole data set (i.e. 240 tables) is 
summarized in Table 6. Empty cells denote no environment differentiation for the 
considered spectral feature. Results corresponding to Table 5 (1,2,4,iv) are bolded in 
Table 6.

As we mentioned before, instead of searching the most sensitive spectral feature, we 
propose to consider all of them together, in a comprehensive manner. Therefore, the joint 
contribution of the sixteen spectral features (SBs and SVIs) is determined by adding up 
data per column in Table 6. All these contributions are summarized in Table 7. The 
headings of Table 7 are the 10 possible environment pairs that we are willing to 
differentiate. From left to right we ordered environment-pairs based on the similarities 
among them. First, contiguous environments (E1-E2, E2-E3, E3-E4 and E4-E5), then, one 
environment in between (E1-E3, E2-E4 and E3-E5), after that two in-between environ
ments (E1-E4, E2-E5), and finally three environments in between (E1-E5). To illustrate how 
data from Table 6 are transferred to Table 7 we take the first column in Table 6 (high
lighted in grey). This column corresponds to the first measurement day (15 September 
2017) and to the Buck Pucara (BP) genotype, where the environment differentiation 
results are: 1 (E1-E5), 2 (E2-E5), 4 (E1-E3), 5 (E2-E4), 8 (E2-E3), 9 (E3-E4), 10 (E4-E5) and i 
(E1-E2-E5), which can be disaggregated in 1 (E1-E5), 2 (E2-E5) and 7 (E1-E2). The final list of 
environment-pairs that could be differentiated is E1-E2, E2-E3, E3-4, E4-E5, E1-E3, E2-E4, 
E2-E5, E1-E5 (see the first row of Table 7, highlighted in grey). In consequence, we can 
state from Table 7 that, on average, 8 out of 10 environment pairs (119/15 = 7.9) can be 
differentiated.

For the first measurement day, on average, 7 out of 10 environment pairs were 
detected (8 + 6 + 8 + 7 + 5 = 34/5 = 6.8). This finding corroborates the possibility of 
early estimation of the GxE effect. For the second measurement day, 9 out of 10 environ
ment-pairs were differentiated (7 + 9 + 9 + 9 + 9 = 43/5 = 8.6), and 8 out of 10 for the third 
measurement day (9 + 9 + 8 + 9 + 7 = 42/5 = 8.40). The difference between E1-E5 and E2- 
E5 was always detected. E1-E4 was also highly differentiated, except for the first measure
ment day. These distinctions are likely to happen since we were just differentiating 
contrasting environments. More challenging would be the capability to identify GxE 
effects for closer environments. On average, for contiguous environments (E1-E2, E2-E3, 
E3-E4 and E4-E5) we could differentiate 11 out of 15 cases (12 + 10 + 10 + 11 = 43/4 = 
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10.75). In absolute terms 43 out of 60 (72%) cases were successfully discriminated. For 
those environment-pairs with one in between (E1-E3, E2-E4 and E3-E5), on average we 
could differentiate 12 out of 15 cases (12 + 12 + 12 = 36/3 = 12), and 36 out of 45 (80%) in 
absolute terms.

3.4. Genotype differentiation

Grain yield and wheat quality are subject to unexpected outcomes from interactions 
between genotypes and environmental factors (Herrera et al. 2020). The correct applica
tion of spectral phenotyping depends on the wheat type and environment (Gizaw, 
Garland-Campbell, and Carter 2016). Therefore, a robust assessment of the performance 
of spectral features to differentiate wheat genotypes grown under different environmen
tal conditions is essential. In this section we analysed CSR data in order to discriminate 
among five genotypes (pair-wise) growing in five environments. This methodology could 
be used as a proxy to identify the variation in the performance of genotypes in different 
environments.

Similarly to what we explained in Section 3.3, raw results from Tukey’s tests are re- 
arranged, but this time per environment and per measurement day, obtaining blocks like 
those shown in Table 8. The operational procedure that leads to the identification of the 
genotypes pairs is detailed in the supplemental_material.pdf. A total of 240 tables (16 
spectral features, 5 environments and 3 measurement days) were analysed in this section. 
From each table, we identified genotype pairs for which a statistically significant differ
ence was found in their CSR data. For instance, in Table 8 each row corresponds to a single 
genotype, to which letters have been assigned to report Tukey’s results, as follows: (KC, 
abc), (KP, bcde), (BP11, cdef), (B601, ef) and (BP, ef), in descending order of mean 
reflectance values. Taking this into account we can differentiate Klein Cacique (KC, abc) 
from Baguette 601 (B601, ef) and Klein Cacique (KC, abc) from Buck Pucará (BP, ef). As it 
was done for environment-pairs, each pair of genotypes was identified by a number. We 
also identified three-wise and four-wise combinations of genotypes that were statistically 
different. Groups of three were coded by lowercase roman numbers, and groups of four 
were coded by capital roman numbers (for groups coding see Table 9 caption). 
Information of the pair-wise, three-wise and four-wise differentiations of the whole data 
set (i.e. 240 tables) is displayed in Table 9. Results corresponding to Table 8 (3: KC-B601, 
10: KC-BP) are bolded in Table 9.

The joint contribution of the 16 spectral features (SBs and SVIs) to differentiate 
genotypes per environment and measurement day was defined by adding up data per 
column in Table 9. All these contributions are outlined in Table 10. The headings of this 

Table 8. Results of the Tukey’s test, SB3, 3 November 2017. (E4: fertilized-drought, B601: Baguette 601, 
BP11: Baguette Premium 11, KP: Klein Pegaso, KC: Klein Cacique and BP: Buck Pucará.).

Environment Genotype Mean Standard Deviation Group

E4 KC 0.4020 0.0318 abc
E4 KP 0.3359 0.0564 bcde
E4 BP11 0.2797 0.0233 cdef
E4 B601 0.2368 0.0053 ef
E4 BP 0.2253 0.0478 ef

INTERNATIONAL JOURNAL OF REMOTE SENSING 3671
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table are the 10 possible genotype pairs that we are willing to differentiate. In the absence 
of a maximum GY-based ranking (the highest-yielding genotype is BP11 for E1, E3, E4, and 
also for averaged values, but no pattern follows for the rest of the genotypes, as can be 
seen in Table 11), we defined genotype pairs based on their year of release, as follows: 
B601-BP11, BP11-KP, KP-KC, KC-BP, B601-KP, BP11-KC, KP-BP, B601-KC, BP11-BP, B601-BP 
(headers of Table 10 from left to right). As it was done in the previous section, columns of 
Table 9 were transferred to rows in Table 10. Groups of three or four genotypes (coded in 
roman numbers) are disaggregated pair-wise. We will illustrate this for column E3/3 
November 2017 from Table 9 (highlighted in grey). In this column genotype differentia
tion results were: 2 (BP11-BP), 5 (BP11-KC), 6 (KP-BP), 7 (BP11-B601), 8 (BP11-KP), 9 (KC-KP), 
plus ii (KC-KP-BP11), which could be disaggregated in 5 (BP11-KC), 8 (BP11-KP) and 9 (KC- 
KP). Eventually, the joint contribution from this column was: 2 (BP11-BP), 5 (BP11-KC), 6 
(KP-BP), 7 (P11-B601), 8 (BP11-KP), 9 (KC-KP), cross marks highlighted in grey in Table 10. 
Genotypes grown under limiting factors (drought and/or unfertilized) were more easily 
discriminated. According to Table 10, E3 (unfertilized-irrigation), E4 (fertilized-drought) 
and E5 (unfertilized-drought) facilitated genotype differentiation. Regarding measure
ment days, 15 September 2017 produced poor results, showing that this technique 
does not perform well for early stages. On the other hand, for the second and third 
measurement days results corroborate the possibility of genotype discrimination through 
CSR data. For E4 we could differentiate 17 out of 20 cases (10 genotype-pairs � 2 dates 
equals 20), 13 out of 20 for E3 and 12 out of 20 for E5.

4. Discussion

In this section, the discussion is twofold. We compare our work with that of other 
researchers in the field of remote sensing and we also contrast it with studies on 
phenotypic data in the ground of GxE, to highlight capacities to address these issues 
through spectral analysis.

4.1. Environment and genotype differentiation

Regarding the identification of GxE, our results proved that the proposed statistical batch 
processing performs well at capturing differences between environments for a single 
genotype. Crossa et al. (2015) claim that it is important to know what the combinations of 
treatment factors are that cause GxE to draw conclusions with more confidence. In this 

Table 11. Grain yield (g m� 2) of the wheat genotypes grown in five different environments. (E1: 
fertilized-irrigation, E2: fertilized-rainfed, E3: unfertilized-irrigation, E4: fertilized-drought and E5: 
unfertilized-drought. B601: Baguette 601, BP11: Baguette Premium 11, KP: Klein Pegaso, KC: Klein 
Cacique and BP: Buck Pucará.).

Genotype BP KC KP BP11 B601 Average
Environment

E1 377.20 591.90 669.60 671.10 626.50 587.26
E2 251.95 483.40 590.20 565.50 530.85 484.38
E3 356.70 476.10 454.30 529.95 310.40 425.49
E4 216.42 204.78 217.71 322.87 290.80 250.52
E5 224.88 246.27 240.71 219.46 191.20 224.50
Average 285.43 400.50 434.50 461.78 389.95 394.43
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respect, Table 7 shows a very detailed information on the combination of factors that give 
rise to interactions, since we detect all environment-pairs where interaction occurs.

Unlike other studies, this work analyses spectral reflectance of a variety of environ
ments, where the differences between one and the other are not always extreme. For 
example, Garriga et al. (2017) evaluate wheat traits by spectral reflectance considering 
only two contrasting environments (fully and water stress conditions). It should be 
mentioned that we use a smaller range wavelengths (640 to 985 nm vs 300 to 
2500 nm), and a lower cost sensor than in Garriga et al. (2017). Besides, the challenge of 
discriminating the effects of GxE was much greater, as three additional growing condi
tions between the two contrasting environments were considered.

Ajayi et al. (2016) and Garriga et al. (2017) analysed the spectral behaviour (300 to 
2500 nm) of wheat genotypes under irrigation and water stress conditions. In these 
reports, the average yield under irrigation was 4 and 3.1 times higher than the average 
yield under water-stressed conditions, respectively. In the present work, the average yield 
in an irrigated-fertilized environment (E1) is 2.6 times the average yield in the unfertilized- 
drought one (E5). This indicates that the contrasting environments considered in this 
study correspond to growing conditions closer to those reported by the cited authors, 
which reinforces the results obtained. Crossa et al. (2015) also analysed the phenotypical 
data to identify the contrasts of the interactions between the environments by evaluating 
each contrast individually, using a stepwise variable selection to identify the contrasting 
environments. With our methodology, we can identify interactions in contrasting envir
onments (E1-E5, E2-E5) for all genotypes considered and each measurement date (see 
Table 7). Furthermore, the differences between closer growing conditions (fertilized- 
irrigation from fertilized-rainfed, fertilized-rainfed from unfertilized-irrigation, unferti
lized-irrigation from fertilized-drought and fertilized-drought from unfertilized-drought) 
can be detected with a high degree of accuracy.

Concerning the capability to differentiate genotypes, the methodology performed 
better on environments with limiting factors (drought and/or unfertilized) than those 
with optimal growing conditions (fertilized-irrigation and fertilized-rainfed). 
Unfortunately, there are no remote sensing studies that capture differences between 
genotypes for a single environment, so it is not possible for us to compare results with 
previous research. Garriga et al. (2017) used a large set of SVIs for breeding purposes and 
established two categories of genotypes by taking into account the trait variability range 
(the lower 80% and the remaining 20%). Even though this dichotomization improved the 
model performance, it cancels the possibility of capturing differences between two 
specified genotypes. A similar approach was implemented by Basati et al. (2018), con
sidering only two main classes of healthy and unhealthy genotypes for detecting sunn 
pest damaged wheat samples after an unsuccessful attempt of identifying among five 
different classes.

Additionally, we can determine which of the five genotypes is more susceptible to be 
segregated from the others. On the third measurement date, BP11 is differentiated from 
other genotypes 16 out of 20 times, and B601 is distinguished from the others 13 out of 20 
times. On the second measurement date, BP11 is distinguishable from other genotypes 13 
out of 20 times, when KC and BP are differentiated 9 out of 20 times. Whereas for the first 
date, BP11, B601, KC, and BP are only differentiated 3 out of 20 times. For genotype pairs 
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and environments in which genotypes can be differentiated, see Figure 4 of the supple
mental_material.pdf.

4.2. Genotype differentiation performance on productive environments

Since drought stress is the most severe environmental stress for plant growth and crop 
production we were also interested in assessing the CSR capability for genotype differ
entiation under favourable environments. By performing two-way ANOVA on E1, E2 and 
E3 only, we removed spectral variability due to drought stress. Taking out E4 and E5 from 
the variance analysis, seven additional genotype-pairs could be differentiated (circles in 
Table 10). Two corresponded to the second measurement day: BP11-KP for E2 and B601- 
KP for E3; and five to the third measurement day: KC-BP for E1, KC-BP and BP11-KC for E2 
and KC-BP and KP-BP for E3. As mentioned for the full analysis, i.e. considering the five 
environments, better performance was obtained for measurements taken at post-anthesis 
stages (grain set/beginning of grain filling for the second and grain filling/beginning of 
maturity for the third measurement day). These results are in concordance with Frels et al. 
(2017) and Prey, Hu, and Schmidhalter (2020), who found that grain filling is the most 
suitable phase for their analysed traits.

4.3. Spectral features sensitivity

Results in Table 6 and Table 9 provide statistical support for environment and genotype 
differentiation in the context of GxE. From spectral features sensitivity, we can recognize 
patterns. SBs performance at the NIR-plateau (between 759 nm and 915 nm, i.e. SB3, SB4, 
SB5, SB6) are similar, as it is also reported in Prey, Hu, and Schmidhalter (2020). Red Edge- 
SBs (between 721 nm and 755 nm, i.e. SB9 and SB10) present a high sensitivity providing 
additional pair-wise discrimination, for both environments and genotypes, detecting 
differences that can not be captured at the NIR-plateau wavebands. The usefulness of 
red edge bands can be attributed to increased sensitivities in dense canopies (Prey, Hu, 
and Schmidhalter 2020). Besides, the SB in the red region (SB1), adds up pair-wise 
differentiations that are not captured by other SBs nor SVIs. On this regard, Ajayi et al. 
(2016) reported differences in reflectance values at the red region among genotypes 
under irrigated conditions. Finally, SVIs also contribute to differentiate pairs that are not 
identified by any SB, performing better for environment differentiation (for what they 
have been developed) than for genotype differentiation. Still, they play a part for geno
type distinction.

While the results are unable to elucidate a key mechanistic understanding of what this 
spectral method is measuring, they are not simply a proxy for detection of GxE since this 
methodology can be very useful in phenotyping wheat varieties. This joint analysis of SBs 
plus SVIs data sets considers crops and environment as a complete system, where spectral 
data detect information in a holistic manner.

We consider that using established reflectance-based approaches, particularly related 
to single SVIs, would limit their capacity and may not apply for GxE identification. GxE is 
foundational to understanding the genetic basis of trait variation, but still, hypotheses 
explaining this variation remain fragmented (Saltz et al. 2018). We understand that the 
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proposed methodology broadens the applicability of spectral data and vegetation indices 
all together.

Although the proposed methodology is purely empirical, its robustness is linked to the 
use of SBs and SVIs widely used in remote sensing applications. Additionally, we consider 
three consecutive segments of the spectrum 680 to 721 nm, 721 to 740 nm and 740 to 
755 nm, where we compute the average gradient of the curve, SB8, SB9 and SB10, 
respectively. These three spectral features represent the variability pattern of the red- 
edge band of the spectrum. The spectral curve shape has seldom been used because it is 
difficult to be quantified. Therefore, for the replicability of this method, it is necessary to 
collect data with a field spectrometer, and not just with a red-green-blue-NIR sensor to be 
able to evaluate SB8, SB9 and SB10.

5. Conclusions

The results obtained in this work offer an effective approach to leverage CSR data that is 
increasingly being collected in agriculture. With a limited rank of spectral features, 
collected with a low-cost field spectrometer and a few vegetation indices, researchers 
can generate a spectral dataset with high capabilities to identify GxE. The innovation we 
present is that we perform a statistical batch processing, applying two-way ANOVA to 
multiple spectral reflectance data, what we call batches of spectra, assessing the results as 
a whole. In this way, we get a deeper insight into the GxE. A joint analysis of SBs plus SVIs 
data sets proves capable of discrimination between environments as well as capable of 
differentiating wheat genotypes. We can ensure a fair contribution by the different 
spectral features considered in the analysis since all pair-wise differentiation is based on 
statistically significant results.

This methodology offers the potential of payoff in terms of distinctiveness, uniformity 
and stability testing (procedures needed in Europe for new varieties, apart from grain 
yield itself), opening current bottlenecks to crop improvement. Complex interactions 
between genotypes and environments determine the development of plants, but their 
separate contribution to the phenotype remains unclear. If complex interactions can be 
identified, this is a first step for studying and interpreting the reasons and circumstances 
of these effects completely and correctly. And doing so by a remote sensing technique 
will accelerate the replication of the analyses. We believe that the methodology devel
oped in this work can help minimize the confounding effects, identifying subtle differ
ences between cultivars within a single environment, and the effects of different 
environments on a certain cultivar, representing a step forward to converting spectral 
data into knowledge.

The imperative to breed crops into harsher environments demands a better under
standing of adaptation, as a consequence innovative remote sensing technologies will 
play a fundamental role in breeding processes. Remotely sensed data for plant phenotyp
ing have reached such a level that we can raise the question of whether data-driven 
approaches can replace traditional hypothesis-driven analyses. Results reached in this 
work may indeed provide us with new insights into GxE in wheat, a methodology that can 
be extended to other staple crops.

Besides, the need to understand the agronomic ecosystem functioning over large 
spatial scales may lead to implement this approach through unmanned aerial vehicles, 
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increasing the screening capabilities by orders of magnitude and provide critical informa
tion on canopy-scale GxE in real-time. Furthermore, using this type of CSR methodologies 
can lead to more robust decision-making tools regarding land use/land cover scenarios.
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