
Cancer Stem Cells: Culprits in Endocrine Resistance and Racial 
Disparities in Breast Cancer Outcomes

Nicole Mavingirea, Petreena Campbella,*, Jonathan Wootena,b, Joyce Ajac, Melissa B 
Davisd, Andrea Loaiza-Pereze,f,#, Eileen Brantleya,b,g,#

aDepartment of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, 
CA, US

bCenter for Health Disparities and Molecular Medicine, Loma Linda University Health School of 
Medicine, Loma Linda, CA, US

cNational Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, 
Quezon City, Philippines

dDepartment of Surgery, Weill Cornell Medicine-New York Presbyterian Hospital Network, New 
York, NY, US

eFacultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos 
Aires, Área Investigación, Av. San Martin 5481, C1417 DTB Buenos Aires, Argentina

fConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

gDepartment of Pharmaceutical and Administrative Sciences, Loma Linda University Health 
School of Pharmacy, Loma Linda, CA, US

Abstract

Breast cancer stem cells (BCSCs) promote endocrine therapy (ET) resistance, also known as 

endocrine resistance in hormone receptor (HR) positive breast cancer. Endocrine resistance occurs 

via mechanisms that are not yet fully understood. In vitro, in vivo and clinical data suggest that 

signaling cascades such as Notch, hypoxia inducible factor (HIF), and integrin/Akt promote 
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BCSC-mediated endocrine resistance. Once HR positive breast cancer patients relapse on ET, 

targeted therapy agents such as cyclin dependent kinase inhibitors are frequently implemented, 

though secondary resistance remains a threat. Here, we discuss Notch, HIF, and integrin/Akt 

pathway regulation of BCSC activity and potential strategies to target these pathways to counteract 

endocrine resistance. We also discuss a plausible link between elevated BCSC-regulatory gene 

levels and reduced survival observed among African American women with basal-like breast 

cancer which typically lacks HR expression. Should future studies reveal a similar link for patients 

with luminal breast cancer, then the use of agents that impede BCSC activity could prove highly 

effective in improving clinical outcomes among African American breast cancer patients.
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1. Introduction

More than 500,000 women die from breast cancer each year worldwide. Most women are 

diagnosed with hormone receptor (HR) positive or luminal breast cancer since their tumors 

express the estrogen receptor (ER), the progesterone receptor (PR), and in rarer instances, 

human epidermal growth factor receptor 2 (Her2). Luminal breast cancer is further divided 

into two subtypes: luminal A and luminal B, with the luminal A subtype exhibiting the best 

prognosis [1]. Endocrine therapy (ET) entails blocking the binding of estrogen to the ER 

often designated as estrogen receptor alpha (ERα), or inhibiting aromatase which converts 

androgens into estrogens.

Selective estrogen receptor modulator tamoxifen, acts as an estrogen antagonist in breast 

tissues yet behaves as an estrogen agonist in cardiac tissues and bone [2]. Aromatase 

inhibitors (AIs) have largely replaced tamoxifen as first line therapy for luminal breast 

cancer due to their enhanced efficacy [3]. Thus, tamoxifen is primarily used in women who 

cannot tolerate AIs. In pre-menopausal patients, AIs alone are insufficient to decrease 

estrogen levels due to the production of estrogen from the ovaries. It is therefore necessary 

to suppress ovarian function, which is commonly and reversibly achieved using luteinizing 

hormone-releasing hormone analogs. Patients who develop AI resistance are often treated 

with the selective estrogen receptor down-regulator fulvestrant in combination with agents 

such as cyclin dependent kinase (CDK) inhibitors [4].

Though ET often shows tremendous efficacy, relapse occurs in more than 40% of patients 

[5]. When patients develop resistance to one form of ET, they are often treated with an 

alternate form of ET. However, resistance to alternate forms of ET frequently occurs. 

Emerging evidence suggests that ET often enriches the breast cancer stem cell (BCSC) 

population to ultimately promote relapse [6] (Figure 1A). Recently, AI-resistant cells were 

shown to exhibit high levels of stemness markers [7]. To eradicate BCSCs, it is necessary to 

identify cellular signaling pathways that promote BCSC development and function [8].

African American women experience higher rates of breast cancer mortality than European 

American women despite lower overall incidence [9]. Differences in tumor biology are 
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believed to contribute to this survival disparity. This minireview will focus on molecular 

aberrations within breast cancer cells that promote stem cell survival and increase the risk of 

endocrine resistance onset. We will discuss the potential contribution of BCSCs to the breast 

cancer survival disparity observed among African American women. We will also discuss 

potential therapeutic strategies to overcome endocrine resistance based on preclinical and 

clinical studies.

2. Pathways that regulate BCSC activity in endocrine therapy resistance

Stem cells govern tissue development and homeostasis. BCSCs represent key drivers of 

metastasis and endocrine resistance as previously reviewed [10]. Signaling pathways that 

promote endocrine resistance frequently drive BCSC growth and function. For instance, an 

ERα splice variant promotes resistance by increasing ET-mediated enrichment of the BCSC 

population via activation of AKT/GSK3β signaling [11]. Notch and integrin/Akt signaling 

pathways are important players in stem cell function and involve hypoxia inducible factor 

alpha (HIF1α) to impact both BCSC actions and ET responsiveness (Figure 1B). In this 

manuscript, we will focus our discussion on the contributions of Notch, HIF, and 

integrin/Akt signaling to the BCSC population and endocrine resistance.

2.1 Notch signaling

The Notch pathway maintains the hematopoietic system and provides crucial cues to enable 

stem cells to grow, proliferate and differentiate [12]. Notch signaling is mediated by four 

Notch receptors (NOTCH1–4) and at least four functional ligands such as delta-like-ligand 

(DLL)-1, Jagged-1 (JAG1), and Jagged-2 (JAG2) as previously reviewed [13]. Notch 

signaling is aberrantly activated in cancer where it promotes self-renewal of cancer stem cell 

(CSC) growth [14]. Aberrant expression of Notch pathway mediators such as JAG1–2, DLL, 

and Hey is associated with poor prognosis in invasive breast cancer [15]. Increased JAG1 

levels in breast cancer coincides with increased Notch signaling and cell cycle progression 

via cyclin D upregulation [16].

Undifferentiated CSCs rely heavily on aberrant Notch signaling [12]. Cross-talk interactions 

occur between the Notch receptor and ERα signaling with distinct implications for ET 

responsiveness [17]. This provides a rationale for using Notch inhibitors to enhance ET 

efficacy when treating ERα+ endocrine-resistant breast cancer. Notch 4 can control BCSCs 

directly [18]. Specifically, pharmacological or genetic inhibition of Notch signaling reduces 

BCSC activity in vitro and tumor formation in vivo [18]. Hence, Notch 4 likely promotes the 

transcription of estrogen-responsive genes in the absence of estrogen.

NUMB, a negative regulator of Notch signaling, interacts with p53 to maintain asymmetric 

cell division, prevents ubiquitin-mediated proteolysis of the tumor suppressor p53, and 

consequently inhibits pluripotency and dysregulated expansion of CSCs [19]. NUMB-

mediated regulation of Notch signaling is lost in nearly 50% of breast cancers due to 

ubiquitination and proteasomal degradation [20]. In CSCs, a NUMB-interacting protein, 

TBC1D15, is overexpressed, which initiates p53 degradation and the self-renewal of CSCs, 

contributing to Notch pathway-mediated tumorigenesis [21].
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Death-associated factor 6 (DAXX) is a negative regulator of NOTCH. DAXX expression 

levels inversely correlate with NOTCH in human ER+ breast tumor samples and DAXX 

restricts CSC survival in vitro and in vivo [22]. DAXX likely binds to and facilitates 

hypermethylation of promoters of CSC-stimulating genes like SOX2 to restrict CSC survival 

[22].

Hyperactivation of Notch signaling promotes the growth of endocrine-resistant breast cancer 

cells [23]. Short-term treatment with ET decreases cell proliferation but increases BCSC 

activity through JAG1-NOTCH4 receptor activation in cells from patient samples [6], which 

potentially results in more aggressive forms of luminal breast cancer [24]. Both fulvestrant 

and tamoxifen were found to promote Notch-mediated BCSC activity in patient derived cells 

and xenografts [6]. AI-resistant breast cancer cells and tumors also display Jag1-Notch 

signaling upregulation [6, 25]. Notch signaling is hyperactivated in endocrine-resistant 

breast cancer cells and at least indirectly confers resistance to PI3K inhibitors that are used 

to overcome endocrine resistance [26].

DAXX protein is stabilized by estrogen-mediated ER activation, but conversely ET rapidly 

destabilizes the DAXX protein, which increases CSC survival [22]. Silencing DAXX 

recapitulates the CSC-survival pattern seen with ET causing increased expression of 

NOTCH target genes. In general, ET suppresses oxidative phosphorylation and decreases ER 

expression to enrich stemness gene CD133 via interleukin 6/Notch signaling activation [27]. 

Taken together, ET agents appear to promote their own resistance at least in part via Notch 

signaling activation.

2.2 HIF signaling

Hypoxia inducible factors (HIFs) aid in promoting carcinogenesis [28]. The HIF-1 

transcription factor is a heterodimer composed of an inducibly expressed HIF-1α and a 

constitutively expressed aryl hydrocarbon receptor nuclear translocator known as HIF-1β 
[29]. HIF-1α and HIF-1β possess a basic helix-loop-helix domain that dimerizes and binds 

to hypoxia-responsive elements on the promoters of target genes [29]. Under normoxia, 

HIF-1α undergoes hydroxylation at specific prolyl residues resulting in immediate 

ubiquitination and subsequent proteasomal degradation of the subunit. Under hypoxia, the 

stabilized HIF-1α interacts with coactivators such as p300 and CBP (Figure 1B) to modulate 

the transcription of target genes involved in cell survival, proliferation, and metastasis [30].

CSCs can repopulate tumors following therapy initiation leading to a more aggressive and 

resistant phenotype [31]. HIFs play important roles in maintaining the BCSC phenotype in 

response to hypoxia [32]. CSCs exhibit a pronounced shift towards aerobic glycolysis 

distinct from the remaining bulk tumor [33]. The CSC population nearly triples once breast 

cancer cells are cultured under hypoxic conditions [33]. We previously revealed that hypoxia 

exposure increases the population of breast cancer cells with stemness characteristics [34].

Increased expression of epithelial to mesenchymal transition (EMT) markers correlates with 

the upregulation of cyclooxygenase 2 (COX-2) and HIF-1α, while knockdown of NF-KB, 

COX-2, or HIF-1 prevents EMT [35]. COX-2 has been shown to induce BCSCs via 

activation of the prostaglandin E2 receptor EP4 [36]. Downstream targets of NFΚΒ such as 
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the insulin growth factor 2/inhibitor of DNA binding 1 axis promote BCSC activity 

irrespective of the breast cancer subtype [37]. In vivo knockdown experiments reveal that 

HIFs are necessary for CSC survival and tumor propagation while diminished HIF activity 

in CSCs reduces their ability to form tumors [38]. Culturing a subpopulation of cells under 

hypoxic conditions activates HIF-1α which then expands the subpopulation of cells that 

stain positive for CSC markers such as CD133 [39].

The breast cancer cell intrinsic transcription factor C/EBPδ promotes CSC-associated 

phenotypes by engaging two positive feed-back loops, in part by directly targeting the 

interleukin-6 (IL-6) receptor gene IL6RA, and thus amplifying IL-6 and HIF-1 signaling 

[40]. C/EBPδ mediates the innate immune response, which is enhanced by hypoxia and IL-6 

signaling, important in ER+ cancer progression. Data also support a pro-tumorigenic role for 

C/EBPδ when expressed in tumor cells. In mouse models of breast cancer and in human 

breast cancer cell lines, deletion of C/EBPδ reduced expression of CSC factors, sphere 

formation, self-renewal, tumor growth and metastases. The results of this study provide a 

rationale for targeting CSCs to thwart metastasis and endocrine resistance [40].

The epigenetic reader zinc finger MYND-type containing 8 (ZMYND8) has been recently 

identified as a direct HIF target gene involved in a primary epigenetic mechanism of HIF 

activation and HIF-mediated breast cancer progression [41]. ZMYND8 is induced by 

HIF-1α and HIF-2α in luminal, and triple negative breast cancer (TNBC) cells which do not 

express HRs or Her2. Elevated ZMYND8 tumor expression correlates with poor breast 

cancer survival. Genetic deletion of ZMYND8 decreases proliferation, migration, and 

invasion in cells, and inhibits breast tumor growth and lung metastases in mouse models.

Endocrine resistance associated with elevations in COX-2 is likely mediated by EP4 

similarly to resistance involving other anticancer agents as reviewed previously [42]. NF-ΚΒ 
demonstrates an emerging role in endocrine resistance as reviewed previously [43]. 

Intermittent hypoxia has a greater propensity than normoxia to promote a metastatic 

phenotype in endocrine resistant breast cancer [44]. Stabilized HIF-1α induces rapid loss of 

the ER protein in a diverse group of breast cancer cells via proteolysis [45]. This reduced ER 

significantly attenuates ER-directed transcription and inhibits cell proliferation. Thus, 

recurrence in patients with ER positive tumors may stem from tumor cells residing in 

hypoxic environments.

Interestingly, ER+ breast cancer cells are less sensitive to ET when hypoxic, while HIF2α 
levels are increased in endocrine-resistant cells [46]. ET exposure further increases HIF2α 
expression in these endocrine resistant cells. Ectopic expression of HIF2α in MCF-7 cells 

significantly decreases ET sensitivity, which further implicates HIF2α in endocrine 

resistance. HIF2α drives hypoxic induction of EGFR and EGFR induces HIF2α expression 

in a positive crosstalk. This HIF2-EGFR coregulatory crosstalk promotes endocrine 

resistance.

2.3 Integrin-Akt signaling

Integrins play a pivotal role in BCSC maintenance and survival. Integrins are heterodimeric 

cell surface receptors involved primarily in cell-matrix adhesion to control cellular features 
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such as survival and differentiation [47]. Extracellular matrix components such as laminin 

bind to integrin receptors in mammalian cells to help establish communication between the 

intracellular component of the cell and the extracellular matrix [48]. Integrins are composed 

of non-covalently linked α and β subunits to result in more than 24 different combinations 

of αβ heterodimers [49]. Alternative mRNA splicing further enhances this diversity in 

integrins.

α6-integrin has been used to define multiple stem cell populations, including pluripotent, 

multipotent, and CSCs [50]. α6-integrin, also known as CD49f, is a putative biomarker for 

BCSCs [51]. α6-integrin not only maintains BCSC function but also promotes invasion and 

metastasis of cancer cells [52]. The α6B-integrin is a splice variant which promotes the 

BCSC population in breast cancer while the α6A-integrin splice variant lacks BCSC-

promoting properties [53]. α6-integrin is typically expressed as a dimer with β1-integrin or 

β4-integrin in breast cancer [54]. β1-integrin, in conjunction with α6 integrin, helps 

maintain the mammary BCSC niche [55]. β4-integrin aids in identifying and stratifying 

BCSC-enriched mesenchymal-like TNBC cells [56]. Traditionally, high expression of α6-

integrin has been associated with reduced survival in breast cancer patients [57]. One study 

examining the tumor tissues of 312 breast cancer patients revealed an association between 

α6-integrin and increased risk for disease recurrence and poor clinical outcomes [58].

BCSCs have been linked to endocrine resistance; agents such as tamoxifen and fulvestrant 

promote CSC activity in both patient derived samples and patient derived xenografts (PDXs) 

[6]. We have previously shown that α6-integrin is overexpressed in tamoxifen-resistant cells 

and in tumor sections from patients who relapsed on tamoxifen [59]. An α6-integrin 

blocking antibody suppressed α6-integrin expression and function to re-sensitize resistant 

breast cancer cells to tamoxifen. Others revealed that blocking β1 integrin reversed 

fibronectin-induced endocrine resistance in mammary tumor cells [60].

Emerging evidence suggest that α6-integrin promotes resistance to endocrine therapy-

induced cell death in ER+ breast tumors [61]. In a 2019 study, α6-integrin was included in a 

prognostic panel of BCSC markers used to calculate a relapse risk score (RRS) which 

classified patients into different risk groups to predict their propensity for relapse and 

resistance to hormone therapy. Of the 253 ER+ patients receiving hormone therapy, there 

was no difference in relapse-free survival (RFS) between treated patients and non-treated 

patients in the high-risk score group, while in the low-risk score group, patients in the 

treated group showed remarkably longer RFS than those in the non-treated group [62]. 

These findings suggest ER+ breast cancer patients at high-risk for relapse based on elevated 

BCSC biomarker expression may not benefit from conventional ET.

The α6-integrin can induce FAK/Src activation to promote breast cancer progression and 

endocrine resistance [63]. Furthermore, α6β4-integrin/PI3K/Akt signaling has been linked 

to endocrine resistance [64]. Tamoxifen-resistant tumors exhibit high EGFR expression to 

activate kinases such as PI3K/Akt found downstream of the integrin heterodimers [60]. 

Pathways involving integrins and Akt signaling play a pivotal role in mediating resistance to 

anticancer agents. Akt activation can promote cross-talk between the ER and growth factor 
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receptor signaling pathways which are implicated in endocrine resistance and BCSC 

maintenance.

Overexpression of epidermal growth factor receptor (EGFR) or HER2 and associated 

mitogen activated protein kinase activation in ER+ breast cancer, confers endocrine 

resistance [65]. Under these conditions, extracellular regulated kinase 1/2 and AKt appear to 

be important downstream effectors of the resistance phenotype. Furthermore, insulin-like 

growth factor receptor 1 signaling is associated with endocrine resistance. Specifically, 

insulin growth factor (IGF)-1 regulates endogenous ER expression in breast cancer through 

transcriptional activation [66]. One mechanism whereby IGF signaling is believed to 

contribute to endocrine resistance is through the activation of Akt and subsequent 

phosphorylation of the ER, resulting in ligand-independent activation of ER and evasion of 

treatment-induced cell death [67]. Thus, integrins demonstrate the potential to regulate both 

the BCSC population and endocrine resistance (Figure 1B).

2.4 Targeting pathways that promote BCSC activity to counteract endocrine resistance

Since BCSCs are believed to be key drivers of self-renewal and relapse (Figure 1A), 

targeting this sub-population of cells is essential to overcoming endocrine resistance [6]. 

Current approaches to identify BCSCs rely heavily on specific cell surface ‘stemness’ 

markers which include CD133, ALDH, and α6-integrin [68]. Though selective inhibitors of 

Notch, HIF1alpha and integrin/Akt signaling have potential to target BCSCs, we and others 

have found that agonists for the aryl hydrocarbon receptor (AhR) signaling pathway also 

target the above-mentioned pathways. Prototypical AhR agonists such as 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) promote BCSC expansion via β-catenin and Akt 

signaling activation [69] In contrast, Stephen Safe and colleagues demonstrated that 

treatment of luminal breast cancer cells with TCDD resulted in proteasome-dependent 

degradation of AhR and ER [70]. This seminal study reveals the potential for AhR agonists 

to exhibit antiestrogenic actions. More recently, Safe and colleagues revealed that AhR loss 

promotes FOXM1 signaling to augment colonic stem cell renewal [71] to suggest the 

potential for AhR agonists to regulate BCSC activity. Interestingly, AhR activation has been 

shown to downregulate Notch signaling to suppress the self-renewal properties of luminal 

breast cancer cells. [72]

2.4.1 Inhibitors of Notch signaling—Pharmacological or genetic inhibition of Notch 

signaling reduces BCSC activity and tumor formation in vivo [18]. Notch signaling 

suppression is frequently achieved via γ-secretase inhibitors (GSIs) to prevent luminal 

breast cancer cells from acquiring an enriched luminobasal phenotype following ET [73]. 

This luminobasal population overlaps with the BCSC population which is resistant to ET. 

Preclinical and clinical studies revealed the potential for GSIs to decrease stemness cell 

markers in tumors and enhance efficacy of chemotherapy in breast cancer patients though 

more studies are needed to verify whether this holds true for those treated with ET [74]. 

Samples from patients with poorer outcomes after ET reveal that these tumors have high pre-

treatment levels of ALDH1 expression and NOTCH4 activation, to suggest that JAG1-

NOTCH4 signaling in ALDH-positive cell populations is a factor in endocrine resistance 

acquisition [6].
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Notch 4 signaling activity levels are 8-fold higher in BCSCs, which suggests a potential for 

them to prevent endocrine resistance [18]. Unfortunately, targeting NOTCH with 

neutralizing Notch antibodies, Notch-ligand decoys, GSIs, blocking peptides, or natural 

compounds has had mixed success clinically even after successful preclinical studies. 

However, a recent clinical trial involving Notch 1 specific inhibitor LY3039478 revealed that 

this agent was well tolerated though this study involved patients with solid tumors in general 

[75].

Global Notch inhibitors frequently fail in phase I/II clinical trials due to lack of efficacy and 

gastrointestinal toxicities [76]. As a result, targeting sites that indirectly impact Notch 

signaling offers more therapeutic potential. For instance, DAXX suppresses Notch signaling 

[22]. DAXX also suppresses the expression of key stemness-promoting genes such as SOX2 

which thwarts BCSC proliferation following ET. Agents that stabilize DAXX thus show 

potential in treating endocrine resistance when used in combination with ET. RFS was 

significantly worse for ET-treated patients with tumors bearing low levels of DAXX to 

further support DAXX as a viable therapeutic target for overcoming endocrine resistance 

[76].

2.4.2 Inhibitors of HIF signaling—Few studies have examined the ability of HIF1α or 

HIF2α inhibitors to tackle endocrine resistance. Zolendronic acid counteracts endocrine 

resistance in luminal breast cancer via a mechanism that likely involves HIF1α inhibition 

[77]. AhR agonist Aminoflavone (AF) inhibits HIF1α [78] and we previously demonstrated 

that AF inhibits BCSCs and endocrine resistance [34, 59]. FM19G11, a HIF2α inhibitor 

treated in combination with ET restores ET sensitivity in resistant cells.

Recent ex-vivo work has found a direct correlation between intracellular ascorbate levels, 

activation of the HIF-1α pathway and patient survival in breast cancer [79]. In human breast 

cancer tissue (invasive ductal carcinoma), HIF-1α target genes were upregulated following 

increased HIF-1α activation and this was associated with higher tumor grade and stage, 

increased vascular invasion, as well as decreased disease-free survival (DFS) and disease-

specific survival (DSS). Grade 1 tumors had higher ascorbate levels than grade 2 or 3 tumors 

and higher ascorbate levels were associated with less tumor necrosis, lower HIF-1α pathway 

activity as well as increased DFS and DSS.

Vandetanib (ZD6474), an approved clinical drug for thyroid cancer that targets HIF1α as 

well as vascular endothelial growth factor receptor 2 (VEGFR2) and EGFR tyrosine kinases 

is under preclinical investigation for treatment in breast cancer [80]. In a mouse model, 

Vandetanib effectively inhibited breast tumor growth [81]. Clinical trials are underway to 

evaluate the potential efficacy of Vandetanib in combination with fulvestrant to treat 

advanced AI-resistant breast cancer.

2.4.3 Integrin/Akt signaling inhibition—Recent studies suggest that inhibitors of 

integrin signaling have potential to combat endocrine resistance. Marina Simian and 

colleagues initially suggested that the tumor microenvironment has the potential to modulate 

tamoxifen resistance via the α6β1-integrin/Akt signaling pathway [60]. More recently, the 

β1-integrin was implicated in mediating tamoxifen resistance via the G protein-coupled ER 
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in breast cancer cells [82]. EGFR inhibitors also suppress β1-integrin expression to reduce 

tamoxifen resistance [83].

TCDD promotes BCSC expansion via β-catenin and Akt signaling activation [69]. In 

contrast, we found that AFP 464, the pro-drug formulation of AF, not only reduces bulk 

tumor similar to other AhR agonists, but disrupts mammospheres (breast cancer spheroids) 

[34] derived from in vitro and in vivo models. We determined that AF inhibits α6-integrin-

Src-Akt signaling to confer anticancer actions in tamoxifen-resistant cells and 

mammospheres [59].

3. Race associated differences in breast cancer survival

While race is often defined as a social construct, disparities in breast cancer outcomes have 

been observed among certain racial and ethnic groups. Both genetic and epigenetic factors 

drive underlying tumor biology to suggest that designating ‘ancestry’ groups proves more 

accurate in a biological context than self-reported ‘race’. In most studies, the race/ethnicity 

designation given reflect the predominance toward the use of African ancestry in African 

Americans/Blacks as well as the use of European ancestry in white Americans/European 

Americans.

African American women are less likely to survive breast cancer than European American 

women and this disparity appears to be widening [84]. The average time to treatment 

initiation following diagnosis for African American patients is nearly twice as long as that 

for European American patients [85]. Delays in treatment adversely impact breast cancer 

survival. Moreover, differences in tumor biology between African American women and 

European American women are believed to impact responsiveness to therapy and influence 

survival [9].

3.1 Role of BCSCs in breast cancer survival disparity

Several studies reveal that populations with extensive African ancestry have a higher 

incidence of BCSCs compared to populations of European descent, including high levels of 

CD44 in TNBC [86]. This higher CD44 has been observed in both tumorigenic and 

nontumorigenic breast tissues from African Americans compared to European Americans 

[87]. Additionally, we found that biomarkers of BCSC composition, including ALDH 

expression in tumors, are elevated in more than 30% of tumors of African American and 

contemporary West African patients, compared to less than 25% of tumors from white 

American women and East African women who typically have higher European admixture 

[88]. These observations, made in the context of genetic ancestry groups rather than self-

reported race groups, suggests genetic mechanisms that lead to distinct tumor characteristics 

due to distinct developmental pathways.

Genetic variations in the hippo signaling pathway known to regulate BCSC growth, increase 

the risk that African American patients will develop more aggressive forms of breast cancer 

[89]. High levels of 2-hydroxyglutamate in breast tumors occur more commonly among 

African American patients and are associated with a poor prognosis and a cancer stem-cell 

like transcriptional signature [90]. Furthermore, CSCs derived from African American 
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patients tend to show an enhanced capacity to form mammospheres compared to those 

derived from European American patients [91].

3.2 Factors impacting luminal breast cancer survival with respect to ethnicity

The breast cancer survival gap between African American women and European American 

women was not apparent until the widespread clinical use of tamoxifen [92]. African 

American women under the age of 45 experience higher incidence of breast cancer and are 

up to three times more likely to die of breast cancer than age-matched European American 

women [84]. This diminished survival has been attributed to the decreased likelihood that 

African American women are diagnosed with luminal A breast cancer which is associated 

with a better prognosis. However, the survival disparity between African American and 

European American women diagnosed with luminal A breast cancer is actually greater than 

that of other breast tumor subtypes [93] even after accounting for socioeconomic status and 

education [94]. In fact, some studies reveal no statistically significant difference in survival 

disparity based on race for TNBC, while a significant survival disparity for luminal breast 

cancer remains [9] (Table 1).

A study of over 8000 patients in the Southeastern US (the most populous region of African 

Americans in the US) indicates that African Americans (n=3500+) had more than twice the 

mortality of white Americans in the same region (HR=2.67, 95%CI = 1.65–4.33) [94]. The 

Cancer Genome Atlas also reveals that the most pronounced disparities in breast cancer 

survival among African American patients are found in those with luminal breast cancer 

[95]. Though African American women of all age groups are less likely to receive a 

diagnosis of luminal A breast cancer, their risk of relapse is higher following a luminal A 

breast cancer diagnosis [96]. African American women are more likely to present with more 

aggressive forms of luminal A breast cancer than European American patients [97].

ESR1 mutations, particularly those that are activating, have been linked to endocrine-

resistant breast cancer [98]. Such mutations rarely occur in the primary tumor but are 

frequent following relapse on fulvestrant and AIs [99]. More recently, alterations in ESR1 

have been observed even with the use of CDK inhibitors in combination with ET [100, 101]. 

These mutations are believed to occur more frequently among African American patients 

which may account for some of the survival disparity observed following ET [9].

The mitosis associated enzyme Aurora kinase B has been shown to fuel the growth of 

tamoxifen- and fulvestrant-resistant cells to suggest its potential as a biomarker for 

endocrine resistance [102]. Furthermore, Aurora kinase B inhibitor barasertib effectively 

suppresses the growth of endocrine resistant cells [102]. High expression of 14–3-3ς, a 

regulator of Aurora B kinase, predicts a patient’s likelihood to fail on ET [103]. Breast 

tumors from African American patients tend to exhibit elevated levels of Aurora kinase B 

suggesting that targeting this site may prove beneficial in treating these patients following 

relapse on ET [104].

Racial differences have been found in the adherence to adjuvant ET to impact survival 

among breast cancer patients [105] (Table 2). Some found that the racial disparity in luminal 

breast cancer survival is unrelated to differences in tumor stage or therapy initiation but 
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rather to differences in tumor biology that may render them less responsive to ET [9]. In 

contrast, others found racial disparities in the initiation of adjuvant ET among African 

American luminal breast cancer patients and indicate that such patients are more apt to 

receive chemotherapy instead [106]. The latter study found African American patients are 

17% less likely to initiate therapy within 12 months of diagnosis as compared to European 

American patients. Others found that African American luminal breast cancer patients 

consistently show worse clinical outcomes despite receiving similar forms of ET [107]. 

Differences in tumor biology and delays in treatment initiation likely both contribute to the 

racial disparity in luminal breast cancer survival.

African American women are more likely to present with tumors with weaker ER staining 

and are thus less likely to receive ET resulting in poorer outcomes [108]. Most recently, we 

reported that racial differences in breast cancer survival correlated with luminal master 

regulator gene expression levels [109]. In particular, FOXA1 exhibited the potential to serve 

as a predictive biomarker for survival based on race. Elevated FOXA1 levels correlate with 

endocrine resistance and increases in BCSC proliferation [110].

3.3 Clinical data on luminal breast cancer outcomes related to ethnicity

Most clinical trials evaluating agents to treat endocrine resistance provide minimal 

information related to the impact of ethnicity on efficacy and outcomes. The Trial Assigning 

Individualized Options for Treatment Rx (TAILORx) trial, primarily designed to address the 

role of adjuvant chemotherapy in addition to ET using the 21-gene recurrence score (RS) 

assay, provides crucial evidence to support racial/ethnic disparities in breast tumor biology 

for patients with ER+/HER2-breast cancer [111]. Albain and colleagues recently published a 

report on the TAILORx trial which revealed that Black patients had worse clinical outcomes 

than white American patients despite having a similar 21-gene RS and undergoing similar 

therapies (Table 2) [111]. Furthermore, there was no therapeutic benefit from adjuvant 

chemotherapy for Black, Asian or Hispanic patients compared to white patients for the 

endpoints examined in the RS of 11–25 group. Reported clinical outcomes in various 

multivariate models show that Blacks performed worse than whites in DFS (HR of 1.43), 

RFS (HR of 1.85), overall survival (HR of 1.51) and relapse free interval (HR of 1.54).

Comorbidity data showed that more Black patients than white patients had hypertension and 

diabetes and were obese. All patients received standard local and systemic therapy with no 

differences in the use of chemotherapy and ET among patients during the trial. This study 

revealed higher recurrence risk for African American compared to white American patients 

with intermediate-risk 21-gene RS. When the 21-gene RS was low, Black and white 

American women similarly showed no benefit from adjuvant chemotherapy. It is important 

to note that while the TAILORx trial reveals the impact of tumor biology on racial 

disparities in clinical outcomes among breast cancer patients, this was a secondary aim in 

this study.

4. Clinical evaluation of agents designed to tackle endocrine resistance

Cyclin dependent kinase 4 (CDK4) promotes self-renewal within BCSCs in TNBC [112]. 

Whether CDK4 also promotes cancer stemness in luminal breast cancer is worth 
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investigating since this may suggest why at least initially, CDK4/6 inhibitors enhance ET 

efficacy once patients relapse on ET. Insufficient elimination of BCSCs represents a key 

reason many combination therapies only marginally outperform established monotherapies.

A number of clinical trials have commenced to treat breast cancer patients who have 

relapsed on ET (Table 2). Combining CDK4/6 inhibitors with ET improves outcomes for 

both endocrine-sensitive and endocrine-resistant HR+, HER2− breast cancer [113]. In the 

TREnd trial, CDK4/6 inhibitor palbociclib combined with AIs improves progression-free 

survival (PFS) compared to monotherapy in post-menopausal women with advanced HR+, 

HER2− breast cancer previously treated with ET agents. Furthermore, patients who receive 

prior ET for more than 6 months show greater benefit from combination therapy than those 

who received prior ET for six months or less [114]. The authors did not provide a basis for 

this result though we speculate that more prolonged prior ET increases risk of developing 

resistance rendering these patients more responsive to combined treatment. In the absence of 

early resistance, combination therapy likely confers less overall benefit. The benefits of 

CDK4/6 inhibitors combined with AIs or fulvestrant are well documented in patients with 

advanced breast cancer who progress on prior ET [115]. In the PALOMA-3 trial, fulvestrant 

in combination with CDK4/6 inhibitor palbociclib improves PFS compared to fulvestrant 

alone and is recommended for the treatment of patients who relapse on AIs [116]. 

Preliminary results from the ALTERNATE trial show that no benefit exists in using 

fulvestrant or fulvestrant in combination with anastrozole in comparison to anastrozole alone 

for improving endocrine responsiveness.

Inhibitors of PI3K and mTOR signaling have been evaluated in combination with ET to 

combat endocrine resistance. For instance, combining everolimus with letrozole and 

goserelin, a gonadotropin-releasing hormone agonist, appears quite efficacious in 

premenopausal patients once they progress on tamoxifen in the MIRACLE trial [117]. The 

BOLERO-2 trial revealed that everolimus combined with AI improves PFS in women 

previously treated with AIs [118]. Due to safety concerns (BELLE-3 trial), buparlisib 

combined with fulvestrant may not be recommended, yet the authors still propose that other 

PI3K inhibitors in combination with ET might show therapeutic promise [119].

EGFR signaling promotes inflammation and cancer stem cell-like activity in inflammatory 

breast cancer to provide a rationale for EGFR inhibitors to thwart the BCSC population 

[120]. In the OVER trial, fulvestrant was unable to completely degrade the ER. The 

investigators attributed fulvestrant’s reduced efficacy in part to the concomitant aortic 

insufficiency discharge that restores physiological postmenopausal levels of circulating 

estrogens. Targeting the EGFR/HER2 system should decrease circulating estrogens and 

ultimately improve fulvestrant’s efficacy.

Breast cancer progression may occur due to insufficient inhibition of aromatase. It is 

plausible that changing the class of AIs (e.g., from type I, steroidal, to type II, non-steroidal) 

for use in combination with fulvestrant would improve fulvestrant’s efficacy [120]. Long-

term fulvestrant treatment has the potential to increase breast cancer cell proliferation to 

promote its own resistance. Since ER-mediated signaling remains suppressed in these cells, 

their restored growth may be related to the upregulation of alternate growth-stimulating 
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pathways. This provides a rationale for the implementation of EGFR-tyrosine kinase 

inhibitors such as gefitinib to improve fulvestrant’s efficacy in patients who have progressed 

on AIs.

5. Perspectives and Conclusions.

ET benefits many patients with luminal breast cancer although the emergence of resistance 

leading to relapse is a constant threat to sustained efficacy. Targeting signaling pathways that 

promote stemness is important to improving breast cancer survival. Though BCSCs 

contribute substantially to aggressive breast cancer subtypes (e.g., TNBC) and appear to 

promote the survival disparity seen among African American breast cancer patients, we 

hypothesize that these cells may play an even greater role in the luminal breast cancer 

survival disparity.

Indeed, the racial survival disparity is more pronounced with the luminal breast cancer 

subtype than with other subtypes. Few clinical trials have been implemented to examine the 

differences in responsiveness of patients to therapeutic approaches designed to combat 

endocrine resistance based on ethnicity. Even the TAILORx trial examined ethnicity as a 

secondary rather than a primary aim. Such studies are needed to inform clinicians of the 

most appropriate ET for patients. More studies are needed to determine whether the survival 

disparity found among African American patients is linked to an increased chance they will 

experience endocrine resistance and relapse due to elevated BCSC markers.

Although CDK4/6 inhibitors and mTOR inhibitors are recommended in patients who have 

relapsed on ET, these targeted therapies have their limitations in combating endocrine 

resistance which threatens favorable clinical outcomes. The development of agents that 

target BCSCs has the potential to extend ET efficacy and prevent endocrine resistance to 

improve overall breast cancer survival, particularly among African American women.
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ER estrogen receptor

ERα estrogen receptor alpha

PR progesterone receptor

Her2 human epidermal growth factor receptor 2

ET endocrine therapy

EGFR epidermal growth factor receptor

CDK cyclin dependent kinase

mTOR mammalian target of rapamycin

AhR aryl hydrocarbon receptor

AF Aminoflavone

PI3K phosphatidyl inositol-3-kinase

HIF Hypoxia inducible factor

HIF1α hypoxia inducible factor 1 alpha

HIF2α hypoxia inducible factor 2 alpha

IGF insulin growth factor

ALDH aldehyde dehydrogenase

DAXX death associated factor 6

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

CDK4 cyclin dependent kinase 4

PFS progression-free survival

COX-2 cyclooxygenase 2

EMT epithelial to mesenchymal transition

TNBC triple-negative breast cancer

IL-6 interleukin-6

PDX patient derived xenograft

RFS relapse-free survival

RRS relapse risk score

PFS progression-free survival

DFS disease-free survival
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DSS disease-specific survival

VEGFR2 vascular endothelial growth factor receptor 2

ZMYND8 zinc finger MYND-type containing 8

GSIs γ-secretase inhibitors

DLL delta-like-ligand

JAG1 Jagged-1

JAG2 Jagged-2

TAILORx Trial Assigning Individualized Options for Treatment Rx

AIs aromatase inhibitors

HRE hypoxia response element

ADAM disintegrin metalloprotease

NUMB phosphotyrosine binding protein

CBP CREB binding protein

NID notch inhibitor domain

AC activating complex

FAK focal adhesion kinase
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Highlights

• Endocrine therapy is highly efficacious though some patients experience 

relapse.

• Breast cancer stem cells (BCSCs) contribute to endocrine resistance and 

relapse.

• BCSCs likely play a causal role in racial disparities observed in breast cancer.

• Targeting BCSCs is expected to improve luminal breast cancer patient 

outcomes.
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Figure 1. Endocrine therapy promotes breast cancer stem cell formation leading to resistance 
and tumor relapse.
(A) Breast tumors contain miniscule amounts of breast cancer stem cells (BCSCs). 

Endocrine therapy enriches for the cells (green) which eventually leads to endocrine 

resistance as evidenced by disease progression. Alternate forms of endocrine therapy are 

often initially effective but BCSC enrichment remains a threat. BCSCs undergo self-renewal 

and metastasize leading to relapse. The resultant tumors are nonresponsive to further 

endocrine therapy. (B) ligands for the Notch receptor (Delta/Jagged), bind to promote 

transactivation followed by proteolytic cleavages mediated by ADAM and later γ-secretase. 

The Notch intracellular domain (NID) is then released into the cytoplasm and translocates 
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into the nucleus where it is able to bind to the CSL transcription factor which binds to the 

activation complex (AC) of target genes. Alternatively, ligands for the integrin receptor bind 

to activate Src and the focal adhesion kinase (FAK) and this promotes a cascade of events 

leading to PI3K/Akt/mTOR activation. During hypoxia, mTOR is able to activate HIF1α 
which can then translocate into the nucleus after joining with HIF1β to bind to the hypoxia 

response element (HRE) of target genes along with co-activators p300 and CBP. These 

processes ultimately promote the growth and expansion of BCSCs and endocrine resistance.
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